[GOOD]

Hello and welcome  to

“Recognition of  Chemical  Associated  Gastrointestinal  Foodborne Illness”.

 

I'm Cynthia Good,

your moderator for  this program which is  originating from the  studios of the  Centers for Disease  Control and  Prevention in  Atlanta, Georgia.

 

This program is  sponsored by the  National Center for  Environmental  Health, 

Agency for Toxic  Substances and  Disease Registry  and CDC’s Public  Health Training  Network.

 

The goal of this  program is to  enhance early  recognition,  reporting,

and clinical  management of  chemical associated  gastrointestinal  foodborne illness by  clinicians and  healthcare providers.

 

Upon successful  completion of the  program,

participants will be  able to:

 

* Distinguish features  of chemical  associated  foodborne illness

 

* Describe  epidemiologic clues  of a covert chemical  associated  foodborne illness

 

* Describe a  structured approach  to guide the  generation of a  differential diagnosis  targeting various  chemical etiologies

 

* Describe  appropriate reporting  strategies for  suspected covert  chemical associated  foodborne illness,  and...

 

* Discuss the clinical  course and general  management of  poisoning from  various chemicals

 

So, now that we’ve  gotten the business  part of the program  behind us,

let’s meet our  program guests.

 

I’d like to welcome  Dr. Helen

Schurz Rogers,

Research Scientist  with the National  Center for  Environmental  Health at CDC ... 

...and Lieutenant  Commander

Joshua Schier of the  United States Public  Health Service,  Medical Toxicologist  with the National  Center for  Environmental   Health at the CDC.

 

Welcome to the  program. 

Let’s begin with you,  Dr. Rogers.

 

 

[ROGERS]

Thank you, Cynthia.

 

The etiologies of a  large majority of  foodborne  gastrointestinal

illness, or

GI illness outbreaks  are never identified  or confirmed by the  laboratory. 

GI illness refers to  the presence of

GI signs and  symptoms including  nausea,

vomiting,

abdominal  discomfort and  diarrhea.

 

Chemicals are  seldom considered  early in the  differential diagnosis  of foodborne

GI illness since the  majority of these  illnesses in which an  etiology is identified  are caused by  biological organisms,  such as bacteria,  viruses or parasites.

 

Since the most  commonly identified  etiologies of

GI foodborne  illnesses are due to  biological organisms,  these are much more  commonly  considered early in  an outbreak. 

The wide variety of  possible chemicals  that can induce

GI illness hinders  accurate recognition  and diagnosis.

When chemicals are  finally considered,  biologic specimens  such as urine and  blood often have to  be re-collected and  may not show  evidence of the  chemical due to the  body’s normal  elimination  mechanisms.   Furthermore,

stool samples,

which are commonly  used for analysis of  infectious foodborne  illness are often not  the ideal specimen to  identify chemical  etiologies.

 

Chemical agents  have been used in  the deliberate  contamination of  food with the  intention of causing  illness in the past.   We will discuss  several examples  during the course of  this webcast. 

Since the terrorist  attacks of 2001,  concern has grown  about the use of  chemical agents in  future attacks.  Contamination of the  nation’s food supply  is one major area of  concern.

 

This webcast has  been structured to  assist clinicians and  public health officials  in the recognition of  chemical associated  GI foodborne

illness. 

It is also intended to  raise awareness and  recognition of how  many commonly  available chemicals  could be used in a  covert chemical  terrorism event.   Most chemicals tend  to produce

GI symptoms within  a short time frame,  less than 12 hours,  after ingestion.

 

Chemicals that do  not produce

GI symptoms within  that time frame or  those agents that do  not produce

GI symptoms at all  after ingestion will  NOT be discussed.

 

No etiologic agent  was identified in

62 percent of the  1073 foodborne  disease outbreaks  reported to the

CDC in 2003. 

Many of these  outbreaks had illness  characterized by the  onset of

GI symptoms such  as nausea,

vomiting,

diarrhea and  abdominal  discomfort of less  than 12 hours,  classifying them as  short incubation  outbreaks.

 

Possible etiologic  agents in these short  incubation outbreaks  include industrial  chemicals,

drugs,

pesticides,

and plant toxins -  most of which could  be identified and  quantified in  specialized  laboratories if  specimens were  collected and stored  correctly until  analysis was able to  be completed.   Detection of these  agents,

however,

requires

agent-dependent  specific biologic  specimen collection,

prompt collection  methods,

and testing  techniques that are  not routinely included  in the investigation of  many foodborne  outbreaks.

 

 

[GOOD]

Thank you,

Dr. Rogers. 

Allow me to interject  some information  concerning the  background for this  program.

 

This webcast will  provide clinicians  and public health  officials with the  following information  related to chemical  etiologies of  unintentional and  intentional covert  chemical associated  foodborne GI illness:

 

* background  information on  chemical poisoning

 

* the general  differences between  biological and  chemical foodborne  illnesses

 

* epidemiologic clues  of chemical  foodborne illnesses

 

* how to recognize a  possible covert  chemical terrorism  foodborne poisoning  event

 

* a structured  approach to guide  the generation of a  differential diagnosis  targeting chemical  etiologies

 

* discussion of  possible chemical  etiologies and their  management

 

AND, how to report  chemical associated  GI foodborne

illness.

 

To continue with this  background  information,

let’s go to Dr. Schier.

 

 

[SCHIER]

Thanks, Cynthia.

 

The rapid and  accurate  identification of a  chemical etiology in  foodborne illness  outbreaks is  necessary for many  reasons.

These includeing  proper patient  management,

risk assessment for  long-term adverse  health effects and  outbreak control.

In a true chemical  terrorism event this  is even more  important. 

Accurate  identification of a  chemical etiology in  a foodborne illness  outbreak is done  through good  investigative work,  early consideration  of a possible  chemical etiology  and prompt  collection of biologic  samples.

 

Historically,

most chemical  associated  foodborne

GI illnesses have  been unintentional.   However,

there have been  several notable  cases of intentional  poisoning through  food contamination.   When an intentional  poisoning occurs,

it may be overt or  covert.

 

In an overt  foodborne illness,  the contamination of  food is often obvious,  that is,

it may have been  announced in some  way such as by the  discovery of an  overturned chemical  container into  foodstuffs prior to  processing. 

In a covert foodborne  illness;

however,

it may not be  immediately  apparent that a food  or meal is  responsible for the  illness.

 

An example of a  covert event would  be the intentional or  inadvertent  contamination of  food in a restaurant  with a harmful agent  that is unknown to  the restaurant  patrons and not  immediately  identifiable. 

The presence of ill  persons at an  emergency  department,

or even at the  restaurant,

may be the first  indication of a  common source of  exposure. 

If there is a highly  suspected or known  exposure,

or a concurrent  credible threat of  poisoning,

then a clinical  diagnosis can be  much more easily  made. 

However,

if illness is occurring  as a result of a  covert event,

clinical diagnosis will  be much more  difficult.

 

 

[GOOD]

That’s very  interesting. 

Could you discuss  some historical  examples of  chemical foodborne  GI illness . . .  examples that would  differ in scope,  etiology of  contamination and  severity . . .

perhaps to illustrate  the various ways  chemical  contamination of  foodstuffs may  occur?

 

 

[SCHIER]

Sure. 

In March 2002,

a man and woman in  NJ became ill after  eating a meal of  pufferfish they had  prepared at home. 

A relative had caught  the fish in Florida  and shared part of  the catch with family.

 

Shortly after eating  the fish,

they both began to  feel tingling in the  mouth and around  the lips. 

During the next two  hours,

the woman began  vomiting and  experiencing chest  pain. 

The local poison  control center was  contacted and they  were both advised to  proceed to the  closest hospital.

At the hospital,

the woman had a  mild tachycardia,

an elevated blood  pressure and began  to develop an  ascending paralysis.

 

A test of her  respiratory function  indicated she had  less than 20 percent  of a normal vital  capacity for a woman  her age.

She was electively  intubated and placed  on a mechanical  ventilator.

Over the next  several days she  recovered and was  able to be  successfully  extubated 72 hours  later.

 

The examination of  Florida state poison  control center  records and the  national poison  center reporting  database back to  January of 2002  indicated that these  pufferfish poisoning  cases were not the  first.

From January to  July, a total of 23  cases of pufferfish  poisoning  sporadically occurred  in four states  including,

New Jersey,

New York,

Virginia and

Florida,

although all of the  fish had been  harvested in Florida.   Only one case was  from store-bought  fish;

all others were from  recreational fishers.

 

Fish tissue  specimens and urine  samples from  patients were  collected for  laboratory analysis.

Tetrodotoxin was  initially considered as  the etiologic agent  due to its known  presence in  pufferfish.   Tetrodotoxin was not  identified in the fish  tissue samples;  however,

additional analysis  confirmed the  presence of  saxitoxin.

 

Saxitoxin is a similar  toxin that is found in  certain types of  shellfish.

In these cases of  illness,

presumptive  diagnosis of  pufferfish poisoning  was made based on  the neurologic  symptoms the  patients  experienced,

the latency of the  symptoms and the  type of food  consumed.

What was important  in these events,  however,

was the rapid  consideration and  identification of the  type of  toxin most  consistent with their  symptoms. 

This greatly assisted  in the management  and treatment of  their clinical findings.  Helen….

 

 

[ROGERS]

Thanks Josh. 

In July 2004,

ten people reported  that they became ill  at a restaurant.   They were not part of  a large group that ate  together at the  restaurant,

and local hospitals  did not report any  rise in community  illness.

Some of the people  who became ill had  consumed food,  while others had only  consumed fountain  drinks. 

Nausea and vomiting  were the most  common symptoms,  and,

the average  incubation period  was 10 minutes.

Two people also  developed diarrhea  the following day.  

A health inspection  of the restaurant did  not indicate any  obvious etiologies or  health code  violations.

 

Further investigation,  however, 

found that seven out  of the 10 cases had  consumed fountain  drinks. 

Ice,

water and  carbonated  beverages from the  fountain machine  were collected for  testing.

 

Test results indicated  that copper was  almost seven times  higher in the fountain  drinks than the  acceptable limit for  human consumption.  This was ultimately  determined to be the  etiology of the  illnesses.

Copper may leach  out into the water  when acidic solutions  enter copper pipes.

 

In a post-dispensing  soda machine,

like those found in  fast-food  restaurants,  carbonation of the  water occurs after  the water leaves the  copper piping.   Regulations require  a functional

back-flow prevention  valve at the end of  the copper-pipe.   This valve prevents  the carbonated water  or carbonic acid from  back flowing back  into the copper pipe.   A faulty valve canwill  allow the carbonated  water to enter the  copper-pipe.  

Leaching of the  copper from the pipe  may occur after  prolonged contact  with carbonic acid. 

Most often,

the leaching occurs  overnight when the  dispenser is not  operated;

the first users in the  morning,

typically the  restaurant workers,  are the ones who  become ill -

hence copper  poisoning has been  called the

“restaurant worker  syndrome”.

Luckily all individuals  that were affected by  this contamination  recovered. 

Josh….

 

 

[SCHIER]

In April of 2003,

27 people stayed  after church services  for a council  meeting. 

During the meeting,  refreshments,  including pastries  and beverages,

were served.  Approximately 16  people became ill  with nausea,  vomiting and  diarrhea after  consuming

bitter-tasting coffee.

 

The ill parishioners  were taken to an  area hospital where  they were evaluated.   An infectious etiology  was initially  suspected;

however, as the  clinical course of  several of the ill  parishioners  worsened,

a possible chemical  etiology was  considered.

 

The rapid  progression of illness  and the failure to  respond to basic  supportive care  prompted  consultation with the  New England Poison  Control Center as  well as the local and  state health  departments.

 

Sixteen people were  ultimately  hospitalized and  some were seriously  ill. 

Even with prompt  recognition and  treatment of this  illness,

tragically,

one person died.

The collaboration  between clinicians,  local and state public  health officials and  the poison control  center targeted  several likely  etiologies,

including arsenic. 

 

The identification of  a clinical course  which was atypical  for most infectious  foodborne illness  and subsequent  laboratory analysis  for chemical agents  led to the rapid  identification of  arsenic as the  etiologic agent.   Antidotal chelation  therapy was then  initiated in  conjunction with  continued supportive  care.

 

 

[ROGERS]

GI illnesses can be  broken down into two  categories based on  GI tract symptoms.   These include upper  GI illnesses and  lower GI illnesses.

 

Upper GI illnesses  usually include  nausea and  vomiting.

 

Lower GI illnesses  usually include  abdominal cramps  and diarrhea.

 

The latency and  presence of upper

GI and/or lower

GI symptoms as well  as which ones occur  first or predominate,  are important clues  in determining if a  biological or  chemical foodborne  illness is occurring.

 

Although poisoning  without GI symptoms  may occur after  consumption of  some contaminated  foodstuffs,

most chemicals do  cause GI symptoms  if significant amounts  are ingested,

and only those  agents will be  discussed in this  presentation.

 

In general,

infectious foodborne  illnesses have mean  incubation periods  that are at least

12 hours long  although shorter  incubation periods  are the norm for  illness resulting from  the ingestion of  certain pre-formed  toxins from  Staphyloccus aureus  and Bacillus cereus.

 

The incubation  period,

however,

may not be  definitively known  until an investigation  pinpoints the actual  source.

 

Depending on the  agent, upper GI or  lower GI symptoms  may predominate.

 

In chemical  foodborne illnesses,  symptoms may be  similar to some  aspects of the flu,  namely the GI ones.   Upper GI symptoms  are more likely to  predominate.

 

The most important  indicator of chemical  contamination is the  latency of the illness  onset,

which is often very  short. 

Indeed,

symptoms from  many agents such as  metals,

detergents and  pesticides

can start within  minutes of ingestion.   Others such as ricin  poisoning may take  several hours.

 

Chemicals should be  strongly considered  in the differential  diagnosis of

GI foodborne illness  when:

 

* The latency period  is very short. 

Most GI  manifestations of  chemical illnesses  will occur within

30 to 60 minutes of  ingestion. 

There are some  exceptions,

however,

such as Amanita  mushroom poisoning  or ricin which may  take several hours  before they begin to  cause symptoms...

 

* Symptoms do not  resolve over time  with standard  supportive therapy,  or they rapidly  worsen over the next  12 to 24 hours  despite this therapy...

 

* There are reports  that the food had a  metallic taste, or  unusual odor or  appearance...

 

* The predominant  GI symptom is often  vomiting;

however,

case-patients may  have other  symptoms such as  neurologic findings,  depending on the  type of toxin.

 

 

[GOOD]

Thank you Dr.  Rogers.  

Those were some of  the symptom clues. 

Dr. Schier,

what are some  examples of clinical  manifestations that  go along with  chemical poisining?

 

 

[SCHIER]

Chemical poisoning  may result in a rapid  progression of illness  and cause a variety  of clinical  manifestations and  laboratory  abnormalities. 

Some examples  include:

 

* Metabolic acidosis

 

* Hypoglycemia

 

* Tachycardia

 

* Hypotension

and...

 

* Tachypnea

 

When present,

these  manifestations may  occur in conjunction  with multiple system  organ dysfunction  and rapid  progression of illness  that may be  unresponsive to  traditional therapies.

 

Neurologic  symptoms are more  indicative of a  chemical or  biological toxin  exposure than a  bacterial one. 

These symptoms  may include  parasthesias,  numbness,  weakness in  extremities,

visual disturbances  or dizziness.

 

Flushing,

diaphoresis or a  burning sensation  may occur.

 

The presence of  symptoms like these  can be an important  clue that a chemical  exposure has  occurred.

 

Similarly,  organoleptic  comments,

or comments that  describe a quality of  the food having to do  with taste,

smell or visual  appearance,

can be important  clues.

For example:

 

* Did the food have  an odd taste? 

Was it metallic,  acidic,

burning,

alcoholic or bitter?   Was there an  excessive amount of  flavor,

such as sweet,

salty or sour?

 

* Were there any  strange odors  associated with the  food,

such as a chemical  or metallic odor?

 

* Did the food look  different,

was there a strange  color or texture,

was it oily or  viscous?

 

Another factor which  complicates the  accurate  identification of a  chemical etiology is  possible exposure to  multiple agents. 

This may result in  clinical findings that  do not make up an  easily recognizable  pattern.

 

Healthcare providers  are generally less  familiar with clinical  presentations of  chemical poisonings  than they are with  signs and symptoms  resulting from  infectious  gastroenteritis.

 

The severity and  duration of  symptoms depends  on the type and  amount of exposure  to a given chemical  or toxin.

 

Depending on the  toxin,

specific antidotal  therapy,

supportive treatment  and hospital  observation may be  necessary to ensure  a good outcome.    Helen…

 

 

[ROGERS]

Once a chemical  exposure is  suspected,

it’s vitally important  to collect proper  samples so that the  agent can be  identified. 

This may mean that  several types of  samples need to be  collected initially.

 

Laboratory analysis  for a particular agent  usually involves  measuring the agent  itself,

a metabolite or a  surrogate marker.

 

If a chemical  foodborne illness is  suspected,

it is best to collect  appropriate biological  specimens as soon  as possible and  preferably within the  first 24 hours. 

If chemical analysis  is not immediately  available or the  differential diagnosis  is too broad to  enable efficient  analysis,

samples can usually  be stored in a  freezer.

 

In the laboratory  workup of chemical  foodborne illness,  the emphasis is often  placed on prompt  collection of a urine  specimen,

whereas in most  biologic foodborne  illnesses,

emphasis is placed  on the collection of  stool samples.

 

An early or first  vomitus sample may  sometimes be very  helpful in identifying  the chemical. 

Some agents are  also identifiable in  blood samples.

 

Stool samples are  generally not useful  for identification of  chemical etiologies.

 

Many chemicals  have a short-half life,  which refers to the  amount of time it  takes for half of a  dose to be  eliminated.  If too  much time passes  before a urine  sample is collected,

there won’t be  enough of the agent  left for identification.

 

It’s also important to  collect urine samples  from

non-symptomatic  people that shared in  the meal or food  item.

The reason for this is  that these individuals  provide an important  control sample that is  helpful when  evaluating laboratory  results.

 

Whenever possible,  samples of the  implicated food or  beverage should  also be obtained for  analysis. 

 

Sometimes,

if a method does not  exist for the  laboratory  confirmation of a  chemical in a  biological specimen,  like urine,

there may be a  method available that  can be utilized for  food samples.

 

Unused collection  containers,  preferably from the  same lot, should also  be stored. 

These containers are  used to help the  laboratory evaluate  for any background  contamination.

 

It is important to also  mention that  collection procedures  and guidelines are  similar for chemical  agents that do not  cause early onset

GI symptoms.

 

A useful resource for  the proper collection  of biological  materials is located  on the CDC website.

 

Details about proper  sample collection  techniques and  storage are also  given.

 

A vital part of the  investigative process  in a foodborne  outbreak is a  standardized food  history questionnaire.  One of the goals of  such a questionnaire  is to seek  commonalities  among the ill. 

These questions  may be essential to  implicate a particular  foodstuff. 

Once a food or meal  has been implicated,  pertinent questions  to ask include:

 

* What were the  predominant  symptoms?

 

* What was the  latency of illness?

 

* What food items  were available to the  patient,

which ones were  consumed and how  was the food  prepared?

 

For chemical  foodborne illnesses,  it is helpful to keep in  mind the following  questions,

and then include  these in the final  questionnaire:  

* Were there  neurologic symptoms  in addition to GI  complaints?

 

* Were there other  types of symptoms  not commonly  associated with  foodborne illness,  such as sore throat?

 

* Did the food have a  bitter or metallic  taste,

was there an  abnormal smell,

an unusual  appearance?

 

And...

 

* What does the  patient think made  them ill?

 

 

[GOOD]

Those are good  questions to ask,

but are there any  conditions or  circumstances that  may make it difficult  to recognize  contamination?

 

 

[SCHIER]

Yes. 

In fact,

an intentional or  unintentional  contamination of  foodstuffs is likely to  be covert or an  unrecognized  incident in which the  presence of sick  persons might be the  first sign of an  exposure.

 

There are four  reasons why such an  event may not be  easily recognized.   These include the  following:

 

* Initial symptoms of  illness resulting from  chemical exposure  may mimic those of  more common

non-chemical  etiologies such as an  infectious  gastroenteritis...

 

* Exposure to  contaminated  foodstuffs and/or  water may occur  over a broad  geographical area  and time course. 

For example,

a large-scale event  may not be rapidly  identified if patients  present to different  health care facilities  in multiple states  over the course of  several weeks...

 

* Exposures to two  or more chemical  agents may result in  symptoms of illness  from both agents and  therefore complicate  identification...

 

* Finally,

infectious  gastroenteritidies are  seen much more  commonly by health  care workers than  chemical induced

GI illness; therefore,  chemicals may not  be high on a  provider's differential  diagnoses. 

This may delay  identification of the  actual etiologic agent  in a chemical  release.

 

There are certain  epidemiologic clues  the health care  worker and public  health official can  use to assist in  identifying a possible  chemical release.   These guidelines  may be especially  helpful in a covert  chemical terrorism  foodborne event. 

 

These include:

 

* An unusual  increase in the  number of patients  seeking care for  potential chemical  associated illness...

 

* Unexplained  deaths among young  or healthy persons

 

*Emission of  unexplained odors by  patients from their  clothing or skin

 

* Clusters of illness  in persons who have  common  characteristics,

such as drinking  water or eating  foodstuffs from the  same source

 

* Rapid onset of  symptoms after an  exposure to a  potentially  contaminated  medium.

An example would  be the rapid  development of  parasthesias and  vomiting following  the consumption of a  meal.

 

The following  discussion is  presented in what is  hoped to be a more  useable format for  the health care  provider and public  health official in  developing a  chemical based  differential diagnosis  in the  undifferentiated  patient. 

We will discuss  differential diagnosis  based on the clinical  presentation of the  individual patient.

 

This discussion is  not meant to be

all-inclusive and  should not be used  as a restrictive flow  diagram. 

Significant overlap of  signs and symptoms  may occur  depending on the  route of exposure,  concentration of  agent,

exposure to more  than one agent,  certain individual  differences such as  age and

ultimately the  severity of toxicity.   The following format  is to be used as a  guide in formulating  a differential  diagnosis and  applying a logical  approach toward  identification of  chemical associated  GI foodborne illness.

 

CDC has developed  the following  suggested clinical  presentation-based  approach to identify  the etiologic agent in  a suspected  chemical-associated  GI foodborne illness  event.

 

Classification is  based on the  primary presence or  absence of certain  clinical  manifestations in  conjunction with  expected GI signs  and symptoms

such as nausea,

vomiting and  abdominal  discomfort.  

The major categories  of agents that we will  be talking about  include those agents  with GI signs and  symptoms AND:

 

* Neurologic findings

 

* Cardiotoxic findings

 

* Multi-system Organ  Failure

 

And...

 

* Localized GI  Effects

 

Health care workers  and public health  officials should  initially determine the  presence or absence  of neurologic signs  and symptoms.

 

* Are cholinergic  signs present?

 

* Does the patient  have any  type of parasthesias  and weakness?

 

* Is there a history of  a rapid onset of  severe agitation,  seizures or status  epilpeticus?

 

Cholinergic signs  and symptoms result  from the  overstimulation of  cholinergic  receptors.

This may occur due  to:

 

* Excessive or  increased synaptic  concentrations of  acetylcholine,

 

OR...

 

* A separate agent  which has  acetylcholine-like  activity. 

These latter  compounds can be  referred to as  cholinergic agonists.

 

There are two types  of cholinergic  receptors:

nicotinic and  muscarinic. 

There are a variety  of agents which may  interact with one or  both receptors.  Clinical effects vary  depending on which  type of cholinergic  receptor is  stimulated.

 

Organic  phosphorous  compounds and  carbamates are most  commonly used as  insecticides. 

These agents inhibit  the enzyme which  normally degrades  the neurotransmitter,  acetylcholine. 

If enough of this  enzyme is inhibited,  an enormous  increase in synaptic  acetylcholine can  occur which results  in overstimulation of  cholinergic  receptors.

 

These agents differ  in that organic  phosphorous  compounds can bind  irreversibly to  acetylcholinesterase;  however,  carbamates  spontaneously  disassociate,

usually within

24 hours.

 

Clinical findings may  include both nicotinic  and muscarinic  effects such as  toxicity resulting from  numerous types of  organic phosphorous  insecticides.   However,

other agents may  produce  predominantly either  nicotinic OR  muscarinic  symptoms. We will  discuss these signs  and symptoms  separately, with the  understanding that a  mix of both may  occur, depending on  the agent.

Agents which may  cause muscarinic  symptoms include  toxins and toxicants  such as:

 

* Organic  phosphorous  compounds

 

* Carbamates

 

* Muscarine- containing  mushrooms

 

Toxicity from organic  phosphorous and  carbamate  compounds results  from an excess of  acetylcholine since  these agents inhibit  the enzyme  acetylcholinesterase,  which breaks down  acetylcholine.   Muscarine is a  natural ligand for the  muscarinic receptor  and can stimulate  the receptor directly.

The stimulation of  muscarinic receptors  results in the  expected GI  manifestations of  vomiting and  diarrhea as well as  several other clinical  findings.

 

They can be  remembered by the  pneumonic,  “DUMBELS”. 

This stands for:

 

Diarrhea,

Urination,

Miosis,

Bradycardia,  Bronchorrhea,  Bronchospasm,  Emesis,

Lacrimation,  Salivation,

Secretion and  Sweating.

 

The onset of  symptoms usually  follows exposure  very rapidly,

and medical  treatment should be  sought immediately.   Supportive care such  as assisted  ventilation,  intravenous fluids  and antidotal therapy  should be given as  needed. 

 

The antidotes for this  type of poisoning  include atropine,  which is a  competitive  muscarinic receptor  antagonist,

and pralidoxime,  which regenerates  inactivated  acetylcholinesterase.

 

Muscarine- containing  mushrooms may  also produce a  similar clinical  picture. 

Examples include  numerous members  of the

Clitocybe and

Inocybe genus. The  mushroom Amanita  muscaria also  contains muscarine,

but in much smaller  amounts.

 

Treatment is usually  supportive,

as toxicity is usually  limited. 

In cases of severe  toxicity,

small amounts of  atropine may be  considered  depending on the  situation.

Pralidoxime is not  used in muscarinic  toxicity, resulting  from muscarine,  since there is no  acetylcholinesterase  inhibition.

 

Stimulation of  nicotinic receptors  results in different  clinical findings.  

These include:

 

* Mydriasis,  Tachycardia,  Weakness,  Hypertension and  Hyperglycemia

and...

Fasciculations

 

They can be  remembered by  taking the first letter  of each day of the  week except for  Thursday,

in which you  remember the H  instead of the T.

 

Agents that are able  to cause

nicotinic-type signs  and symptoms after  exposure include:

 

*Organic  phosphorous  compounds and  carbamates

 

* Certain plants that  contain nicotine,  such as those from  the genus Nicotiana,  or the tobacco plant

 

* Tobacco-containing  products

 

* And other plants  with compounds that  possess nicotinic-like  activity,

such as those listed  on the screen.

 

Treatment for toxicity  resulting from  nicotine or nicotine- like compounds is  generally supportive  in nature. 

Atropine only  functions at  muscarinic receptors  and is therefore not  helpful in selective

nicotinic-type toxicity.  Nicotinic symptoms  resulting from agents  such as organic  phosphorous  compounds CAN be  treated with  preladoxine to  regenerate  inactivated  acetylcholinesterase.

Benzodiazepines  can be used as

anti-anxiety,

anti-agitation and  anti-convulsive  medications if  needed.

 

 

[ROGERS]

 

The next

sub-category I would  like to talk about  includes those  agents that cause  the relatively rapid  onset of  parasthesias and  weakness,

in addition to GI  manifestations.  Cardiac  dysrhythmias such  as bradycardia,  although not  frequent,

may also occur. 

These include the  seafood toxins:

 

* Ciguatoxin

 

* Tetrodotoxin

 

* Saxitoxin

and...

 

* Brevetoxin

 

Treatment for these  marine toxins are  primarily supportive  and symptomatic in  nature. 

There are no known  antidotes.

 

Illness from these  agents usually  results from the  consumption of  seafood that  contains the toxins.   A thorough history  from the patient or  the patient’s family  and/or friends will  often elucidate a  history of recent  suspicious seafood  consumption.

 

Ciguatoxin is a

heat-stable,

lipid-soluble,  odorless and  tasteless toxin. 

It is produced by  bacteria within  certain  dinoflagellates such  as Gambierdiscus  toxicus. 

These dinoflagellates  serve as the major  food source for small  fish.

As these fish are  eaten by larger,  carnivorous species,  bioaccumulation of  the toxin occurs.

 

Ciguatera poisoning  most often occurs  after consumption of  warm-water,

bottom-dwelling  shore reef fish

such as barracuda,

sea bass,

amber jack,

kingfish and

red snapper. 

Most poisoning in the  United States occurs  in Hawaii and  Florida.

 

Ciguatoxin causes its  effects through  binding to the sodium  channel and  interfering with  normal ion  conduction  across the cell.  Poisoning usually  occurs several hours  after ingestion and  includes an abrupt  onset of:

 

* Nausea

 

* Vomiting

 

* Watery diarrhea

and...

 

* Neurologic  symptoms

 

The neurologic  symptoms can  include:

 

* Paresthesias

 

* A reversal of hot  and cold sensation  such that hot objects  feel cold and cold  objects are  perceived as hot

and...

 

* Headaches

 

In severe toxicity,  ciguatoxin may  interfere with ion  conduction in  myocardial cells.   Cardiac  dysrhythmias such  as bradycardia and  orthostatic  hypotension may  occur.

 

Other manifestations  of poisoning include  vertigo,

diaphoresis and  seizures.

 

GI symptoms  typically resolve in  one-to-two days but  neurologic and  cardiac toxicity may  last longer.

 

Tetrodotoxin is also  a heat-stable,

water-soluble  compound.

This toxin is primarily  found in puffer fish  and puffer-like fish  such as the  globefish,  balloonfish,

blowfish and  toadfish. 

It is also found in the  blue-ringed Octopus,  horseshoe crab eggs  and the gastropod  mollusk. 

A specific variety of  pufferfish known as  fugu is considered a  delicacy

but can cause  tetrodotoxin  poisoning,

especially if  improperly prepared.

 

Tetrodotoxin also  interferes with  normal sodium ion  conductance in cells  and in  neuromuscular  transmission.

 

Signs of poisoning  appear within  minutes of ingestion.   Neurologic signs and  symptoms  predominate and  include:

 

* Headache

 

* Diaphoresis

and...

 

* Parasthesias –  especially in the  perioral area.

 

GI symptoms such  as nausea,

vomiting and  diarrhea often rapidly  follow. 

Patients are at risk of  developing an  ascending paralysis  within several hours  of consumption of  tetrodotoxin  containing  foodstuffs. 

Death by respiratory  paralysis or cardiac  dysfunction may  occur.

 

Another type of  marine toxin  poisoning...

Saxitoxin poisoning...  usually occurs after  consumption of  certain shellfish,  including clams,  oysters,

mussels and  scallops. 

It has also recently  been identified in  some species of  pufferfish in waters  off the coasts of  Japan and Florida.

 

Neurologic  symptoms such as  perioral and  extremity  parasthesias  predominate.   Patients may also  exhibit a sensation of  floating,

weakness,

paralysis and

cranial nerve  dysfunction  including:

 

* Dysphagia

 

* Dysarthria

and...

 

* Dysphonia

 

GI symptoms such  as nausea,  abdominal pain,  vomiting and  diarrhea are less  common but can still  occur. 

Respiratory failure  may occur in severe  toxicity.

 

Lastly,

Brevetoxin can  cause Neurotoxic  Shellfish Poisoning  which is  characterized by

GI and neurologic  symptoms similar to  those mentioned  previously,

except it usually  does not cause  paralysis. 

Its mechanism of  action is also similar  to tetrodotoxin and  saxitoxin. 

The GI and  neurologic symptoms  usually occur  simultaneously and  within a few hours of  ingestion. 

Cardiac effects such  as bradycardia may  also be seen.

 

Brevetoxin toxicity  has tends to have  more pronounced

GI effects than  saxitoxin,

and a reversal of hot  and cold temperature  sensation may also  be occasionally  seen.

 

 

[GOOD]

That’s fascinating,  Dr. SchierRogers.   You’ve talked about  a lot of different  marine toxins,  perhaps Dr Schier,  you could discuss   other environmental  toxins, such as plant  toxins, that present a  potential hazard?

 

 

[SCHIER]

Of course. 

The third

sub-category of  agents with  neurologic effects,

in addition to

GI signs and  symptoms,

consists of those  agents that produce  agitation,

confusion and/or  seizures.

Examples include:

 

* Gyromitra  mushrooms

 

* Tetramine-type  compounds

 

* Organochlorine  compounds

And...

 

* Camphor

 

The gyromitrin group  of mushrooms  includes Gyromitra  esculenta,

or the false morel,

as well as several  others. 

The false morel is  often mistaken for  the true morel,

or Morchella  esculenta,

by amateur  mushroom hunters  because it is very  similar in  appearance.

 

Toxicity from  consumption of the  false morel typically  begins about five  hours after  consumption.  GI  symptoms such as  nausea,

vomiting,

abdominal pain and  diarrhea are  common,

and patients may  complain of  headaches and  myalgias. 

Most patients  recover;

however,

severe toxicity may  result in confusion,  refractory seizures  and coma.

 

Tetramine has been  traditionally used as  a rodenticide,  particularly in China.   Although it was  banned by the  Chinese  government,

it may still be found  and imported or  manufactured  elsewhere.   Tetramine has been  implicated in several  mass poisonings in  China and cases of  poisoning exist in the  United States,  although they are  rare.

 

Although tetramine  ingestion may cause  traditional GI  symptoms such as  nausea,

vomiting,

diarrhea and  abdominal pain,

...its most concerning  toxicity is its  propensity to cause  seizures. 

Patients may present  with seizures and  progress to status  epilepticus after  ingestion of very  small amounts.

 

Treatment is  primarily supportive  in nature. 

If seizures and/or  status epilepticus is  present as a result of  tetramine poisoning,  treatment should  include anti-seizure  medications and  drug-induced status  epilepticus protocols.  The benzodiazepine  and barbiturate  classes of

anti-convulsant  drugs are better  agents for control of  seizures resulting  from chemical  poisoning. 

There is no known  specific antidote.

 

Treatment for  Gyromitra poisoning  is primarily  supportive and  symptomatic;  however,

it is important to note  that refractory  seizures or status  epilepticus should be  rapidly treated with  pyridoxine in  conjunction with  typical

anti-convulsant  drugs such as  benzodiazepines.   This is because  gyromitrin,

found within some  Gyromitra species  such as the false  morel,

interferes with the  pyridoxine- dependent  metabolism of GABA  or gamma

amino-butyric acid.   GABA is the major  inhibitory  neurotransmitter of  the central nervous  system.

 

Other examples of  agents that may also  cause central  nervous system  hyperstimulation,  altered mental status  and even seizures  include camphor and  the organochlorine  pesticides. 

Both of these agents  are likely to cause a  rapid onset of  concurrent

GI symptoms such  as nausea,

vomiting and  abdominal pain

after ingestion.   Camphor-induced  seizures are often  brief and self-limited.  Organochlorine  ingestion may also  cause recurring  seizures and even  status epilepticus  depending on the  class and overall  dose.

 

Benzodiazepines  and barbiturates  should be used to  control seizures if  needed. 

Supportive and  symptomatic  treatment should be  instituted and

GI decontamination  considered.

 

The second major  category of agents  which can cause  rapid onset of

GI symptoms and  also present with  severe symptoms  from another organ  system are the  cardioactive  glycosides. 

The prescription  medication Digoxin,  is an example of a  purified cardioactive  glycoside,

but similar  compounds exist  throughout nature.

 

Examples of plants  in which cardioactive  glycosides can be  extracted include:

 

* Oleander

 

* Lily of the Valley

 

* Foxglove

 

* Red Squill

 

* Dogbane

and...

 

* Siberian ginseng

 

The ingestion of toxic  amounts of these  compounds may  result in nausea,  vomiting and  abdominal pain. 

The patient may also  be somewhat drowsy  or confused.

The cardioactive  glycosides are aptly  named since they  interfere with the  normal electrolyte  flux in and out of  myocardial cells.   This can result in  myocardial ectopy  and dysrhythmias. 

Just about any kind  of dysrthymia,

from  bradydysrhythmias to  tachydysrhythmias,  can be seen in  cardioactive  glycoside poisoning.   These patients also  tend to have  evidence of  myocardial  conduction delays,  such as an

atrio-ventricular  conduction block,  due to their  pronounced effects  on the vagus nerve.

 

Toxicity is dependent  on dose and type of  compound,

as severity of illness  varies with the  particular agent.   Although a serum  digoxin level may be  helpful in the  identification of  poisoning,

the absence of a  detectable digoxin  level or a low but  non-toxic level does  not exclude  cardioactive  glycoside toxicity in  the appropriate  clinical setting.   Cross-reactivity may  occur between the  digoxin assay and  the various  cardioactive  glycosides,

however,

the assay is  designed to look for  digoxin. 

Therefore the  absence of a  detectable digoxin  level or a non-toxic  digoxin level does  not necessarily  indicate a

non-exposure. 

In fact,

cardioactive  glycoside poisoning  should be highly  suspected if a patient  has a clinical picture  consistent with  Digoxin poisoning,  and a low but  detectable digoxin  level is found,

and the patient does  not have access to  the medication  Digoxin.

 

Definitive treatment  is through the  administration of  Digoxin-specific  antibodies.   Treatment should  also include  supportive care as  needed. 

Calcium is

contra-indicated for  cardioactive  glycoside-induced  hyperkalemia due to  an inherent risk of  worsening  cardiotoxicity.

 

 

[GOOD]

How serious can  some of these  agents be?

 

 

[ROGERS]

Actually,

the third major  category of agents is  known for its ability  to cause multisystem  organ dysfunction  and ultimately organ  failure. 

Sometimes only very  small amounts of  these agents are  needed to cause  poisoning.

 

Some well known  examples of these  agents include:

 

* the Amanita  Phalloides  mushroom

 

* Ricin toxin from  Ricinus communis,  or castor bean plant

 

* Abrin toxin from  Abrus precatorius,

or the jequirty pea 

And...

 

* multiple forms of  inorganic metals.

 

Poisoning from  select Amanita  species such as

Amanita Phalloides  does not  occur until five or six  hours after ingestion.  Severe watery  diarrhea and other  GI symptoms such  as nausea are  common. 

Initial iImprovement  usually occurs with  supportive care such  as replacement fluid  therapy. 

However,  approximately

24 to 36 hours after  consumption,

the patient’s  condition can worsen  considerably as  manifested by  hepatic and renal  toxicity.

Death is common  after severe  poisoning.

 

Treatment should  include supportive  and symptomatic  therapies. 

Multiple doses of  activated charcoal  should be  considered in  conjunction with a  clinical toxicologist  and/or the local  poison center. 

If amanita poisoning  is confirmed and  presentation to a  health care facility is  within four hours,  charcoal  hemoperfusion  should be strongly  considered. 

There are various  other suggested but  unproven treatments  which may also be  considered.

 

Ricin is one of  several types of  toxalbumins which  exert their toxicity by  inhibiting protein  synthesis in  eukaryotic cells and  therefore can cause  cell death. 

It is a compound  derived from Ricinus  communis,

or the castor bean  plant. 

All of the information  available on oral ricin  poisoning comes  from people who  have eaten castor  beans. 

There are no reports  of anyone who has  ingested purified  ricin.

 

The information that  follows is based on  ricin consumed in the  form of masticated  castor beans and  may vary somewhat  if purified ricin is  used. 

Signs and symptoms  are likely to be the  same, however.

 

There are hundreds  of reported cases of  toxicity,

and several fatalities,  from castor bean  mastication and  ingestion. 

If enough ricin is  ingested,

the potential for  significant morbidity  and mortality exists.

 

Symptoms of mild  toxicity include:  nausea,

vomiting,

diarrhea,

and/or

abdominal cramping. 

These symptoms are  invariably present in  people who chew  and swallow a  significant amount of  castor beans.  Oropharyngeal  irritation may also  follow ingestion.

 

Bloody diarrhea and  systemic effects,  such as hypotension,  hemolysis and renal  failure,

are NOT present and  symptoms typically  resolve within

24 hours.

 

Onset of

GI symptoms  typically occurs in  less than 10 hours.   Delayed presentation  of GI symptoms,  beyond ten hours  after ingestion,

is unlikely to occur.

 

Moderate to severe  toxicity may include:  GI symptoms such  as persistent  vomiting and  voluminous diarrhea  . . . bloody or

non-bloody . . .

which typically leads  to significant fluid  losses. 

This may result in  dehydration and  hypovolemic shock,  which would  manifest as  tachycardia,  hypotension,  decreased urine  output,

and possibly altered  mental status,

such as confusion or  disorientation.

 

In severe poisoning,  hepatic and renal  failure and even  death are possible  within 36 to 72 hours  of exposure. 

Treatment is  primarily  symptomatic and  supportive in nature.

 

Abrin is a closely  related type of  toxalbumin that is  derived from Abrus  precatorius,

or the jequirty pea.   The seeds of this  plant are commonly  used in jewelry and  in ornaments due to  their colorful  appearance.

 

Abrin poisoning can  result from  mastication and  ingestion of Abrus  precatorious seeds  and from ingestion of  purified abrin.   Toxicity,

symptoms of  poisoning and  treatment are similar  to ricin poisoning.

 

Other agents often  implicated in  chemical-associated  multisystem organ  failure include  metals.

 

There are numerous  metals that may  cause GI illness  once ingested.   These include the  inorganic salts of:

 

* Arsenic

 

* Mercury

 

* Iron

 

* Lead

 

* Copper

 

* Cadmium,

and...

 

* Numerous others

 

Patients who ingest  metal salts in  foodstuffs or  beverages may  complain that the  food had a bitter or  metallic taste.   Symptoms of  inorganic metal  poisoning often  begin within 30 to 60  minutes of ingestion  and can rapidly  progress over the  next several hours.

 

The ingestion of  significant amounts  of inorganic metal  salts is usually  rapidly followed by  GI symptoms such  as nausea,

vomiting,

abdominal pain and  diarrhea. 

The severity is  directly dependent  on the amount and  form ingested.

 

An important clue to  metal toxicity in the  clinical course is a  rapid progression,  over 12 to 36 hours,  of symptoms that  include multiple  organs and organ  systems,

depending on the  agent. 

This may include  renal failure,  hepatotoxicity and  pulmonary toxicity.   The widespread  damage done by  metals is usually due  to their nonspecific  binding of functional  groups,

such as sulfhydryl  moieties,

on numerous  enzymes and  proteins. 

Binding can cause  irreparable damage  to the protein and  cell to which it is  attached.

 

Another clue to metal  poisoning is severe  GI fluid loss due to  widespread damage  to the GI tract. 

This fluid loss may  require large  amounts of  intravenous fluid  replacement and  even intravenous  vasopressor  therapies to maintain  adequate blood  pressure. 

This is not likely to  happen with a typical  viral or bacterial  gastroenteritis other  than cholera.

Metal salt poisoning  may,

however,

be hard to  distinguish clinically  from ricin or abrin  poisoning.

 

Laboratory testing is  needed to definitively  confirm metal  poisoning. 

Blood and urine  testing is available  for most metals.   This is dependent,  however,

on the individual  agent.

 

It is important to note  that many metals,  such as arsenic and  mercury,

can exist in nature  and in the body in  organic and  inorganic forms.   Often, interpretation  of laboratory results  needs to take into  account the amount  in each form with the  patient’s clinical  presentation. 

The ingestion of  seafood can  substantially  increase total blood  arsenic and mercury  levels. 

When certain metals  such as these are  analytically  measured in biologic  specimens like blood  and urine,

the results often  represent a  summation of the  levels of both  inorganic and  organic forms.

 

Therefore,  interpretation of the  results must take into  account whether  these different forms  were measured,

or speciated,

during the analysis.   Ideally,

and in non-acute  cases,

patients should  abstain from eating  any kind of seafood  for at least

three-to-five days  prior to testing for  some metals,  especially arsenic  and mercury,

since this could  affect the results. 

In acutely ill patients,  this delay is  unacceptable and  specialized testing  may be needed.

 

 

[GOOD]

That’s good advice  Dr. Rogers. 

Dr. Schier,

I believe you have  something to add  concerning localized  GI illness.

 

 

[SCHIER]

Yes I do, Cynthia.   Many agents may  simply cause a  limited clinical picture  consistent with a  severe  gastroenteritis.   Chemicals and  biological toxins that  may cause this  include:

 

* Hydrocarbons

 

* Detergents

 

* Caustics

 

* Certain mushrooms

And...

 

* some pre-formed  toxins from  Staphylococcus  aureus,

Clostridium  perfringens,

and Bacillus cereus

 

Hydrocarbons,

if ingested,

generally produce

GI symptoms but  little else. 

Their biggest risk is if  the patient aspirates  after vomiting,

which can result in a  hydrocarbon-induced  pneumonitis.   Treatment is  supportive and  symptomatic in  nature with a careful  evaluation for  aspiration.

 

Some hydrocarbons  may have a  significantly greater  risk of additional  toxicity and are  commonly  remembered by the  pneumonic, CHAMP.  This stands for:

 

* Camphor

 

* Halogenated  hydrocarbons

 

* Aromatic  hydrocarbons

 

* Hydrocarbons  associated with  metals

and...

 

* Hydrocarbons  associated with  pesticides

 

Treatment and  management may  vary considerably for  patients who ingest  these compounds.

 

Caustics include  compounds with  extreme pHs such as  acids or alkalis.   Common household  products include  toilet bowl cleaner,  commercial drain  blockage removal  formulations and  other products.   Caustics may also  include agents  corrosive by nature  of their oxidative  state such as  chlorates,  permanganates and  chromates. 

These agents are  extremely irritating to  the GI tract and can  cause severe  damage,

including perforation  and scarring.

 

Generally,

acute toxicity is  limited to the GI  tract, however,

airway burns may  sometimes occur,  necessitating  emergent airway  control. 

Ingested acids may  cause a resultant  metabolic acidosis  due to systemic  absorption in severe  cases.

Endoscopy is often  used to assess  damage resulting  from symptomatic  caustic ingestion.  Charcoal should  NOT be given in  caustic ingestions  since the damage is  usually done within  minutes of the  ingestion and may  obscure visualization  on endoscopy later.

As with any poison,  the dose ingested  determines severity.

 

The ingestion of  detergents and  soaps generally  cause limited

GI signs and  symptoms.

This usually resolves  with time,

although supportive  therapy and fluid  replacement may be  needed in severe  cases. 

However,

some detergents,  such as powdered  dishwasher  detergent,

are inherently  caustic,

and closer evaluation  along with  endoscopy may be  needed.

 

A large variety of  mushrooms from  multiple genera can  cause nausea,  vomiting and  diarrhea after  ingestion.   Symptoms are due to  a wide variety of  poorly understood GI  toxins with limited  toxicity.

 

Patients poisoned by  mushrooms from  these groups  manifest symptoms  within three hours of  ingestion. 

This distinguishes  the toxin class from  the much more  deadly Amanita  phalloides toxin,  which does not  induce symptoms  until five-to-six hours  after ingestion.   Treatment is  supportive,

and symptoms  generally resolve  within 12-24 hours.

 

A small number of  bacterial species  may cause

GI foodborne illness  by consumption of  pre-formed toxin.   These species  primarily include  Staphylococcus  aureus,

Bacillus cereus,

and Clostridium  perfringens. 

Clinical illness  includes nausea,  vomiting,

abdominal pain,  diarrhea,

and occasionally  fever. 

The presence of  some of these  symptoms depends  heavily on which  organism is present  and which toxins are  being produced.   Treatment is with  supportive care and  fluid replacement  when indicated.

 

Numerous other  agents may cause GI  symptoms if  ingested. 

A few are worth  briefly mentioning  due to historical use,  ease of availability or  inherent toxicity.   These include syrup  of ipecac and various  pharmaceuticals.

 

Syrup of ipecac can  cause nausea and  vomiting within half  an hour of ingestion.  Symptoms  commonly resolve  after two-to-three  hours.

Ipecac has been  historically used as  an emetic in the  treatment of  poisoning,

as well as abused in  those trying to lose  weight.

 

There are numerous  drugs that can cause  a clinical picture  similar to those  agents already  described. 

The sheer number of  agents precludes  their comprehensive  review in this  webcast;

however,

clinicians and public  health officials are  advised to at least  consider the  possibility.   The identification of  foodstuffs  contaminated with  pharmaceuticals in a  foodborne illness  event is unlikely to  be unintentional.

If enough of any drug  is ingested,

some degree of GI  irritation may be  expected. 

Some examples of  drugs which tend to  cause more GI signs  and symptoms  include:

 

* Acetaminophen,  salicylates and  nonsteroidal

anti-inflammatory  drugs

 

* Theophylline

 

* Lithium

 

* Digoxin

 

* Colchicine

and...

 

* Podophyllum resin

 

..Helen...

 

 

[ROGERS]

Thank you for your  attention during this  webcast. 

We have attempted  to provide you with  an organized  template from which  you can develop a  differential diagnosis  of possible chemical  etiologies based on a  patient’s clinical  presentation. 

The classification  scheme includes  many of the more  common

GI presentations that  may occur with  chemical agents.   The list of agents  discussed is not  comprehensive,

but rather includes  many examples of  the aforementioned  categories.

 

We have also tried to  emphasize certain  clues in the patient’s  history and clinical  presentation,

as well as  epidemiologic clues  that may alert the  astute clinician or  public health official  that a foodborne  illness event may  have a chemical  etiology.

 

The regional poison  control center   should always be  contacted in any  case of suspected or  known chemical  associated  foodborne illness by  calling

1-800-222-1222.  

This  will  automatically  connect the caller to  the closest poison  center.

 

Clinicians and health  care workers should  also contact their  local and state  departments of  health for assistance.

 

Local and state  health officials are  also encouraged to  call the Rapid Onset  of Gastroenteritis  with Unknown  Etiology,

or R.O.G.U.E.,  hotline to obtain  epidemiological  assistance. 

In addition, CDC may  be able to provide  specialized  laboratory  capabilities if needed  and the  circumstances  require it.

 

We hope that this

presentation will help  clinicians and public  health officials  understand,  diagnose and  manage  chemical-associated  GI foodborne illness.

 

[GOOD]

 

Thank you,

Dr. Rogers. 

The many questions  that we have  received concerning  today’s program will  be posted,

with their answers,  on our website at

w-w-w-

dot-

p-h-p-p-o-

dot-

c-d-c-

dot-

g-o-v-

slash-

p-h-t-n-

slash-

g-a-s-t-r-o-

hyphen-

zero-

five.

 

You can also view  the archived version  of this program at the  same website.

 

In addition,  videotapes and

CD-ROMs of this  program will soon be  available for  purchase through the  Public Health  Foundation. 

To order,

you can call

1-877-252-1200

or visit their online  bookstore at

www

dot

p-h-f

dot

org.

 

Finally, I’d like to  thank our guests . . .  Doctors

Helen

Schurz Rogers

and

Joshua  Schier,  ...and I’d also like to  thank our viewing  audience for  submitting your  thoughtful questions  concerning today’s  program.

 

And so,

that brings us to the  close of

“Recognition of  Chemical  Associated  Gastrointestinal  Foodborne Illness”.

 

I’m Cynthia Good,  and it has been my  pleasure to be your  moderator today. 

 

Good-bye.

#######

 

 

 

 

 

 

DRAFT 4.3 - PAGE  #21