

LARP Collaboration Meeting, LBNL 04/26/06

Phase II Collimator Engineering Studies

The Model: NLC Rotatable Collimator

Jaws can be rotated to present new collimation surface if damaged by beam. Typical accuracy, stability ~ 5um.

LARP Collaboration, LBNL - E. Doyle 26 Apr. 2006

Adapted to LHC Phase II Requirements

•136mm diameter x 950 mm long jaws (750 mm effective length due to taper).

•Vacuum tank, jaw support mechanism and support base derived from CERN Phase I.

NLC & original LHC specs – major differences

Specification	NLC	LHC	Comments
beam pipe ID	1cm	8.4cm	LHC: two opposing beam pipes
gap range (full aperture)	0.2 – 2.0mm	0.5 – <mark>45</mark> mm	
Jaw diameter	318 mm	136 mm	LHC: Function of beam pipe diameter/spacing and gap range
jaw length	10 cm total 6mm active L/D=.02	95 cm total, ~75 cm active L/D=5.5	LHC: length controlled by 1.48m flange- flange space and need for flexible transitions; thermal bending problem results from length
jaw deformation – toward beam	5 um	25 um	NLC: short jaw => no bending; close coupled support controls effects of swelling
SS power, per jaw	~1 W	~ 12 kW	Cooling NLC: radiation - 4C temp rise. LHC: water cooling, possible power densities in boiling regime

★ This spec infeasible, has been relaxed

Bottom Line: LHC & NLC collimators are different animals

LARP

> Exceeds spec, or other possible problem as noted

Collimator			TCSM.A6L7				
Cooling scheme		Helical	Axial (36°)				
Cooling		# channels	1	2			
		Diam (m)	.008	.006			
		Velocity (m/s)	3	3			
		Total flow (l/min)	9	10			
Beam heat	SS	Power (kW)	11.7				
	Trans	Power (kW)	58.5				
Temp (C)	SS	Jaw peak	86.5	91.5			
		Cooling chan. peak	68.3	69.7			
		Water out	36.0	36.1			
	Trans	Jaw peak	231	223			
		Cooling chan. peak	154	130			
		Water out	43.6	47			
Deflection (um) ⁴		394	107				
	Trans		1216	778			
Eff. length (cm) 5	SS		43	75			
	Trans		24	31			

Max Cu temp 200 Possible boiling Max water return temp

Deflection 325 & 750 (SS & trans)

All temperature simulations based on 20C supply. For CERN 27C supply add 7 to all temperature results. CERN max water return temp 42C

IR7 secondary collimators heat generation, deflection and effective length

Deflection and effective length based on ANSYS simulations for TCSM.A6L7. Power scaled from TCSM.A6L7 according to the distribution on secondary collimators provided by CERN. Note: first collimator in the series absorbs the bulk of the energy.

		Stea	ady Stat	е	Tra			
No.	name	Power (kW)	Defl (um)	Eff. Lngth (cm)	Power (kW)	Defl (um)	Eff. Lngth (cm)	note
1	TCSM.A6L7	11.7	394	43	58.5	1216	24	simulated
2	TCSM.B5L7	2.7	137	75	13.5	422	46	scaled
3	TCSM.A5L7	.69	35	75	3.44	108	75	scaled
4	TCSM.D4L7	.18	9	75	.92	29	75	scaled
5	TCSM.B4L7	.20	10	75	1.01	31	75	scaled
6	TCSM.A4L7	.19	10	75	.96	30	75	scaled
7	TCSM.A4R7	.16	8	75	.81	25	75	scaled
8	TCSM.B5R7	.22	11	75	1.10	34	75	scaled
9	TCSM.D5R7	.19	9	75	.93	29	75	scaled
10	TCSM.E5R7	.13	6	75	.62	19	75	scaled
11	TCSM.6R7	.25	12	75	1.23	26	75	scaled

Bending far exceeds 25um spec => Compromise:

Central aperture stop prevents deflection toward beam

Steady State operation

Adjustable central aperture-defining stop

Stop in/out position controls aperture, actuator external, works through bellows.

motion up to 1mm away from beam

RC1 Thermal & Mechanical Test Plan (12/05)

12/15/05 Review - Summary

Major Concerns Expressed by Review Committee

- 1. Refine detailed engineering before proceeding
 - a. tilt stability of flexible end supports
 - b. accuracy of jaw fabrication & placement
 - c. lack of jaw indexing concept
 - d. cooling/thermal stability of bearings, central stop, springs, etc
- 2. Possible permanent deflection due to thermal transients
- 3. Try stiff core of SST to reduce deflection
- 4. Insufficient manpower

SLAC's Response

1. Detailed engineering of mechanism proceeding (concurrent w/ thermal test)

- a. reverse engineered Ph I mechanism (jaw support spring compatibility)
- b. jaw will be made sufficiently accurately
- c. indexing via ratchet or escapement mechanism (NLC concept)
- d. began simulations of heat loads on vulnerable systems (bearings)
- 2. Confirmed plastic deformation
 - a. adopting Glidcop as jaw material
 - b. begun transient analysis of errant beam "accident case" jaw deflection
- 3. SST core no benefit, solid Cu core does help, but adds weight
- 4. Hired ME and designer.

a. new engineer is proceeding with thermal test (separate presentation)

Note: Schedule has slipped ~6 mo. RC1 complete 4/07

Jaw Positioning Forces – Phase I

Jaw Positioning Forces – Phase I => Phase II

Jaw deflection = 400 um for 1 hr beam lifetime case, 1200 um for 10 sec transient @12 minute lifetime power level Jaw end springs will be sized as compromise 1) bending-generated force applied to nut 2) static deflection due to jaw weight

NLC Jaw Indexing Mechanism

Reciprocating linear motion advances jaw by one or more ratchet pitches. LHC system will require opposing ratchet to hold jaw position against cooling tube deformation torque. Mechanism probably will be designed to actuate only when jaw fully retracted.

Bimetallic jaw (SST/Cu) no benefit Solid Cu beneficial

10 σ , primary debris + 5% direct hits		SS @ 1	hour b	eam life	9		transie	ent 10 see	c @ 12 r	nin bea
material	cooling arc (deg)	power (kW) per jaw	Tmax (C) ³	Tmax water side (C)	defl (um) ⁴	water Tout (C) 2	power (kW)	Tmax (C)	Tmax water side (C)	defl (um) ⁴

CERN ray file, 7 σ , 83.8% 60cm TCPV, 4.8% dire	ect hits]	
Cu solid, 136x950-,750 heated, 2 ch, fluid p	36	11.7	91.5	69.7	107.0	36.1	58.5	223.3	129.6	778	Beceline He	
Cu, 136x71x950- ,750 heated, (helical), fluid	-	11.7	86.5	68.3	394.0	36.0	58.5	231.3	153.5	1216		
Cu, 136x11x950- ,750 heated, (helical), fluid	-	11.7	66.1		203.0	36.4	58.5	186.0		793	all cu shallow 10mm helix	
Cu, 136x11x950- ,750 heated, (helical), fluid	-	11.7	65.1		198.0	36.4	58.5	184.0		781	all cu shallow helix new	Solid
Cu, 136x11x950- ,750 heated, (helical), fluid	-	11.7	75.5		209.0	36.0	58.5	208.9		919	all cu deep 25mm helix	Cu
Cu, 136x11x950- ,750 heated, (helical), fluid	-	11.7	54.3		136.0	36.4	58.5	158.5		606	all cu shallow, 2cm pitch	2
Cu, 136x11x950- ,750 heated, (helical), fluid	-	11.7	85.2		402.0	36.0	58.5	231.4		1135	bimet, thk 25mm Cu	
Cu, 136x11x950- ,750 heated, (helical), fluid	-	11.7	95.3		448.0	36.4	58.5	256.0		1111	bimet, thin 10mm Cu	}SST/Cu
Cu, 136x11x950- ,750 heated, (helical), fluid	-	11.7	97.7		475.0	36.3	58.5	265.2		1158	bimet, thin Cu, sst cooled	J

12/05
12/05
12/05
12/05

2/05 review baseline

/05 review baseline plus solid Cu core /05 review baseline plus solid SST core /05 review baseline, thinner Cu plus solid SS٦

1. power per jaw is nominal - power deposited in rectangular FLUKA grid

2. Tin = 20C, T rise based on power, 9 L/min flow

3. simulation of jaw conduction and convection to water - no transport of heat by water

4. deflections referenced to end O.D. At the gap.

No benefit from SST core – same CTE as Cu, poor conductivity – temperature distribution unchanged. Cu core => alt heat path to opposite side, reduces Δ T therefore bending.

75 761

LHC Phase II Collimation

Bonus SLIDES

LARP Collaboration, LBNL - E. Doyle 26 Apr. 2006

Specifications for baseline Phase II collimator

		spec	value
	Beam	sigma	200um
		location	Centered in pipe +/- 5mm
	Beam pipe	Spacing	224mm c-c opposing beampipes
		diameter	88mm OD
		clearance	8mm vacuum tank to opposing beampipe
	Jaw	Length	95cm including 10cm tapers on ends
		Diameter	136mm
		Material	Copper
		cooling	Embedded helical channel
		cooling	No water-vacuum joints if possible
		Special features	Circumferential slots to reduce thermal-induced bending, if no RF problems
4		deformation	<25um toward beam; <325mm away, steady state; <750um away, 10 sec transient
~		Peak temp.	200C operating, 250C bakeout
		Range of motion	25mm per jaw, including +/- 5mm beam location drift
		Damage extent	15mm
	Aperture stop	Range of motion	Positively controls aperture from 5-15 sigma (2-6mm full aperture), must float +/-
			5mm as jaws are moved to follow beam drift
	Heat load	Steady state	11.7 kW
		Transient	58.5 kW
	Vacuum	pressure	<1e-7 Pa (7.5e-10 Torr)
	Vac. tank	length	1.48m flange-flange
		flanges	CERN quick disconnect
		Clearance	Clears opposing beampipe with +/- 10° adjustment in all orientations
	Cooling	Supply	27C
		return	42C max
	RF contacts	configuration	Sheet metal parts per Figures 7-9 subject to CERN approval

baseline design deviates

* Relaxed from original spec

Unresolved Issues as of 12/15/05

Jaw actuation mechanism How to handle mass of rotary jaws (fail open springs) Availability of CERN actuation mechanism for SLAC use is being discussed Jaw rotary indexing mechanism force to rotate jaws acceptable? concept not developed do we know angular position of jaw at all times? RF parts - taper requirement details not clear central groove in jaws (smooth track for central aperture stop) strain-relieving grooves in jaws what is the acceptable range of taper angles for the jaw ends Heat generation in thin RF parts Need details of CERN support stands, etc Effects due to accident does accident cause unacceptable gross distortion of the jaw? do RF fingers work in contact with damaged surface? How much material melts and where does it go? - depends on jaw orientation is central aperture stop safe from contamination by melted material? Beam tests may be required

RF contact overview

Grooves reduce bending deflection

ANSYS simulation: Axial stress for un-grooved and grooved jaw with axially uniform heat input.

LARP Collaboration, LBNL - E. Doyle 26 Apr. 2006

Cu chosen as best balance between collimation efficiency, thermal distortion & manufacturablity

material	reasons for rejection in favor of Cu
	Be is prohibited by CERN management, except when no
BeCu (6% Cu-loaded Be)	alternatives exist; low cleaning efficiency; fabrication difficulty
Super Invar	poor thermal conductivity => high temperature (866C); desirable properties (low thermal expansion coefficient) disappear at 200C
	poor thermal conductivity => high temperature ($T_{mp} = 1400C <$
	1520C transient peak) & very high deflection (1039um SS,
Inconel 718	1509um transient)
Titanium	poor thermal conductivity => deflection 2.7 x Cu (591um, SS)
	High temperature on water side (240C => ~30bar to suppress
Tungsten	boiling); high power density - can't transfer heat without boiling
	relatively poor cleaning efficiency, water channel fabrication
Aluminum	difficulty
	deflection only ~50% lower than 25mm Cu, loss of safety zone
Cu - 5mm wall	between surface and water channels
	deflection only ~30% lower than 25mm Cu; Be prohibition;
Cu/Be (5mm/20mm)	fabrication difficulty

Interesting effect: 64% less distortion if cooling is limited to a 36° arc centered on beam path.

360° full I.D. cooling

Helical and axial cooling channels illustrated

<u>360° cooling</u> by means of helical (or axial) channels.

Pro: Lowers peak temperatures.

Con: by cooling back side of jaw, increases net ΔT through the jaw, and therefore thermal distortion; axial flow wastes cooling capacity on back side of jaw.

<u>Limited cooling arc</u>: free wheeling distributor – orientation controlled by gravity – directs flow to beam-side axial channels.

Pro: Far side not cooled, reducing ΔT and thermal distortion.

Con: peak temperature higher; no positive control over flow distributor (could jam); difficult fabrication.

