
A Grid-Enabled Service for High-Throughput Genome Analysis

Alex Rodriguez1 Dinanath Sulakhe1 Elizabeth Marland1 Veronika Nefedova1
 Natalia Maltsev1 Michael Wilde1 Ian Foster1,2

1 Math and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

2 Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

1 Introduction
During the past decade, the scientific community has witnessed an unprecedented
accumulation of gene sequence data and data related to the physiology and biochemistry
of organisms. More than 178 genomes have been sequenced and 874 organisms are at
various levels of completion [24]. In order to exploit the enormous scientific value of this
information for understanding biological systems, the information must be integrated,
analyzed, graphically displayed and ultimately modeled computationally [1]. The
emerging systems biology approach requires the development of high-throughput
computational environments that integrate (i) large amounts of genomic and experimental
data and (ii) powerful tools and algorithms for knowledge discovery and data mining.
Most of these tools and algorithms are CPU-intensive, requiring computational resources
beyond those available to researchers at a single location. The aggregated and distributed
computational and storage infrastructure of the Grid offers an ideal platform for mining
biological information at this large scale.

The efficiency and power of comparative analysis for obtaining scientific insights
into functionality and evolutionary history of genes and protein families is well
established [11]. The Grid will allow researchers to use and mix the resources of remote
sites and supercomputer resources for the comparative analysis calculations, as well as
for the protein’s functional analysis. Not only will the Grid provide added resources for
computations, but also, the Grid can facilitate virtual collaborations that share distributed
data and computational resources, as well as provide temporary additional storage
capacity for protein-similarity results.

The first and most crucial step in genome analysis is the assignment of function to
genes. The efficiency and accuracy of such predictions is achieved by the use of a variety
of bioinformatics tools and approaches (e.g. analysis of global similarities [3][4][5],
domain and motif analysis [6][7][8], analysis of the relevant structural [9][10] and
functional information). This process can be extremely tedious, time-consuming, and
prone to human error if it were to be done by manually scheduled computations.

To address this problem, we have developed GADU – the Genome Analysis and
Database Update system – an automated, high-performance, scalable computational
pipeline for the data acquisition and analysis of sequenced genomes. GADU allows
efficient automation of the major steps of genome analysis: data acquisition and analysis
by variety of tools and algorithms, as well as result storage and annotation. GADU can be
used as a stand-alone server, or it can be incorporated into established frameworks of
other systems and pipelines for analysis of large volumes of sequence data (e.g., WIT
[11] in our case).

GADU’s flexible architecture allows modifications to the user-defined genome
analysis process according to individual needs and requirements. It can function in an
automated mode as well as interactively through a web-based interface.

In this paper we describe the implementation of GADU, our experiences using it on
the Grid, our findings from this experience, and our plans for increasing the application’s
computational power and speed through further Grid integration and enhancement.

2 Implementation
GADU consists of three conceptual modules (Figure 1). A Data acquisition module
periodically searches for new data in a set of public genome databases: NCBI [12], JGI
[13], TIGR [14], PDB [15], and Swiss-Prot [17]. It then updates the GADU server with
genome data and annotations from these sources

A data analysis module uses a scalable
Grid technology-based backend for high-
throughput analysis of genomic data by
multiple bioinformatics tools and analytical
workflows. The use of scalable
computational resources is essential for
annotation of hypothetical genes in newly
sequenced genomes. The analysis module is
the most compute-intensive module of the
three and requires the use of a Grid backend
in order to scale the number of jobs
requested by the user for computation of the
genome analysis calculations in a time-
efficient manner.

A data storage module stores the
computed results into relational databases
for easy access via user interfaces or by
other sequence analysis algorithms.

In order to perform genetic sequence
analysis and assign potential functions to
unknown genes, every sequence in a
genome must be processed by a number of
comparative-analysis tools and algorithms.

c
t

GADU Data Flow

BLAST

BLOCKS

PFAM

Tool n

Parallel Data
Analysis

Analysis
Module

NCBI . . .
.

DB nJGI
Public Databases:
Genome and DB

data User Interface:
Select genome

to process

Local Data
Storage

Acquisition
Module

Local Directory Data Storage

DB

nr PDB . . DB k

Genomes

NCBI JGI . . DB k

Genome Relational
Database

Storage Module

Relational DB

Annotations
Tools
Output

Input
Genome

output

GADU Data Flow

BLAST

BLOCKS

PFAM

Tool n

Parallel Data
Analysis

Analysis
Module

NCBI . . .
.

DB nJGI
Public Databases:
Genome and DB

data User Interface:
Select genome

to process

Local Data
Storage

Acquisition
Module

Local Directory Data Storage

DB

nr PDB . . DB k

Genomes

NCBI JGI . . DB k

Local Directory Data Storage

DB

nr PDB . . DB k

DB

nr PDB . . DB k

Genomes

NCBI JGI . . DB k

Genomes

NCBI JGI . . DB k

Genome Relational
Database

Storage Module

Relational DB

Annotations
Tools
Output

Input
Genome

output

Figure 1: GADU workflow, showing the
three modules: acquisition, analysis and
Most of these tools and algorithms are
omputationally intensive (e.g. BLAST [3], PFAM 7], BLOCKS [8], TMHMM [17]) and
ypically take a sequence as an input and compare the sequence alignment with a dataset

library of varied size. These tools can be combined to run in parallel or in series, and in
various orders (Figure 2), forming complex workflows to acquire specific knowledge
about the query protein sequences. In addition, one can run “result-parsers” on the
outputs to mine specific results from the sequence comparison tools.

The GADU environment comprises
four elements:

1. An integrated computational
environment containing tools and
algorithms for analysis of the
biological data.

2. Pre-defined as well as customized
scientific pipelines for efficient
analysis of biological data using
the different tools and algorithms
mentioned above.

3. Grid infrastructure for performing
CPU intensive tasks (composed by
GADU), using distributed
technologies like Condor, Globus,
Chimera, and the Java CoG kit.

lo
w

4. A Web portal interface to access
the GNARE server and its
components listed above using
Jakarta – Jetspeed.

Jazz/ANL

Grid3

UofWiscJazz/ANL

Grid3

UofWisc

Grid

A

B

D

C A

B

C

D A

D

B

C

C

D
A

B

Automatic Workflows Created as per User
Request or Project

GADU - G
Server

A

B

D

C A

B

C

D A

D

B

C

C

D
A

B

A

B

D

C

A

B

D

C A

B

C

D
A

B

C

D A

D

B

C

A

D

B

C

C

D
A

B

C

D
A

B

Automatic Workflows Created as per User
Request or Project

GADU - G
Server

Automatic Workflows Created as per User
Request or Project

GADU - G
Server

Hit and Run Registered Groups Collaborators

Interface to the
Server

Je
ts

pe
ed

Hit and Run Registered Groups CollaboratorsPublic Registered Groups Collaborators
End Users

Interface to the
Server

Je
ts

pe
ed

D
at

a
F

 a
nd

 S
to

ra
ge

 a
t v

ar
io

us
 le

ve
ls

C
hi

m
er

a,
 C

on
do

r,
G

lo
bu

s

Figure 2: GADU-GNARE system environment

Sequence analysis is typically computationally intensive: analysis of a bacterial
genome of 4000 sequences by three bioinformatics tools (BLAST, PFAM, and
BLOCKS) requires 12,000 steps, each taking on the order of 30 seconds of run time. In
some cases, depending on the size of the input sequence, dataset libraries and processor
speed, a single step could easily take up to 3 minutes to complete. In a Grid environment,
we can distribute these steps among a large number of resources and thus achieve
dramatic speedups.

In order to submit the user-defined workflow sequences into a Grid environment, the
workflow must be turned into an executable form. To accomplish this, we use a “virtual
data language” (VDL) implemented by the Chimera system [18]. VDL permits
workflows to be specified as a graph of “transformation” invocations. Transformations
are abstract interfaces that describe an application program such as BLAST, BLOCKS,
result-parser, etc. Transformations are invoked by “derivations” – the “function calls”
that specify inputs such as genome sequence files, output files from comparative analysis
tools, and textual parameters. VDL provides simplified, abstract access to large-scale
Grid computation and storage resources. It also provides: the ability to accurately track
the provenance of results of the workflows results, describing how they were obtained
from transformations of input data; the ability to discover data through tools that search
for specific transformations; the ability to produce new analysis work based on
previously executed work, which allows for the comparison of transformation patterns
executed at different times; and the ability to audit and disseminate results.

Figure 3 illustrates the visual display of provenance for a six-stage workflow for a
simple comparative analysis of 100 protein sequences. The six stages include the data
transfers to and from Grid storage servers, partitioning input data for the subsequent
BLAST process, parsing of specific information the user wants to capture from protein
sequences, and concatenation of final results.

 inputfile.1

compbio::FileBreaker/ID001

jobNo_1_1.Block2

compbio::BLAST/ID006
out.jobNo_1_1.Block2

compbio::BlastParser/ID007

parse.out.jobNo_1_1.Block2

compbio::cat/ID012

outfile.jobNo_1_1.BLASTPIR

inputfile.1

compbio::FileBreaker/ID001

jobNo_1_1.Block2

compbio::BLAST/ID006
out.jobNo_1_1.Block2

compbio::BlastParser/ID007

parse.out.jobNo_1_1.Block2

compbio::cat/ID012

outfile.jobNo_1_1.BLASTPIR

Figure 3: Left, a Six-step BLAST workflow with 5-way parallelism. At right, the center-path details.

The VDL fragments shown below specify transformations FileBreaker and BLAST,
and also a derivation of FileBreaker, which specifies the actual inputs to that
transformation. In this case the inputs to each of the transformations would be the
genome sequence file and the subsequent output files of each of the transformations.

TR FileBreaker(input filename, none nodes, output sequences[], none species) {
 argument = ${species};
 argument = ${filename};
 argument = ${nodes};
 profile globus.maxwalltime = "300";
}
TR BLAST(none OutPre, none evalue, input query[], none type) {
 argument = ${OutPre};
 argument = ${evalue};
 profile globus.maxwalltime = "300";
}...
DV jobNo_1_1separator->FileBreaker(
 filename=@{input:"inputfile.1"|rt},
 nodes="5",
 sequences=[@{output:"job1.0":"tmp"},
 @{output:"job1.1":"tmp"},
 @{output:"job1.2":"tmp"},
 @{output:"job1.3":"tmp"},
 @{output:"job1.4":"tmp"}],
 species="Aeropyrum_Pernix"
);...

The VDL transformation definitions (“TR”, above) act as function definitions and
specify the formal arguments to an application, and the details of how those arguments
are passed to and from the application represented by the TR definition. Calls to a
transformation are called “derivations,” and are defined by “DV” statements, which
specify the actual arguments to be passed to a transformation. File names used as

arguments in DV statements are “logical names”, mapped to physical file names at run
time.

Data transfer for VDL is performed automatically and transparently for the user. For
example, the physical file for the logical filename “inputfile.1” will be transferred
automatically to the site selected for execution of the FileBreaker transformation via
GridFTP [2], which provides secure, efficient data movement in Grid environments.
Input files to transformations are automatically located in the Grid by searching for
physical copies of a logical file in a replica location service such as RLS [29]. Output
files are automatically cataloged in the same location service for use in subsequent
transformations and workflows. In the transformation “BLAST”, above, we use the
“profile” feature of VDL to specify the run-time limit for that process. VDL profiles
permit parameters to be passed to components of the run-time environment.

Figure 3 shows the six-stage process divided into five concurrently executable
segments and submitted in parallel to five different processors at a remote Grid site. All
these steps – selecting the degree of parallelism, generating the VDL, and choosing
which site to submit the jobs to – are performed transparently for the user by the GADU
system, generating the workflow and managing Grid site interaction as shown in figure 4.

Application
(Blast, Blocks, Pfam, TMHMM, etc.)

Workflow Definition
(Derivations and Transformations)

DAG creation
(Using Chimera)

Job Submission

Master Location

Condor-GGlobus: gridftp

Grid Network Environment
(Grid3, DOE-SG, TeraGrid)

Cluster
QueueGridFTP Cluster

QueueGridFTP
Cluster
QueueGridFTP

Grid 1 Nodes Grid 2 Nodes Grid n Nodes

Application
(Blast, Blocks, Pfam, TMHMM, etc.)

Workflow Definition
(Derivations and Transformations)

DAG creation
(Using Chimera)

Job Submission

Master Location

Condor-GGlobus: gridftp

Grid Network Environment
(Grid3, DOE-SG, TeraGrid)

Cluster
QueueGridFTP Cluster

QueueGridFTP
Cluster
QueueGridFTP

Grid 1 Nodes Grid 2 Nodes Grid n Nodes

ondor-G
s the

 process
 DAG

ing of
 one or
he prior

grams.
tices) in
ntify the
 jobs to
 by the
vances the

an
 a

e job
 front-

Once the VDL for an analysis run is generated by GADU, concrete workflows in the
form of DAGMan directed acycli
planner [30] for execution by C
and DAGMan. Pegasus create
Condor-G “submit” files for each
and inserts them into a DAG. The
describes an execution orde
programs where the initiation o
more programs is dependent on
completion of one or more other pro
The programs are the nodes (ve
the graph, and the edges (arcs) ide
dependencies. DAGMan submits
Condor-G in an order represente
DAG and on job completion, ad
progress of the DAG. A DAGm
input file describes the DAG, an
per-job “submit file” describing
each program in the DAG is
used by Condor-G [19]. Each
job, when ready for execution, is
submitted individually by
contacting the remote Grid si
manager via Condor-G. Used as a
end to a computational Grid, Condor-G
can manage thousands of jobs to be run
at distributed sites. It provides job monitoring, lo
fault tolerance, credential management, and i
dependencies via a system of “classified ads” an

c graphs (DAGs) [19] are produced by the Pegasus

r
f
t

r

d

d

t

Figure 4: Grid execution “pattern” for

the GADU application
gging, notification, policy enforcement,
t can handle complex job resource
d “matchmaking”. Condor-G's flexible

and intuitive commands are appropriate for use directly by end-users, as well as for
interfacing with higher-level task brokers and web portals.

The current Grid execution environment for GADU consists of Grid2003 resources
[20], including Argonne’s LCRC cluster [21], a DOE Science Grid facility [29]. These
resources make available over 2700 CPUs. Currently, we are in the process of
inco

peline has been used extensively by the computational biology
nal Laboratory as well as other bioinformatics organizations such
Resources (PIR) [23] and the Fellowship for the Interpretation of

PIR and air-wise
com

how the use of more resources provides us with increasing returns, by showing the

l as other bioinformatics organizations such
Resources (PIR) [23] and the Fellowship for the Interpretation of

PIR and air-wise
com

how the use of more resources provides us with increasing returns, by showing the

rporating more Grid2003 sites into the GADU execution environment, as well as
adding other resources from the TeraGrid [22] and DOE Science-Grid. Via GridFTP and
Condor-G, sequence data can be transferred and comparatively analyzed by running
several executables such as BLAST, PFAM, BLOCKS, etc. on each of the sequences,
and by running numerous sets of sequences concurrently on a large number of processors
in the Grid environment.

3 Performance
The automated GADU pi
group at Argonne Natio
as Protein Information as Protein Information
Genomes (FIG). We have developed and continue to develop automated analytical
pipelines for these organizations so that they can manage and submit their computer-
intensive jobs to the Grid. Currently, we can support the static versions of their pipelines.
In the future we plan to allow users to define their workflows interactively, via a web
interface.

Genomes (FIG). We have developed and continue to develop automated analytical
pipelines for these organizations so that they can manage and submit their computer-
intensive jobs to the Grid. Currently, we can support the static versions of their pipelines.
In the future we plan to allow users to define their workflows interactively, via a web
interface.

Run A: Run B:

F ns of t e same bacteria genome on 35 and 25 processo .

Th le execution traces in Figure 5 illus erf r PIR,
processing 100 sequences. More complex runs are currently performed repea dly for the

F ns of t e same bacteria genome on 35 and 25 processo .

Th le execution traces in Figure 5 illus erf r PIR,
processing 100 sequences. More complex runs are currently performed repea dly for the

-

time (seconds)

stage - in Blast process Stage out stage-in Blast process
stag

time (seconds)

1673 sec.

25 CPU

2500 sec.

35 CPU

e - out

i
e sa

i
e sa

gugur
m

r
m

e 5: Blast re 5: Blast ruu hh r
orm

r
orm

ss
d

d pp tratetratess aa small run small run pp ee fofo

tete
 FIG organizations. The analysis of the data for FIG consists of p FIG organizations. The analysis of the data for FIG consists of p

parisons of a database of 1.8 million protein sequences against itself. To analyze this
data we utilized about 250 nodes from the DOE Science Grid LCRC site. The complete
file was processed in an 84 hour run. A single blast process for one sequence on a local
500 MHz desktop against a large database of about 0.5 GB may take up to 3 minutes. If
the 1.8 million sequences were to be done in one such CPU, this process could take over
90,000 hours. This is equivalent to 3750 days or 10.3 years. Figure 5 shows graphically

parisons of a database of 1.8 million protein sequences against itself. To analyze this
data we utilized about 250 nodes from the DOE Science Grid LCRC site. The complete
file was processed in an 84 hour run. A single blast process for one sequence on a local
500 MHz desktop against a large database of about 0.5 GB may take up to 3 minutes. If
the 1.8 million sequences were to be done in one such CPU, this process could take over
90,000 hours. This is equivalent to 3750 days or 10.3 years. Figure 5 shows graphically

processors used for each job against a time scale. The figure is a graph provided by
kickstart, the Chimera transformation invocation and execution monitor [25], which
automatically logs the run-time statistics of all work performed on the remote Grids. (For
convenience, only a portion of the complete graphs are illustrated.) The figure shows two
runs on the same microorganism (Mycoplasma Genitalium). Run A, which was done on
35 CPUs, took proportionally less time than run B, which was performed on 25 CPUs.
The traces show three major phases of execution: the stage-in process at the very
beginning, the blast executables performed in parallel on the assigned processors and the
stage-out process, which corresponds to the end of the job.

There is also some overhead in the time to process these workflows, due to data
transfer and reformatting of data and presentation of the final output. These are
acceptable in virtually all cases, as the increasing returns from the availability of greater
amounts of computing resources outweighs the overhead time added to the calculation
due to file transfers and file setup. However, one obstacle to utilizing more processing
nodes is the competition with users from other projects for the resources. In our case,
each transformation call through a derivation constitutes a job requesting one processor.
As soon as one job is finished, it gives up the processing node to the next job in the local
scheduler’s queue, even if it is not a process in our DAG. Thus, we are in constant
competition for processors to fulfill our needs. This competition in turn increases idle
time within the workflow: the amount of time in which our comparative analysis jobs sit
idle because there are no resources available. In a similar example to the one described
above, we took 1600 sequences instead of 100 and submitted it to 50 processing nodes in
a GRID3 site. The table below shows the performance results of a 1600 sequence run.
Note that about one fourth of the time was spent idle. Reducing this idle time while
retaining the desired fine-grain job size is discussed further in the next section.

Sequences in the genome 1618
Number of CPUs requested 50
Idle CPU time 267 minutes (5.5 minutes per node)
Active CPU time 646 minutes
Actual time for completion 31 minutes

A analysis w that we have run on the Grid through
GADU to date is as follows. The first GADU BLAST runs were done in March 2003,
processing a peak of 59 Genomes in 24 hou ays of processing time were
delivered, generating 50 GB of data, using a 10,000 Grid jobs performing
ove

ly updates of about 80,000 sequences per month.

 summary of the genomics ork

rs. 67 CPU-d
pproximately

r 200,000 BLAST executions. (Note that we batched multiple executions into one job
to reduce scheduling overhead). This run demonstrated a greater than five-fold
improvement in turnaround time: less than one hour per genome, compared to a previous
average of about five hours/genome.

GADU production runs began in August 2003, and in the first quarter of production
processed 3.2 million sequences with BLAST. The first big run (for FIG) consisted of
1.8 million sequences (approximately 900MB) processed by BLAST and the result-
parser, followed by subsequent month

The first production run for PIR was in November 2003, using the same process as
for FIG, but on 1.2 million sequences. This was repeated in January 2004. In February
2004 we started running workflows of the BLOCKS application and the result-parser on

the Grid. The initial run processed 100,000 sequences. From January-March 2004 we
processed 1.3 million sequences with BLAST and 100,000 with BLOCKS.

4 Experiences, Problems and Solutions
We describe in this section various experiences encountered in mapping GADU work

 by these experiences.
T emote Grid sites we created a “tar” file

of o
ackage our tar

arc

ore advanced “just in time” planners that automatically
sele

d on Grid gatekeepers, job managers, and local schedulers,
esp

nents that we are using, and
inte

nformation service
(MD

to the Grid, and the future improvements suggested
o install the genomics application codes on r

ur executables, which was extracted and installed at each remote site through globus-
job-run commands. To further automate this process, we intend to p

hive as a Pacman [26] package, and to integrate it with the site-environment
description standards of Grid3, disseminated to Grid clients through the MDS directory
service [27]. The final stage of this automation will involve the automatic installation of
the application packages on sites through virtual data dependencies and the job planners
that select sites for execution.

Currently, large runs are manually load-balanced across a set of candidate execution
sites. This approach is labor-intensive, as it requires manual progress monitoring of large
runs and manual recovery. M

ct sites based on available resources and that skip past inaccessible Grid sites are now
being tested, and will make this process more automatic while providing significant
throughput improvements.

Currently, it is desirable to break large runs into program executions of fairly fine
grain, each running on the order of 15 to 30 minutes. At this job size, our large runs
currently put significant loa

ecially when we try to make significant utilization of larger Grid sites, on the order of
200 or more CPUs. Additionally, some sites that we would like to use at have scheduling
policies that are heavily biased towards running small numbers of large parallel multi-
CPU jobs. For both of these reasons, once a site is selected for processing, we would like
to optimize the mechanisms used to send a steady stream of small jobs to a site for
processing. To meet all these requirements, we plan to explore the use of Condor “glide-
ins” [19] to “tunnel” into a site, allocate a quantity of CPUs, and rapidly schedule a large
number of small jobs on those resources without the repeated overhead of Grid
authentication, job monitoring, and input/output transfer.

While our workflows are long-running, we have not yet integrated into our workflow
executor the ability to renew an expired proxy transparently to the overall workflow. The
facilities to support this now exist in the Grid compo

grating this capability into our workflow execution would add robustness and remove
yet another need for manual involvement in long-running workflows.

In the near future, we expect to be running single workflows across at least three Grid
“domains”: Grid2003, DOE Science Grid, and TeraGrid. This environment will require
harmonization across these grids of the data returned by the Grid i

S), and of file system access and layout conventions (in terms of shared filesystem
access vs. private per-node access, and in terms of how applications locate their private
data, Grid data, temporary storage, application code, and other directories needed for grid
job operations). These conventions have been codified differently in each of Grid2003,
the European Data Grid, the LHC Computing Grid, and Teragrid, and either
harmonization of these conventions across these different Grids will be required, or,

more likely in the near-term, the workflow executor will need to perform the necessary
multi-grid adaptations.

One problem that we have dealt with successfully in GADU processing, albeit in an
ad-hoc manner, is the balancing of physical data files across directories within large
wor

ill
req

kstart” job invocation/execution monitor
pro

a cale distributed Grid infrastructure, it is also
tive environment where scientists and researchers

er groups and ANL for analysis of the biological data.

.

kflows, of which many segments may run on the same site and hence hit the same
shared data file directory. This concurrent access to large numbers of files was a severe
problem in our early work on the LCRC cluster, whose shared file system was heavily
optimized for high data rates to large files, but which suffered severe, system-crippling
performance degradation with high creation rates of large numbers of relatively small
files within a single directory. Every file system has a “breaking point” with respect to
the processing of large directories, and we need to integrate into our workflow executors
a scalable convention for dynamic load balancing of physical files across directories.

Somewhat related to this problem, in order to permit many users to concurrently
schedule jobs through GADU from a single submission site, we anticipate that we w

uire a Grid service layer that imparts a multi-user directory structure within the
logical-file namespace of the replica location service. (We currently use a single RLS for
all of the files from a single GADU job submission host.) The opportunity exists to
obtain further workflow speedup from the ability to batch multiple small file transfers in
a single invocation of our GridFTP data transfer client, globus-url-copy. Experimental
versions of this capability have been created, and need to be integrated into our concrete
workflow planner for performance evaluation.

Finally, we have only limited experience within the GADU system for the capture of
virtual data “invocation” records from the “kic

vided with Chimera [25]. We have had at least one situation in which an enhanced
version of kickstart would have proven extremely valuable. In one run, on a particular
Grid site, a large number of BLAST outputs were mysteriously corrupted. The suspected
cause of this corruption was an incompatible shared library on some or all of the hosts at
this site. Reliable kickstart records, enhanced to provide the signature of all shared
libraries within the executable’s library path, would have been an indispensable
debugging tool, and should become standard part of all captured provenance.

5 Next Steps and Future Plans
In ddition to harnessing the large-s
necessary to provide a secure collabora
can discuss, share, and analyze data. In order to provide such an environment for
research in genome analysis, we are developing GNARE (Genome Analysis Research
Environment). GNARE (Figure 2) is a public genome analysis server that includes
following components:

1. An Integrated Computational Environment containing tools and algorithms
developed by oth

2. Pre-defined as well as customized scientific pipelines for efficient analysis of
biological data using the different tools and algorithms mentioned above

3. Grid infrastructure for performing CPU intensive tasks (via GADU), using
distributed technologies (Condor, Globus, Chimera, Java CoG kit).

4. A Web portal as an interface to access the GNARE server and its components
listed above using Jakarta and Jetspeed.

5. Managing workflows that run transparently across multiple heterogeneous
execution environments, in particular across mixed IA32-IA64 platforms.

6
tomated GADU system can decrease substantially the time and the
ction required for genome analysis. Its modular architecture permits

diff

 to the following individuals who contributed valuable advice
r, Michael Milligan, Von Welch, Miron Livny, Zachary Miller,

1. Ideker, T., Galitski, T., Hood, L. (2001) A new approach to decoding life: systems biology.
enomics Hum. Genet., 2, 343-372.

d
p. 749-771..

protein database search

4.

y searches: a comparison of Smith-Waterman in

6.
 Database, 2003 brings increased

7.
m protein families database.

Nucleic Acids Res., 30, 276-280.

6. Utilization of VDL to capture the provenance of the all data captured and stored
by GADU, including the final relational database of sequence data.

Conclusion
The use of the au

amount of user intera
erent genome analysis steps to be performed efficiently. This feature is especially

useful for simultaneous analysis of multiple genomes. Availability of new experimental
results concerning functions of proteins, previously annotated as hypothetical, as well as
improvements in the sensitivity and accuracy of bioinformatics tools, requires periodic
revisiting of previously annotated genomes and reassignment of functions using this
newly acquired knowledge. The increased efficiency of genome analysis offered by the
GADU system and the Grid considerably simplifies the analysis of newly sequenced
genomes as well as previously annotated genomes. GNARE can be an interface to
leverage Grid resources for all biologists interested in performing such complex
computations. It can hide the complex technologies involved in using distributed Grid
resources and help users perform faster and better analyses.

Acknowledgements
We extend special thanks
and support: Jens Voeckle
James Frey, Terry Disz, Robert Olson, Ross Overbeek, Susan Coghlan, and the systems
support groups of MCS, GRID2003, Globus, Condor, and iVDGL VDT. This work was
supported in part by the U.S. Department of Energy under Contract W-31-109-ENG-38,
and by the National Science Foundation under grants 86044 (GriPhyN), 122557
(iVDGL), and the NCSA Alliance Expedition “A PACI Petascale Data Quest” (PDQ).

References

Annu. Rev. G
2. Allcock, W., et al., Data Management and Transfer in High-Performance Computational Gri

Environments. Parallel Computing, 2002. 28(5):
3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.

(1997) Gapped BLAST and PSI-BLAST: a new generation of
programs. Nucleic Acids Res., 25, 3389-3402.
Pearson, W.R. (1994) Using the FASTA program to search protein and DNA sequence
databases. Methods Mol Biol., 24, 307-331.

5. Shpaer, E.G., Robinson, M., Yee, D., Candlin, J.D., Mines, R., Hunkapiller, T. (1996)
Sensitivity and selectivity in protein similarit
hardware to BLAST and FASTA. Genomics, 38, 179-191.
Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D., Bateman, A., Binns, D.,
Biswas, M., Bradley, P., Bork, P., et al. (2003) The InterPro
coverage and new features. Nucleic Acids Res., 31, 315-318.
Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths Jones, S.,
Howe, K.L., Marshall, M., Sonnhammer, E.L. (2002) The Pfa

8. Henikoff, S., Henikoff, J.G., Pietrokovski, S. (1999) Blocks+: a non-redundant database of
protein alignment blocks derived from multiple compilations. Bioinformatics, 15, 471-479.
Pearl, F.M., Bennett, C.F., Bray, J9. .E., Harrison, A.P., Martin, N., Shepherd, A., Sillitoe, I.,

 e

11. ides, N., Fonstein,

Thornton, J., Orengo, C.A. (2003) The CATH database: an extended protein family resource
for structural and functional genomics. Nucleic Acids Res., 31, 452-455.

10. Lo Conte, L., Brenner, S.E., Hubbard, T.J., Chothia, C., Murzin, A.G. (2002) SCOP databas
in 2002: refinements accommodate structural genomics. Nucleic Acids Res., 30, 264-267.
Overbeek, R., Larsen, N., Pusch, G.D., D'Souza, M., Selkov, E. Jr., Kyrp
M., Maltsev, N., Selkov, E. (2000) WIT: integrated system for high-throughput genome
sequence analysis and metabolic reconstruction. Nucleic Acids Res., 28, 123-125.

12. NCBI, National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
JGI, Department of Energy Joint Genome Institute, http://www.jgi.doe.gov13.
TIGR, The Institute for Genomic Research, http://www.tigr.org14.

15. PDB, The Protein Data Bank, http://www.rcsb.org/pdb/
16. Swiss-Prot, The Swiss-Prot Protein Knowledgebase, http://us.expasy.org/sprot/

 17. Krogh, Anders, Prediction of transmembrane helices in proteins,
http://www.cbs.dtu.dk/services/TMHMM/

18. Foster, J. Voeckler, M. Wilde, and Y. Zhou. Chimera: A virtual data system for representing,
4th Conference on

ent, Edinburgh, Scotland, July 2002.
querying, and automating data derivation. In Proceedings of the 1
Scientific and Statistical Database Managem

19. Condor Manual Version 6.4, Miron Livny, University of Wisconsin-Madison
http://www.cs.wisc.edu/condor/manual/v6.4/Contents.html
The Grid2003 Project, The Grid2003 Production Grid: Principles and Practice. 20020. 4,

21. t,
Technical Report, iVDGL, www.ivdgl.org.
LCRC, The Argonne National Laboratory Computing Projec
http://www.lcrc.anl.gov/jazz/index.php
Catlett, C., The TeraGrid: A Primer. www.te22. ragrid.org. 2002..

 Chen, Z. Hu, R. Ledley, P.
ng, W. Barker. The Protein Information Resource.

23. C. H. Wu, L. Yeh, H. Huang, L. Arminski, J. Castro-Alvear, Y.
Kourtesis, B. Suzek, C. Vinayaka, J. Zha
Nucleic Acids Research, 31: 345-347, 2003.

24. GOLD: http://wit.integratedgenomics.com/GOLD/
Chimera Users Guide, http://www.griphyn.org/chimera/release.html25.
Pacman Package Manager, http://physics.bu.e26. du/~youssef/pacman/

, K. Grid Information Services for
 High Performance

29. iencegrid.org

27. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman
Distributed Resource Sharing. 10th IEEE International Symposium on
Distributed Computing. 2001.

28. Chervenak, A., et al. Giggle: A Framework for Constructing Scalable Replica Location
Services. SC'02: High Performance Networking and Computing. 2002.
DOE Science Grid, www.doesc

Y.
rbree, R. Cavanaugh,

, no. 1, 2003, pp. 25-39.

30. Mapping Abstract Complex Workflows onto Grid Environments, E. Deelman, J. Blythe,
Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A. Lazzarini, A. A
S. Koranda, Journal of Grid Computing, Vol.1

http://www.ncbi.nlm.nih.gov/
http://www.jgi.doe.gov/
http://www.tigr.org/
http://www.rcsb.org/pdb/
http://us.expasy.org/sprot/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cs.wisc.edu/condor/manual/v6.4/Contents.html
http://www.lcrc.anl.gov/jazz/index.php
http://www.teragrid.org/
http://wit.integratedgenomics.com/GOLD/
http://www.griphyn.org/chimera/release.html
http://physics.bu.edu/~youssef/pacman/
http://www.doesciencegrid.org/

	Alex Rodriguez1 Dinanath Sulakhe1 Elizabeth Marland1 Veronika Nefedova1
	Natalia Maltsev1 Michael Wilde1 Ian Foster1,2
	Introduction
	Implementation
	Performance
	Experiences, Problems and Solutions
	Next Steps and Future Plans
	Conclusion
	Acknowledgements
	References

