
Abstract Server Design

The MIS Server will need to process concurrent messages for both monitoring and
information handling. For this reason the server architecture is abstracted away
from either of these tasks so that it can be reused for both.

The structure revolves around using threadsafe queues to store messages until they
are ready to be processed. Messages are received by a fast, non-blocking
MessageReceiver, which simply puts them into the main queue.

The actual message handling is done either by dedicated threads (processors) or by
code invoked only on the recipt of a message (handlers)

The queue manager handles the dispatch of messages to any interested handlers or
processors. Each processor has its own queue of messages awaiting processing, so
it can asynchronously work its way through the messages.

The handlers are added to a queue of handlers waiting to be run. This queue is
monitored by a fixed number of handlerRunner threads, which run these
messageHandlers.

Message Flow Through The Abstract Server

The Queue Manager

The QueueManager pulls messages out of the queue and decides what to do with
them. To do this, it must find which handlers and processors are interested in the
message. The information on what handlers are available, and which messages
they should receive is held by the singleton classes MessageHandlerManager and
MessageProcessorManager.

These keep a list of handlers and processors, registered either through calling a
register... method, or by scanning a directory for the relevant classes and register
them all.

In order to determine which messages a handler or processor should receive, it
defines a MessageFilter, this is an abstract class and has one method,
filterMessage, which returns true if the handler is interested in this message.

The abstract method preProcessEvent is invoked before any handlers or
processors, and could be used, for instance, to unpack a CORBA representation in
the message.

The Message Handlers

The messageHandlers are dealt with first. So as not to hold up the main message
queue, the handlers run in their own threads. A pool of these threads is started by
the QueueManagerThread, and these monitor the messageHandlerQueue, taking
MessageHandlers from it one at a time and running them.

MessageHandlers are inserted into this queue by the QueueManagerThread,
after being looked up in the MessageHandlerManager. The abstract method
handleMessage does the actual work.

The handlers can be given an integer priority, those handlers with a high priority
will be given to the runner thread first.

The Message Processors
MessageProcessors are given the message next. The QueueManagerThread passes
the message to the messageProcessorManager, which in turn passes it to all
relevant processors, by calling passMessageToProcessors.

The message then sits in the processors queue until it is ready for it – the
processMessage abstract method is called by the thread as messages arrive. When
this method terminates, the thread sleeps until a new message is ready to be
processed.

The message processor threads are started as they are registered.

Order of execution
It should be noted that if the order in which message related code run is important,
then it must be in the preProcessEvent method in the queueManager.
Because eventProcessors are completley asynchronous, even though they may be
give messages in a particular order one may take longer than another to get around
to processing that message, so that the order in which they actually begin
processing is undefined.

EventHandlers are inserted into a priority queue, which means that although higher
priority event handlers are started before lower priortity ones, they are not
guaranteed to have finished first unless there is only one handlerRunnerThread

As a consequence, if any code depends critically on other code having run first, it
must all be in one handler, or the first part of the code must be in the
messageQueueManager's preProcessEvent, or there must be only 1 handlerRunner

Specializing the Server for the MIS Event Monitoring Server.

In the monitoring service, events are passed to the EventMessageReceiver remote
interface's processEvent method. We make this class a subclass of the
MessageReceiver server class. In the processEvent method we wrap the
EventDescription in a Message object, and put it in the queue.

We subclass the QueueManagerThread class in order to provide a
preProcessEvent method which can unwrap the corba representation of the event
and provide a python version for use by handlers and processors.

We subclass MessageProcessor to provide the services which are applied to all
events, the DatabaseMessageProcessor, as well as MonaLisaEventProcessor
which will pass the message to other monitoring systems if necessary. We also
provide a ForwardingMessageProcessor in order to forward events to upstream
MIS servers so as to provide scalability should we want run the MIS across several
machines, say using one for database logging, and another for real time
monitoring.

Forwarding to real time monitoring will be handled by a messageHandler with a
filter so that only relevant events are given to the handler. Other messageHandlers
will handle requests from samTV for event histories or send out alarms. Alarms
that send email should have rate controls and summarize repeated alarms in a
single message.

Starting a MIS server.

The main method of the MIS server should perform the following actions.

1) Create a Queue for the message queue.
2) Create an EventMessageReceiver receiver that puts messages into the Queue

from step 1
3) Instatiate the singleton HandlerManager and ProcessorManager classes,

providing a directory to be scanned for handlers to be registered.
4) Create the messageQueueHandler passing it a reference to the queue created in

step 1
5) Start the messageQueueHandler
6) Register the messageReceiver created in step 2 with the corba naming service.
7) Wait for a signal to terminate the server, and shut it down cleanly.

Stopping

In order for the MIS to shutdown cleanly, the stop method of the
messageQueueHandler should be called. This should call the stop methods of all
processors, and all handlerRunners.

Database connections

Database connections are handled by a connection pooling database class, which
threads may request connections from and to which connections are returned after
use.

The Database class also allowes schema management, a Schema object has
abstract methods to check whether a schema is present and create it if necessary.
The compound schema checks for and creates any missing schemas in its schema
list.

The MIS Schema is made from a compound of the base schema, which provides a
version management table, and the Eventschema, which provides the necessary
tables for storing events – below

EVENT table:
+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
ID	varchar(50)		PRI		
TYPE	varchar(50)				
TIME	datetime	YES		NULL	
PARENTID	varchar(50)	YES		NULL	
PRODUCERID	varchar(50)	YES		NULL	
DICTIONARYID	bigint(20)	YES	MUL	NULL	
+--------------+-------------+------+-----+---------+-------+

EVENTDICTIONARY table:
+--------------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+------------+------+-----+---------+-------+
DICTIONARYID	bigint(20)			0	
KEYID	bigint(20)			0	
VALUE	text	YES		NULL	
+--------------+------------+------+-----+---------+-------+

DICTIONARYKEYS table:
+---------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+-------------+------+-----+---------+-------+
| KEYID | bigint(20) | | PRI | 0 | |
| DICTIONARYKEY | varchar(50) | | | NULL | |
+---------------+-------------+------+-----+---------+-------+

Although the framework is mainly database independent, the API drivers do
sometimes differ subtly with the specification, and so there was some need to
decide upon one database, at least initially. After some speed tests, we have
decided on mysql as the optimal database so existing classes work with that. Small
changes to connect strings and exception handling may have to be made to add
compatiability with further databases. These should be subclasses of Database,
such as PostGresDatabase or OracleDatabase.

