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Al)stract

An approach to star identification based on comparing observed pattern statistics with the

precomputed  star cataloged statistics is suggested. ~’he identification criterion is based on

evaluating a posteriori probabilities of designated star sequences obtained from observing different

star fields. Numerical results based on a specific algorithm are presented. A number of references
& for other approaches are cited.

Introduction

Operation and performance of spacecraft control systems will be significantly improved with the

ability to autonomously and precisely calctilate  spacecraft attitude by means of star sensors. With

recent advancements in charge-coupled device (CCL)) star trackersl~  and NASA’s emphasis on

developing cost-effective spacecraft, a star tracker with full-sky recognition based on multiple star

observations will have a significant impact in terms of cost, limitations, and operational complexity

of spacecraft and space-based instruments. The ability to identify guide stars autonomously will

provide more efficient, robust, and independent modes of attitude determination and fault or loss-

of-attitude recovery.

Once the star field is correctly identified, spacecraft attitude can be determined by generating the

direction cosine matrix from one pair of identified stars or solving for the attitude with the least-

squares method using all the identified stars in the field of view (FOV),5 or various other methods.

Having established the initial attitude, subsequent star pattern recognition and attitude determination

processing will be greatly simplified (tracking known stars becomes an issue here).

Although many algorithms have beeen proposecl  for star pattern identification, significant

limitations in terms of parametric sensitivities, flexibility, and implementability  have not yet been

overcpme. For example, angular separation techniques that rely on matching all possible pairs of

observed stars to cataloged star pairs6 carry a tremendous computational and memory burden due
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to N(N- 1)/2 combinations (although this number can be reduced by considering only pairs that do

not exceed the camera FOV, a number of candidate pairs is still quite substantial for moderate FOV

and star magnitude range). In addition, the problem of accommodating such uncertainties as the

failure to match a few of the connected pairs in the observed star group is not trivial and often leads

to implementation of many ad hoc and cumbersome selection/elimination criteria that can cause

serious flaws.7  Grouping star pairs in terms of triangles8-9  – this implies N(N- 1 )(N-2)/6

combinations – has the same problem as the matching of all possible pairs. Although restricting

the triangle pattern to that of only nearby stars,l” or setting a tree structure of nearby stars pairing

with a root star] 1 may alleviate the computation and memory problem, the sensitivity to distortions

and missing or phantom stars becomes more distinct. The advantage of the triangle match,

however, is that triangle patterns are more distinct than pairs, thus eliminating many spurious data

points, and handling triangle groups is much more manageable than generic polygonal groups. In
b addition, positive identification may still be achieved even when the algorithm fails to match a few

of the many possible triangles.

An alternative to the pair-wise comparison is some sort of template matching between the

observed star field and a candidate star field from a star catalog projected onto t}w camera focal

plane. For exaniple, by providing an initial guess of the a priori attitude by matching a confident

star pair in the observed field with catalog pairs or using other means, a nonlinear least-squares

technique can then be employed to confirm the identification matches of all the stars based on

minimum mean-square distance errors between observed and cataloged pairs (one-to-one pairing),

and fine-tune the estimated attitude.lQ-13  Although this technique may be more desirable in terms

of robustness, by providing less sensitivity to position errors, phantom stars, and missing stars,

the methodology of deriving initial guesses of the a priori attitude to achieve autonomous, all-sky

star identification may encompass and inherit all the difficulties associated with the above angular

separation approach, in addition to the computational burden and convergence problems associated

with the iterative nonlinear least-squares technique.

Another pattern-match approach in this template-matching class is to analyze the error vectors

that join observed stars to their cataloged counterparts transformed to zero attitude .14 Using the

assumption that the basic star pattern is conserved in the presence of distortions and observation

noise, these error vectors should all be parallel to onc another and have the same magnitude. ‘Ilis

approach may work well in an ideal case (i.e., a noise-free environment), but real observation data,

as shown in QeAntonio  et al.,7 may possess significant distortions (especially in the parallelism of

the error vectors) which are sufficient to cause confusion in terms of the correct star-pairing

‘assignments between observed and cataloged stars (especially when there are more cataloged stars

being compared with observed stars).



Identification techniques based on neural  network and fuzzy logic have also been suggested for

star pattern recognition,l$17  and other types of feature extraction techniques18-21  tend to be more

appropriate for ground processing of photographic plates rather than on-board processing to

establish spacecraft attitude. Although the concept of using stars to establish spacecraft attitude has

been discussed for over thirty years,22 in the authors’ opinion, an optimal solution to the star

identification problem which can be applied to a wide range of observation fields (large and small

FOV, bright and dim stars, small and large perturbations to observed fields, and with or without a

priori attitude knowledge) has not been formulated. It appears that in terms of extracting the

necessary information from a single observation field to match observed stars with cataloged stars,

there are not many avenues left to explore, and the above-mentioned difficulties may be

characteristic of the way the star identification problem is addressed (i.e., obtaining the solution

from a single observation).
b On the other hand, if the problem is posed in a stochastic way (i.e., given a sequence of

observations and viewing motion up to time k, identify the currently observed star pattern), a rich

foundation of optimal filtering and estimation theory23  can be applied to solve it. The major

assumption here is that the spacecraft is permitted to turn and acquire different observation of the

sky to establish its attitude, where the relative attitude of one scene to the next is known. This

assumption is quite reasonable, since in practice, such a maneuver would be required when the

observed star pattern does not yield positive identification (such an approach is the baseline for

Cassini spacecraft~  attitude initialization). The apprc)ach of using star scanners for spin-stabilized

spacecraft is another example of establishing attitude after scanning through a significant portion of

the sky.

In this paper, we formulate a stochastic star identification technique based on multiple

observations. ‘I’he stochastic process is defined by a sequence of vectors representing just the

statistics of star-clustering features associated with a designated star (e. g., star density,

maximurn/average/range/standard deviation of star magnitude and angular separation, etc.) at

different observation fields. At each observation point, the set of measured statistics is compared

with the precomputed  statistics for each cataloged star, and the probability of each cataloged star

being corrected given the history of observed statistics up to time k is then updated. Knowledge of

the turn direction and offset distance between observation frames is required. Adequate number of

observed stars in the FOV is also required in order to generate good statistics. However, the main

advantage of this approach is that at any particular time, we have a system to assess the likelihood

of each cataloged star to the designated star in the observed field. Furthermore, since comparisons

are based on a set of statistics instead of individual pair metrics, computation and memory

requirements grow linearly with the number of stars in the catalog instead of the above mentioned

pairwise combinations, and a larger degree of position and magnitude distortions can be tolerated.
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The first part of this paper describes the mathematical formulation of the proposed stochastic star

identification technique. The second part discusses a specific algorithm and provides numerical

results of this approach.

Methodology

let f be a mapping function between the ineri.ial  s~]acecraft boresight (b) and cataloged star (s),

i.e.,

f b~~ Sk; b~ E R3 x [-n, X] and Sk c C = an index set of catalog stars.

where b~ represents the boresight location and orientation (a unit vector with a rotation about thatb
vector) at time k and Sk represents the cataloged star (which belongs to a discrete set of star

indices) associated with b~. Thus, for any given boresight, there is a deterministic rule to

designate the corresponding star within a given FOV, An example of f would be the selection of

the closest star to the boresight location. Different types of mappings that incorporate both the

distance and star magnitude constraints or other variables are also feasible. Note that this mapping

may not be invertible, i.e., one particular star may correspond to a range of boresight values within

some neighborhood (region) around the star. However, as long as this mapping satisfies some
continuity separation constraint (i.e., a particulrw star may not map to different boresight values that

belong to different regions), this ambiguity will not affect the identification and attitude

determination results.

Let g be a mapping function between the catalc}ged  star and its associated clustering statistics (x)

which characterize the star pattern surrounding each cataloged star for a given FOV,

This mapping should be a function of the camera FOV and must provide statistical measures to

characterize the neighboring stars. A variety of metrics corresponding to star patterns and

clustering features can be applied here, A simp]e example of x would be star density, average

magn~tude,  standard deviation of the magnitude. Therefore, for a given star field with a known

designated star, a vector comprised of representative statistics with respect to its neighboring stars
can be determined.

Furthermore, xk can be described as a random vector since each observation field is perturbed

by some random variables that distort the true star locations and magnitudes. Thus, given a
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sequence of measured ( Xo, xl, . . . . x~ ) (denoted as X~ ), the probability that a corresponding set

of stars (s0, s] , . . . . Sk) (denoted as Sk) is a true set possesses the following relationship,

according to Bayes’ rule:

p(sk I Xk ) ~ I@?.z.k.).
p(xq

= p(S~, Sk-f Xk, Xk-l )__. —_$—  —_.. . . . .— --

P(xk>  Xk-’ )

= P(xk,  Sk I Xk-1 Sk-l) P(sk-] ] Xk-]) p(xk-~)
——....——- --— . . . . . . . . . . .-— . . .. —.. —.— .-. — .- —.-—. ——..

P(X; I xk-J)  p(xk-])

Xk-1 Sk-l, Sk) p(sk I xk-J, s
9

—

~“~) p(sk-~ I x~-~). -.. ..——. — .— .———. .—.—.— —— . ..- .—— -—- (1)

I Xk-l Rk-],  rk) p(r~ I Xk-’,  Rk”~) p(llk-] I Xk-J)>

Note that all possible star sets corresponding to {xo, Xl, . . . . xk } that will be assigned probability

values are represented in R‘. The above equation is quite complicated and requires definitions of

conditional distribution functions that may be difficult to derive. To simplify this further, let’s

assume that the statistics xi associated with each si are independent of xj and sj for i #j. this

assumption may not be quite accumte,  since neighboring locations of star fields may indeed depend

on each other if the observed star fields overlap each other for time i and time j. However, as we
will show in the next section, that convergence to 1 for the probability of the true set can still be

achieved without having an accurate account of the conditional distribution functions, Thus, the a
posteric)ri probabilities for each designated star sequence at time k can be given by

p(s~ I Xk 
) = P(xk I Sk) P(sk) P(sk-l  I xk-~)-—..--.——. ..— —— .—.

~p(xk  Irk) P(r,) P(R’-l I Xk”l)

(2)

r~e c

This result is obvious. If each star field observation is independent, then the probability of a

sequence of events is simply the multiplication of the probability of each individual event. This
recursive expression implies that only the previous values of p(Sk I Xk ) are required for

propagating the a posteriori probabilities. The denominator is just a normalizing constant to obtain

the correct probability range. In addition, the term p(rk) provides a systematic way to initially bias
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each star field if there is some a priori knowledge about the spacecraft pointing location in a

probabilistic sense. Given that there is no a priori knowledge about the initial pointing direction,

each star in the catalog has equal probability of being observed, then

-1p(s~ I)(q = P(xk I spp(s~ 1 Xy______ —.. .——_— .. —.._._. . . . . ___

Xmk I r,)mk-’ I x’-’)

(3)

rke C

Therefore, the only term required to propagate the probability of a sequence of stars being

observed up to time k is the individual conditional density function p(x~ I Sk).

In the next section, we will describe the algorithm in detail and results based on a specific set of

x~ and the assumption on p(x~ I sJ,
b

Numerical Examples

Representative Statistics for the Star field

Given a star field with the designated star Sk (Sk is defined ‘by the boresight location according to

the rule f, e.g., f is the mapping that selects the nearest star closest to the boresight), there are, no
specific guidelines to define the statistics x~ that adequately represent the star pattern. Using an ad

hoc approach followed by trial and errcr, one may find an efficient set of statistics that is applicable

to a broad range of conditions (different FOV and magnitude sensitivity).
example of x~ that appears to perform reasonably well during our simulation.

Here, we present an
Let’s define x as

(4)

where n = number of measured stars in the I;OV, pnl = average magnitude, cr~ = standard

devi?tion  of observed magnitudes, fld = average angular distance to the designated star, ad =
standard deviation of the angular distance to the designated star, cro = standard deviation of the

. neighboring angles

description of 0).

(6) formed by lines radiating from the designated star (see Fig. 1 for the
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As mentioned earlier, there are different ways to define the vector x. For example, the

maximum magnitude or the range value could have been used instead of the average value. A

different description for describing the clustering of neighboring stars based on some geometric

moments of the polygon or ellipse that define the star cluster boundary can also be selected instead

of 0. However, the main focus of this paper is to describe the implementation and demonstrate the

proposed methodology for star identification, and not what statistics to use, we therefore will leave

this issue to future papers.
Finally, we must describe the conditional densitiy function p(x~ ! sJ. Again, this term can be

quite complex since each element of the vector x is interdependent and possesses different

distribution. Although one can exercise the Monte Carlo simulation to accurately estimate this
function, for simplicity, we will just approximate p(xk I SJ by the Gaussian distribution (this

assumption works reasonably well during the simulation). Thus,
4

p(x~ I SJ = (27c)-’”/2 I Q-’ l’” exp {-~ (Xk,,k- hk)T Q-’ (X~ISk-  h,)) (5)

where ~ti~~  represents the true mean of the random vector xkl~~ and Q is the covariance matrix. Q is

assumed constant for all k and s values. Note that ~ for each stars can be estimated off-line using

t}le data (star coordinates and magnitudes) provided by the selected guide star catalog. However,

the value for the covariance Q will have to be predictti  based on sensing instrument characteristics

and measurement noise.

Algorithm

IIaving defined the procedure to generate the statistics for a given observation field, the

implementation of the proposed methodology can easily be described as shown in Table 1.

Table  1 Calculation of the a posterior probabilities
===== :Z=s== ===== =Z====  ~====: ==,=== =s =:== == =S.==s =a=== ===== ===.== n==== ====

p(s) so P(xO i So) A. p(s” I X9 s, p(x, I Sl) Al p(s] I x’) . . .
— — —  — _ _ ——. —.. . .. —.. -— ——. —.. -- —.— ——

l/N 1 Plo Alo=pl@J plo=Al&o Sl, pl, All=pll/Mo pll=Al,/X1 . . .
l/N 2 p20 A2~p2#J p2~A2JX0 S21 p2, A21=p21p20 p21=A211x1  . . .
. . . . . . . . . .
. . . . . . . . . .

.
“$ “ “ .

. . . . .

l/N N pNo AN~p2/N pN~ANJXo sN, PN, ~J=pN,pNo pN,=AN,/Z,  .  .  .

ZO=A10+A20+...+ -AN0 X,= A1, +A2,  +...+ AN,
——-— — ________________________________ ._______________________ .—— —--—-_---——..-—— _________ _____ __ —__ --—---- .—— ——------— —— --- ------ ---——..-—-—...———
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At time O, all the stars in the catalog are given equal priors (l/N), where N is the number of stars
in the catalog. By comparing the measured statistics XO with the catalog statistics ~0, p(xO I so) can

then be computed for each catalog star. l’he a posterior probabilities based on the first observation
p(SO I XO ) are then calculated by multiplying p(xo  [ so) by the priors with the appropriate

normalizing factor.

At time 1, the spacecraft may assume a different pointing location, and each star in the catalog

set at S1 must be rearranged to match the stars in the previous star set SO in terms of the expected

observation of the newly designated star caused by the known offset and turning direction with

respect to the unknown initial pointing attitude. As shown the the s] column of Table 1, elements

in S1 still belongs to the catalog index set C, but the order is reshuffled (including its precomputed

statistics which then becomes ~1) to match the previous star set caused by the known turn. This is

the most time-consuming step, since the coordinates of each star in so must be shifted by t}~e
b known offset value and given each new boresight position, the newly designated star (defined by

1) is then correctly registered in s]. Some sort of optimization can be performed here if the turning

.of the spacecraft is preplanned, e.g., capture a new frame every 10° turn about the sun line. Thus,

candidate stars in the 10° distance can be precomputed for each star. Once all stars are placed in the

correct order in SJ, the same process to update the a posteriori probabilities P(S’ ] X] ) is then

repeated with p(xo I so) assuming the role of the priors.

Ilaving  described the first two steps of the algorithm, the processing of subsequent frames can
be accomplished in the same way. Once the designated star has been identified (i.e., @k + 1 and

Pjk + 0, V j * i), matching  neighboring stars to provide at least two reference vectors for atttitude

determination becomes trivial. An alternative to simultaneously providing two star references is to

divide the camera FOV into two fields and run the above algorithm in parallel.

‘rest setup

‘I’o assess the feasibility of the proposed stochastic star identification methodology, the test

software employing a subset of the Yale Bright Star Catalog (containing 918 stars, to magnitude

4.5) to simulate the sky was developed Figure 2 depicts the functional flow of the test software.

Coordinates and magnitudes of the star field can be perturbed by white Gaussian noise using the

prespecified  noise variances to create a non-ideal measurement environment. I’he boresight

location, FOV, turn increment, and clirection are also programmable.
J

Simulation Results

‘ A sample of how the a posteriori probabilities converge to the correct designated star is

described in the Table 2.
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Table 2 A convergence example of the a posteriori probability
—  _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------- _- —__ _______ _________ _____ -._. --_-__, — -—-- —— ---- --——-————_----—-———

Number of stars w/ a I)osteriori  probabil ity of
Time probability > 1/918 tbe correct star

-.. —....  .— .—. .. ——— ___ .— . .._ _____— .__——. — _____ . . . . . . . -—. . —.-.—.—-  --—. — —— .—— . . . —.— -.--— —.. . —. . .. ——— ——.

o 138 0.021
1 54 0.161
2 15 0.685
3 4 0.971
4 1 0.997

~=:=== m==== =a=== ===C= =.nz=== e==e=, =es:z= N:===C ===G=; ===== ===== =a=~= =nc=:= =

The convergence is quite rapid (less than 5 steps) for the given boresight location at star#l  3

@etelgeus  in the Orion constellation) in the Yale catalog with the 30° FOV and 10° turn along the&
right ascension axis. To represent measurement error, the 10 perturbation of 10 in right ascension

and declination, and 0.6 magnitude perturbation are employed in the simulation of observed star
fields. The covariance  matrix Q for the Gaussian density function p(x~ I SJ is approximated by

4 (star2) O 0 0 0 0
0 .36 (nmg2) O 0 0 0
0 0 .36 (nlag2) O 0 0

Q =O O O 2 (deg2)  O 0
0 0 0 0 2 (deg2) O
0 0 0 0 0 .01 (deg2)

The robustness performance of this algorithm is also assessed by analyzing the outcome after

100 test runs using different observation noise sequences. The average a posteriori probability of

the correct star after 5 steps is 0.976, and the values range frome 0.709 to 0.999.

Conclusion

We have proposed and formulated a different methodology to the star identification problem.

Preliminary results (based on a simple set of statistics with the Gaussian density function and

arbitrary chosen covariance  matrix) are very promising. The algorithm also performs very well

uncle! a large degree of perturbations on measured positions and magnitudes. Because the

identification is achieved using a set of statistics formed by the neighboring stars, a relatively large

number of stars (10+) in the camem FOV is required. This can be achieved by looking at dimmer

stars or increasing the camera FOV. For an application with a wide FOV star camera (20° or
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more), a simple triangle matching technique on observed bright stars may prove superior in terms

of performance and implementation simplicity to what has been proposed in this paper. However,

the stochastic star identificaiton  technique do possess a desired characteristic of not having the

required memory and computation grow in a combinatorial manner as the required number of

catalog stars increases. while  many algorithms may struggle with a large number of stars detected

in the observation field, this approach prefers a high density of stars for better results.

Furthermore, because identification is based on the statistics of the observed star group,

significant] y large perturbations on the measurtxi  positions and magnitudes can be tolerated.

For deep space exploration with stnall spacecraft, the science imaging camera (.5°-30 FOV) may

be desired to perform star identification and tracking functions to minimize number of instruments,

mass, and power. Space telescopes and interferometers may also desire a fine guidance sensor

with extremely narrow FOV (less than 10). The proposed stochastic star identification may prove
& invaluable for such applications. Continuing research to address quantitative performance of

various star identication algorithms are in progress.
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Fig. 1 Neighboring angle defintion of a star pattern.

Fig. 2 Test software functional flow diagram of the stochastic star identification technique.
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FOffset the boresight  by the
wcwcifkd  turn direction and
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Q NOConvergence ? --—

v
Identified the designated star in
the current observation field

Fig. 2 Test software functional flow diagram of the stochastic star identification technique.
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