The DØ Detector and Physics Program

Roger Moore Michigan State University

DØ

DØ is a large (5,000 tons) experiment on the Tevatron proton/anti-proton collider at Fermilab
Run by a Collaboration of ~550 physicists

• ~75 institutions, 18 countries

	•		*2	
U. of Arizona U. of California, Berkeley U. of California, Riverside Cal State U., Fresno	U. de Buenos Aires	LAFEX, CBPF, Rio de Janeiro State U. do Rio de Janeiro State U. Paulista, São Paulo	HEP, Beijing	U. de los Andes, Bogotá
Florida State U. Florida State U. Fermilab U. of Illinois, Chicago Northern Illinois U Northern U		Ť		
Indiana U. U. of Notre Dame Iowa State U. U. of Kansas Kansas State U Louisiana Tech U U. of Maryland Boston U.	Charles U., Prague Czech Tech, U., Prague Academy of Sciences, P	U. San Francisco de Quito rague	ISN, IN2P3, Grenoble CPPM, IN2P3, Marseille LAL, IN2P3, Orsay LPNIHE, IN2P3, Paris DAPNIA/SPP, CEA, Sacla IReS, Strasbourg IPN, IN2P3, Villeurbanne	U. of Aachen Bonn U. IOP, U Mainz Ludwig-Maximilians U. Munich y U. of Wuppertal
U. of Michigan Michigan State U. of Nebraska U. Princeton U. Columbia U. U. of Rochester SUNY, Stony Brook	The Dg	ð Collat	oratio	n
Brookhaven Nat. Lab. Langston U. U. of Oklahoma Brown U. U. of Texas, Arlington				
Texas A&M U. Rice U. U. of Virginia U. of Washington	Panjab U., Chandigarh Delhi U., Delhi Tata Institute, Mumbai	University College, Dublin	KDL, Korea U., Seoul	CINVESTAV, Mexico City
				*
FOM-NIKHEF, Amsterdam U. of Amsterdam/NIKHEF U. of Nijmegen/NIKHEF	JINR, Dubna ITEP, Moscow Moscow State U. IHEP, Protvino PNPI, St Petersburg	Lund U. RIT, Stockholm Stockholm U Uppsala U.	Lancaster U. Imperial College, London U. of Manchester	HCIP, Hochiminh City

R. Moore, Michigan State

Me

The Tevatron Collider

- Currently world's highest energy collider
- •Recently upgraded for Run II (pre-upgrade Run I)
- Collides bunches protons and anti-protons
 - Centre-of mass energy 1.96TeV=10¹²eV eV=electron volt
 - 6.2km circumference
 - Design luminosity 5x10³²cm⁻²s⁻¹ (Run I: 10³¹cm⁻²s⁻¹)
 - Bunch spacing 396ns -> 132ns? (Run I: 3.5µs)
- Superconducting magnets
 - Energy limited by magnetic field strength
 - Larger ring means less powerful magnets needed

Protons are composite particles (quarks/gluons)

• Collisions occur over a range of energies ~1 GeV - 1 TeV 21/03/03 R. Moore, Michigan State 3

The Tevatron Collider

FERMILAB'S ACCELERATOR CHAIN

21/03/03

Scales

- Colliders force high energy interactions between particles
- •The higher the energy the smaller the scale probed
- Recreate very high temperatures last observed in the early Universe
 - Understand processes occurring just after the **Big Bang**

21/03/03

Big Bang

History of the Universe

Now (13.7 billion years) [WMAP]

Stars form (1 billion years)

Atoms form (380k yrs) [WMAP]

Nuclei form (180s)

Protons/Neutrons form (10⁻¹⁰s)

Fermilab: 4x10⁻¹²s LHC: 10⁻¹³s

Strong CP Violation? Quantum gravity?

The Standard Model

- •Describes the fundamental (as far as we know) building blocks of matter and how they interact
- •All matter consists of quarks and leptons (fermions)
 - 6 quarks, 6 leptons each divided into 3 generations
- •Interact by exchanging force carriers (bosons)
 - gluon: strong force, binds nuclei
 - W/Z: weak force, β decay
 - photon: electromagnetic force
- •EM and weak forces unified above ~100GeV
 - Single Electroweak force

The Standard Model

Annoyingly persistent: survived for > 20 years

- but cracks (finally!) starting to appear....
 - neutrino oscillations
- •We know it isn't complete
 - Four forces: Gravity?
 - Higgs boson (or something else) needed to give particles mass
 - Dark matter
- •Many theories (SM included) expect new physics between EW and TeV (100GeV-1TeV)
 - DØ pushing at boundaries, LHC will cover them

21/03/03

- •<u>Tracking detectors</u>, inside magnetic field
 - Measure momentum and charge of charged particles
- •<u>Calorimeters: EM + Hadronic</u>
 - Measure particle energies from showers
- •<u>Muons</u>: penetrate entire detector, charged
- <u>Neutrinos</u>: penetrate light years of material
 - neutral, missing transverse momentum

21/03/03

R. Moore, Michigan State

The DØ Detector

- •DØ detector recently heavily upgraded for the newly upgraded Tevatron
 - \bullet Bunch crossing down to 132/396ns from 3.5 μs
- •Practically a new detector!
 - Only Calorimeter remains mainly unchanged
- •Central tracking system completely replaced
 - Magnetic field added (no field in Run I!)
- Trigger and DAQ system completely replaced
 - Higher trigger rate due to increased luminosity
 - Need to make decision once every bunch crossing

The DØ Timeline

1983 First meeting at Stonybrook

1984 Approval from U.S. DoE

1985-1987 Detector R&D

1988-1991 Construction

1992-1996 Data taking for Run I

- 1993 First Paper published
- 1995 Discovery of Top Quark

1996-2000 Ugrade for Run II

2000 100th Paper Published

Run II starts...

2001

The DØ Detector

The DØ Tracking Detectors

- Two types of tracking detector
 - Silicon: 800,000 channels
 - Scintillating fibre
- •Inside super-conducting solenoid which provides 2T magnetic field

R. Moore, Michigan State

The DØ Calorimeter

Liquid Argon/Uranium - first time used

- Both EM and hadronic regions: EM, FH, CH
- Nearly compensating: e/h = 1.04-1.11
- •Granularity 0.05x0.05 0.10x0.10 in η, φ

The DØ Muon Detector

- DØ muon system has three planes: A,B and C
 Surrounds detector, fewer planes underneath
- Combination of technologies
 - Wire chambers for position
 - 2-3 scintillator planes for timing
 - Toroid magnet between A and B

R. Moore, Michigan State

21/03/03

The DØ Trigger

- Tevatron beams cross every 396ns
- •Why not just readout on every crossing?
 - Need to digitize all channels at 7.5MHz (expensive)
 - Enormous output data rate
 - 7.5MHz x 0.25MB = 1.9TB/s!
 - Most of what we readout will be very uninteresting
- •Need to decide if it is worth reading out for a given beam crossing...need a Trigger!
- •Must be a lot faster than the full readout
 - Use fraction of full readout data
 - Run simple algorithms not a full reconstruction

•Must cope with a large variety of physics signatures

R. Moore, Michigan State

DØ Detector Status

•Commissioning complete

- Tracking trigger mostly in place but not yet certified
- •Accelerator luminosity currently ~15% design
 - Run II peak luminosity 4.1×10³¹cm⁻²s⁻¹ (4.1 × Run I)
 - Just returned from a shutdown when material was removed from the beam pipe
- •80pb⁻¹ Integrated luminosity delivered to date
 - Current data taking efficiency ~85%
- •Predicted luminosity by the summer conferences will be $\sim 200 pb^{-1}$ or 2 x Run I
 - 200pb⁻¹ means a process with σ =1 pb will happen 200 times

DØ Luminosity

Moriond 2002: 1 pb⁻¹ data, Summer: > 5 pb⁻¹ data
Moriond 2003: > 50 pb⁻¹ data
Summer 2003: > 200 pb⁻¹ data

R. Moore, Michigan State

20

DØ Physics Program

- •Large variety of physics being studied in Run II at D0
 - Search for New Phenomena
 - Search for the Higgs Boson
 - Top physics
 - B Physics
 - Electro-weak physics
 - QCD

Search for New Phenomena

•Currently Tevatron is the highest energy accelerator in the world

- Good place to look for new things
- •Many candidate theories being looked for:
 - Supersymmetry (see tomorrow's seminar)
 - Lepto-quarks
 - Symmetry between quark and lepton sectors
 - Large extra dimensions
 - Possibility of > 3 spatial dimensions
 - Generic searches
 - Sleuth and Quaero (web based access to DØ data)

Leptoquarks

 Lepton and quark sectors of the Standard Model appear very similar

• 6 of each divided into 3 generations

- Theories suggesting a symmetry between the two give rise to new particles called Leptoquarks
 - Couple to the strong and weak forces

Produced in pairs

- Scalar and vector
 - Consider scalar

- •Three generations of Leptoquark: LQ₁, LQ₂, LQ₃
 - Decays to same generation of quarks/leptons
 - Prevents processes like: e→µ,u→c (Flavour Changing NC) 21/03/03
 R. Moore, Michigan State
 23

Leptoquarks

LQ

 ν_e, ν_u, ν_τ

Decay products are quark + lepton

LQ

Branching Ratio = β Branching Ratio = (1- β) •Final states looked for are 2 jets + 2 leptons

• 2 jets + 2 e, 2 jets + 2μ , 2 jets + missing ET

e,μ,τ

- Preliminary RunII analysis looks for second generation scalar Leptoquarks
 - i.e. 2 jets + 2 muons [assume β =1]
 - Scalar LQs have model independent cross-section

Backgrounds from standard model processes

• Z+jets (Z \rightarrow µµ), ttbar \rightarrow µµ+2jets+MET,WW+jets (W \rightarrow µV) 21/03/03 R. Moore, Michigan State 24

Leptoquark Event Selection

- •2 muons each with
 - Transverse momentum, p_{γ} > 15 GeV/c
 - $|\eta| < 2.0$ after excluding the region where $|\eta| < 1.0$ and -1.96< ϕ < -1.17 (detector supports)
- •Cosmic ray muons removed (timing cut)
- •Invariant muon mass, M_{µµ}> 60GeV/c²
- Muon isolation requirements
 - Calorimeter halo < 2.5 GeV (0.4 cone-0.15 cone)
 - Track Halo < 2.5 GeV/c (track momenta in 0.5 cone)
- •At least 2 jets (0.5 cone algorithm) with transverse energy, E_{T} > 20 GeV and $|\eta| < 2.4$

Leptoquark Events

•Event with highest $M_{\mu\mu}$ =108GeV/c² and 2 jets

R. Moore, Michigan State

Extra Dimensions

Possibly > 3 spatial dimensions

• "Extra" dimensions compactified to a small scale (otherwise we would already see them!) imension

•Extra dimensions only accessed by gravity

- Relative weakness of gravity at large distances is because it is "diluted" by volume of extra space
- •Theories have 3 free parameters:
 - Fundamental mass scale, M_{s} (M_{p})
 - Compact dimension's radius, R
 - Number of compact, extra dimensions, n

21/03/03

flat

gravitons

Other Experimental Limits

- •Limits on R come from measurements of the gravitational potential, assuming $M_s \sim 1 \text{TeV}/c^2$
 - n=1 excluded by solar system
 - R< 0.19 mm for n=2 (Eöt-wash)
- •Cooling of SN1987A by graviton emission (preventing the neutrino flux) limits M_s :
 - M_s> ~30 TeV/c², n=2; M_s> ~2 TeV/c², n=3
- •Smoothness of the cosmic diffuse gamma radiation (CDG) due to graviton decay, $G_{\rm KK} \rightarrow \gamma\gamma$
 - M_s ~100 TeV/c², n=2; M_s ~5 TeV/c², n=3

Extra Dimensions Signature

•Look fermion or boson pair production by virtual graviton exchange $\frac{1}{a} = \frac{\gamma^*/Z^*}{\gamma^*/Z^*} = \frac{1}{\sqrt{1-2}}$

- Two additions to SM cross-section
 - Interference term
 - Gluon term

21/03/03

•Cross section given by: $\frac{d^2\sigma}{dMd\cos\theta^*} = f_{SM} + \frac{f_{int}\eta_G + f_{KK}\eta_G^2}{dMd\cos\theta^*}$

R. Moore, Michigan State

• f_{SM} , f_{int} and f_{KK} are functions of (M,cos θ^*)

• n_{g} =F/M_s⁴ F is model dependent ≈ 1

Extra Dimensions Signature

Gravity enhanced by phase space

- Kaluza-Klein excitations
 - Winding of graviton about the compactified dimensions
 - Interaction as $1/M_{s}^{2}$, not $1/M_{planck}^{2}$
- •Two analyses using Run II data at DØ:
 - $G_{KK} \rightarrow e^+ e^- / \gamma \gamma$ and $G_{KK} \rightarrow \mu \mu$
- • $G_{KK} \rightarrow e^+e^-/\gamma\gamma$ uses 50 pb⁻¹ data
 - 2 EM objects with E_{T} > 20 GeV, EM fraction > 0.9
 - Within good fiducial region of the calorimeter
 - $|\eta| < 1.1$ or $1.5 < |\eta| < 2.4$ (gap between cryotstats)
 - Cut events with > 2 EM objects with E_T > 5 GeV and with > 25 GeV of missing E_ 21/03/03
 Moore, Michigan State

Extra Dimensions Di-EM

Compare SM+instrumental backgrounds to data

- Drell-Yan + direct photon events
- Jets faking electrons

•Measure: η_c< 2.1 TeV⁻⁴ 95% CL

- M_s> 1.12 TeV/c² [F=1]
- Run I limit: > 1.2 TeV/ c^2

R. Moore, Michigan State

LED Di-EM Candidate

LED Di-Muon Analysis

•Look for the same physics but with $G_{KK} \rightarrow \mu\mu$

- 30pb⁻¹ data used
- •Events similar to LQ analysis:
 - Transverse momentum, p_T > 15 GeV/c, (n, φ) acceptance...
 - Isolation cuts: E-Halo < 2.5GeV and Track-Halo< 2.5 GeV/c
 - $\mu\mu$ mass > 40 GeV/c²
- Data consistent with SM background
 - n_{G} 2.5 TeV-4 95% CL
 - M_s< 0.79 TeV/c² [F=1]

Sleuth

Search for new physics in a model independent way

- Divide data up into regions about sets of data points
- Choose the region which is most "interesting"
 - Defined as: "disagrees with SM background the most"
- Determine # hypothetically similar experiments which would produce even more interesting data
- •Result for Run I in several channels
 - 89% of similar experiments would be more interesting!
- •Tested with Top
 - 1.9 σ excess in eµ+MET+2 jets vs. 4.6 σ for top analysis
 - Not as good as targeted search...but model independent

Search for the Higgs

- •The Standard Model needs the Higgs boson to give particles their mass
- •Upper limit for Higgs mass from W⁺W⁻ unitarity limit: M_{Higgs}< 1 TeV/c²
 - Above this >100% chance of interaction!
- •Current best limits on the Higgs mass come from LEP II at CERN (electron-positron collider)
 - LEP II limit: M_{Higgs}> 116 GeV/c²
- •Only missing SM parameter is Higgs mass
 - Plug in other parameters and calculate the Higgs mass
 - Current best fit of SM favours M_{Higgs} < LEP II limit

Higgs Mass Mechanism

Higgs field "slows" particles down = mass

Particle mass depends on coupling strength

Tevatron Higgs Signal

Higgs hunting is hard at the Tevatron

- Low cross-section, lots of background
- Search for Higgs uses associated production

$p\overline{p} \to WH + X, \ p\overline{p} \to ZH + X$

- Decay H→bbbar: dominant for M_{Higgs}< 130GeV/c²
- Decay $H \rightarrow WW^{(\star)}$ dominant for $M_{Higgs} > 130 GeV/c^2$
- •Run IIa ~2 fb⁻¹ integrated luminosity
 - Limit ~ LEP II, then the silicon detector dies!

•Run IIb total of 6-11 fb⁻¹ integrated luminosity

• ...but Run IIb very close to LHC turn on (1- 2 years?)

Search for the Higgs

Top Physics at DØ

- Top quark physics
 - Top quark discovered in Run I
 - Tevatron is the only place in the world where you can study the Top quark until the LHC starts up

•Far more top in Run II than in Run I ($10's \rightarrow 100's$)

- Increase in energy from 1.8 to 1.96 TeV increases ttbar cross section by ~30%
- Luminosity will give factor ~20 more ttbar in Run IIa
- Lots of interesting, new physics to study
 - Improve top mass and cross-section mesasurements
 - Search for single top production
 - Unconfined quark physics since top decays very quickly

t-tbar Cross-section

 Preliminary measurement of cross-section from RunII data at 1.96TeV

- Run I measured cross-section at 1.8 TeV
- Top decays too fast to observe directly
 - look for decay products
- •Predominant decay: t→Wb
 - W decays to quarks (jets) or [e,μ,τ]+neutrino
 - b quark produces a jet
- Several different sets of decay products to look for

Decay Channels

6 decay channels considered (all jets in progress)

- Only use states with one or more e, μ
 - T heavy enough to decay to hadrons: looks like a jet
- Tagged b jets: b→Wc and W→µv
 - look for jets with an associated muon
 - 2 leptons+jets

Pure and efficient, Efficient but low branching ratio 21/03/03

not pure

R. Moore, Michigan State

lepton+tagged jet

Pure, but not efficient

Analysis

- •Data sample: 30-50 pb⁻¹ depending on channel
 - 12pb⁻¹ without μ data
 - 8pb⁻¹ with low tracking efficiency (recoverable)
- •Trigger: calorimeter and muon detectors
 - Conditions applied at all three levels: L1,L2,L3
- Selection criteria similar to those for NP analyses

Results

- •Theory expects cross-section to be ~30% higher at 1.96TeV vs. 1.8TeV (Run I)
 - 6.7-7.5pb Next to Leading Order (NLO) calculations
 - 8.8pb NNLO estimate
- •Run II preliminary result with all channels combined

 $\sigma_{\rm t\bar{t}} = 8.4^{+4.5}_{-3.7}(stat)^{+5.3}_{-3.5}(sys) \pm 0.8(lum)~\rm pb$

- •Observe 3σ excess of combined signal over background
 - Top quark is still there!
- •New top results in the pipeline...

Two leptons + jets

•Candidates from eµ+jets and e+jets channels

Conclusions

•DØ starting to probe a very interesting range of energies...will be continued by LHC

- Something new between 100-1,000 GeV
- Could be the Higgs: more exciting if it isn't!
- •Even if we find the Higgs why it is so light compared to the Planck scale (10¹⁹ GeV)?
 - Heirarchy problem...see tomorrow's seminar
 - Large extra dimensions and Supersymmetry
- •Lots of hints for other new physics (but not necessarily in reach of DØ or even LHC)
 - WMAP non-baryonic matter fraction of the Universe
 - Neutrino oscillations: lepton flavour violation 21/03/03 R. Moore, Michigan State

Conclusions

•Currently a very busy, and very exciting, time on DØ!

- Detector and trigger now complete and working well
- Working hard on understanding the data
 - Tracking algorithms and alignment
 - Calorimeter noise
- •A lot more data is coming very soon
 - ~200pb⁻¹ by summer conferences
 - Will exceed Run I luminosity in next few months

•Physics results starting to come... 21/03/03 R. Moore, Michigan State

Particle physics detectors split into components
Each optimized for a specific purpose

- Tracking detectors, inside magnetic field
 - Measure position accurately at points, join to get track
 - Curvature of track gives momentum and charge
 - Don't detect neutral particles (no ionization energy)

•<u>Electro-Magnetic Calorimeter</u>

- e+/e- and photons create EM showers in matter
- Showers narrow and not penetrating
- Finely divided calorimeter

•<u>Hadron Calorimeter</u>

- Jets or hadrons create hadronic showers (strong int.)
- Broader and more penetrating than EM
- Bigger cells than EM and more material

21/03/03

•<u>Muons</u>

- Too heavy to bremstrahlung like electrons, do not interact via strong force and have a long lifetime
- Penetrate entire detector, detected by counters which ring the outside of the experiment

Neutrinos

- weakly interacting, neutral and stable
 - penetrate light years of material!

• Carry away momentum: signature missing transverse p 21/03/03 R. Moore, Michigan State 50