
Performance Analysis of a User-level Memory

Server

Scott Pakin #1, Greg Johnson #2

#Performance and Architecture Lab (PAL)

Los Alamos National Laboratory

Los Alamos, New Mexico, USA

1pakin@lanl.gov

2gjohnson@lanl.gov

Abstract—Large-scale parallel applications often produce im-
mense quantities of data that need to be analyzed. To avoid
performing repeated, costly disk accesses, analysis of large
data sets generally requires a commensurately large amount of
memory. While some data-analysis tools can easily be parallelized
to distribute memory across a cluster, other tools are either
difficult to parallelize or, in the case of simple data-analysis
scripts with short lifespans, not worth the effort to parallelize.
In this work, we present and analyze the performance of
JumboMem, a simple, entirely user-level parallel program that
enables unmodified sequential applications to access all of the
memory in a cluster. Although there are many implementations
of memory servers, all require either administrative privileges or
program modifications. More importantly, no existing memory
server has been evaluated on modern workstation clusters with
high-speed networks, many nodes, and significant quantities of
memory. This paper represents the first study of memory-server
performance at supercomputing scales.

I. INTRODUCTION

Many high-performance parallel applications have an in-

satiable need for memory and CPU cycles and can readily

exploit the largest workstation clusters. Such applications

commonly produce massive amounts of output that need to

be analyzed. When no appropriate data-analysis software is

available, users turn to scripting languages to rapidly develop

customized data-analysis tools. These scripts—which may be

as simple as a few commands piped together on the command

line—need enough memory to process an application’s output.

While the total amount of memory in large-scale systems has

increased exponentially over time, the total number of CPUs

has increased proportionally. In other words, the memory

available to each CPU—or even each node, as the number

of CPUs per node has not been growing exponentially—has

changed comparatively little over time (Figure 1).

When more memory is needed for a data-analysis script to

run (without paging to disk), a user has three basic alternatives:

1) Buy more memory, which can be expensive and, for very

large amounts of memory, may not be possible to add

to an existing workstation.

2) Parallelize the script and run it on a cluster to divide

the memory requirements among a large number of

nodes. The script needs to be important enough to

justify the time needed to rewrite and debug the code.

 1

 10

 100

 1000

 10000

 100000

 1994 1996 1998 2000 2002 2004 2006
 0.01

 0.1

 1

 10

 100

S
y
st

em
 m

em
o
ry

 (
G

B
)

P
er

-C
P

U
 m

em
o
ry

 (
G

B
)

Year

System
Per CPU

Fig. 1. Memory in the world’s fastest supercomputer (cf. http://
www.top500.org/)

Throwaway scripts, an increasingly common case, are

seldom worth the effort—not to mention that there may

be little opportunity for parallelism in many types of

data analysis.

3) Use a memory server [1] (a.k.a. Network RAM [2]),

in which an application pages out memory not to disk

but over a high-speed network to idle RAM located

on other nodes in a cluster. Memory servers generally

require administrative privileges (to load and unload

kernel modules), which are generally not available to

users on production clusters.

In this paper we focus on the memory-server alternative.

Our assumptions are as follows:

• Users need to analyze large volumes of data.

• Scripting languages are convenient for many forms of

data analysis.

• One-shot programs need immense amounts of memory

but are not worth parallelizing just so they fit in the

available per-node RAM.

• Access to large, high-performance clusters is common-

place.

• Administrative access to high-performance clusters is not.

Based on those assumptions we propose employing a user-

1-4244-1388-5/07/$25.00  2007 IEEE 2007 IEEE International Conference on Cluster Computing249

level memory server to exploit the convenience of scripting

languages for rapid analysis-tool development while still being

able to access memory located throughout a cluster. Although

user-level memory servers have previously been discussed in

the literature [2], [3], no memory server implementation—

user-level or not—has ever been evaluated at scale. In this

paper we describe JumboMem, the first user-level memory

server that enables unmodified applications to page to remote

memory, and then evaluate JumboMem’s performance on a

cluster containing an order of magnitude more nodes and

two orders of magnitude more memory than any previously

implemented memory server. Our goal is to determine if mem-

ory servers in general and JumboMem in particular perform

well when applications manipulate hundreds of gigabytes of

memory spread over hundreds of cluster nodes.

The rest of this paper is organized as follows. Section II

presents some background information about memory servers

and some of the challenges of running a memory server on

a large-scale cluster. Because there have been many prior

memory-server projects, Section III contrasts our work to that

of other projects in the literature. JumboMem’s implemen-

tation is presented in Section IV. The core of this paper is

Section V in which we analyze JumboMem’s performance

using a variety of microbenchmarks through complete appli-

cations. Section VI describes some opportunities for future

work that leverage JumboMem as a research vehicle. Finally,

we draw some conclusions from our work and present these

in Section VII.

II. BACKGROUND

In a memory-server environment, cluster nodes are desig-

nated as masters, which run applications, and slaves, which

serve memory over the network to the master. (In some

implementations a node can be both a master and a slave.)

Essentially, a master treats the slaves as a large paging device.

Running a memory server on a large number of nodes and

with large amounts of per-node memory is a qualitatively

different problem from running a memory server with more

modest node counts and memory capacities. We now examine

three challenges that appear only at large scale: data-structure

size, page-map capacity, and communication-subsystem re-

source utilization.

First, a large-scale memory server cannot practically utilize

any data structure whose size is proportional to the total

number of pages as this number can easily grow exceed-

ingly large. For example, our cluster has a total of 1 TB of

RAM, which corresponds to 268,435,456 four-kilobyte pages.

Assuming a memory server needs to store four bytes of

information per page, this represents a quarter of the master’s

physical memory and leaves only three quarters available to

applications. The expected consequence is increased paging

activity and therefore decreased performance. If we were to

expand our cluster from 256 nodes to 1024 nodes (4 TB of

memory) there would be no memory available on the master

for applications to use.

Because user-level memory servers such as JumboMem

explicitly map pages into (and unmap pages from) a process’s

address space a second issue concerning memory servers is

the maximum number of per-process page mappings that the

operating system supports. In Linux 2.6, the default maxi-

mum is 65,536 (although this can be increased by a user

with administrative privileges). Although Linux automatically

coalesces adjacent mappings, 65,536 mappings corresponds to

a worst-case total (i.e., with alternating mapped and unmapped

regions) of 512 MB of address space—a small number relative

to the 4 GB of memory per node and 1 TB of total memory

in our cluster but a large number relative to the node- and

system-memory sizes that were commonplace just a few years

ago.

A final issue regarding memory servers at scale is the mem-

ory required for the communication subsystem. Messaging

layers that target high-speed networks such as InfiniBand [4]

generally need to reserve more memory (e.g., for pinned, per-

connection communication buffers) to achieve better perfor-

mance. While the previously mentioned issues can be ad-

dressed by using large logical pages, doing so implies greater

memory demands from the communication subsystem. For

example, 255 connections with only a single outstanding page-

sized message (4 KB) allocated per connection corresponds to

over 1.5% of the total node memory.

III. RELATED WORK

Paging to remote memory instead of local disk is not a new

idea. Almost 25 years ago Garcia-Molina et al. proposed a

“massive memory machine” in which a collection of nodes

interconnected with a low-latency broadcast network collab-

orate to provide a large global address space to sequential

applications [5]. The first actual implementation of the remote-

memory concept is arguably the Apollo DOMAIN system, for

which Leach et al. quantified the costs of page faults satisfied

by remote memory in a paper dated 1983 [6].

What makes our work unique is primarily the scale at

which we evalute it. Table I lists, in chronological order of

publication date, a wealth of previously implemented memory

servers. (Simulated memory servers are excluded from the

list.) While we present measurements taken on hundreds of

nodes on a cluster containing a terabyte of RAM, no prior

work of which we are aware has been run on more than tens

of nodes or tens of gigabytes of memory.

A second unique feature of our work is that our software,

JumboMem, represents the first implementation of a memory

server that works without application modifications yet does

not need administrative access to install or run. Any user

with access to a large cluster can run applications using

JumboMem.

Dodo [3] and Network RAM [2] are among the few

published examples of a user-level memory server. Dodo

provides a library that exports a file-like interface (open,

read, write, close, etc.) to applications, which must explicitly

manage remote memory. Network RAM provides functions for

initializing memory servers and for allocating remote memory

250

TABLE I
COMPARISON TO PREVIOUS WORK IN TERMS OF TOTAL NODES AND

TOTAL MEMORY

Project Nodes Memory (MB)

Memory Server [7] 4 28
GMS [8] 9 576
RRMP [9] 6 192
PGMS [10] 5 320
Dodo [3] 14 1,536
SAMSON [11] 10 24,576
Nswap [12] 4 2,048
HPBD [13] 17 34,816
dRamDisk [14] 5 10,240
Anemone [15] 10 9,216

JumboMem 256 1,048,576

but is afterwards transparent. With JumboMem, in contrast,

applications are provided an illusion that they have direct

access to all of the memory in a cluster. Existing scripts

and binaries can be run directly, which is important for our

goal of being able to rapidly develop data-analysis programs.

We consider it awkward to have to maintain separate small-

memory and large-memory variants of a program.

Kernel-level memory servers are a far more common

implementation approach. The Global Memory Service

(GMS) [8], Anemone [15], the High-Performance Networking

Block Device (HPBD) [13], Nswap [12], dRamDisk [14]

SAMSON [11], the Prefetching Global Memory System

(PGMS) [10], and the works of Iftode et al. [7] and Markatos

and Dramitinos [9] are all kernel-level implementations, many

of which appear to the operating system as a swap device.

The key advantages of a kernel-level memory-server imple-

mentation are transparency (no application modifications are

necessary) and performance (paging is possible with a single

transition into and out of kernel space). The key disadvantages

are portability (the code is tied to a particular kernel) and

applicability (ordinary users cannot install a kernel-level mem-

ory server). JumboMem strives to mimic as best as possible

the advantages of kernel-level memory servers while suffering

from none of the disadvantages.

JumboMem and the previously mentioned memory servers

are related to but differ from projects such as the Net-

work RamDisk [16], which appears to applications (and the

operating system) as a disk but is in fact an interface to

remote memory. JumboMem and its related projects also differ

from software distributed shared memory systems such as

TreadMarks [17]. While software distributed shared memory

provides additional functionality over a memory server—

separate processes can concurrently access the same block of

memory over the network—maintaining a coherent view of

memory can be costly and is not needed by all applications.

IV. IMPLEMENTATION

To use JumboMem a user simply runs a program

with “jumbomem -np 〈nodes〉 〈program〉 〈arguments〉”.

JumboMem is implemented as a shared object

(libjumbomem.so) and a wrapper script (jumbomem).

The wrapper script points the LD_PRELOAD environment

variable at libjumbomem.so so the dynamic linker will

load JumboMem’s symbols before loading 〈program〉’s
symbols. jumbomem then launches 〈program〉 on the cluster.

A. Overview

JumboMem’s implementation bears a lot in common with

that of Network RAM [2]. Both systems implement a SIGSEGV

handler that is invoked automatically whenever a process

accesses a page of memory that is not locally resident. The

SIGSEGV handler evicts a locally resident page from the master

node by sending its contents over the network to a slave node

and unmapping the page from the process’s address space

with the munmap() system call. Then, the SIGSEGV handler

uses mmap() to map the page that faulted into the process’s

address space and acquires the page’s contents from a slave

node.

We opted to emphasize speed and simplicity over extensive

features. First, in the current implementation the master’s

memory is considered to be exclusively a cache of the global

memory spread across the slaves. Hence, the master avoids

the complexity of having to remember which slave holds

each of its pages. Virtual addresses map to slaves and slave

memory addresses in a simple, uniform manner (round robin

by default). Second, we assume that cluster nodes are ho-

mogeneous. Again, this supports a simple mapping of the

global address space to slaves and slave memory addresses.

Third, JumboMem does not provide support for fault tolerance,

memory harvesting, job migration, multiple master processes,

nodes that serve as both masters and slaves, or many other

features that related memory-server projects provide.

JumboMem provides its own memory allocator (due to

Doug Lea [18]) that allocates memory from one of two pools.

Calls to malloc(), free(), etc. made by the application

allocate memory from the global address-space pool that spans

the cluster. Calls made by JumboMem and its libraries allocate

memory from the operating system in the normal manner.

JumboMem’s code is fairly modular and various pieces can

easily be parameterized or replaced. Except where indicated

we ran JumboMem using MPI [19] as the communication

interface and a pseudo-NRU (not recently used) replacement

scheme. We say pseudo NRU because, although recently

fetched pages are retained over not recently fetched pages, the

scheme by default does not additionally favor retaining modi-

fied pages over unmodified pages. Furthermore, JumboMem—

in fact, any fully user-level memory server—cannot determine

if a previously fetched page has since been used.

B. Limitations

Although our goal for JumboMem’s is for it to be com-

pletely transparent to applications this goal is not perfectly

realizable by a user-level memory server. For example, Jum-

boMem does not currently support programs that fork()

child processes because of the complications of coordinating

accesses to remote memory across multiple processes. Fur-

thermore, JumboMem would need to locate additional cluster

251

nodes to use and somehow manage to migrate the child

processes to it.

JumboMem also does not currently support multithreaded

programs. The difficulty in doing so is in preventing a race

condition between one thread accessing a page while another

thread is faulting it in. Consider, for example, two threads

concurrently reading values from a large array. If thread A

faults on a particular page, the JumboMem SIGSEGV handler

must first mmap() the page then fill the page with data

received from a remote node. Between the mmap() making

the page available and the data arriving, thread B might read

the page. Thread B will not fault (because the page is resident)

but will see invalid data (because the valid data has not yet

arrived). For multithreaded programs to work correctly with

a user-level memory server a mechanism is needed to receive

data into a buffer page then atomically map the buffer page

into the target address. This may be possible by writing to a file

which is then memory-mapped into the correct address but the

costs in doing so are expected to be prohibitively expensive.

Finally, JumboMem “sees” only dynamically allocated

memory. Large static arrays such as those commonly used in

older Fortran programs cannot be distributed across the cluster.

C. Challenges

Although JumboMem has its limitations there were a

number of challenges to producing a transparent user-level

memory server that we managed to overcome. Generally, the

solutions involve overriding various problematic functions in

the standard C library.

As the first example of a challenge, GNU Octave [20] is

written in C++ and includes a number constructors spread

across multiple Unix shared objects. These constructors dy-

namically allocate memory before main() is called. The

problem is that this allocation may occur before JumboMem

has had a chance to initialize. LD_PRELOAD guarantees only

that JumboMem’s symbols have been loaded before GNU

Octave’s; it does not guarantee that JumboMem’s initialization

function will be called before any of GNU Octave’s con-

structors. The solution was to have JumboMem’s memory-

allocation routines detect if JumboMem had been initialized

and explicitly initialize it if not.

A second challenge involves file access. Normally, the

operating system knows how to fault in buffers passed to

system calls such as read() and write(). However, if a

page in a buffer is not mapped (i.e., it is a remote JumboMem

page) the operating system neither knows how to fault it in

nor raises a SIGSEGV signal that JumboMem could catch; the

operation simply fails. The solution was to trap read(),

write(), etc. and force them to touch all of the pages in

the buffer before passing control to the operating system.

Explicit mmap() calls were initially problematic for Jum-

boMem because the master’s global address space is sparse—

only locally cached pages are resident—so an application’s

mmap() invocation can return memory mapped into the

middle of the JumboMem-controlled region, thereby denying

JumboMem access to that part of the address space. The

solution was to trap mmap() and specify a target address

outside of the JumboMem-controlled region.

Finally, the bane of any user-level memory server is that

the operating system can decide at any time to evict some

of a process’s memory to disk to free up physical memory

for other purposes (e.g., the buffer cache or other processes’

virtual memory). While remote memory is expected to be

faster than local disk, remote disk is expected to be the worst

case for performance. Although JumboMem cannot prevent

the operating system from evicting any of its memory to disk

(mlockall() is a privileged call and we are assuming no

administrative access) we found it effective to have the slave

processes cycle through their memory when otherwise idle and

touch every page. Doing so hints to the operating system that

the memory is in active use and should not be reassigned to

other tasks.

V. ANALYSIS

Having described JumboMem’s implementation we now

analyze JumboMem’s performance to determine if the imple-

mentation is reasonable. We begin by presenting the results

of some microbenchmarks (Section V-A) in order to quantify

the primitive costs of page replacement in JumboMem. Sec-

tion V-B presents the page-replacement time in a slightly larger

context by utilizing the CacheBench memory-performance

benchmark [21]. To help support comparisons with other mem-

ory servers described in the literature Section V-C showcases

JumboMem’s performance when sorting the lines of a large

file. Finally, JumboMem’s performance in the context of a full,

unmodified, application (an interactive run of GNU Octave) is

presented in Section V-D.

Except where indicated otherwise all experiments in were

performed on the PAL cluster at Los Alamos National Labora-

tory. PAL is a 256-node (1024-core) cluster with a total of 1 TB

of memory and is described in detail in Table II. When PAL

was first introduced (2005) it was the world’s 132nd fastest

supercomputer according to the November 2005 Top500 list

(http://www.top500.org/) but dropped off the Top500 list in

June 2007. PAL is an ideal testbed for evaluating the perfor-

mance of a memory server because of its relatively large node

count and memory capacity.

We utilize a JumboMem page size of 256 KB for all of

the experiments in this section except where noted otherwise.

While different memory-access patterns favor different page

sizes—we quantify this in Section V-A—we determined em-

pirically that 256 KB gives reasonable peformance across the

suite of applications that we consider for this paper.

A. Page-Replacement Time

We begin by comparing the cost of page replacement

in JumboMem to the cost of ordinary, kernel-based page

replacement. To measure kernel-based page replacement we

wrote a simple microbenchmark that allocates a region of

memory that is significantly larger than the amount of available

physical memory, accesses data throughout that region, and

records a histogram of the access times. The results are fairly

252

TABLE II
PAL CLUSTER CHARACTERISTICS

Category Item Value

CPU Type AMD Opteron 270
Cores 2
Clock rate 2 GHz

Node CPU sockets 2
Count 256
Motherboard Tyan Thunder K8SRE (S2891)
BIOS LinuxBIOS

Memory Capacity/node 4 GB
Type DDR400 (PC3200)

Local disk Capacity 120 GB
Type Western Digital Caviar 120GB RE

(WD1200SD)
Cache size 8 MB

Network Type InfiniBand
Interface Mellanox Infinihost III Ex (25218)

HCAs with MemFree firmware v5.2.0
Switch Voltaire ISR9288 288-port

Software Operating system Linux 2.6.18
OS distribution Debian 4.0 (Etch)
Messaging layer Open MPI 1.2
Job launch Slurm

noisy. Discarding “fast” data points (indicating a page fault

that was satisfied by memory or the disk cache) left a proba-

bility distribution with a sample mean of 8.3 ms and standard

deviation of 3.1 ms. A fault time of 8.3 ms is corroborated by

a run of the Bonnie++ benchmark [22], which measures 175

disk accesses per second or 5.7 ms apiece. Because a page

fault comprises both a read (fetch) and a write (evict)—in

fact, Linux 2.6.18 replaces clusters of eight adjacent pages at

once—this corresponds to a total of 11.4 ms, which is close

to our measurement of 8.3 ms.

We instrumented JumboMem to break down the cost of page

replacement into the following time components: transitioning

from the application to JumboMem’s fault handler via delivery

of a SIGSEGV signal, selecting a page frame to replace,

allocating backing store for the new page, requesting the

faulted page from a slave node, sending the corresponding

victim page to a slave node, deallocating backing store from

the victim page, and returning control to the application.

Table III presents the results of our measurements taken from

49 runs representing a variety of JumboMem page sizes.

TABLE III
BREAKDOWN OF JUMBOMEM PAGE-REPLACEMENT COSTS

Operation Cost (µs)

Transition from the application to JumboMem 13.1± 6.5
Select a replacement page frame 2.4± 1.1
Allocate backing store (mmap()) 7.1± 2.6

Communication (evict + fetch) of b bytes ∼ (2.45×10−3)b+81.3

Deallocate backing store (munmap()) 24.5±21.1
Other, unaccounted time spent in the fault handler 5.3± 4.7
Transition from JumboMem to the application 2.3± 1.0

Total fixed costs 60.4±32.8

One observation to make from Table III is that the data

is extremely noisy. The standard error tends to be approxi-

mately 50% for each measurement. Still, we can see that the

expected fixed cost of a user-level page-replacement scheme

is on the order of 30–90 µs (55,000–187,000 CPU cycles) on

current hardware.

The cost of communication is naturally a function of the

JumboMem page size. JumboMem communication comprises

sending a short page-request message to a slave, sending a

page to a (typically different) slave, and receiving a page from

the first slave. JumboMem utilizes nonblocking primitives

(MPI_Isend() and MPI_Irecv() when using MPI [19])

so sends and receives can overlap if overlapping communica-

tion is supported by the underlying messaging layer (not the

case with Open MPI [23] over InfiniBand [4]). The regression

listed in Table III models the cost of communication as 2.45 ns

per byte plus 81.3 µs. Hence, it can be expected to take 152 µs

to replace a 4 KB page or 2.7 ms to replace a 1 MB page.

(Figure 2 illustrates the accuracy of that calculation.) In short,

the dominant cost of page replacement is communication time;

our fastest runs indicate that 78.9% of the total time for 4 KB

pages and 95.3% for 1 MB pages is spent in communication.

The implication is that a user-level memory server can be

expected to observe similar performance to a kernel-level

memory server because both need to pay the same communi-

cation costs.

 0

 1

 2

 3

 4

 5

 6

4K 8K 16K 32K 64K 128K 256K 512K 1M
 0

 500

 1000

 1500

 2000

 2500

 3000

P
a
g
e-

re
p

la
ce

m
en

t
ti

m
e

(M
cy

cl
es

)

y
=

 P
a
g
e-

re
p

la
ce

m
en

t
ti

m
e

(µ
s)

x = JumboMem page size (B)

Measured
y=2.46589×10

-3
x+141.657

Fig. 2. Total cost of page replacement as a function of page size

JumboMem lets the user select a page size (any multiple of

the operating-system page size) at job-launch time. The choice

of page size is important for two reasons. First, given a fixed

number of per-process page mappings, more memory can be

mapped—and therefore cached at the master node—with large

pages than with small pages. As stated in Section II, Linux

allows by default only 65,536 page mappings per process.

Because adjacent mappings are merged the worst case is

represented by alternating mapped and unmapped regions.

This case corresponds to 128 GB of locally cached memory

when using 1 MB JumboMem pages, for example, but only

512 MB when using 4 KB JumboMem pages—much less than

253

the available RAM is a modern cluster node.

The second reason that the selection of JumboMem page

size is important is performance. Figure 2 on the preceding

page shows that it takes less time to replace a small page than

a large page. However, more bytes are replaced per unit time

when using large pages than small pages because more of

the fixed costs can be amortized, leading to a lower effective

per-byte cost. Using only the measurements from Figure 2 on

the previous page we can compute analytically the regime in

which one page size should outperform another. Figure 3 plots

the time spent replacing pages as a function of the sparseness

of the data accesses when using either 4 KB or 1 MB sized

pages. On the left of the graph, where only one out of every

million bytes is accessed, it makes more sense to use 4 KB

pages because each access requires a page fetch and a 1 MB

page takes 27.2 times as long to fetch as a 4 KB page. On the

right of the graph, where one of out of every thousand bytes

is accessed, it makes more sense to use 1 MB pages because

the higher spatial locality favors the larger page’s lower per-

byte cost (a factor of 9.4 improvement). The crossover point

between the two pages is at 2.59×10−5, or one byte accessed

out of every 38,536. Analogous calculations can be performed

for other page sizes. The ability to select a page size at

job-launch time is an important performance optimization

available to user-level memory servers. Kernel-level memory

servers, which are bound to the operating system’s page size,

can utilize page prefetching to exploit spatial locality but must

still pay a large fixed cost for every faulted page.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1×10
-6

1×10
-5

1×10
-4

1×10
-3

N
o

rm
a

li
ze

d
 p

a
g

e-
re

p
la

ce
m

en
t

ti
m

e

Fraction of bytes accessed

2.59×10
-5

4KB pages
1MB pages

Fig. 3. Page-replacement time as a function of memory usage

B. CacheBench

CacheBench is a benchmark that measures bandwidth across

the various levels of a computer’s memory hierarchy [21].

Figure 4 plots the bandwidth measured by CacheBench’s

read/modify/write test, in which each word in a vector is

read, modified, and written in place. We ran CacheBench

out to a maximum vector size of 512 GB (239 bytes) with

“cachebench -m 39 -e 1 -x 0 -d 2 -b”. Figure 4

shows that JumboMem over InfiniBand (the JumboMem/IB

curve) introduces no noticeable overhead over the non-

JumboMem case (the Local swap curve) when the vector fits

in the level 1 cache, level 2 cache, or main memory. Once the

vector no longer fits in main memory, the non-JumboMem

performance plummets because the bandwidth is limited by

the disk’s random-seek latency of 175 seeks/s or 5.5 MB/s

for 32 KB accesses (4 KB bytes/page × 8 pages/cluster).

With JumboMem, the bandwidth is limited by network and

messaging-layer bandwidth (707 MB/s for a 256 KB message).

The fact that the JumboMem run realizes more bandwidth

than the network’s physical limit implies that the NRU page-

replacement algorithm is still observing some page reuse, even

at large scale.

The curve in Figure 4 labeled Altix represents a run of

CacheBench on an SGI Altix 3700 containing 256 1.3 GHz

Itanium II CPUs and a total of 1 TB of physical memory.

Memory in the Altix is cache-coherent so a single process can

access all of the memory in the system. As a point of reference,

the world’s largest shared-memory system at the time of

this writing is an Altix 3700 at the Japan Atomic Energy

Agency (formerly the Japan Atomic Energy Research Institute)

with 13 TB of RAM in a single, cache-coherent domain [24].

Although the Altix and our cluster have different CPUs, clock

rates, memory bandwidths, and networks (which implies that

the L1, L2, and Main lines in Figure 4 are not relevant to

the Altix curve), comparing the CacheBench performance of

the two systems shows how JumboMem’s software-only ap-

proach compares to the Altix’s full-hardware implementation.

In short, JumboMem performs quite admirably; the Altix’s

read/modify/write bandwidth over a quarter-terabyte vector is

only 2.9 times what JumboMem can achieve on a commodity

cluster with no special hardware for rapid, cross-node memory

movement.

C. Sorting

Many papers on memory servers analyze memory-server

performance with a sorting benchmark (typically using a

quicksort algorithm) and generally observe a substantial per-

formance improvement over paging to disk [7], [9], [13], [15].

To help compare JumboMem to prior memory-server work we

too present sorting performance. We measured the time needed

for the unmodified GNU sort program to sort a file containing

225 (∼ 32× 106) lines of 64 characters apiece, for a total of

2 GB. Unlike most related projects we test our memory server

with both internal and external sorting routines (i.e., fitting

entirely within virtual memory versus explicit staging of partial

results to and from disk). Figure 5 presents the time needed

to sort the 2 GB file with either JumboMem or a local swap

device and with internal or external sorting.

To measure the performance of an internal sort we specified

“-S 32G” to the sort program to allow it to use up to 32 GB

of address space to hold the input file and various intermediate

data structures before switching to an external sort. (In fact,

significantly less space was actually needed.) For the internal-

sort curves in Figure 5 (Local swap internal and JumboMem

internal) the x axis in represents the available memory on

254

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

512G128G32G8G2G512M128M32M8M2M512K128K32K8K2K512

R
ea

d
/m

o
d

if
y
/w

ri
te

 b
a
n

d
w

id
th

 (
M

B
/s

)

Vector length (B)

L1 L2 Main

Altix
JumboMem/IB

Local swap

Bandwidth at
endpoint (MB/s)

3210.7
1222.4

1.2

Fig. 4. CacheBench performance of JumboMem vs. alternatives

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

5
1

2
M1
G

2
G

4
G

E
la

p
se

d
 t

im
e

(s
)

Available memory (B)

Local swap internal
JumboMem internal
Local swap external
JumboMem external

Local swap external, memory
JumboMem external, memory

Fig. 5. Time for GNU sort to sort a 2 GB file

the master node, which we artificially limited using another

process that allocated and locked 4 GB minus the x-axis value.

The data show that with 4 GB available to sort (plus the

operating system and various dæmon processes running on

the node), JumboMem sorted the input file in 65.4% of the

time needed when using local swap. With only 2 GB available,

JumboMem sorted the input file in only 23.0% of the time

needed when using local swap.

To measure the performance of an external sort we specified

“-S 〈x〉” to the sort program for each value of x on Figure 5’s

x axis. Doing so limits the fraction of the data that sort

is allowed to keep resident. The first thing to notice about

the Local swap external and JumboMem external curves in

Figure 5 is that the performance is significantly better than

the corresponding Local swap internal and JumboMem in-

ternal curves. This is to be expected because the reduction

in the number of page faults improves performance more

than the additional, explicit disk activity degrades it. What

is surprising is that JumboMem performs worse than local

swap on the external sort. One would expect the two to

perform equivalently because paging activity is minimal in

both cases. Additional measurements indicate that the source

of the performance difference is an artifact of an extra cost

JumboMem incurs for each file operation. Specifically, Jum-

boMem intercepts the C library’s read() and write()

calls (also fread() and fwrite()) and attempts to fault

in all pages of the read/write buffer before allowing the

call to proceed. Doing so prevents the call from terminating

prematurely upon accessing an unmapped page—the operating

system does not invoke JumboMem’s SIGSEGV handler in this

case—but incurs a cost we measured empirically to average

3.5 µs per file operation when running sort. Multiplying 3.5 µs

by the number of file operations performed for each data point

(which range from 67,126,478 to 142,937,415 across the Local

swap external curve) is 95.3% correlated with the difference

between the JumboMem internal and Local swap internal

curves, which strongly suggests that JumboMem’s extra file-

operation overhead explains the performance difference.

Figure 5 contains two additional curves, Local swap exter-

nal, memory and JumboMem external, memory. These repre-

sents runs of a modified version of GNU sort in which reads

and writes of temporary files are replaced by copies in and

out of a memory buffer. The idea is to see if JumboMem

can be used to exploit the improved locality of an external

sort without incurring the extra costs associated with the

additional disk activity. As is evident from Figure 5, the extra

locality greatly benefits JumboMem, making it the fastest sort

overall and 77.3% faster than the next-fastest sort in the figure.

However, the extra memory pressure greatly degrades sort’s

performance when run with local swap, making the memory-

based external sort perform worse than the disk-based external

sort.

The primary conclusion to draw from the preceding study

of sorting performance is that JumboMem can outperform

kernel-based paging even for programs such as GNU sort

that exhibit comparatively little spatial locality. Although Jum-

boMem incurs only a small performance penalty for each file

operation, sort executes an unusually large number of small

file operations—over a hundred million 64-byte writes when

sorting our input file. We anticipate that typical applications

that will be run with JumboMem place less demand on the

255

Listing 1. A matrix-vector multiplication benchmark written in GNU Octave

1 function matvecmult (maxvectlen)
2 for vectlen = 2 .^ (0:log2(maxvectlen))
3 printf("%6d ", vectlen);
4 iters = 0;
5 tic();
6 do
7 A = rand(vectlen, vectlen);
8 x = rand(vectlen, 1);
9 b = A * x;

10 iters = iters + 1;
11 t1 = toc();
12 until (t1 > 5);
13 printf("%.10f\n", t1/iters);
14 fflush(1);
15 endfor
16 endfunction

filesystem and will therefore benefit more from JumboMem’s

faster paging than suffer from the additional overhead of

intercepted file operations.

D. GNU Octave

One anticipated use of JumboMem is to process large

data sets (e.g., an instruction trace produced by a cycle-

accurate processor simulator) from interactive data-analysis

applications. For example, a user may want to perform model

selection on a large data set. Because model selection is an

iterative process—a user repeadedly selects a function, fits

parameters to it, graphs the result, and refines the function—

the data must be processed repeatedly. Replacing the multiple

file accesses with a single file access plus multiple remote-

memory accesses can yield a substantial performance benefit.

As a simple test of JumboMem’s ability to work with

unmodified, interactive data-analysis applications we launched

an interactive GNU Octave [20] session using JumboMem.

At the GNU Octave prompt, we entered and invoked the

function shown in Listing 1, which measures the time to

perform matrix-vector multiplication on increasingly large

matrices and vectors. Each doubling of the matrix and vec-

tor dimensions quadruples the number of multiplications the

function performs. Figure 6 shows that the run time scales

perfectly even up to a massive matrix containing 262,144 ele-

ments in each dimension, requiring (262,1442 +262,144)×8

bytes = 512 GB of memory to hold both the matrix and the

vector. For comparison, Figure 6 shows the performance of the

same interaction with GNU Octave but run with paging to local

disk instead of with JumboMem. Although JumboMem and

local swap exhibit nearly equal performance for small problem

sizes, as soon as paging is required the performance of local

swap drops significantly while JumboMem’s performance con-

tinues to scale smoothly. At the 32 GB data point (the final

data point in the local-swap case) JumboMem multiplies a

65,536× 65,536 matrix by a 65,536-element vector in only

6 minutes versus 1 hour, 43 minutes when using local swap.

Although matrix-vector multiplication per se is not a realistic

use of a memory server—large, dense matrices are rarely

encountered in practice and matrix-vector multiplication is an

easily parallelizable algorithm—the significance of this study

is the demonstration of JumboMem’s utility for interactive

data analysis. With JumboMem, users can spend their time

analyzing results, not wasting it parallelizing data-analysis

scripts that may see limited use.

4
6

4
4

4
2

4
0

4
-2

4
-4

4
-6

1 4 16 64 256 1K 4K 16K 64K 256K

16 160 2K 33K 514K 8M 128M 2G 32G 512G

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Vector and matrix-edge length (elements)

Matrix+vector memory requirements (B)

JumboMem
Local swap

Node RAM
(4GB = 23K elts.)

Fig. 6. Performance of the GNU Octave script presented in Listing 1

VI. FUTURE WORK

JumboMem is a highly parameterized, modular piece of

software that can readily be modified to perform a variety of

additional studies in the context of user-level memory servers.

The following are some open questions that may be interesting

avenues for future research:

• Can performance be improved by dynamically altering

the JumboMem page size based on the sparseness of the

data accesses (cf. Table III on page 5 and Figure 3 on

page 6)?

• According to Figure 4 on the preceding page, main-

memory bandwidth is approximately 3 GB/s, which is

much higher than the network’s peak bandwidth of ap-

proximately 1 GB/s. However, quad data rate (QDR)

InfiniBand signaling, expected to be available relatively

soon, has a peak data rate of 4 GB/s with 4X links and

12 GB/s with 12X links, both faster than current memory

bandwidths and likely to equal memory bandwidths that

will be available in the near future. With network band-

width no longer being the performance limiter, will there

be a qualitative change in the set of applications that a

memory server can run effectively?

• Although JumboMem is more transparent than any other

user-level memory server there are still some constructs

that it cannot handle (Section IV-B). Can these limitations

be overcome? What would be the impact on performance?

• Can one design a page-replacement algorithm that is

specifically suited to memory servers? Are there any

256

aspects of the network topology, performance charac-

teristics of the messaging layer, or features of the net-

work interface that can be exploited to achieve higher-

performance page replacement? One issue is that a user-

level memory server has access to much less informa-

tion than does the operating system’s page-replacement

algorithm. For example, on our cluster, Linux’s page-

replacement algorithm takes advantage of the Opteron

TLB’s “accessed” and “dirty” bits [25]. In contrast, a

user-level memory server such as JumboMem cannot

determine if a page was accessed since it was last checked

and cannot quickly determine if a page has been modified.

• User-level memory servers are inherently more limited

than kernel-level memory servers. Can one design a

memory server in which kernel-level components are

available for increased flexibility and/or performance but

are not required for basic operation?

VII. CONCLUSIONS

Our first conclusion is that it is possible to implement a

memory server that runs entirely in user mode and needs

no administrative privileges to install yet is transparent to

applications. The majority of memory servers described in the

literature, including Memory Server [7], GMS [8], RRMP [9],

PGMS [10], SAMSON [11], Nswap [12], HPBD [13],

dRamDisk [14], and Anemone [15], run in kernel mode and

generally replace the swap-device driver or page-replacement

code with code to distribute pages across the cluster. Network

RAM [2] and Dodo [3], representing some of the only

published examples of user-level memory servers, require

application modifications in order to exploit remote memory.

JumboMem, introduced in this paper, is the first entirely user-

level memory server that can grant unmodified binaries access

to all of the RAM in a cluster.

The second conclusion that one should draw from this

work is that there is no significant or inherent performance

advantage to a kernel-level memory-server implementation

over a user-level implementation (except perhaps in patho-

logical cases such as the sort runs in Section V-C in which

there is virtually no paging activity but an excessive number

of small file operations). Our analysis of page-replacement

costs in JumboMem indicates that the majority of the page-

replacement time is spent in the communication subsystem

(78.9% of the time for 4 KB pages and 95.3% for 1 MB pages).

The same communication costs necessarily apply both to user-

level and kernel-level memory servers. Assuming a 4 KB page

size and infinitely fast kernel-mode execution, a kernel-level

memory server would run only ∼21.1% faster than the user-

level JumboMem.

Although we have demonstrated that there is no perfor-

mance advantage to a kernel-level over a user-level memory

server, each approach has its respective advantages. Kernel-

level memory servers work with all applications, including

those with large, static memory regions, those that spawn child

processes, and those that make use of threads. In addition,

kernel-level memory servers can handle workloads of multiple,

independent, large-memory applications. User-level memory

servers, however, provide greater flexibility—the ability to

alter the page size or page-replacement algorithm on a per-

application basis, for example—which can lead to improved

performance.

Our third conclusion is that a memory server can be

made to scale to hundreds of nodes and nearly a terabyte

of available memory. Never before has anyone published

memory-server performance data for more than a few tens

of nodes or a few tens of gigabytes. There are numerous

challenges in running a memory server at large scale including

nonlinear memory requirements for communication buffers

and limited available per-process page mappings. (Futhermore,

not all applications are 64-bit clean. In the process of writ-

ing this paper we had to submit a CacheBench patch to

get it to support 4 GB of memory [cf. http://lists.cs.utk.edu/

pipermail/llcbench/2007-March/000107.html] and a GNU Oc-

tave patch to get it to support vector lengths of 231 or

more elements [cf. http://lists.cs.utk.edu/pipermail/llcbench/

2007-March/000107.html].) However, JumboMem proves that

these challenges can be overcome and that it is possible today

to provide nearly a terabyte of memory to an unmodified,

sequential application.

REFERENCES

[1] D. Comer and J. Griffioen, “A new design for distributed systems:
The remote memory model,” in USENIX Summer 1990 Technical

Conference, Anaheim, California, Jun. 11–15, 1990, pp. 127–
136. [Online]. Available: http://protocols.netlab.uky.edu/~griff/papers/
usenix90.pdf

[2] E. A. Anderson and J. M. Neefe, “An exploration of network
RAM,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/CSD-98-1000, Dec. 9, 1994. [Online]. Available: http://
www.eecs.berkeley.edu/Pubs/TechRpts/1998/5443.html

[3] S. Koussih, A. Acharya, and S. Setia, “Dodo: a user-level system for
exploiting idle memory in workstation clusters,” in The Eighth IEEE

International Symposium on High Performance Distributed Computing

(HPDC’99), Redondo Beach, California, Aug. 3–6, 1999, pp. 301–308.
[Online]. Available: http://www.cs.gmu.edu/~setia/papers/dodo.pdf

[4] InfiniBand Architecture Specification Release 1.2, InfiniBand
Trade Association, Oct. 2004. [Online]. Available: http://
www.infinibandta.org/specs/

[5] H. Garcia-Molina, R. J. Lipton, and J. Valdes, “A massive memory
machine,” IEEE Transactions on Computers, vol. C-33, no. 5, pp. 391–
399, May 1984.

[6] P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton, D. L. Nelson,
and B. L. Stumpf, “The architecture of an integrated local network,”
IEEE Journal on Selected Areas in Communications, vol. SAC-1, no. 5,
pp. 842–857, Nov. 1983.

[7] L. Iftode, K. Li, and K. Petersen, “Memory servers for multicomputers,”
in Compcon Spring ’93, Digest of Papers, San Francisco,
California, Feb. 22–26, 1993, pp. 538–547. [Online]. Available:
http://www.cs.princeton.edu/~liv/papers/compcon93.ps

[8] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy,
and C. A. Thekkath, “Implementing global memory management in a
workstation cluster,” in 15th ACM Symposium on Operating Systems

Principles (SOSP 1995), ser. Operating System Review, vol. 29(5),
Copper Mountain, Colorado, Dec. 3–6, 1995, pp. 201–212. [Online].
Available: http://www.cs.washington.edu/homes/levy/opal/sosp.ps

[9] E. P. Markatos and G. Dramitinos, “Implementation of a reliable
remote memory pager,” in USENIX Annual Technical Conference.
San Diego, California: USENIX Association, Jan. 22–26, 1996,
pp. 177–190. [Online]. Available: http://www.usenix.org/publications/
library/proceedings/sd96/full_papers/markatos.ps

257

[10] G. M. Voelker, E. Anderson, T. Kimbrel, M. J. Feeley, J. Chase,
A. Karlin, and H. M. Levy, “Implementing cooperative prefetching
and caching in a globally-managed memory system,” in 1998 ACM

SIGMETRICS Joint International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS’98/PERFORMANCE’98,
Madison, Wisconsin, Jun. 24–26, 1998, pp. 33–43. [Online]. Available:
http://www.cs.ucsd.edu/~voelker/pubs/gms-sigmet98.pdf

[11] E. W. Stark, “SAMSON network memory server project,” http://
bsd7.cs.sunysb.edu/~samson/, Aug. 29, 2003.

[12] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel, “Nswap: A network
swapping module for Linux clusters,” in 9th International Euro-Par

Conference, ser. Lecture Notes in Computer Science, H. Kosch,
L. Böszörményi, and H. Hellwagner, Eds., vol. 2790. Klagenfurt,
Austria: Springer, Aug. 26–29, 2003, pp. 1160–1169. [Online].
Available: http://www.cs.swarthmore.edu/~newhall/europar03.pdf

[13] S. Liang, R. Noronha, and D. K. Panda, “Swapping to remote
memory over InfiniBand: An approach using a high performance
network block device,” in IEEE International Conference on Cluster

Computing (Cluster 2005), Boston, Massachusetts, Sep. 27–30,
2005. [Online]. Available: http://www.cse.ohio-state.edu/~liangs/paper/
liang-cluster05.pdf

[14] V. Roussev, G. G. Richard III, and D. Tingstrom, “dRamDisk: Efficient
RAM sharing on a commodity cluster,” in 25th IEEE International Per-

formance, Computing, and Communications Conference (IPCCC 2006),
Phoenix, Arizona, Apr. 10–12, 2006, pp. 193–198. [Online]. Available:
http://www.cs.uno.edu/~golden/Stuff/ipc1568975346.pdf

[15] M. R. Hines, J. Wang, and K. Gopalan, “Distributed Anemone:
Transparent low-latency access to remote memory,” in 13th International

Conference on High Performance Computing (HiPC 2006), ser.
Lecture Notes in Computer Science, Y. Robert, M. Parashar,
R. Badrinath, and V. K. Prasanna, Eds., vol. 4297. Bangalore,
India: Springer, Dec. 18–21, 2006, pp. 509–521. [Online]. Available:
http://www.cs.binghamton.edu/~mhines/papers/hipc06.pdf

[16] M. D. Flouris and E. P. Markatos, “The Network RamDisk: Using

remote memory on heterogeneous NOWs,” Cluster Computing,
vol. 2, no. 4, pp. 281–293, Dec. 1999. [Online]. Available:
http://www.ics.forth.gr/carv/r-d-activities/networkMem/TR226/nrd.html

[17] C. Amza, C. Alan L, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “TreadMarks: Shared memory computing
on networks of workstations,” IEEE Computer, vol. 29, no. 2, pp.
18–28, Feb. 1996. [Online]. Available: http://csalpha.ist.unomaha.edu/
~stanw/papers/csci8550/96-treadmarks.pdf

[18] D. Lea. (2000, Apr. 4,) A memory allocator. [Online]. Available:
http://g.oswego.edu/dl/html/malloc.html

[19] MPI: A Message-Passing Interface Standard, Message Passing Interface
Forum, Jun. 12, 1995. [Online]. Available: http://www.mpi-forum.org/
docs/mpi-11.ps

[20] J. W. Eaton, GNU Octave Manual. Network Theory, Mar. 2002.
[Online]. Available: http://www.gnu.org/software/octave/doc/interpreter/

[21] P. J. Mucci, K. London, and J. Thurman, The CacheBench Report,
University of Tennessee, Knoxville, Nov. 1998. [Online]. Available:
http://icl.cs.utk.edu/projects/llcbench/cachebench.pdf

[22] R. Coker. Bonnie++ now at 1.03a (very stable). [Online]. Available:
http://www.coker.com.au/bonnie++/

[23] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca,
and A. Lumsdaine, “Open MPI: A high-performance, heterogeneous
MPI,” in Fifth International Workshop on Algorithms, Models and Tools

for Parallel Computing on Heterogeneous Networks (HeteroPar’06),
Barcelona, Spain, Sep. 25–28, 2006, pp. 1–9. [Online]. Available: http://
www.open-mpi.org/papers/heteropar-2006/heteropar-2006-paper.pdf

[24] Silicon Graphics, Inc., “Japan Atomic Energy Research Institute will
introduce 2,048 processor Linux supercomputer,” Nov. 2004. [Online].
Available: http://www.sgi.com/company_info/newsroom/press_releases/
2004/november/jaeri.html

[25] AMD64 Architecture Programmer’s Manual Volume 2: System

Programming, Advanced Micro Devices, Sep. 5, 2006, publication
number 24593, revision 3.12. [Online]. Available: http://www.amd.com/
us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

258

