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Assessing the Oxidative Capacity of the Atmosphere: MCMA-2003 as a Case Study

Abstract: 
Measurements from the Mexico City Metropolitan Area (MCMA) field campaign in 2003 (MCMA-2003) 
and a photochemical box model employing the Master Chemical Mechanism (MCMv3.1) are used to 
study primary HOx (=OH+HO2) radical sources and ROx radical cycling. HONO measurements are 
accurately modeled using an equilibrium model constrained for OH, NO, and photolysis.  A source 
apportionment of photochemical HCHO is performed considering: VOC precursors, oxidants, and 
primary vs. secondary oxidation. The box model is used to assess the level of constraint on primary 
radical sources (due to gas-phase processes). Predicted concentrations of HOx, when compared to 
measurements, demonstrate a significant lack of HO2 radicals in the early morning: This “missing 
reactivity” is highest during peak photochemical activity and has a significant impact on both VOC 
oxidation and ozone production throughout the day. 

Measurements from MCMA-2003 (CENICA):
• primary radical sources: HONO, HCHO, O3, alkenes/O3

1,2

• radical sinks: 103 VOC (55 VOC by measurements2,3), 
NO, NO2, SO2, CO
• temperature, pressure, dilution4, j-values1

• OH and HO2 measurements; also OH reactivity/loss5

Model description:
• steady-state, flexible-top, photochemical box model
• Master Chemical Mechanism (MCMv3.16,7):

• near-explicit mechanism (135 VOC, 13500+ reactions); ideal for ROx radical modeling; no chemical lumping
• modeling scenarios: HOx-unconstrained, OH-constrained, HO2-constrained, HOx-constrained

Key findings:
1) chain length: drastic under-prediction of OH cycling in the early morning hours (06:00-08:00) in the 
HOx-unconstrained case, a difference of a factor of 2 - 9.
2) HO2/OH v NO: a) at high NO (in the morning) the ratio is a factor of 3 smaller than the measured ratio, and 
overall, the measured and modeled slopes vary significantly. b) modeling of individual days (“high NO” and “low 
NO” day) demonstrates that conclusions based on a campaign averaged model are appropriate. 
3) RO2/HO2 v NO: note the low ratio in the HOx-constrained case (red circles), especially at high NO; the 
coupling between OH and RO2 yields a lower-than-expected RO2/HO2 ratio.
4) P(O3): in the early morning, the greatest percentage of NO-to-NO2 conversions take place, with the lack of 
predicted radicals resulting in a factor of 10 difference in cumulative ozone production in the predicted vs
observed cases.  In the mid-afternoon (16:00), the model underestimates cumulative ozone production by 70%.

References: 1Volkamer et al, GRL,32 (2005); 2Velasco et al, ACPD,7563 (2006); 3Volkamer et al, Atmos Env,3731 (1998); 4de Foy, Garcia, personal 
communication; 5Shirley et al, ACP,3163 (2006); 6Bloss et al, ACP,623 (2005); 7Bloss et al, ACP,641 (2005); 8Wall et al, J Atmos Chem, 31 (2006); 
9Garcia et al, ACPD,11583(2005)
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Relevant definitions/descriptions:
1) chain length: number of times that OH will be regenerated via ROx cycle before it is removed
2) HO2/OH v NO and 3)RO2/HO2 v NO: key ratios to test our understanding of ROx cycling
4) ozone production rate, P(O3): expressed here as number of NO-to-NO2 conversions from ROx radicals

• Model accurately predicts HOx diurnal profiles; 
with the exception of the prediction of OH in the 
HO2-constrained case; predicted OH is within 
measured and modeled uncertainties for the entire day
• HO2 is consistently under-predicted at night and in 
the morning (06-08:00) in both the HOx-unconstrained 
and OH-constrained scenarios
• The model is missing a HO2 source; however, the 
source cannot generate OH via cycling
• HO2-constrained model drastically over-predicts OH

What does this mean in terms of VOC oxidation 
and ozone formation?
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Radical sources: HONO and HCHO
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A lower limit of measured OH – based on a 0.01 pptv
statistical offset – and a new recommendation8 for j(HONO)
bring measured and modeled values into agreement; 
HONO is accurately predicted with an equilibrium model 
(commonly referred to as photostationary state, PSS; we 
do not use this term because we use night-time OH values)

Up to 70% of the observed HCHO is produced from 
photochemistry9: The bulk of photochemical HCHO
produced in the MCMA is from the primary oxidation of 
alkenes; OH is the dominant oxidant, while O3 makes a 
minor contribution.  
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The photolysis of HONO, O3, and 
HCHO, and O3/alkene reactions 
account for some 60% of the 
primary HOx flux on average; 
even though unconstrained 
carbonyls – formed as secondary 
oxidation products – contribute 
up to 40% of new ROx, the model 
is well-constrained for gas-phase 
primary radical sources.  

Conclusions:
+ Recommended lower limit for night-time and morning OH; confirmation of updated j(HONO) value
+ An equilibrium model – with HONO sources and sinks constrained – accurately predicts measured 
HONO concentrations throughout the day
+ Primary radical sources are well-constrained by measurements; HCHO is the predominant day-time 
HOx radical source
+ We accurately predict OH; however, we drastically under-predict HO2 at night and in the early morning, 
which has significant implications for O3 formation throughout the day; we are missing an HO2 source


