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2. Abstract 
Weapon identification, its procedures and methodologies, have been developed over the past 100 years. 
These procedures are routinely used by firearms examiners and are the basis of their testimony in court. 
As currently practiced, these procedures involve a firearms examiner looking at the surface of bullets and 
attempting to determine whether they were fired by the same gun. In reaching such conclusions, the 
firearms examiner relies mostly on his/her training and judgment, making current matching procedures 
mostly subjective. The development of DNA identification techniques and the level of accuracy 
achievable in the estimation of error rates associated with DNA identification has raised the expectations 
of the quantitative precision that may be achieved in forensic analysis. Furthermore, recent Supreme 
Court decisions such as Daubert and Kumho are making it increasingly necessary to further formalize the 
presentation of scientific evidence in court. The subjective nature of current identification criteria, 
together with the inability of existing matching methodologies to estimate the probability of error 
associated with identification may pose a serious problem for the use of firearms evidence in court. 

The present study was conducted by Intelligent Automation Inc. (IAI) under the support of the National 
Institute of Justice (NIJ). The first objective of this study was to improve on the state of the art of 
automated ballistic analysis systems, and to make such advances available to the law enforcement 
community. The second objective of this project was to develop and validate methodologies for ballistic 
identification, including the estimation of the probability-of-error in the identification process. Automated 
ballistic analysis systems are specifically designed for the objective comparison of large numbers of 
samples, making them an ideal instrument for the development of objective performance bounds. The 
development of such procedures reinforces the scientific foundations of ballistic evidence to be presented 
in court. 

The scope of this study was considerable. The barrels used in this study were selected to span the 
spectrum of weapons commonly found in crime scenes. Over the duration of this study, more than 2800 
bullets were fired by over 100 barrels of 9 different brands. The bullets fired by these barrels were 
retrieved and compared, and the results have been statistically analyzed. The effect of a variety of factors 
such as barrel manufacturing quality, bullet brand, barrel wear, number of control bullets, etc. have been 
analyzed and quantified. 
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3. Executive Summary 

3.1 Introduction 
In August 1997 the National Institute of Justice (NIJ) awarded Intelligent Automation Inc. (IAI) Grant 
Number: 97-LB-VX-0008 under the application title “Ballistics Matching Using 3D Images of Bullets 
and Cartridge Cases.” The main purpose of this grant was to determine whether the use of three-
dimensional data (3D data) of the surface of a bullet or cartridge case could be exploited to improve the 
performance of existing image-based automated ballistic comparison systems. In addition to the support 
provided by the National Institute of Justice towards the development of a 3D-based ballistic analysis 
system, IAI was also supported by a grant from the National Science Foundation (Grant Number DMI
9801361). Thanks to the support of these two agencies, IAI developed SCICLOPSTM, a complete 3D
based ballistics identification system (see Figure 1). SCICLOPSTM made its public debut at the 30th 

Conference of the Association of Firearms and Tool mark Examiners (AFTE), in July 1999 in 
Williamsburg, Virginia. The debut of the system generated considerable interest because of its innovative 
approach to ballistic identification. 

SCICLOPSTM was the first fully functional, fully automated, 3D-based ballistic analysis system ever 
developed. SCICLOPSTM incorporates the ability to automatically acquire, process and compare bullets in 
pristine condition (the first implementation of the system was not suitable for dealing with damaged 
bullets). The performance and originality of this system was so impressive, that Forensic Technology 
Incorporated (FTI), a world leader in the development and commercialization of automated ballistic 
analysis systems immediately expressed considerable interest in establishing a collaboration between IAI 
and FTI with the purpose of developing a 3D-based automated ballistic analysis system to be 
commercialized in the period of a few years. FTI’s interest in 3D technology originated from the fact that 
FTI’s analysis system, the Integrated Ballistic Analysis System (IBIS) operates using two-dimensional 
data (2D) data, and 3D offered the potential to improve their system’s performance. In January 2000 FTI 
became the only manufacturer of automated ballistic analysis systems to be commercialized in the US. In 
May 2000 FTI and IAI reached an 
agreement to develop a commercial system 
which would integrate both 2D and 3D 
surface data. A prototype of such system 
was unveiled to the firearms examiner’s 
community at the main exhibit floor of 
AFTE 2003 as part of the FTI booth (see 
Figure 2). Together with the unveiling of 
the prototype, a formal presentation on the 
new technology was given to the entire 
body of firearms examiners. By the end of 
2004, FTI began the commercialization of 
BulletTRAXTM-3D, a 3D based ballistic 
analysis system developed as a result of the 
collaboration between IAI and FTI (see 
Figure 3). BulletTRAXTM-3D has received 
high praise from the firearms examiner’s 
community, and brings the benefits in 
performance of topographical analysis of 
firearms evidence to the law enforcement Figure 1: SCICLOPSTM 
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community.  

In parallel to these events, in September 
2003, NIJ awarded IAI an extension of 
Grant Number: 97-LB-VX-0008 under the 
application title “A Statistical Validation of 
the Individuality of Guns Using 3D Images 
of Bullets.” The purpose of this extension 
was to develop objective methodologies for 
ballistic identification, and to validate these 
methods through statistical means; 
including the estimation of the probability-
of-error in the identification process. 
Furthermore, as part of this project, the 
effect of variables such as manufacture 
quality, ammunition and barrel wear on the 
probability of error was to be evaluated. Figure 2: 3D-based Ballistic Analysis System Prototype 
The central motivation for the additional Unveiled at AFTE 2003 as Part of FTI’s Booth. 
funding was to make use of the already 
developed 3D-based automated ballistic analysis system together with sound statistical techniques to 
further cement the scientific validity of the premises of firearms identification.  

3.2 Scope of the Study 
The scope of the present validation study is unprecedented in the arena of firearms examination. Over the 
three years of its duration, a new upgraded ballistic analysis platform capable of handling both pristine 
and damaged bullets was developed and 
manufactured. The barrels used in this 
study were selected to span (as best as 
possible) the spectrum of weapons 
commonly found in crime scenes. More 
than 2800 bullets fired by over 100 barrels 
of 9 different brands were collected over 
the duration of this study. A Mikrosil cast 
of each of the barrels involved in this 
evaluation was created prior to their firing, 
so as to preserve their original condition. 
Each of the bullets fired as part of this study 
was manually engraved prior to their being 
fired (so that the chance of “mixing up” the 
bullets would be minimized), fired into a 
water tank, and manually retrieved from 
these tanks. This process took place over a 
period of more than two years, in dozens of 
visits to volunteer firearms examiner’s 
facilities who made their water tanks and 
time available for this purpose. Three 
different organizations assisted us in this Figure 3: BulletTRAXTM-3D 
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project: Washington State Police (thanks to the support of Evan Thompson), the Federal Bureau of 
Investigation Forensic Laboratory in Quantico VA, (thanks to the support of Paul Tangren and other FBI 
personnel), and Baltimore County Police (thanks to the support of Michael Thomas and Mark Ensor). We 
are extremely grateful to these firearms examiners who were willing to volunteer their time to this effort. 
This project would not have been possible without them. 

Each of the bullets fired by these barrels were retrieved and compared using the 3D-based system 
developed for this purpose, and the results have been statistically analyzed. The volume of data available 
for analysis was so great, that it was necessary to develop significant amounts of software for the purpose 
of analyzing this data. Both the barrels and bullets collected as part of this effort have been preserved for 
future studies and analysis. Such provision has already proved to be of value. A portion of the test bullets 
created as part of this study are going to be used as part of the NIJ sponsored study “Assessing the 
Feasibility, Accuracy, and Technical Capability of a National Ballistic Database.” This study is being 
conducted by the National Academy of Sciences (NAS). Intelligent Automation Inc. participated in this 
study in collaboration with the National Institute of Standards and Technology (NIST) with members of 
NIST’s Office of Law Enforcement Standards (OLES), Manufacturing Engineering Laboratory (MEL), 
and Information Technology Laboratory (ITL). The Principal Investigator of this study, Dr. Benjamin 
Bachrach as well as Dr. Dan Xiang of IAI have played an active role in the NAS study as well. 

3.3 Findings Summary 
This study was structured into three main components. The first component dealt with the effect of barrel 
wear. The second component of the study dealt with the development of methodologies to address two 
main issues: a) the evaluation of the degree of individuality of barrels by looking at the bullets fired 
through them, and b) the estimation of the probability of error in bullet-to-barrel classifications. Both 
these two components of the study were analyzed using bullets in pristine condition. The third component 
of the study focused on the degree to which the conclusions of the previous sections can be applied to 
damaged bullets.  

Barrel Wear Study: 
As part of this study, two types of wear effect were considered. The first type of barrel wear was the wear 
which takes place over the first few shots of the life of the barrel. In this context, the questions of interest 
were: Are the features transferred to the very first bullets fired by a barrel any different than those fired 
later? The second type of barrel wear under consideration was the wear which takes place between any 
two bullets fired by a given barrel. In this context, the question of interest was: is there a difference 
between comparing the nth and (n+1)th bullet fired by a barrel as opposed to the nth and (n+100)th bullet 
fired by a barrel? In other words, does the proximity between firings make a difference? Although some 
wear effect could be detected in both of these scenarios, these effects do not appear to be significant 
enough to prevent correct identification. 

It was decided to consider the question of barrel wear at the beginning of the study in order to prevent 
potential wear effects from contaminating other aspects of the study. As a result of the Barrel Wear Study 
it became clear that any concern about possible wear effects could be avoided by test firing the barrels 
approximately 5 – 10 times before continuing with the remaining parts of the study. In order to guarantee 
that no wear effects would permeate the remainder of the study, all barrels were fired 30 times before we 
began to collect sample bullets for the next two phases of the study. 

Individuality and Classification for Pristine Bullets Study: 
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This portion of the study (also referred to as the “Pristine Bullet Study”) was by far the lengthiest both in 
terms of the number of bullets involved and the amount of analysis performed. Methodologies for the 
assessment of barrel individuality and bullet-to-gun identification were developed, and empirically tested. 
For this portion of the study, the questions of interest were: What procedures can be employed to validate 
that the features transferred between barrel and bullet are repeatable? Can it be shown that these features 
indeed repeat between firings? The results of this section were fairly consistent with the data obtained 
from the Barrel Wear Study. In other words, in the vast majority of cases, barrels brands which displayed 
good individuality as part of the Barrel Wear Study also displayed good individuality in this portion of the 
study. The second component of this portion of the study was the bullet-to-gun classification study. The 
questions of interest in this portion of the study were: Given an evidence bullet and a number of control 
bullets, what procedures can be employed to correctly identify the evidence bullet as matching or not 
matching the control bullets? What is the probability of error associated with these procedures? Which 
variables affect the probability of error? Not surprisingly, those barrel brands which displayed good 
individuality characteristics also displayed good classification characteristics. 

Although there can be significant variations of performance (in terms of probability of error) for barrels of 
the same brand, most barrels of a given brand performed in a similar manner. This leads us to conclude 
that the barrel manufacture is the most dominant factor in both the individuality and classification 
performance of the bullets fired by it. For example, bullets fired by Ruger, Beretta and Smith & Wesson 
barrels could be identified with very low probability of error. Bullets fired by Taurus and Browning could 
be identified, but with somewhat larger probabilities of error. Finally, the ability of the system to identify 
bullets fired by HiPoint or SIG Sauer barrels was very limited. Bullets fired by Glock were virtually 
impossible to analyze, due to the peculiar rifling characteristics of the barrel (polygonal rifling). This was 
not a surprise; Glock barrels are known for requiring a different approach for identification. Time 
constraints prevented us from implementing the software necessary for this approach. 

Next to the barrel manufacture, the ammunition brand (manufacture) seems to play the most dominant 
role in classification performance. As part of this study we used two brands of ammunition; Winchester 
and Remington. The classification performance using Winchester ammunition was in the vast majority of 
cases better than that achieved with Remington ammunition. Although a systematic study of the 
manufacture parameters which affect the classification performance is beyond the scope of this study, we 
conjecture that the dominant parameters affecting the manner in which features are consistently 
transferred between barrel and bullets are the bore machining accuracy and consistency (specially bore 
diameter) and the surface finish of the interior of the barrel. In the case of the bullet, we believe the 
dominant parameters to be the bullet diameter, and the hardness of the “jacket.” 

Both barrel and bullet manufacture parameters are beyond the control of the firearms examiner. A 
parameter which is within his/her control is the number of control bullets test fired to perform the 
identification. The number of control bullets used in the identification can play a significant role in the 
classification probability of error. As the number of control bullets is increased, the probability of 
identification error decreases. However, the classification benefits associated with the increase of control 
bullets quickly reaches a point of diminishing returns.  

Damaged Bullets Study: 
The purpose of the Damaged Bullets Study was to test whether the conclusions and performance achieved 
in the case of pristine bullets could be extended to the case of damaged bullets. This is an important 
question because most bullets found in a crime scene will show some degree of damage. The acquisition 
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challenges presented by a damaged bullet are mainly due to the fact that the bullet is no longer 
cylindrical, while the acquisition hardware was optimized for cylindrical targets. As can be expected, 
there is some significant deterioration of the classification performance when damaged bullets were used 
in place of pristine bullets. However, it is difficult to determine at this point to what extent the 
deterioration in performance was due to the deformation of the bullets, and to what extent it was due to 
the fact that these bullets are significantly more difficult to acquire in the current system. This additional 
degree of difficulty may have caused poorer data to be acquired, degrading the performance.  

At the end of the day, those barrels for which the performance was good with pristine bullets still 
performed well with damaged bullets. Although the identification of damaged bullets is more challenging 
than that of pristine bullets, the statistical evidence indicates that it is possible to link a damaged bullet to 
the barrel which fired it.  
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4. Technical Report 

4.1 Introduction 
The ability to determine whether an evidence bullet was 
fired by a suspect gun can be extremely important in 
many criminal cases. Such identification is possible 
because the striations found on the surface of fired 
bullets are imprinted on them by microscopic 
imperfections found in the gun’s barrel. The interior of 
a gun’s barrel (see Figure 4) is manufactured with 

Groove ImpressionLand Impression 

Bullet Impressions Barrel Rifling 
“grooves” whose purpose is to force the rotation of the 
bullet as it leaves the barrel of the weapon. By forcing Figure 4: Generation of Striations on Bulletsthe bullet to rotate during flight, a gyroscopic effect 
similar to that imparted by a quarterback on a football is generated, improving the accuracy and range of 
the projectile. These grooves (and their counterpart, “lands”) in turn imprint groove and land impressions 
on the surface of the bullet (see Figure 4). Together with these impressions, imperfections on the barrel 
surface are incidentally transferred to the bullet’s surface (striations). Because these imperfections are 
randomly generated during the barrel’s manufacture, no two barrels have the same pattern of 
imperfections. These patterns of imperfections, therefore, amount to a “signature” that each barrel 
imprints on each of the bullets fired through it.  

One of the main tasks of the firearms examiner is to determine whether the patterns of imperfections 
found on two bullets were generated by the same barrel (gun). Until recently, the comparison of such 
patterns could only be made manually; i.e., by a firearms examiner inspecting a pair of bullets under a 
comparison microscope. The comparison microscope is an optical instrument which allows the examiner 
to manipulate and “line up” images of two bullets in an attempt to identify coinciding striations. The left 
side of Figure 5 shows a common such comparison microscope. The right side shows a typical image of a 
pair of matching land impressions as seen through the microscope.  

Over the last ten years, computer aided ballistic analysis systems have been developed as an important 
tool to aid the task of the firearms examiner. These systems consist of an imaging device (often a 
microscope equipped with a digital camera), a database to store such images, and the software necessary 
to process and compare these images. Currently, one such automated system has a prominent place in 
United States forensic laboratories, namely, the Integrated Ballistics Identification System (IBIS). The 
data acquired by this system is a 2D image or a photograph of the bullet’s surface. Figure 6 shows such an 
image of a land impression. Notice the similarity between this image and the comparison microscope 
image shown on the right side of Figure 5 (the 
image shown in Figure 5 is taken at a higher 
magnification than the one in Figure 6). 
Automated ballistic analysis systems can 
perform tasks ranging from preliminary 
classifications of bullets, to ranking a database 
of bullets against a questioned bullet by degree 
of similarity. Moreover, computers can perform 
these tasks in a fraction of the time it would take 
a firearms examiner. However, existing Figure 5: Comparison Microscope and Comparison 
automated ballistic analysis systems cannot Image 
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estimate the probability that a gun other than the suspect 
gun could have imprinted the pattern of striations found on 
the evidence bullet. 

Regardless of the of tool used by the firearms examiner 
(manual or automated), the determination of whether two 
bullets were fired by the same gun is currently made based 
on a firearms examiner looking at the surface of the bullets 
and reaching the conclusion - based mostly on his/her 
judgment - that they were (or were not) fired by the same 
gun. The subjective nature of current identification 
criteria, together with the inability of existing matching Figure 6: Digitized Image of Land 
methodologies to estimate the probability of error Impression 
associated with a match may in the future pose a serious problem for the use of firearms evidence in 
court. 

In order to guarantee the future admissibility of ballistic evidence in court, it is necessary to develop 
objective standardized procedures to determine whether a given evidence bullet was fired by a suspect 
gun. These procedures should be founded on well-established scientific principles, and should therefore 
be verifiable, repeatable, and their probability of error quantifiable. Automated ballistic analysis systems 
are ideal tools to guarantee the objectiveness of the evaluation. The purpose of this study is to develop 
such procedures and to validate them through extensive statistical testing.  

As part of the original effort of this grant, it was shown that the application of 3D methodologies for 
ballistics identification can be has used to enhance 2D characterization methodology used in the past 
decade. Moreover, preliminary results indicate that 3D methodologies can significantly outperform 2D 
based systems. Based on these observations, the objective of the present study present study are two: The 
first objective is to continue to improve on the state of the art in 3D-based comparison methodologies, and 
to make such improvements available to the law enforcement community. The second objective involves 
the development and use of a 3D based ballistic analysis system for the purposes of providing answers to 
the following questions: 

a) Given 3D information from a bullet's surface, what quantitative criteria should be used to establish 
the individuality of a gun? 

b) Given 3D information from a bullet's surface, what quantitative criteria should be used to establish 
that a suspect gun fired a given evidence bullet? 

c) Once such criteria are developed, can the probability of a bullet/gun match being erroneous be 
estimated? 

We begin this report with a brief description of the methods employed for the study. Notation and 
terminology were developed to facilitate the description of the comparison process through which 
computerized ballistic analysis systems determine the degree of similarity between two bullets. As will be 
discussed, the end results of this comparison process are "similarity measure values." Similarity measure 
values amount to a quantification of the degree of similarity between two bullets, and are at the core of 
the answers to questions a), b) and c). Therefore, much of our presentation revolves around the statistical 
characteristics of these values when obtained by comparing bullets fired by the same and different guns. 
The definition of these values and the methods used to evaluate individuality and classification are 
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discussed in Section 4.2. The question of barrel wear is considered in Section 4.4. The issues of gun 
individuality and bullet-to-gun classification (or matching) are discussed in Sections 4.5 and 4.6. The 
damaged bullet results are included in Section 4.7. Finally, we include our conclusions in Section 5. 

4.2 Project Design, Data and Methods 
The project design, data and methods utilized were aimed at answering questions a) through c) posed in 
the previous section. 

4.2.1 Project Design and Data 
This project was designed in four well defined phases. The order of these phases was refined over the 
duration of the project, but their objectives remained the same. We begin by describing the main phases 
of this project, and the data generated and used in each of them. We then discuss the methods followed to 
complete these phases. 

Phase I: Preliminary Tasks: 
The first phase of the study consisted of three main tasks. These tasks were: a) The manufacture of the 
Acquisition Station, together with the development of the algorithms necessary for the acquisition and 
processing of damaged bullets (which had not been developed at the beginning of this study), b) The 
selection of guns models/makes to be used as part of the study, and c) The selection of the ammunition to 
be used as part of the study. From the inception of the study it was decided that nine barrel models/makes 
and two different brands of ammunition would be used. 

Phase II: Barrel Wear Study: 
The second phase of the study was the Barrel Wear Study. The purpose of this portion of the study was to 
assess the possible effect of barrel wear on the features transferred between a barrel and the bullets fired 
by it. It was decided that this portion of the study would be performed first so as to guarantee that any 
potential barrel wear issues would be understood and appropriately addressed for the remaining phases of 
the study. To this effect, one barrel of each of the barrel models/makes to be used in the study was 
dedicated for the evaluation of possible barrel wear effects. 

Phase III: Pristine Bullets Study: 
The third phase of the study was by far the most demanding phase (in terms of number of sample bullets 
and analysis) and it is referred to as the “Pristine Bullet Study.” The purpose of this portion of the study is 
to address questions a) through c) discussed earlier for the case of pristine bullets. This phase of the study 
was further subdivided into two main components: 

- Individuality Study: The purpose of the individuality study was to address question a) discussed in the 
previous section. Namely, to develop a methodology to validate whether the features transferred between 
a given barrel and the bullets fired by it were sufficiently individual to consider the barrel in question 
identifiable. 

- Classification Study: The purpose of the classification study was to address questions b) and c) 
discussed in the previous section. Namely, to develop methodologies to answer the bullet-to-gun 
classification question: was this bullet fired by this barrel? (question b). An additional goal of this portion 
of the study was the means to estimate the probability of error associated with the different approaches 
(question c). 

10 




Phase IV: Damaged Bullets Study: 
The fourth phase of the study is referred to as the “Damaged Bullet Study.” The purpose of this portion of 
the study is to validate the degree to which the conclusions reached for pristine bullets apply to damaged 
bullets. 

Bullet samples were created for phases II through IV of the study as follows:  

Phase II: Barrel Wear Study: 
For each of the nine barrel makes/models selected for the study, eleven barrel samples were obtained 
(either purchased or donated by the manufacturer). Out of the eleven barrel samples, one barrel was 
dedicated for the Barrel Wear Study. For each of these barrels, a total of 220 bullets were fired, out of 
which 80 bullets were retrieved using a water tank. These 80 bullets correspond to the bullets 01 through 
50, bullets 101 - 110, bullets 201 - 210, and bullets 211 – 220 fired by each of these barrels. These order 
in which these bullets were fired was preserved so that possible wear effects could be assessed. All bullets 
fired for the Barrel Wear Study were of Winchester manufacture. The total number of bullets test fired 
(and retrieved) as part of this portion of the project was 720 bullets. 

Phases III and IV: Pristine Bullet Study and Damaged Bullet Study: 
For each barrel brand listed in selected for this study, ten barrels (except in the case of Taurus, where only 
five barrels were available) were used for these two portions of the study. Twenty four bullets were test 
fired by each of these 85 barrels. Of the 24 bullets, 12 were of Winchester manufacture and 12 were of 
Remington manufacture. For each of these sets of 12 bullets, 10 were retrieved in pristine condition and 2 
bullets were fired in such a manner as to “damage” them. The total number of bullets test fired (and 
retrieved) as part of this portion of the project was 2,040 bullets. 

Details of the test firing process for the bullets used in these studies can be found in Test Firing Protocol 
No. 1 (corresponding to the bullets collected for the Barrel Wear Study) and Test Protocol No. 2 
(corresponding to the bullets collected for the Pristine Bullet Study and the Damaged Bullet Study) 
included in Appendix A of Progress Report No. 8. 

4.2.2 Definitions and Notation 

4.2.2.1 Definitions 
We begin our presentation by reviewing the manner in which the current automated system operates. In 
comparing a pair of bullets, it is necessary to take in consideration all possible relative orientations 
between them (this applies to both automated systems and firearms examiners). Figure 7 shows the cross 
section of two bullets to be compared. In both of these cross sections, the Land Engraved Areas (LEAs) 
have been labeled. From Figure 7 one can observe that two bullets can be compared in a number of 
relative orientations. For example, one such orientation is consistent with comparing LEA 1 of bullet 1 
with LEA 1 of bullet 2, LEA 2 of bullet 1 with LEA 2 of bullet 2, up to LEA 5 of bullet 1 with LEA 5 of 
bullet 2. This is in fact the orientation shown in Figure 7. However, if we “rotate” bullet 2 counter
clockwise by one LEA, the resulting relative orientation would be consistent with comparing LEA 1 of 
bullet 1 with LEA 2 of bullet 2, LEA 2 of bullet 1 with LEA 3 of bullet 2, up to LEA 5 of bullet 1 with 
LEA 1 of bullet 2. In other words, because the pair of bullets under consideration has five rifling 
grooves, they can be compared in five possible relative orientations. 
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LEA 1 LEA 1 

LEA 2 
LEA 5 

LEA 4 
LEA 3 

Bullet 1 

LEA 2 
LEA 5 

LEA 4 
LEA 3 

Bullet 2 

Figure 7: Relative Orientation between a Pair of Bullets 

Given a pair of bullets to be compared, the current automated system evaluates each possible relative 
orientation between these bullets by comparing the appropriate pairs of LEAs. For each of these LEA-to-
LEA comparisons, a LEA-to-LEA similarity measure is computed. These LEA-to-LEA similarity 
measures are weight-averaged to compute an orientation similarity measure for each possible orientation. 
In this manner, if a pair of bullets to be compared has n rifling impressions (and therefore n possible 
relative orientations,) n similarity measure values corresponding to each of the possible relative 
orientations are obtained. These orientation similarity measures are ranked to identify the best (highest) 
and second-best (second highest) orientation similarity measure for the pair of bullets under comparison. 
The relative orientation rendering the best similarity measure is assumed to be the relative orientation at 
which the two bullets under comparison are aligned. The overall similarity measure for the bullet pair 
under comparison is given by this value.  

4.2.2.2 Notation and Terminology 
To ease our discussion of the 3D ballistics matching procedures and methodologies developed for this 
project, it is helpful to first introduce the notation for bullet comparison and the terminology used for gun 
individuality and classification studies. We first introduce notation for bullet and sets of bullets. We 
denote a generic ith bullet as 

bi (1) 

and a group of bullets fired by the same barrel as 

}){ , ,( letsorderedBul gunBarrel gunModel b (2) 

where gunModel corresponds to one of the nine models under consideration, gunBarrel corresponds to 
the barrel number within those of the model specified by gunModel, and {orderedBullets} corresponds to 
the ordered set of bullets fired by the gunBarrel of the gunModel under consideration. As an example, 
b(Ruger,1,{1,2,3,4}) refers to the first four bullets fired by Ruger barrel #1. 

In the following discussion, it will often be convenient to use a shorthand notation for sets or groups of 
bullets. To this effect, instead of listing all orderedBullets as shown in Eqn (2), we denote 
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, ( , ,GI ( gunBarrel gunModel ) = I gunBarrel gunModel b ) (3) 

where I denotes an indexed set of bullets. It will be convenient to define four such indexed sets 
corresponding to groups of bullets which we will often refer to: 

I condition (4)
brand 

where the entry condition indicates pristine (p) or damaged (d) condition, and grand indicates either 
Remington (R) or Winchester (W) ammunition. For example, the set of Remington bullets in pristine 

pcondition will be denoted as I R , while those in damaged condition will be labeled I R
d . Using this 

notation, G
IR

p (Beretta 1, )  denotes all pristine Remington bullets fired by barrel 1 of model Beretta, while 

G d (Beretta 1, )  denotes all damaged Winchester bullets fired by barrel 1 of model Beretta. 
IW 

We now introduce notation associated with similarity measures and sets of similarity measures. We 
denote the ith orientation similarity measure obtained from the comparison of b1 and b2 as: 

1 ,si ( b b ) (5)2 

where we denote the best orientation similarity measure is given by s1 (b , b ) , the second best orientation1 2 

similarity measure is given by s2 (b , b ) , etc. Further, as discussed above, si ( b b ) is a weighted1 2 1 , 2 

function of a vector of LEA-to-LEA similarity measure vector to be denoted:  

1,si ( b b ) (6)2 

The “bar” on top of the similarity measure will be used to indicate whether we are talking about a vector 
of LEA-to-LEA similarity measure or an orientation similarity measure (without bar). Without loss of 
generality, we will not repeat the notation for both LEA-to-LEA similarity measures and orientation 
similarity measures, since they are the same except for the “bar.”  

We extend the notation to similarity measures to that of sets of similarity measures, so that the following 
notation: 

( ,1 (si ( gunBarrel gunModel b { ,1 letsorderedBul },1 gunModel b ,2 gunBarrel { ,2 letsorderedBul }))2 (7) 

refers to the set of ith orientation similarity measures resulting from the comparison of the bullets 
orderedBullets1 fired by barrel number gunBarrel1 of model gunModel1, against the set of bullets 
orderedBullets2 fired by barrel number gunBarrel2 of model gunModel2. 

The best and second-best orientation similarity measures sets include the similarity measure values 
obtained by comparing bullets fired by the same gun in their best and second best relative orientations. 
Notice that the best and second-best orientation similarity measure sets can be obtained for a group of 
guns of the same model, as long as the similarity measures included in these sets are restricted to those 
resulting from the comparison of bullets fired by the same gun. We denote the set of best similarity 
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measure values resulting form the comparison of the indexed set of bullets I fired by barrels {1,…,n} of 
model gunModel as: 

), , G ( i gunModel s (gunModel ,...,1{ , n}, I ) = U s (G ( i gunModel )) , (8)1 1 I I 
∈ ∀ } ,...,1{ i n 

The set of second-best similarity measure values resulting form the comparison of the indexed set of 
bullets I  fired by barrels {1,…,n} of model gunModel is denoted: 

), , G ( i gunModel s2 (gunModel ,...,1{ , n}, I ) = U s2 (G ( i gunModel )) , (9)I I 
∈ ∀ ,...,1{ n}i

Similarly, we denote the set of matching similarity measure values resulting form the comparison of the 
indexed set of bullets I fired by barrels {1,…,n} of model gunModel by s (gunModel ,...,1{ , n}, I ) :m 

), , G ( i gunModel s (gunModel ,...,1{ , n}, I ) = U s (G ( i gunModel )) , (10)m 1 I I
∈ ∀ ,...,1{ n}i 

while the set of non-matching similarity measure values associated with the comparison of the indexed set 
of bullets I fired by with gunBarrels {1,…,n} of model gunModel is denoted by s (gunModel ,...,1{ , n}, I ) :m 

), , G (gunModel, j)) (11)s (gunModel ,...,1{ , n}, I ) = U s (G ( i gunModel m 1 I I 
∀ i, j∈ ,...,1{ n}
i ≠ j 

As an example, the set of matching similarity measure values corresponding to Ruger barrels 1,…,5 
obtained by comparing bullets of Remington manufacture will be denoted as s (Ruger },5,...,1{ , I p ) .m R 

Having defined sets of matching and non-matching similarity measure values, we will refer to the 
matching distribution, a best orientation distribution, a second best orientation distribution and a non-
matching distribution as the distribution of the respective sets of values. 

pObservations: Notice best orientation similarity measure sets (such as s (Ruger },5,...,1{, IR ) ) and1 
pmatching similarity measure sets (such as s (Ruger },5,...,1{ , I ) ) are the same. This is simply for m R 

convenience, since in some contexts it makes more sense to talk in terms of matching and non-matching, 
while in others it is advantageous to talk in terms of best and second-best orientation similarity measures. 
Also, notice that these distributions depend on the ammunition used to compute the similarity values. 
Further, these distributions are always obtained by comparing bullets in pristine condition.  

4.2.3 Methods 
In this section we discuss the core methodologies used throughout the study in the evaluation of the 
different properties of interest (individuality and classification).  

4.2.3.1 Gun individuality 
Question a) of Section 4.1 can be further refined in the following manner: 

Are the features transferred between a given barrel and the bullets fired by it sufficient in number and 
individuality to allow for the identification of all bullets fired by said barrel? 
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1) Given a suspect weapon with k rifling impressions, fire m control bullets (m to be 
determined according to desired level of significance). 

2) After acquiring all control bullets, compute all lea-to-lea similarity measures. 

3) Create two sets of similarity measures: 
a. 	Control bullet’s best similarity measures (labeled r). This set will have 

m! elements. 
(m − !2)!2 

b. 	Control bullet’s second-best similarity measures (labeled w). This set will 
m!have 	 elements.

(m − !2)!2 

4) Perform statistical test to evaluate the following hypothesis: 

H0: The probability distributions from which the samples arose are not different 

⎞ 
⎟⎟
⎠ 

from one another, 


×


⎞ 
⎟⎟
⎠ 

H1: The samples arose from different probability distributions. 

× 

5) As a result of the statistical test, we obtain an estimate of the probability of error 

⎛ 
⎜⎜
⎝ 

associated with rejecting the H0 hypothesis (p-value). If the obtained p-value is lower 
than a pre-established significance level, the gun will be considered identifiable. If the 

⎛ 
⎜⎜
⎝ 

obtained p-value exceeds the pre-established significance level, the gun will be 
considered non-identifiable. 

Table 1: Procedure to test gun individuality 

If presented with this question, a firearms examiner would fire a number of control bullets, and by 
inspection determine if the striations found on their surface reproduce consistently from control bullet to 
control bullet. To do so, the firearms examiner must first identify the matching orientation between every 
pair of control bullets, and then subjectively evaluate the degree of similarity of the matching impressions 
as compared to non-matching impressions. Table 1 describes an analogous procedure based on the best 
and second-best orientation distributions. 

At the core of the procedure outlined in Table 1 the following reasoning: given a group of control bullets 
fired by the suspect gun, if the sets of best orientation and the second-best matching scores are 
statistically undistinguishable, it is not possible to identify the matching relative orientation between pairs 
of bullets from this group. If the matching orientation between bullets from the control group cannot be 
determined, matching them will not be possible. If the control bullets fired by the suspect gun cannot be 
matched, matching the evidence bullet to the control bullets it will be highly unlikely, making the barrel 
non-identifiable. 
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For any given gun model gunModel, barrel gunBarrel and ammunition, let us identify the set of control 
bullets by the index Ic, We compute the best and second-best similarity value datasets associated with the 
given control bullets: 

1 , ,r = s ( I gunBarrel gunModel c ) (12) 

w = s2 ( I gunBarrel gunModel c ) (13), , 

The procedure described in Table 1 can also be viewed from a different perspective. We postulate that the 
second best similarity measure distribution is a good approximation of the non-matching distribution for 
guns of a given model. From this perspective, we are not only evaluating our ability to identify the best 
relative orientation between two bullets fired by the suspect gun, but we are also evaluating our ability to 
differentiate between bullets fired by the suspect gun and other guns of the same manufacture.  

Notice that the procedure described in Table 1 requires the specification of a metric (such as a p-value) of 
similarity between distributions (see Step 4). There are a number of methodologies which can be applied 
to measure the degree of similarity between two distributions. At this point we cannot assume that any of 
these distributions are normal, therefore, the statistical tests to be used in Step 4) of Table 1 may not rely 
on the normality-of-data assumption (as will be seen in Section 4.6.2, the best orientation similarity 
distribution is not normal). We considered two possible approaches: 

Rank Sum Test Approach: An effective approach to evaluate the statistical difference between to sets of 
data for which normality-of-data does not hold is the Rank Sum test. The Rank Sum test allows us to 
quantify the degree of statistical similarity/difference between sets of data The p-value obtained through 
this test provides an estimate of the probability of obtaining the computed set of best orientation similarity 
measures (labeled r) if the phenomenon that generated these coefficients had the same statistical 
distribution as that which generated the second-best orientation similarity measures (labeled w). We use 
the p-value as a metric of distance between distributions, where the distance is inversely proportional to 
the computed p-value. 

Empirical Pe Approach: This approach is probably one of the most classic statistical methods used in 
conventional Hypothesis Testing problems. Having the empirically generated sets of best and second-best 
similarity measures for a barrel under consideration, it is possible to compute an optimal boundary or 
threshold such that if a given orientation yields an orientation similarity measure above the threshold, it is 
assumed to be the best relative orientation, while any orientation yielding a similarity measure below the 
threshold is classified as a being in a non-best orientation. The boundary or threshold value is selected to 
minimize the average probability of error (both false positive and false negative). Figure 8 shows a 
graphical representation of this approach, where two distributions are shown, a matching distribution 
corresponding to the best orientation similarity measures, and a non-matching distribution corresponding 
to the second-best orientation similarity measures. Having identified the optimal threshold, it is possible 
to estimate the probability of false positive best orientation identification, as well as false negative best 
orientation identification. We use the probability of error as a metric of distance between distributions, 
where the distance is inversely proportional to the empirically computed probability of error. 

16 




Figure 8: Empirical Estimation of Probability of Orientation Error 

The main difference between these two approaches is that the empirical approach makes use of data from 
a relative large number of test fires, while the Rank Sum test allows us to consider a smaller amount of 
data, similar to that which firearms examiners currently use in this kind of determination. We begin by 
describing the manner in which we performed these tests. 

4.2.3.2 Bullet-to-gun classification 
Once the individuality of the suspect gun has been established to the satisfaction of the firearms examiner, 
the question of bullet-to-gun classification is equivalent to asking whether the degree of similarity 
between the evidence bullet and the control bullets – in the presumed matching orientation – merits the 
conclusion that both evidence and control bullets were fired by the same gun. Questions b) and c) of 
Section 4.1 can be further refined in the following manner: 

Assuming the barrel under consideration satisfies the conditions posed by question a), does the degree of 
similarity found between the evidence bullet and the control bullets merit the conclusion that these bullets 
were fired by the same gun? What is the probability of error associated with the decision (either matching 
or non-matching)? 

In order to make such determination, a firearms examiner would compare the evidence bullet against the 
control bullets, and attempt to identify matching orientations between them. Assuming that such 
orientations are identified, the firearms examiner would subjectively assess whether the degree of 
similarity between the evidence bullet and the control bullets merits the conclusion that all bullets were 
fired by the same gun. In making such assessment, the firearms examiner should not only consider the 
degree of similarity found between evidence and control bullets, but he/she should contrast this degree of 
similarity with that achievable by chance among different guns of the same model. To do so, a firearms 
examiner must accumulate considerable experience about virtually every gun he/she is called to identify. 
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1) Given a suspect weapon and an evidence bullet, fire m control bullets. 

2) After acquiring all control bullets, compute best and second-best similarity measures 
obtained from the comparison of all control bullets among themselves. 

3) Create three sets of similarity measures: 
a. 	Control bullet's best similarity measures (labeled r). This set will have 

m! elements. 
(m − !2)!2 

b. 	 Control bullet's second-best similarity measures (labeled w). This set will have 
m! elements.

(m − !2)!2 
c. Control bullets vs. evidence bullet best similarity measure (labeled e). This set 
will have m elements (assuming a single evidence bullet). 

4) Perform two statistical tests to evaluate the following hypothesis: 

a. Evaluate similarity between the distribution of r and the distribution of set e 
through some metric (such as p-value). 
b. Evaluate similarity between the distribution of w and the distribution of set e 
through some metric (such as p-value). 

⎞
⎟⎟
⎠ 

⎞
⎟⎟
⎠ 

5) Accept the hypothesis associated with the distribution r (match) or w (non-match) 

× 

× 

which best resembles that of set . In other words, if set is more similar to set , classifye e r
the evidence bullet as matching the control bullets and conversely. 

⎛
⎜⎜
⎝ 

⎛
⎜⎜
⎝ 

Table 2: Procedure to test bullet-to-gun classification 

Ideally, an automated system should emulate this procedure by using both matching scores and non-
matching scores. However, due to the fact that compiling a database of non-matching scores is a 
significant undertaking – because it would require obtaining and comparing control bullets from a large 
number of guns of the same model as the suspect gun – a procedure that relies on the similarity of the 
distributions of non-matching scores and the second-best matching scores is presented. Table 2 describes 
this procedure. 

For any given gun model gunModel and barrel gunBarrel, let us identify the set of control bullets by the 
index Ic, (so that the control bullets are denoted IgunBarrelgunModelb c ) ) and the evidence bullet as be( , ,


( , ,
where b ∉ IgunBarrelgunModelb ) . Let us compute the best and second-best similarity value datasetse	 c 

associated with the given control bullets: 

1 , ,r = s ( IgunBarrelgunModel c )	 (14) 
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, ,w = s2 ( I gunBarrel gunModel c ) (15) 

And the “questioned” similarity values dataset resulting from the comparison of the evidence bullet and 
the control bullets: 

,e = U s ( G b ( gunBarrel gunModel )) (16)1 e , I ci ∈ I c 

At the core of the procedure outlined in Table 2 is the following reasoning: In order to conclude that the 
evidence bullet and the control bullets were fired by the same gun, the distribution of similarity measures 
obtained by comparing the evidence bullet against the control bullets – in their best orientation - should 
be significantly more similar to the distribution of the best orientation similarity measures obtained by 
comparing the control bullets among themselves, than to the distribution of non-matching scores resulting 
from the comparison of bullets fired by different barrels of the same make and model. As already 
mentioned, because of the difficulties associated with obtaining a representative set of non-matching 
scores, we approximate this distribution with the distribution of the second-best matching scores obtained 
by inter-comparing the control bullets.  

Due to the fact that the distribution of matching scores is not normal (as will be shown in Section 4.6.2), 
the metric required in Step 4) should be obtained by using a statistical test which does not rely on the 
normality assumption. We considered three possible approaches: 

Hard Threshold or Empirical Approach: 
Given the distributions of the sets r and w as defined in Table 1, it is possible to compute the optimal 
threshold which minimizes (in an empirical sense) the probability of error associated with a classification 
decision for these two distributions. Let us denote this threshold by Topt. Having obtained the optimal 
threshold, the mean of the set of similarity measures e is computed. The evidence bullet will be classified 
as a match if the mean of the similarity measure set e is greater than the threshold (or in other words, 
closer to the best orientation similarity measure distribution r); otherwise it will be classified as a non-
match. 

Closest Mean: 
The closest mean criterion is based on the distance between the mean values of the different distributions 
under consideration. In other words, if r − e < w − e (where •  denotes absolute value of • , and • 

denotes mean of • ) the evidence is classified as matching the control bullets, otherwise it is classified as 
non-matching. 

Normalized Closest Mean: 
The normalized closest mean criterion is similar to the closest mean criterion, except that the “distances” 
are normalized by the appropriate standard deviations. In other words, if r − e /σ (r) < w − e /σ (w) , 
(where σ (•) denotes standard deviation of • ), the evidence is classified to be a match with the control 
bullets, otherwise it is classified as non-match with the control bullets. 

Besides the classification approach, the probability of identification error will depend on variables such as 
barrel quality, ammunition manufacture, number of control bullets etc. In the following section we 
discuss the effect of all these variables in the resulting probability of error.  
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4.3 Preliminary Tasks 
The main preliminary activities undertaken as part of 
this study were the manufacture of the 3D Acquisition 
Station, the selection of guns to be used as part of the 
study, and the selection of the ammunition to be used 
for the test firing. In this section we briefly discuss 
these tasks. 

4.3.1 Manufacture of Acquisition Station 
Based on our experience and evaluation of 
SCICLOPSTM, and based on test results of alternative 
3D acquisition hardware, an upgraded 3D ballistic data 
acquisition system was designed and manufactured. 
Figure 9 shows both the preliminary design of the 
acquisition station and a photograph of the actual 
manufactured station. This design includes the 3D 
imaging component, X and Z translational stages, and a 
rotational stage found under the bullet holding 
mechanism. 

This acquisition station is fully computer controlled, 
and allows for an automated and a manual mode of 
data acquisition. In either the automatic or the manual 
mode, the acquisition process starts with the user 
placing the bullet to be analyzed on the rotational 
stage. In the automatic acquisition mode, the operator Figure 9: Preliminary Design of Acquisition 
simply selects the acquisition position on the bullet Station (above), and Manufactured 
surface (along the bullet’s rotational axis) and allows Acquisition Station (below)
the system to perform the data acquisition process. In 
the manual mode (most commonly used for damaged bullets), the user adjusts the laser focal spot of the 
laser both along the bullet’s rotational axis and with respect to the individual land impression to be 
acquired by controlling the X and Z translational stages. Then the system acquires the surface depth data 
of the individual land impression automatically. The user then proceeds with any other land impression of 
interest, and repeats the procedure. 

Z-Translational Stage X-Translational Stage 

3D Imaging Component 

Vibration Isolation 

Base Plate 

4.3.2 Selection of Barrel Brands 
In consultation with collaborating firearms examiners, a set of 9 gun models have been selected for this 
study. These gun models were selected based on the following criteria: a) frequency of association with 
crime scenes, b) availability of barrels for purchase, c) availability of reliable information regarding their 
manufacture, and d) degree to which the overall group of selected guns spans the spectrum of commonly 
used manufacturing techniques. The selection process began with a study of those gun models most 
commonly associated with crimes, and the manufacturers of those guns. An excellent source of 
information regarding weapons involved in the perpetration of crime is the Bureau of Alcohol Tobacco 
and Firearms’ (BATF) National Tracing Center (NTC). The National Tracing Center maintains statistics 
of every gun that is “traced” as part of a crime investigation. At IAI’s request, NTC provided the statistics 
of the twenty-five guns most often associated with crimes over the last twelve years. The list of candidate 
guns was narrowed based on the availability of guns for purchase, and the availability of information 
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Manufacturer Number of 
Barrels 

Manufacturing 
Technique 

Number of 
Impressions 

Width of 
Impressions 

[mm] 
Notes 

1 Taurus 6 Gang Broach 6 1.3 Consecutive 
2 Bryco  11 Gang Broach 6 1.3 Consecutive 
3 Beretta 11 Gang Broach 6 2.0 Consecutive 
4 HiPoint 11 Button Rifling 6 / 9 1.3/1.6 Consecutive 
5 Glock  11 Hammer Forged 6 Standard 
6 S&W 11 ECM 5 2.5 Standard 
7 SIG  12 Hammer Forged 6 1.7 Consecutive 
8 Browning  15 Hammer Forged 6 1.8 Sequencial 
9 Ruger 11 Gang Broach 6 2.0 Consecutive 

Table 3: Selected gun/barrel manufacturers, and manufacturing techniques 

regarding the manufacturing techniques involved in the rifling of their barrels. The nine brands selected 
were a compromise between all these factors. 

These gun models were chosen to represent the three most common barrel manufacturing techniques 
(Gang Broach, Button Rifling, and Hammer Forging). To the extent possible, barrels of different levels of 
manufacturing quality (poor, average, above average) were chosen for each of the manufacturing 
techniques under consideration, so that the effect of the quality of manufacture on the individuality of the 
barrel can also be studied. Table 3 shows the gun manufacturers selected for the study, their 
corresponding barrel manufacturing technique, the number of barrels obtained, the number of rifling 
impressions in these barrels, and an approximate land impression width. These parameters are relevant 
because the amount of data available for comparison is proportional to the overall land impressed area on 
each bullet. Notice that in the case of the HiPoint barrels two different land widths and number of 
impressions are recorded. The first number corresponds to the barrel used for the Barrel Wear Study, and 
the second corresponds to the barrels used in the Pristine and Damaged Bullet Study. Table 3 also 
includes information regarding the origin of these barrels. This information is coded in the “Notes” 
column as follows:  

a) Consecutive: These barrels were consecutively manufactured as stated by the manufacturer (in 
principle, this implies that the different manufacturing processes were performed consecutively 
between barrels). 

b) Sequential: these barrels were sequentially manufactured as stated by the manufacturer. As 
consecutively manufactured barrels require a significant amount of effort, manufacturers are not 
always willing to provide such level of assurance. The usual interpretation of sequentially 
manufactured barrels is that these barrels were created in close proximity to each other, and using 
the same tools, but not necessarily in sequence. 

c) Standard: these barrels were purchased through a supplier. 

4.3.3 Selection of Ammunition Brands 
A well known fact in the firearms community is that the ammunition characteristics have a significant 
effect on the “quality” of the features found on its surface. The purpose of the ammunition study was to 
select two different types of ammunition which would be representative of those commonly found in 
crime scenes. As in the case of the barrels, it was desired to select ammunition that would also provide an 
indication of the spectrum of the possible levels of performance. 
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Upon consultation with firearms 
examiners, it became clear that there is no 
consensus on the type of ammunitions 
best suited for identification. Because of 
this situation, and thanks to the initiative 
of Firearms Examiner/Detective Mark 
Ensor and Firearms Examiner Michael 
Thomas, from Baltimore County Police, 
we decided to conduct our own study on 
this subject. A list of the ammunition 
brands and models used in this evaluation Table 4: Ammunition models tested in ammunition 
is included in Table 4. With the exception selection study 
of the Norinco and the Federal (American Eagle) ammunition, all bullets fired in this evaluation were of 
115 Gr. weight (at the recommendation of firearms examiners). Ten samples of each type of ammunition 
were fired. A total of one hundred bullets were fired and retrieved in pristine condition. In addition, two 
Remington UMC bullets were fired to produce damage similar to that shown 
in Figure 10 (consistent with the degree of damage to be used as part of this 
study). These one hundred and two bullets were acquired and compared 
against each other. The procedure to test gun individuality described in Section 

Ma nufa cture r W e ight Mode l 
1 Magtech 115 Gr. FMC (9A) 
2 CCI Blazer 115 Gr. TMJ (3509) 
3 W inchester 115 Gr. FMJ (Q4172) 
4 W inchester 115 Gr. W inclean (W C91) 
5 Remington UMC 115 Gr. Metal Case (L9MM3) 
6 Lellier & Bellot 115 Gr. Czech 
7 American Ammunition 115 Gr. CCC 
8 PMC 115 Gr. FMJ (9A) 
9 Federal American Eagle 124 Gr. Metal Case (AE9DP) 

10 Norinco 124 Gr. Chinese 

4.2.3.1 was followed with these bullets, and the results of the evaluation using 
different number of control bullets (or land impressions) for the different 
brands of ammunitions are summarized in Table 5. Based on these results, and 
after consultation with firearms examiners, we selected to use Winchester and 
Remington UMC for this purpose. Both types of ammunitions are very 
commonly used in crime, and they range from fairly good performance 
(Winchester) to intermediate performance (Remington UMC) as shown in 

Figure 10: Example ofTable 5. 
desirable damaged 

Whenever an evidence bullet is found in a crime scene and test fires are bullet 

performed to attempt an identification with a suspect gun, firearms examiners 
traditionally try to use either the same ammunition brand or a similar ammunition as that of the evidence 
bullet. An important conclusion of this portion of the study was to validate practice. As shown in Report 
No. 9, this practice minimizes the overall probability of identification error.  

4.4 Barrel Wear Study 
The question of barrel wear was originally postulated in terms of whether the first few bullets fired by a 
given barrel could be reliably matched to bullets fired many firings later. The rationale for asking such 
question lies in the fact that the very first bullets fired through a barrel may have a relatively significant 
impact in the rifled surface of the barrel. It has been argued that such bullets may have a “smoothing” 
effect on the rifling, or that some of the bullet material may fill some crevices on the rifled surface. Such 
changes in the barrel rifled surfaces might translate into changes in the features transferred by the barrel 
to bullets subsequently fired, prompting the question as to whether the features found on the very first 
bullets fired by a barrel are the same as those found on bullets fired later. Therefore, the main focus of 
Section 4.4.1 will be the effect of barrel wear on the first few bullets fired through a barrel. However, we 
also tackle a question not originally contemplated as part of the current study. An extension of the barrel 
wear question is whether the “distance” (in terms of bullets fired) between fires may have an effect on the 
degree of similarity of the feature transferred between the barrel and the bullets. In other words, will the 
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100th bullet fired by a barrel be more 
similar to the 101st than to the 200th 

bullet fired? This question will be 
the focus of Section 4.4.2. 

Let us review the way in which the 
sample bullets were collected and 
organized for the purpose of this 
part of the study. As mentioned in 
our previous report, the Barrel Wear 
Study is conducted with a single 
barrel for each of the nine barrel 
models under consideration. The 

Rank Sum Test p-value 
Number of Test Bullets 2 3 4 5 

List Length 6  18  36  60  

A
m

m
un

iti
on

 T
yp

e 

Magtech 2.2E-03 3.0E-07 3.2E-13 N/A 
Winchester 6.5E-02 6.7E-05 1.4E-09 2.2E-16 

PMC 6.5E-02 7.7E-05 1.9E-09 2.2E-16 
FAE 6.5E-02 1.7E-04 5.8E-09 2.2E-15 

Remington UMC 4.5E-01 2.3E-02 8.5E-05 2.3E-08 
L&B 5.9E-01 4.6E-02 5.4E-04 4.9E-07 

Norico 8.2E-01 1.9E-01 1.1E-02 7.1E-05 
CCI 9.4E-01 1.6E-01 8.4E-03 6.2E-05 

Upper bound on p-value for 95% of the 
trials 

bullets fired through each of these Table 5: Upper bound on p-values for 95% of the trials barrels were separated in groups of 
ten according to the order in which they were fired. For example, we consider the first ten test fired 
bullets as group “1” ( I = }10,...,1{ ), the next ten bullets are labeled group 2 ( I = }20 ,...,11{ ) etc. In this1	 2 

manner, for each gun model • , we consider eight different groups: 

Group 1: test fired bullets 001 through 010, ( GI (•) = b (• })010,...,001{ ,1, ),
1 

Group 2: test fired bullets 011 through 020, ( GI (•) = b (• })020,...,011{ ,1, ),
2 

Group 3: test fired bullets 021 through 030, ( GI (•) = b (• })030,...,021{ ,1, ),
3 

Group 4: test fired bullets 031 through 040, ( GI (•) = b (• })040,...,031{ ,1, ),
4 

Group 5: test fired bullets 041 through 050, ( GI (•) = b (• })050,...,041{ ,1, ),
5 

Group 6: test fired bullets 101 through 110, ( GI (•) = b (• })110,...,101{ ,1, ),
6 

Group 7: test fired bullets 201 through 210, ( GI (•) = b (• })210 ,...,201{ ,1, ),
7 

Group 8: test fired bullets 211 through 220, ( GI (•) = b (• })220 ,...,211{ ,1, ).
8 

It is important to note that the bullets from Group 8 were fired after the barrel under evaluation was 
cleaned. At no other time was the barrel cleaned (except for before the test firing process began). This 
group was added to our original set of test firings to isolate the effect of barrel wear from the effect of 
residue buildup in the barrel after we realized that residue buildup could affect the results of our analysis. 
For this reason, Group 8 is not available for all barrels. 

The ability of the present study to answer the questions of interest for the Barrel Wear Study is predicated 
on two necessary conditions: 

a)	 The barrel transfers repeatable features to the bullets fired through it. 

b)	 The instrumentation and algorithms used in the current system have the necessary sensitivity to 
detect the unique features transferred to the bullets. 

Condition a) depends on the manufacture of the barrel under consideration (and/or possibly the 
manufacture of the test fired bullets). If no repeatable features are transferred between barrel and bullets, 
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it is not possible to evaluate whether the barrel is changing by looking at those bullets fired by it. 
Condition b), on the other hand, depends on the instrumentation used to acquire the data, and the 
algorithms responsible for their processing and comparison. If the instrumentation and/or algorithms are 
not sensitive enough to detect the features transferred between the barrel and the bullets, it is not possible 
to detect changes in these features either. Conditions a) and b) are independent, and have very different 
implications. If condition a) does not hold, one has to conclude that the barrel under consideration cannot 
be identified through the bullets fired by it. On the other hand, failure of condition b) to hold implies that 
the limitation lies in the instrumentation and/or algorithms, and identification should be possible.  

Let us assume that the different lands found on any given barrel always have unique microscopic features 
which are the unintentional result of the manufacturing process. This is a well founded assumption, since 
no two lands on a given barrel can be manufactured in exactly the same manner. In fact, in all modern 
manufacturing techniques, different parts of the manufacturing tool will be responsible for creating the 
different lands found in a given barrel. Assuming, then, that condition a) holds, the bullets fired by such 
barrel also have unique microscopic features on each of their different land impressions. Assuming that 
condition b) holds, using the instrumentation and algorithms of the current system it is possible to identify 
corresponding land impressions (land impressions created by the same land on the barrel are referred to as 
corresponding land impressions). This in turn implies that using the instrumentation and algorithms of the 
current system it is possible to identify a unique best orientation between pairs of bullets fired by the 
same barrel. Following this argument, we conclude that if the current system is capable of identifying 
the best orientation between pairs of bullets fired by the barrels under consideration, then 
conditions a) and b) must be satisfied. 

The ability to identify the best orientation similarity is equivalent to being able to detect the statistical 
difference between the best and second-best similarity measures. Let us consider as an example the results 
obtained from the comparison of bullets fired through the Ruger barrel. Figure 11 shows the histograms 
associated with the best ( s1 (GIi 

(Ruger), G (Ruger)) ) and second-best ( s2 (GIi 
(Ruger), G (Ruger)) )Ii Ii 

orientation similarity measures resulting from the comparison of bullets within each or the groups 
discussed earlier in this section. The first (top) plot in Figure 11 shows the histograms corresponds to 
Group 1 ( I = }10,...,1{ ), the next plot shows the histograms corresponding to Group 2 ( I = }20 ,...,11{ ),1 2 

etc. Looking at these histograms, it is clear that the distribution associated with the best orientation 
similarity measures is very distinct from that of the second-best orientation similarity measures. Based on 
our previous discussions, this is strong evidence that in the case of the Ruger barrel conditions a) and b) 
do hold. 

The individuality test described in Table 1 is ideally suited for testing the ability to validate the statistical 
difference between the best and second best similarity measure distributions. Therefore, in order to 
validate conditions a) and b), we followed the same approaches discussed in Section 4.2.3.1. The first test 
was based on using a Rank Sum test. Conditions a) and b) are assumed to hold for a given barrel 
model if the average p-value taken over 100 iterations is less than 1% for m = 3 (i.e. using three 
control bullets). The second test was based on an empirical estimation of the probability of a false 
positive or false negative identification of the best relative orientation for each of the gun models under 
consideration. Conditions a) and b) are assumed to hold for a given barrel model if the overall 
empirically computed probability of error is less (or equal) than 20%. 
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Both these tests were applied 
to each of the barrel models 
under consideration, and 
were the basis for our 
assessing whether conditions 
a) and b) hold. Table 6 
summarizes the results of 
both the Empirical and Rank 
Sum based evaluations for 
all barrel models. These 
results have been ranked in 
terms of the barrel models 
most likely to satisfy 
conditions a) and b), from 
Ruger as the most likely to 
satisfy these conditions, and 
Bryco as the least likely. The 
first and second column of 
this table show the gun brand 
under consideration, and the 
label used to identify it 
through this study. Columns 
four through eleven (labeled 
Set 1 through Set 8) show 
the probability of error 
computed based on the 
Empirical approach (middle 
row), and the average p-
value obtained by the Rank 
Sum approach (bottom row). 
All these values are in 
percentages. In the case of 
the Rank Sum test, the 
values shown correspond to 
the average p-value obtained Figure 11: Best and Second-best Orientation Similarity Measure 
after repeating the sequence Histograms, Group-by-Group Bullet Comparisons, Ruger
described in Table 1 one 
hundred times, while using data corresponding to three control bullets each time. The last four columns in 
Table 6 show the same information as the previous eight columns, except that averaged according to 
groups of interest: column twelve simply repeats the information regarding Group 1, column thirteen 
shows the averaged values for Groups 1 through 5, column fourteen shows the results for Group 8, and 
column fifteen shows the averaged results over all groups. From the perspective of both these statistical 
evaluations it appears clear that conditions a) and b) are satisfied for the first three or maybe four barrel 
models (Ruger, Beretta, Smith, Browning). 
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First First 5 Set 8 ALL 
Ruger E Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 

empirical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Beretta I Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Smith H Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 4.44 12.22 18.89 18.89 13.33 26.67 28.89 20.00 4.44 13.56 20.00 17.92 
pValue 0.00 0.01 0.02 0.04 0.01 2.34 4.90 0.58 0.00 0.02 0.58 0.99 

Browning G Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 18.89 8.89 17.78 12.22 27.78 27.78 32.22 22.22 18.89 17.11 22.22 20.97 
pValue 0.20 0.00 0.15 0.00 2.55 3.00 8.19 0.19 0.20 0.58 0.19 1.78 

Taurus A Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 24.44 26.67 25.56 24.44 26.67 32.22 26.67 26.67 24.44 25.56 26.67 26.67 
pValue 2.13 0.50 0.64 1.70 2.15 11.29 2.95 3.50 2.13 1.42 3.50 3.11 

Glock C Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 30.00 31.11 31.11 33.33 25.56 34.72 28.89 30.00 30.22 30.67 
pValue 7.83 7.35 6.29 7.15 0.99 13.22 3.50 7.83 5.92 6.62 

SIG F Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 37.78 28.89 34.44 35.56 33.33 28.89 31.11 28.89 37.78 34.00 28.89 32.36 
pValue 11.79 2.30 10.91 8.22 3.85 2.44 7.97 5.40 11.79 7.42 5.40 6.61 

HiPoint B Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 37.78 25.56 22.22 28.89 26.67 15.56 21.11 37.78 28.22 25.40 
pValue 34.19 1.71 0.19 7.42 7.44 0.03 0.18 34.19 10.19 7.31 

Bryco D Set 1 Set 2 Set  3 Set 4 Set 5 Set 6 Set 7 Set 8 
empirical 37.78 27.78 27.78 26.67 32.22 34.44 34.72 37.78 30.44 31.63 
pValue 23.62 8.11 4.35 5.87 9.36 12.53 11.46 23.62 10.26 10.76 

Table 6: Results of Sensitivity Requirement Evaluation 

Similar to Figure 11, each of the distributions associated with each of the barrel models under 
consideration have been plotted (see Appendix A of report No. 10). Visual inspection of these histograms 
confirms the results discussed in the previous paragraph; i.e. that only for Ruger, Beretta, Smith and 
Browning barrels can the distribution of the best orientation similarity measures be distinguished from 
that of the second-best orientation. This indicates that for the rest of the barrel models either condition a) 
or b) is not satisfied. Which condition does not hold can only be answered by performing similar tests 
with a better system, and/or by recruiting the assistance of firearms examiners.  

It is worth noting that the barrel models for which the distribution of the best orientation similarity 
measures can be easily distinguished from the second-best orientation similarity measures coincide with 
the barrel models which have the widest LEAs. As seen in Table 3, the LEA widths are 2.0 mm for 
Ruger, 2.0 mm for Beretta, 2.5 mm for Smith & Wesson, and 1.8 mm for Browning. This implies that a 
greater amount of data was available for the system to make LEA-to-LEA comparisons, which most 
likely improved the effective performance of the system.  
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Notice also the fact that the distribution of s1 (G (Ruger), G (Ruger)) for i =6 and i = 7 has a lowerIi Ii 

mean than all other such distributions associated with the first Ruger barrel. The reason for this appears to 
be that as the barrel was continuously fired, some fouling of the barrel took place sometime after test fire 
50. We reach this conclusion because once the barrel was cleaned (right before (Ruger) was fired) theGI8 

distribution of s1 (G (Ruger), G (Ruger)) shows approximately the same mean as that ofI8 I8 

s1 (GI (Ruger), G (Ruger)) for i < 6. For this reason, bullets belonging from groups 6 and 7 may be 
i Ii 

excluded from certain portions of the study.  

An interesting phenomena associated with groups i =6 and i = 7 is that the mean of the best orientation 
similarity measure resulting from the comparison of these bullets was higher than that obtained when 
comparing, say, group i =7 and i = 8. This indicates that the bullets fired when the barrel was not 
properly cleaned were more similar among themselves than when compared against bullets fired when the 
barrel was cleaned. The implications of this result is that bullets fired when the barrel is in a less-than-
optimal condition (like in this case, when there was an accumulation of fouling) may be more similar 
among themselves than when compared with bullets fired when the barrel is clean. This result is of 
interest, because it validates a common practice of firearms examiners. Whenever possible, firearms 
examiners will test fire a suspect gun before and after cleaning the barrel The phenomena observed with 
bullets corresponding to i =6 and i =7 confirm the soundness of this practice.  

4.4.1 Short Term Barrel Wear Analysis 
The question to be addressed in this section is the following: Do the features transferred between a 
barrel and the bullets fired by it change for the first ten bullets? This is a question of considerable 
interest. Based on the discussion of the previous section, we focus our attention in those barrel models for 
which conditions a) and b) seem most likely to be satisfied for the first 50 test fired bullets. These barrel 
models are Ruger, Beretta, Smith & Wesson and Browning. 

Let us begin by considering the change of a single LEA as a result of barrel wear. Figure 12 shows a 
conceptual representation of the possible effect of barrel wear on LEAs created by the same barrel land on 
sequentially fired bullets (Figure 12 only shows a cross section of the LEA). The two columns shown in 
Figure 12 correspond to the two cases under consideration: Case I, where there is no significant change in 
the LEA features, and Case II, where there is significant initial change in the LEA features. Each row of 
the plots shown in Figure 12 shows the evolution of the cross section of the same LEA starting from the 
first fired bullet at the bottom of the plots (labeled 1); up to the tenth fired bullet at the top of the plots 
(labeled 10). Notice that these plots are in no way meant to be representative of actual LEAs, but simply a 
conceptual tool. Figure 12 will be a useful tool for the following discussion. 

Let us begin with Case I. In this scenario, there is no significant change between the features transferred 
to the first few bullets and those fired later. If there is no such change, the features found on the first 
bullet fired by the barrel model under consideration would not be significantly different to those found on 
all subsequent bullets fired by the same barrel (as depicted in Figure 12, Case I). If so, the set of best 
orientation similarity measures resulting from the comparison of the bullet b(• 1,1, )  against subsequently 
fired bullets b(• 1{ ,1, + k 1,..., + k })  would be statistically similar to the set of best orientation similarity 1 2 

measures obtained by comparing bullet b(• ,1, i) against bullets b(• { ,1, i + k ,..., i + k }) for any i and any k11 2 

< k2 (they would not be exactly the same because of a variety of random factors such as powder residue, 
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i 

barrel temperature, barrel fouling, etc. which always 
affect the features transferred between the barrel and 
the bullet). Therefore, if Case I is true, we conclude 
that: 

a)	 The sets of best orientation similarity 
measures 
s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) are1 2 

statistically similar for all i and all k1 < k2. 

Let us now consider the alternative scenario, Case II 
(depicted in the right column of Figure 12.) In the 
representation of Case II we have attempted to 
capture the notion that if the features transferred 
between the barrel and the bullet change at all 
during the first few fires, then said change is only 
significant for a limited number of bullets. In this 
case, the cross section of the LEA changes 
significantly for the first five or so bullets, but any 
significant change stops after bullet six. Let us 
denote by n the bullet number after which the 
change of the LEA cross section stops. For the case 
depicted in Figure 12, n = 6. 

In the second scenario, the argument developed for 
Case I holds for those bullets fired after test fire n. 
In other words, the sets of best orientation similarity 
measures s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) arei 1 2 

statistically similar for all i > n, (where n = 6), and 
any k1 < k2. What would we expect to happen for 
i ≤ n ? In this case b(• ,1, i)  will have been fired 
while the features transferred between barrel and 
bullets are still undergoing significant change. 
Selecting k2  > k1 > n, would guarantee that 
b(• { ,1, i + k ,..., i + k })  will have been fired while 1 2 

said change is no longer significant. Using the 
conceptual example shown in Figure 12, and 
estimating n = 6, the LEAs associated with b(• ,1, i) , 
for i ≤ 6 are still undergoing significant change, 
while taking 6 < k1 the LEAs associated with 
b(• { ,1, i + k ,..., i + k }) are not. Therefore, we would1 2 

expect that the statistical characteristics of the set of 
best orientation similarity measures 
s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) for i ≤ n , n <i 1 2


k1 < k2 will be different to those obtained for n < i.

In fact, the average of the best orientation similarity 


Figure 12: Conceptual Effect of Barrel Wear on 
Single LEA 
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measures of s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k }))  will be lower for i ≤ n  than for i > n . In summary, if i 1 2 

Case II is true, we conclude that: 

a) The sets of best orientation similarity measures s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) arei 1 2 

statistically similar for any n < i and any k1 < k2. 
b) The sets of best orientation similarity measures s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) arei 1 2 

statistically different for i ≤ n and n < k1 < k2 

c) The mean of s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) for i ≤ n and n  < k1 < k2 is less than thei 1 2 

mean of s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) for n < i and any k1 < k2.i 1 2 

Based on the previous arguments, we can propose an empirical methodology to verify which of the two 
scenarios is most likely for each of the barrels under consideration. For each of these barrels the best 
orientation similarity measures s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k })) , their mean and standard deviation 

s

i 1 2 

were computed for i = {1,…,10}, k1 =10, k2 = 40. The median and standard deviation of the best 
orientation similarity measures resulting from the comparison of all first 50 bullets against each other 

1 (b(• }),50,...,1{ ,1, b(• }))50,...,1{ ,1,  was also computed as a reference of the overall characteristics of the 
set. We will make use of these results to assess which of the two possible scenarios (Case I or Case II) is 
more likely for each barrel under consideration. 

For ease of presentation, we introduce the shorthand notation (to be used in this section only): 

sk1 ,k2
(•, i) = s1 (b(• }), { ,1, b(• { ,1, i + k ,..., i + k }))) (17)i 1 2 

and 

l ls1 
l −m (•) = s1 (b(• ,..., { ,1, m}), b(• ,..., { ,1, m})) (18) 

Also, let us define the square of the standardized distance between the sets of best orientation similarity 
50 1 (•)measures sk1 ,k2

(•, i) and s1 
− 

( i ( − (19) 
k1 ,k2 

i 1 
− (•)) = 

⎛
⎜
⎜ 

s mean k1 ,k2
(• )) , − s median 50 1 (•)) ⎞⎟ 

2 

1 

( 
dist 2 (s (• ), , s 50 1 

⎝ s std 1 
−50 1 (•)) ⎟

⎠ 

Figure 13 shows the plots associated with the results computed for Ruger, Beretta, Smith & Wesson and 
Browning barrels. Let us consider as an example the results obtained for the Ruger barrel (see Figure 13, 

,left column). The top plot shows the average and standard deviation of sk1 ,k2
( i Ruger ) for each value of i 

in an error-bar format. Also shown is this plot is the median (red line) as well as the region bounded by 
50 1 +/- one standard deviation of s1 

− (Ruger)  (green lines). The bottom plot shows the square of the 
,standardized distance between the sets sk 1 , k 2

( i Ruger ) and s1
1 − 50 (Ruger) for each i. This is a measure, in 

, ,terms of the distribution of sk1 ,k2
( i Ruger )  of the distance between the mean of sk1 ,k2

( i Ruger ) and the 
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Figure 13: Short Term Barrel Wear Analysis, Ruger (left) vs. Browning (right) 

median of s1
1− 50 (Ruger) . This plot helps visualize the difference between sk 1 , k 2

( i Ruger ) and, 

s1
1 − 50 (Ruger) . 

Based on the plots shown in Figure 13 and our previous discussion, it seems apparent that the features 
transferred by the barrel to the first and possibly second bullets fired by the Ruger barrel are to some 
degree different to the features transferred to the remaining bullets. We reach this conclusion by 
comparing the results of the empirical data against our conclusions associated with Case I and Case II. 
The results of the empirical evaluation seem to correspond to the results expected in Case II for n ≈ 2 . 

,Notice that the mean of sk1 ,k2
( i Ruger )  is lower for i ≤ 2  than for 2 < i, as expected in Case II. Also, 

,notice that sk1 ,k2
( i Ruger )  appears to converge or remain approximately constant for i > 2, also in 

agreement with Case II. 

In contrast to the results of Ruger, the results of Browning (shown in the right column of Figure 13) 
suggest no evidence of significant change in the features of the bullets fired by this barrel. Again we reach 
this conclusion by comparing the results of the empirical data against our conclusions associated with 

,Case I and Case II. In the case of the Browning barrel, sk1 ,k2
( i Browning )  appears to remain 

approximately constant for all i, as expected for Case I. 

Based on a similar analysis for Beretta and Smith & Wesson barrels, we observe that there is evidence of 
change in the features found on the surface of the first bullets for Beretta and although very mild, Smith & 
Wesson. Table 7 summarizes the results of the evaluation. For each of the barrel models under 
consideration, where the second column shows the computed maximum standardized distance (as defined 
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in equation 8), and the third column shows the 
maximum relative difference between sk1 ,k2

(•, i) and 
50 1 s1 

− (•) . Finally, the forth column shows the value of 
n associated with each gun model if we define as 
“significant” a standardized distance greater than one 
( s dist k1 ,k2

(• ), , s 50 1 (•)) > 1).( i 1 
− 

Max 
Standardized 

Distance 

Max Relative 
Decrement n 

Ruger 3.84 -7.30% 2 
Beretta 3.72 -20.40% 1 
Smith 0.40 -8.70% 0 
Browning* 0.42 -7.40% 0 

Table 7: Summary of Short Term Barrel 
It is important to note that even in the cases where Wear Analysis Results. 
evidence of varying features was observed, the 
degradation of the similarity measures associated with these changes does not seem to be extreme. As 
seen in Table 7, in most cases the degradation noticed in the barrels under consideration was less than 
10%, and in the most extreme case the degradation was 20.4%. It is doubtful that this effect could be 
severe enough to prevent identification of the first few bullets and those fired later, although it would be 
interesting to verify this with the assistance of firearms examiners.  

The results obtained for the Browning barrel do not indicate any effect due to barrel wear. The values 
shown in Table 7 do not even correspond to the first bullet fired, but to the one which displayed the 
greater maximal standardized distance (bullet 8.) For all other barrels, the values shown in this table 
applies to i = 1; i.e. the maximum standardized distance and relative decrement take place for the first 
bullet fired. 

4.4.2 Long Term Barrel Wear Analysis 
Having analyzed the effect of barrel wear on the first bullets fired by a barrel, we are prompted to ask 
whether the changes taking place in the barrel for the first few bullets stop after a relatively low number 
of fires, or do they continue indefinitely. In other words, do the features transferred between a barrel 
and the bullets fired by it change over a long time period? It should be noted that the current study 
was not really designed to test this hypothesis, but we believe that the available data does provide some 
insight into this issue. 

The approach used in this evaluation was rather straight forward. For each barrel model under 
consideration ( • ) we make use of five of the eight groups of bullets defined earlier. We exclude the first 
group (•)  to avoid any artifacts due to the variations found on the first few bullets. We also exclude GI1 

Groups (•) and (•)  to minimize the potential effect of barrel fouling in the features transferred to GI6 
GI7 

the bullets. For each of the groups left, we compute the average best orientation similarity difference 
between bullet groups defined as follows (labeled ∆(i, j) ): 

i ( 1 Ii I j 
(∆(• , , j) = s mean (G (•), G (•))) − s mean 1 (GIi 

(•), G (•))) (20)Ii 

as well as the relative average best orientation similarity difference between bullet groups defined as 
follows (labeled ∆ (• , , j) ):ir 

∆ (• , , j) = 
⎛
⎜
⎜

s mean 1 (G (•), G (•))) − s mean (G (•), G (•))) ⎞ (21)( Ii I j 
( 1 Ii Ii ⎟ir 

⎝ s mean 1 (G (•), G (•))) ⎟( Ii Ii ⎠ 
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Relative Distance, [n = number of sample group comparisons] 
Difference 10 [n = 6] 20 [n = 4] 30 [n = 2] 170 [n = 2] 180 [n = 2] 190 [n = 2] 200 [n = 2] 

Ruger -0.40% -0.70% -0.88% -1.95% -0.28% -1.96% -1.74% 
Beretta -0.03% -0.84% -1.80% -6.78% -6.58% -8.69% -5.85% 
Smith -4.10% -8.10% -10.43% -11.28% -11.94% -10.63% -11.63% 
Browning -1.06% -4.22% -5.58% -6.45% -8.11% -8.22% -11.91% 

Table 8: Summary of Long Term Barrel Wear Analysis Results 

The values ∆(• i i, , j ) and ∆ (• , , j )  respectively quantify in absolute and relative difference - in terms of r 

similarity measures - between two different groups of bullets GIi 
(•) , GI (•) (evaluated by

j 

mean (s 1(GIi 
(•),G (•))) ) as opposed to comparing bullets GIi 

(•)  among themselves (evaluated by I j 

mean (s 1(GIi 
(•),G (•))) ). In other words, these values provide a measure of how different is GI (•) toI i j 

group GIi 
(•)  in relationship to the degree of similarity found within group GIi 

(•) . 

Since the only difference between groups of bullets GIi 
(•) and GI (•)  is the average number of bullets 

j 

, , j ) and ∆ (• , , j )  depend only on the average number of bullets fired between fired between them, ∆(• i ir 

these groups. The average number of bullets fires between bullet groups GIi 
(•) and GI (•) can be readily

j 

computed, and will be referred to as the “distance” between these groups. We denote the distance between 
said bullet groups by dist (G (•),GI j 

(•)) . Shown in Table 8 are the summarized results for all four barrels I i 

of interest.  

Considering the values in Table 8, there appears to be strong evidence to the fact that the number of fires 
between bullets does have an effect on their degree of similarity. In all cases of interest (Ruger, Beretta, 
Smith & Wesson and Browning) we notice relative degradation in the average best orientation similarity 
measure which increases as the distance between groups of bullets increases. This effect appears to extend 
to bullet separations of approximately 30 or 40 test fires. However, after said number of fires, the 
difference between the bullet groups does not seem to increase further. This is of significant importance, 
because it implies that the features transferred between the barrel and the bullets do not continue to 
change indefinitely. Finally, it is also important to note that the degree of deterioration even for bullets 
200 fires away from each other is minor (on average, never exceeding 12%, see Table 8). It is doubtful 
that such deterioration would prevent the correct identification of a pair of bullets fired by barrels of the 
models under consideration. 

4.5 Pristine Bullets: Individuality Study 
The specifics of the procedure to test gun individuality were described in Section 4.2.3.1. The key to 
evaluate the individuality of a gun is through a statistical hypothesis test on the distributions of the best 
and second-best similarity measures obtained from the comparison of bullets fired by the barrel under 
consideration. The two hypotheses are: 

H0: best and second-best distributions are indistinguishable, 

H1: best and second-best distributions are different. 
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Ruger E Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev 
empirical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.22 0.00 0.00 0.20 0.67 Win pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rem empirical 3.33 1.11 0.00 0.00 0.00 10.00 1.11 6.67 0.00 0.00 2.22 3.47 
pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Beretta I Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev 
empirical 0.00 0.00 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.22 0.30 0.72 Win pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rem empirical 0.00 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.67 1.41 
pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Smith H Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev 
empirical 18.89 0.00 0.00 0.00 0.00 0.00 0.00 2.22 2.22 0.00 0.00 2.12 5.63 Win pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rem empirical 16.67 27.78 0.00 10.00 22.22 16.67 3.33 30.00 8.89 15.56 15.11 9.83 
pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Taurus A Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev 
empirical 25.56 10.00 7.78 10.00 10.00 23.33 14.44 7.83 Win pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rem empirical 20.00 8.89 25.56 23.33 15.56 18.67 6.64 
pValue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev Browning G 
empirical 12.22 18.89 10.00 31.11 3.33 31.11 4.44 14.44 1.11 24.44 12.22 14.85 10.51 Win pValue 0.00 0.00 0.00 0.28 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.03 0.09 

Rem empirical 25.56 27.78 26.39 25.56 31.11 27.78 36.67 12.22 13.33 30.00 25.64 7.54 
0.00 0.01 0.01 0.00 0.02 0.00 0.37 0.00 0.00 0.00 0.04 0.12pValue 

HiPoint B Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev 
empirical 25.56 32.22 33.33 33.33 22.22 24.44 28.89 18.89 30.00 24.44 27.33 4.97 Win pValue 0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
empirical 31.11 31.11 32.22 31.11 26.67 31.11 25.56 23.33 23.33 23.33 27.89 3.79 

Rem 
pValue 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 

SIG F Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev 
empirical 35.56 23.33 35.56 34.44 32.22 33.33 36.67 37.78 31.11 34.44 37.78 33.84 4.08 Win pValue 0.07 0.00 0.54 0.47 0.02 0.06 1.13 0.79 0.01 0.09 0.21 0.31 0.38 

Rem empirical 22.22 34.44 27.78 30.00 24.44 32.22 27.78 30.00 31.11 25.56 28.56 3.74 
0.00 0.04 0.00 0.01 0.00 0.06 0.00 0.01 0.04 0.00 0.02 0.02pValue 

Bryco D Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5 Barrel 6 Barrel 7 Barrel 8 Barrel 9 Barrel 10 Barrel 11 Mean Stdev 
empirical 26.67 27.78 33.33 31.11 28.89 31.11 32.22 27.78 31.11 34.44 30.00 30.40 2.45 Win pValue 0.00 0.00 0.11 0.03 0.00 0.10 0.08 0.00 0.03 0.84 0.00 0.11 0.25 

Rem empirical 27.78 33.33 30 31.11 31.11 31.11 31.11 36.67 32.22 28.89 31.33 2.45 
0.01 0.16 0.04 0.08 0.04 0.01 0.05 0.11 0.07 0 0.06 0.05pValue 

Table 9 Individuality study for all barrels and ammunitions 

The comparison of these distributions has been performed in the same manner as in the Barrel Wear 
Study, where two alternative approaches to quantify the degree of similarity were used. The first approach 
was based on the use of a Rank Sum test (p-value) approach. Based on this criterion, a barrel is 
considered identifiable if the p-value is 1% or less. The second approach was based on the estimation of 
the empirical probability of identification error (either a false positive or false negative error). Based on 
this criterion, a barrel is considered identifiable if the empirically estimated probability of error is 20% or 
less. These tests were performed for both types of ammunition (Winchester and Remington). 

A summary of the results of these tests is shown in Table 9. Notice that the data associated with barrel 1 
of each gun model only includes data associated with Winchester ammunition. The reason for this is that 
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for these barrels only this kind of ammunition was fired (since these barrels were used in the Barrel Wear 
Study). 

From Table 9 we can observe that the results associated with each of the two tests (Rank Sum test and 
Empirical) are consistent. The overall evaluation of each gun model is made through the mean of the 
empirically estimated probability of error and p-values computed by the Rank Sum Test. These values are 
tabulated for both types of ammunition in the last columns of Table 9. The order in which the gun models 
are listed in Table 9 corresponds roughly to the level of individuality displayed by each of the barrel 
models, from Ruger as the barrel model displaying the greatest individuality, to Bryco as the barrel model 
displaying the worse individuality. This ranking result also shows consistency with that found in the 
Barrel Wear Study. 

The results in Table 9 shows that the individuality criteria are definitely satisfied for the first three gun 
models (Ruger, Berettta, and Smith), not-so-clearly satisfied for the next two models (Taurus and 
Browning), and definitely not satisfied for the last three models (SIG, HiPoint, Bryco, and most likely 
Glock). This phenomenon may be due to the fact that the current data acquisition system and comparison 
algorithms lack the capability to validate the individuality of certain gun models (SIG, HiPoint, and 
Bryco, not to mention Glock). The reader may find it interesting to inspect the distributions of best and 
second-best similarity measures of each gun model. These distributions were included in Appendix A in 
Progress Report No. 11. From the visual inspection of those distributions, it is not difficult to reach the 
conclusion that the best and second-best distributions for Ruger, Bereta, and Smith barrels are clearly 
distinguishable for both types of ammunition. In the case of Browning and Taurus, it is possible to 
distinguish the best and second-best matching distributions for Winchester ammunition, but not so for 
Remington. Finally, the distinction of these distributions is virtually impossible for the remaining models; 
SIG, HiPoint and Bryco. 

Based on the data shown in Table 9, we can reach a number of conclusions. The ability to obtain an 
individual and repeatable transfer of features between the barrel and bullets depends significantly on:  

a)	 The manufacture/quality of the barrel. This does not necessarily mean the manufacturing process 
(gang breach, hammer forged, button rifling, etc.), although it seems that barrels manufactured by 
gang broach generally display good transfer of features, while barrels manufactured by hammer 
forging display poor transfer of features. 

b)	 The ammunition manufacture. From Table 9 one can observe that the individuality of the different 
barrels is almost uniformly better recognized by Winchester as opposed to Remington 
ammunition.  

c) Even within a given barrel model, not all barrels are “created equal.”  As an example, Smith and 
Wesson barrel No. 1 did not show good individuality characteristics for Winchester ammunition, 
but all other Smith and Wesson barrels displayed very good individuality characteristics with the 
same ammunition. This is a very important observation, as it implies that general population-wide 
conclusions may not be applicable to each independent member of the population. 
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Figure 14:Variation of Estimated Pe Between Different Barrels, Winchester Ammo 

In the following sub-sections we discuss the further analyze points a) through c). 

4.5.1 Effects of Barrel Manufacture 
Figure 14 and Figure 15 display graphically the differences in terms of the empirical estimated probability 
of error estimated using the best and second-best similarity measures for the different barrel models under 
consideration. In each of these figures, the center of each bar indicates the average value of the 
empirically estimated probability of error based on best and second-best similarity measure distributions, 
while the upper and lower bounds indicate range corresponding to +/- one standard deviation. Figure 14 
corresponds to Winchester ammunition, while Figure 15 corresponds to Remington ammunition. From 
these tables it is clear that there are considerable differences in the degree of individuality attained by 
each of the barrel models under consideration.  
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Figure 15: Variation of Estimated Pe Between Different Barrels, Remington Ammo 
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An alternative and very illustrative way to 
display the differences in individuality 
between barrel models is to plot the 
different Receiver Operator Characteristic 
(ROC) curves for the different barrel 
models under consideration. An ROC 
curve is a parametric curve of the possible 
False Negative Probability vs. the False 
Positive Probability. Therefore, it allows us 
to consider the overall tradeoff between 
false positive and false negative 
identifications, as opposed to looking only 
at a probability of error as in Figure 14 and 
Figure 15. 

The top of Figure 16 shows the ROC 
curves obtained using the best and second-
best similarity measures resulting from the 
comparison of Winchester bullets for all 
barrel models, while the bottom of the 
same figure shows the same results for 
Remington ammunition. The degree of 
individuality of a barrel can be quantified 
by the area under the ROC curve. These 
plots show that the individuality of each 
barrel model can vary significantly (as 
already seen in Figure 14 and Figure 15). 
Moreover, each barrel model seems to 
belong to a particular group for each 
ammunition type. Let us consider the 
results obtained for Winchester 
ammunition. For this ammunition, Ruger, 
Beretta and Smith barrels seem to be Figure 16: Receiver Operator Characteristic (ROC)
grouped at the bottom of the plot; Taurus curves for each barrel model, Winchester (top) and
and Browning barrels are at the middle of Remington ammunition (bottom)
the plot, while Hipoint, SIG and Bryco 
barrels are at the top, displaying very poor performance (in terms of estimated probability of false positive 
and false negative identification). It is interesting to notice that a similar grouping can be seen when 
Remington ammunition is used, but there are slight changes in the position of some barrels. For example, 
Smith barrels have moved from the “best” to the “middle” group, while Browning has moved from the 
“middle” to the “worse” group. Clearly, the performance of each barrel model depends on the 
ammunition.  

The barrel manufacture seems to be the dominant factor in the individuality of the bullets fired by it. For 
example, bullets fired by Ruger or Beretta barrels were easily identifiable by the system, while the ability 
of the system to identify bullets fired by HiPoint or SIG Sauer barrels was limited. A systematic 
understanding of the specific factors which play a role in this phenomenon is beyond the scope of this 
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project. However, based on observations of the characteristic of the features found on the surface of 
bullets fired by different brands of barrels we can postulate some of the factors which seem to play the 
most significant roles. The dimensional tolerances of the barrel, the degree to which the interior surface of 
the barrel is polished during manufacture, and the general quality of the machining all seem to contribute 
to the overall quality of the barrel. Let us consider the effect of these manufacture characteristics. 

- Dimensional Tolerance: A common practice among manufacturers of low cost barrels is to oversize the 
bore of the barrel. The purpose of this practice is to decrease the pressure to which the barrel is subjected 
when a bullet is fired. As the bore of the barrel is increased, the seal between the bullet and the barrel is 
less effective, allowing the high pressure gases generated by the burning of the powder in the cartridge 
case to flow in between the bullet and the barrel, and decreasing the pressure generated by these gases. 
The barrel pressure may be a concern to the manufacturer because the quality of the material used in the 
manufacture of the barrel (and other parts of the gun mechanism) may be relatively inferior, and of 
doubtful ability to withstand the full pressure generated by a good seal between the bullet and the barrel. 
By decreasing the internal barrel pressure, the manufacturer decreases the risk of these barrels failing (and 
possibly exploding) as they are fired. The effect of an oversized bore, however, is to afford a less 
consistent contact between the barrel interior surface and the bullet fired through it. An undesirable effect 
of this fact is that the features transferred between the barrel and the bullets do not repeat with the same 
consistency as in the case of well dimensioned barrels. As a consequence, the identification of bullets 
fired by low quality barrels can be very challenging. 

- General Dimensional Quality: A phenomena that can also be present in barrels of poor manufacturing 
quality is poor bore consistency. Consider the case where the bore of the barrel is not constant throughout 
its length. This may happen, for example, in the case of button rifled barrels. The rifling of button rifled 
barrels is created by a “button” traveling along the bore of a barrel and imprinting on the interior of the 
barrel the rifling grooves (the rifling grooves are present in the button, and transferred to the barrel as it 
travels through it). As the button travels through the interior of the barrel, it pushes the barrel walls 
outwards, and imprints the rifling grooves on them. However, if the material of the barrel is not 
homogeneous throughout its length, some sections of the barrel may be pushed further than others, 
resulting in a barrel that has slight bore variations. A barrel with a varying bore will result in the bullets 
fired by it possibly “skipping” in its interior (as the bullets may loose contact with the barrel 
momentarily). Such phenomena would result in bullets for which part of the features transferred will vary 
from bullet to bullet. As a consequence, the identification of bullets fired by such barrels (which are in 
general low quality barrels) can be very challenging. 

- Finishing of Barrel Interior Surface: Manufacturers of good quality barrels often add steps to the barrel 
manufacture procedure to polish the interior surface of the barrel to a good quality finish. The purpose of 
this effort is to decrease the friction between the barrel and the bullet. However, as a highly polished 
barrel interior has less surface imperfections, the number and depth of features transferred between the 
barrel and the bullet is also decreased. As the depth of the features transferred between the barrel and the 
bullet decreases, it is more challenging for any type of instrumentation to detect such features. Similarly, 
as the number of features transferred between the barrel and the bullet decreases, the identification task 
becomes more challenging. As a consequence, the identification of bullets fired by very high quality 
barrels can be very challenging. 

The three examples given above are by no means an exhaustive list of the ways in which the manufacture 
of the barrel may influence the degree of difficulty of the identification process. These examples are 
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meant to show that challenging identification situations 
may arise both in the case of poorly manufactured barrels 
and very high quality barrels. In the case of high quality 
barrels these challenges can often be overcome by the use 
of better, more sensitive instrumentation. In the case of 
poor quality barrels improving the sensitivity of 
instrumentation will not be helpful in general. The bullets 
fired by such barrels pose a different challenge because in 
general only portions of the features will transfer between 
two bullets fired by the same gun. In other words, bullets 
fired by such barrels require smarter algorithms than those 
so far developed. Such algorithms should be sophisticated 
enough to seek “portions” of agreement, and not entire 
agreement. 

Of the three parameters discussed above, the only one 
which can be analyzed within the scope of this study is the 
surface finishing of the barrel interior. Figure 17 shows a 
visual comparison of land impression cross section data 
acquired from bullets fired by barrels of the three levels of 
quality. On the top of Figure 17, one can see that a very 
good quality barrel, e.g. SIG, creates a very smooth land 
impression on the bullets fired by it (the amplitude of the 
features is minimal, on the sub-micron range). This is most 
likely due to the high quality of the finishing processes 
during manufacturing. At the middle of Figure 17, one can 
see that the land impressions found on a bullet fired by a 
good quality barrel, e.g. Ruger, show a significantly more 
roughness (the features in this land impression are on the 
order of a few microns), and very high repeatability. On 
the bottom of Figure 17, we see an example of a poor 
quality barrel, e.g. HiPoint. This type of barrel creates an 
intermediately rough surface on the land impression of 
bullets fired by it (on the order of a few microns, or even 
tens of microns). However, the impressions created by 
poor quality barrels are hardly repeatable from bullet to 
bullet. 	 Figure 17 Land impression comparison of 

very good quality (top, Sig Sauer), good
A quantitative evaluation of the finishing of the barrel quality (middle, Beretta) and poor quality
interior surface can be performed by computing the (bottom, HiPoint)
median RMS (Root Mean Square) surface roughness (in 
microns) of the LEAs associated with each barrel brand and ammunition type under consideration. Figure 
18 shows a scatter plot of the empirical probability of error as a function of the median RMS surface 
roughness for each barrel and ammunition under consideration. A least square fit to a power curve has 
also been included for each of the two types of ammunitions under consideration. As seen in this plot, the 
estimated Pe generally decreases as the roughness of the LEAs increases (generally, because there are 
significant exceptions.) In fact, we see a very sharp increase in the estimated Pe as the surface roughness 
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Empirical Pe vs. LEA roughness 
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Figure 18: Relationship between Empirical Probability of Error and LEA roughness 

goes below 0.3 microns. This indicates that as the size of the features transferred from the barrels to the 
bullets become smaller, the estimated probability of error becomes significantly larger. We suspect that 
this phenomenon is due to limitations of the instrumentation currently used to measure the surface of the 
bullets. Figure 18 seems to indicate that the current instrumentation becomes ineffective below 0.3 
microns. Although the specification of the sensor used in this project claims a depth resolution of 0.025 
micron, it would seem that the actual resolution of the acquisition platform is on the order of 0.3 – 0.4 
microns. This loss of resolution may be due to vibration induced by the motion components during the 
acquisition process. The consequence of the reduced resolution capability of the acquisition platform is to 
prevent us from obtaining useful data for many of the barrels/bullets under consideration. It is worth 
noting that the required acquisition platform resolution was not known at the beginning of this project, 
since no such measurements over such a varied spectrum of barrels had been made before this project.  

An interesting data point in Figure 18 is that corresponding to Bryco barrels using Remington 
ammunition. This data point is the most noticeable exception to our previous observations. The median 
roughness for the LEAs associated with Bryco-Remington was approximately 0.4 microns. Nevertheless, 
the probability of error was over 30%, significantly higher than that achieved for bullets with lower 
roughness values (such as Winchester bullets fired by Beretta barrels, which have a median roughness of 
.34 microns, and an empirical Pe of 0.3%.) For this particular set of data, it is reasonable to assume that 
the features on the surface of the bullet were within the measurement capabilities of the sensor; and yet 
the probability of error is significantly high. One has to conclude that for this barrel/ammunition 
combination the features transferred between the barrel and the bullets were not repeatable for the 
algorithms used in the current implementation of the system. We cannot conclude, however, that a 
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Mean Empirical Pe for Winchester and Remington Ammunition 
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Figure 19 : Effect of Ammunition Manufacture 

human examiner or a better set of algorithms would not have been able to perform better. It is important 
to keep in mind that the performance achieved by the present implementation of the system 
provides an upper bound of the achievable performance. Besides resolution limitations, the amount of 
data used by the current algorithms is so limited (only five cross sections of the bullet are used) as to 
preclude identification of good data from unreliable data by the algorithms used in the comparison 
process. Such limitations could be addressed by a system with better depth resolution and the capability to 
acquire a greater number of bullet cross sections for analysis.  

4.5.2 Effects of Ammunition 
The properties of the ammunition submitted for identification can also have a significant effect on the 
degree to which a bullet can be identified as having been fired by a given gun. Both mechanical 
characteristics and dimensional tolerances have significant influence in the manner in which features are 
transferred between the barrel and the bullet. Let us consider the effect of these characteristics: 

- Mechanical Characteristics: The mechanical properties of the material used to manufacture the external 
surface of a bullet (most bullets have an exterior surface coating usually referred to as a “jacket”) will 
play an important role in the manner in which the features found in the interior of the barrel transfer to the 
bullets fired by it. As an example, a jacket manufactured with a harder material will accept such features 
in a different manner than a softer jacket.  

- Dimensional Tolerances: As discussed in the case of the barrel bore, the relationship between the bullet 
diameter and the barrel bore will dictate the amount of pressure between the barrel and the bullet. The 
pressure between the barrel interior and the bullet will have a significant effect in the manner in which 
features are transferred between the barrel and the bullet. 

Based on the results already presented, it is apparent that there is a significant relationship between the 
ammunition used and the resulting individuality results. For each of the two ammunition types used in 
this evaluation, Figure 19 shows the mean of the empirical probability of error for all the barrels of each 
of the barrel models under consideration. As seen in Figure 19, the empirical probability of error is 
consistently lower for Winchester ammunition than for Remington ammunition. The only exception to 
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this rule is SIG. However, given that the ability of the instrumentation used in this evaluation to detect the 
features found on bullets fired by SIG barrels is questionable, the consequence of this exception is 
questionable too. 

The significance of the results shown in Figure 19 is that the degree of individuality associated with a 
barrel depends on the ammunition used to evaluate it. This is an important observation because it implies 
that the likelihood of a correct identification depends not only on the barrel model of the suspect 
barrel/gun, but also on the evidence ammunition. This conclusion should not come as a surprise. Among 
the many parameters associated with the manner in which features are transferred between a barrel and a 
bullet is the relationship between the barrel bore and the bullet diameter. Another such factor is the 
hardness of the bullet jacket. Different ammunition manufacturers use different tolerances and materials 
in their bullets. Therefore, it is to be expected that the bullet manufacture plays a significant role in the 
quality of the features transferred between barrel and bullet. Although beyond the scope of the present 
effort, it would be of significant interest to develop a better understanding of the parameters which play a 
role in the quality of the features transferred between barrel and bullet. 

4.5.3 Are all Barrels Created Equal? 
So far, we have discussed the variation in terms of individuality between different barrel models (or more 
accurately, different brands of barrels). A related question of interest is the following: Are all barrels of 
the same model/brand similarly individual? Inspection of the results compiled in Table 9 indicate that 
even for barrels of the same manufacture there is some variation in the average best and second-best 
similarity measures. Take as an example Smith and Wesson barrel 1, with best similarity measure average 
of 0.43, against barrel 4 of the same model, with best similarity measure average of 0.77. Notice also that 
the average second-best similarity measure is not that different for these barrels; 0.36 for barrel 1, and 
0.38 for barrel 4. Clearly, although of the same brand, these barrels show considerable difference.  

The variation of individuality between different barrels of the same make and model can be graphically 
displayed by using ROC curves. Figure 20 shows the ROC curves for each of the barrels under 
consideration for Ruger, Beretta and Smith and Wesson for both Winchester (top) and Remington 
(bottom) ammunition. In the case of these barrel models it is clear that Ruger and Beretta display 
extremely good individuality characteristics (one can barely see the different ROC curves) and very 
consistent results (although it is questionable whether any difference could be gleamed from these plots 
since both barrel models perform extremely well). On the other hand, in the case of Smith & Wesson, the 
performance depends on the ammunition, where very good performance can be seen for Winchester 
ammunition (except for a single barrel out of 11), but mediocre and inconsistent performance is observed 
for Remington ammunition (performance varies widely between barrels).  

Figure 21 shows the ROC curves for both Browning and Taurus obtained with Winchester and Remington 
ammunition. Clearly, the variability in performance is much more noticeable for the different barrels of 
these models than for Ruger, Beretta or even Smith & Wesson. In the case of the last group of barrels; 
SIG, Bryco and HiPoint we can see that the performance is very poor and inconsistent between barrel and 
barrel (see Figure 22). 
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 a)  b)  c) 

Figure 20: ROC curves for all barrels; a) Ruger, b) Beretta, c) Smith & Wesson for Winchester 
(top) and Remington (bottom) ammunition 

4.6 Pristine Bullets: Classification Study 
Let us consider the question of bullet-to-gun classification. In an ideal scenario, this question could be 
addressed in the following 
manner: Imagine that a database 
which contains both the matching 
and non-matching distributions 
associated with guns of the make 
and model of the suspect gun is 
available. Such database would be 
the result of performing a large 
number of comparisons between 
bullets fired by different guns of 
the same make and model as that 
of the suspect gun, and compiling 
the matching and non-matching 
similarity measures. When faced 
with a classification decision, a 
comparison between control 
bullets and the evidence bullet 
could be made to obtain a sample 
of evidence-to-control similarity a)measures (at this point we do not b) 

know if they are matching or non- Figure 21: ROC curves for all barrels; a) Browning, b) Taurus 
matching). The classification for Winchester (top) and Remington (bottom) ammunition 
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 a)  b)  c) 

Figure 22: ROC curves for all barrels; a) SIG, b) HiPoint, c) Bryco for Winchester (top) and 
Remington (bottom) ammunition 

decision could then be made by determined whether the sample distribution of evidence-to-control 
similarity measures most resembles the matching or the non-matching distributions corresponding to the 
guns of the same make and model as that of the suspect gun obtained from our ideal database. 
Furthermore, equipped with all this data, it would be possible to also estimate the probability of a false 
positive or a false negative determination.  

In a realistic scenario, our conceptual database of matching and non-matching similarity distributions is 
not available, and the creation of such a database would be a monumental effort. As a practical 
alternative, perhaps it would be possible to estimate these distributions using the control bullets? Let us 
consider the best and second-best orientation similarity measure distributions obtained by comparing the 
control bullets among themselves. We postulate that these distributions can be used as 
approximations/estimates of the matching and non-matching distributions for the gun under consideration. 
The rational for such approximation is the following: As already discussed, the best orientation similarity 
distribution resulting from the comparison of the control bullets is in fact the same as the matching 
distribution for a set of guns consisting of the gun under consideration (the suspect gun). Therefore, the 
matching distribution obtained by comparing the control bullets provides us with a sample of the 
matching distribution. In terms of the non-matching distribution, we propose that it can be approximated 
by the second best distribution obtained from the comparison of the control bullets. This is based on the 
fact that the similarity values obtained from comparing land impressions created by two different barrel 
lands has a characteristic distribution regardless of whether these lands belong to the same barrel or not.  

In the following sections we evaluate the extent to which the proposed approach can be implemented, and 
the results obtained using this approach. In Section 4.6.1, we analyze the statistical behavior or the non-
matching distribution and the second best distribution for the barrels and ammunition under 
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consideration, and we seek to answer the 2.50E-01 

questions whether these distributions can be 
2.00E-01 parameterized (in particular, are they normal?) and 

whether they are, as suggested, similar.  1.50E-01 

4.6.1 Second-best distribution vs. non- 1.00E-01 

matching distribution 
5.00E-02 

In Section 4.2.3, we discussed the basic 
conceptual approach to the bullet-to-gun 0.00E+00 

classification problem. Let us begin this section 
with an actual example. Figure 23 shows a typical 
example of the distribution of the best (blue) and Figure 23: Example of best and second-best 
second-best (pink) orientation similarity measures orientation similarity measure distributions of 
corresponding to control bullets fired by a Ruger among control bullets; and distribution of best 
gun. Figure 23 also shows the distribution of the orientation similarity measure between control 
similarity measures obtained by comparing an bullets vs. evidence bullet. 
evidence bullet against the control bullets in their 
best orientation (yellow). As can be seen in this example, the distribution obtained by comparing the 
evidence bullet against the control bullets is more “similar” to the best orientation similarity measures 
distribution, suggesting that the evidence bullet was fired by the same gun which fired the control bullets 
(which was the case). Had the distribution obtained by comparing the evidence bullet against the control 
bullets been more similar to the second-best orientation distribution, we would have concluded that the 
evidence bullet was not fired by the same gun as the control bullets. This is the principle applied in our 
classification algorithms 
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4.6.1.1 Non-matching Distribution 
Visual observation of the histograms of the second best and the non-matching distributions suggests that 
both distributions are similar and appear to be normal (see Report No. 11, Appendix A). To verify their 
normality, we applied the Lilliefors test to the data. Lilliefors test is a refinement of the one-sample 
Kolmogorove-Smirnov (KS) test, which has long been used to evaluate the normality of a data sample. 
The null hypothesis and its alternate hypothesis to be tested are: 

H0: the sample data originates from a normal distribution 

H1: the sample data does not originate from a normal distribution 

As we are interested in differences for all sample values, we perform a two-tailed test.  Furthermore, the 
significant level α, is fixed at α=0.05, or at the 5% level, throughout the hypothesis test in the following 
sections. 

The Lilliefors test is based on the maximum difference between the empirical cumulative distribution 
function (CDF) from the sample, and the normal CDF using the sample’s mean and standard deviation. 
Reliance on a single value (the maximum difference) may make this test sensitive to small clusters of data 
within the sample.  To better understand the effects of the sample size on the hypothesis test outcomes, 
we randomly selected samples with different sizes from the non-matching dataset and applied the 
Lilliefors test to test their normality. As an example, the hypothesis results from the Ruger model and 
Winchester ammunition are shown in Table 10, where the experiment was repeated 10 times for each 
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Sample Size Test Statistics Critical Value Outcome 
50 0.0799 0.1253 Can not reject H0 
100 0.0649 0.0886 Can not reject H0 
150 0.0522 0.0723 Can not reject H0 
200 0.0499 0.0626 Can not reject H0 
250 0.0487 0.0560 Can not reject H0 
300 0.0370 0.0512 Can not reject H0 
400 0.0314 0.0443 Can not reject H0 
495 0.0305 0.0396 Can not reject H0 
1000 0.0235 0.0280 Can not reject H0 
2000 0.0260 0.0198 Reject H0 
3000 0.0187 0.0162 Reject H0 
4000 0.0208 0.0140 Reject H0 
5500 0.0232 0.0119 Reject H0 

Table 10: Lilliefors test of normality for Ruger and Winchester with different sample sizes 
(significant level 5%) 

Sample Size, and the Test Statistic is the average of the 10 repetitions of the test. The results indicate that 
with a sample size below 1000, we can not reject the normality hypothesis for the non-matching data. 
However, we can reject the hypothesis as the sample size increases above 2000. The hypothesis test for 
other gun models and ammunitions yields similar results. Therefore, the non-matching distribution of all 
gun models and ammunitions is fairly normal as the sample size is about 1000 or less. This normal 
approximation is particularly appropriate since the sample size available for the second-best and the 
matching distribution is significantly less than that available from the non-matching distribution in the 
ballistic classification process. 

Once the normality of non-matching distributions for all gun models and ammunitions is verified, the next 
question comes up naturally: Are all those non-matching distributions from the same underlying normal 
distribution?  To answer this question, the two-sample Kolmogorov-Smirnov test was used to compare 
the non-matching distributions of different gun models.  The null hypothesis and the alternative 
hypothesis for this test are: 

H0: sample 1 and sample 2 data are drawn from the same distribution 

H1: sample 1 and sample 2 data are drawn from different distributions 

A two-tailed test at the 5% significance level was performed.  As an example, the results of non-matching 
distribution comparison between the Ruger and the rest of the gun models are listed in Table 11.  Similar 
results have been obtained from the comparison between the non-matching distributions of other gun 
models and ammunitions. These results indicate that the underlying distributions for the non-matching 
datasets are different for different guns. This is not entirely surprising. We would anticipate that the mean 
of the non-matching distribution will vary according to the roughness of the LEAs of the brand under 
consideration. 
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 p-Value Test Statistics Outcome 
Ruger vs. Beretta 2.267E-126 0.2290 Reject H0 
Ruger vs. Smith 0 0.6071 Reject H0 
Ruger vs. Browning 2.51E-33 0.1171 Reject H0 
Ruger vs. Sig 0 0.4793 Reject H0 
Ruger vs. Hipoint 0 0.2421 Reject H0 
Ruger vs. Bryco 2.92E-7 0.2267 Reject H0 

Table 11: Kolmogorove-Smironov test results of non-matching distributions of Ruger and other gun 
models with the Winchester ammunition 

Figure 24 summarizes the comparison of means of non-matching distributions for all gun models and 
ammunitions under investigation. As seen in Figure 24, the mean of the non-matching distributions vary 
for the different barrel models. These results suggest that the non-matching distribution needs to be 
characterized for each a specific gun model. The mean of the non-matching for different ammunitions 
(Winchester vs. Remington) agree with each other very well in most cases, except in the case of SIG and 
Bryco barrels. As discussed earlier, the ability of the present system to acquire and process data from 
these barrel brands is limited, so that it is not clear whether this phenomenon is due to the bullets or the 
system itself. For all other barrel brands, the mean of the non-matching distribution is relatively 
independent of the ammunition type.  

4.6.1.2 Second Best Distribution 
The same approach used to study the normality of the non-matching distribution has been applied to the 
second best distribution. Again, the data from Ruger with Winchester has been used as the example, and 
the Lilliefors test results are plotted in Figure 25. Keep in mind that the null hypothesis (the samples are 
drawn from a normal distribution) can not be rejected as long as the test statistics is less than the critical 
value. The results shown in Figure 25 indicate that the second best distribution is mostly normal, except 
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Figure 25: Lilliefors normality test results for second-best distribution for Ruger 
with Winchester 

that last data point with all 495 samples. The same Lilliefors normality test has been applied to the second 
best distribution of the remaining gun models and ammunitions.  Even in the case of all 495 samples are 
used in the Lilliefors test, 10 out of 15 combinations of gun models and ammunitions confirm the 
normality of their second best distributions.   

Since the second best distribution appears to be normal, parametric analysis tools can be used to compare 
the second best distributions among different gun models and ammunitions. Figure 26 shows the 
comparison of means of the second best distributions of all guns and ammunitions. Similar to the 
appearance in Figure 24, results shown in Figure 24 confirm the findings from non-matching data that the 
second best distribution depends mostly on the barrel brand, and appears to be independent of the 
ammunition type. Once again, the exceptions to this rule are SIG and Bryco, a fact which may need 
further investigation. 
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Lillietest of Normality with Transformation (Alpha=0.05) 
dataOut = dataIn dataOut = -log(1-dataIn) dataOut = -log(dataIn) 
Match Non-Match Sec. Match Match Non-match Sec. match Match Non-match Sec. match 

Ruger E Win Not normal Not normal Not normal Normal Not normal Not normal Not normal Normal Normal 
Rem Not normal Not normal Not normal Not normal Not normal Not normal Not normal Normal Normal 

Beretta I Win Not normal Not normal Normal Not normal Not normal Normal Not normal Normal Normal 
Rem Not normal Not normal Normal Not normal Not normal Normal Not normal Normal Normal 

Smith  H Win Not normal Not normal Not normal Not normal Not normal Not normal Not normal Normal Normal 
Rem Not normal Not normal Normal Not normal Not normal Normal Not normal Normal Normal 

Browning G Win Not normal Not normal Not normal Not normal Not normal Not normal Not normal Not normal Not normal 
Rem Not normal Normal Normal Not normal Not normal Normal Not normal Not normal Normal 

Taurus A Win Normal Not normal Normal Normal Not normal Normal Normal Normal Normal 
Rem Not normal Normal Not normal Not normal Normal Not normal Normal Not normal Not normal 

SIG  F Win Not normal Not normal Normal Not normal Not normal Normal Normal Not normal Normal 
Rem Normal Not normal Normal Normal Not normal Normal Normal Not normal Not normal 

HiPoint B Win Not normal Not normal Normal Not normal Not normal Normal Not normal Not normal Not normal 
Rem Not normal Not normal Normal Not normal Not normal Normal N/A N/A N/A 

Bryco D Win Not normal Not normal Not normal Not normal Not normal Not normal N/A N/A N/A 
Rem Not normal Not normal Not normal Not normal Not normal Not normal Normal Not normal Normal 

Table 12: Lilliefors normality test results of data sets before and after transformation 

4.6.1.3 Relationship between Non-matching and Second-best Distributions 
As part of our uniqueness analysis, we have postulated the premise that the second-best similarity 
measure obtained by comparing bullets fired by the same barrel has a statistical distribution which closely 
approximates the non-matching distribution. In this section we seek to verify if this assertion is valid. 
Preliminary observation of these distributions indicates that our assertion seems to be true, at the very 
least, for those barrels which display satisfactory individuality characteristics, i.e. Ruger, Beretta, and 
Smith & Wesson. 

Previous normality test results for the non-matching and the second best distributions suggest that both 
distributions be approximately normal.  In order to fully utilize the rich analysis features associated with 
normal distributions, we attempted to identify a transform to convert the data from approximate normal to 
truly normal for all sample data.  The effort was first made with a logarithm function, which was chosen 
based on the visual observations of their appearance in the distributions. Besides applying the log 
transformation to the non-matching and the second best similarity measure data, we also applied it to the 
matching distribution data with a hope to obtain a normal matching distribution as well.  The Lilliefors 
test was employed as the tool for the evaluation of a distribution’s normality. The summarized results of 
the normality test for the matching, non-matching, and second best matching before and after the 
logarithmic data transformation are listed in Table 12.  

The results in Table 12 show that the transformation –log(1-Data) has virtually no effect on the normality 
of most distributions. However, the transformation –log(Data) shows a significant effect.  We notice that 
after the –log(Data) transformation, both the non-matching and the second-best matching distributions 
become normal for those guns which display satisfactory individuality (Ruger, Beretta, Smity & Wesson.) 
Furthermore, both the non-matching and second best distributions obtained of Taurus with Remington 
have been proven normal after the transformation. 

With the normal distributions of transformed non-matching and second best matching distributions in 
hand, the hypothesis test has been applied to check if both distributions are statistically the same.  For two 
normal distributions comparison, there are many ways to carry out the test. The first approach we chose is 
the two-sample Kolmogorove-Smirnov test. The null hypothesis for this test is that both sample sets are 
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Hypothesis Test of Non-match and Sec. match Distributions after Transformation (Alpha=0.05, dataOut =  log(dataIn)) 
dataOut = -log(dataIn) Kolmogorov-Smirnov test t-test ranksum test 
Non-match Sec. match H P KSStats H Significance CI(1) CI(2) Tstats df H P zval ranksum 

Ruger  E Win Normal Normal 1 8.04E-11 0.1614 1 0 -0.0353 -0.0219 -8.3332 5993 1 0 7.8359 1.77E+06 
Rem Normal Normal 1 2.04E-05 0.1178 1 1.09E-06 -0.0262 -0.0112 -4.8805 4948 1 7.80E-06 4.4705 1.24E+06 

Beretta I Win Normal Normal 0 0.164 0.0522 1 0.0256 -0.0137 -0.0009 -2.2327 5993 1 0.0358 2.0988 1.56E+06 
Rem Normal Normal 1 0.0295 0.0713 1 0.0118 -0.0166 -0.0021 -2.5194 4948 1 0.0377 2.0779 1174038 

Smith H Win Normal Normal 1 1.47E-05 0.1134 1 1.88E-04 -0.021 -0.0065 -3.7375 5993 1 1.97E-04 3.7225 1.62E+06 
Rem Normal Normal 1 1.08E-06 0.132 1 2.04E-08 -0.0318 -0.0153 -5.6181 4948 1 2.30E-08 5.5879 1275492 

Browning G Win Not normal Not normal 
Rem Not normal Normal 

Taurus A Win Normal Normal 0 0.064 0.086 1 0.0026 -0.0264 -0.0056 -3.0188 1768 1 0.0109 2.5469 258776 
Rem Not normal Not normal 

SIG  F Win Not normal Normal 
Rem Not normal Not normal 

HiPoint B Win Not normal Not normal 
Rem N/A N/A 

Bryco D Win N/A N/A 
Rem Not normal Normal 

Table 13: Hypothesis test results of transformed non-matching and the second best data from selected 
guns and ammunitions. 

drawn from the same continuous distribution. The alternative hypothesis is that they are drawn from 
different continuous distributions. We assign the test result H is 1 if one can reject the hypothesis that the 
distributions are the same and 0 if one cannot reject that hypothesis.  

The second way to compare two normal distributions is the t-test, which determines whether two samples 
from a normal distribution could have the same mean when the standard deviations are unknown but 
assumed equal. Again, we assign the test result H a value of 1 if one can reject the null hypothesis that the 
means are equal at the 0.05 significance level and 0 otherwise. 

The third method we chose to compare the non-matching and second best matching distributions is the 
Wilcoxon ranksum test, which performs a two-sided rank sum test of the hypothesis that two independent 
samples come from distributions with equal medians.  The p-value returned from the test is the 
probability of observing the given result. Small values of p cast doubt on the validity of the null 
hypothesis. The null hypothesis is that two sets of data are assumed to come from continuous distributions 
that are identical except possibly for a location shift, but are otherwise arbitrary.  If the result H is 1, then 
the null hypothesis, i.e., medians are equal, can be rejected at the 5% level (default). 

The test results of comparing the non-matching and the second best distributions of selected guns and 
ammunitions with three hypothesis tests described above are summarized in Table 13. Clearly, the 
hypotheses that the non-matching and the second-best similarity measure are drawn from the same 
distribution, or to have same mean, or to have same median value can be rejected. 

To better understand the internal relationship between the non-matching distribution and the second-best 
distribution, we compared the mean, median, and standard deviation of both distributions, as well as their 
differences. The results listed in Table 14 show the mean and median of the non-matching distributions 
are slightly higher than those of the second-best matching distributions. This systematical offset owes to 
the following fact: Given a barrel with n lands (or a bullet with n), the non-matching dataset correspond to 
a set of best similarity measures out of n possible orientations, while the second-best dataset corresponds 
to a set of second-best similarity values out of n possible orientations, or in other words, the best 
similarity measures out of n-1 orientations. Therefore, under the assumption that the distribution of 
similarity measures obtain from the comparison of non-matching LEAs is the same whether the pair of 
LEAs belongs to the same barrel or not, one should expect that the highest out of n possible samples of a 
given distribution should be higher than the highest of n-1 possible samples. For this reason, the non-
matching distribution has a higher average than the second-best distribution. By the same argument, the 
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Non-match and Sec. match Distribution Comparison 
Non-match Sec. match Difference (Non-match - Sec.matc Different percentage (%) 
Mean Median Std Mean Median Std Mean Median Std Mean Median Std 

Ruger  E Win  
Rem  

0.40  
0.41  

0.40  
0.41  

0.11  
0.11  

0.40  
0.40  

0.40  
0.40  

0.10  
0.11  

0.01  
0.01  

0.01  
0.01  

0.01  
0.00  

1.93  
1.94  

2.08  
1.78  

8.54  
-0.04  

Beretta  I Win  
Rem  

0.39  
0.40  

0.39  
0.40  

0.10  
0.11  

0.38  
0.39  

0.39  
0.40  

0.10  
0.11  

0.00  
0.00  

0.00  
0.00  

0.00  
0.00  

0.68  
0.82  

0.36  
0.42  

1.85  
1.56  

Smith  H Win  
Rem  

0.36  
0.37  

0.36  
0.37  

0.09  
0.10  

0.35  
0.36  

0.35  
0.36  

0.09  
0.10  

0.01  
0.01  

0.01  
0.01  

0.00  
0.00  

2.03  
2.28  

2.06  
2.74  

0.89  
2.48  

Win  
Rem  Browning G 0.41  

0.40  
0.42  
0.40  

0.12  
0.12  

0.41  
0.39  

0.41  
0.39  

0.12  
0.12  

0.00  
0.01  

0.00  
0.01  

0.00  
0.00  

0.54  
2.64  

0.65  
2.64  

-0.98  
-0.39  

Taurus A Win  
Rem  

0.43  
0.42  

0.44  
0.43  

0.14  
0.14  

0.42  
0.41  

0.43  
0.42  

0.13  
0.14  

0.01  
0.01  

0.01  
0.02  

0.01  
0.00  

2.69  
3.27  

1.55  
3.61  

5.91  
0.62  

HiPoint B Win  
Rem  

0.43  
0.43  

0.43  
0.43  

0.15  
0.14  

0.41  
0.41  

0.41  
0.42  

0.15  
0.15  

0.01  
0.02  

0.02  
0.01  

0.00  
0.00  

3.38  
3.96  

4.46  
2.97  

-0.05  
-3.04  

SIG  F Win  
Rem  

0.46  
0.40  

0.46  
0.40  

0.13  
0.12  

0.44  
0.38  

0.44  
0.38  

0.12  
0.12  

0.02  
0.02  

0.02  
0.02  

0.00  
0.01  

3.66  
5.14  

3.98  
5.13  

3.65  
4.87  

Bryco  D Win  
Rem  

0.44  
0.51  

0.45  
0.51  

0.15  
0.17  

0.40  
0.47  

0.40  
0.46  

0.16  
0.17  

0.04  
0.04  

0.04  
0.04  

0.00  
0.00  

8.49  
7.96  

9.93  
8.85  

-1.52  
1.76  

Table 14: Statistical comparison of non-matching and second best similarity measure 

standard deviation of the second-best distribution should be slightly higher than that of the non-matching 
distribution. In terms of the mean and median of these distributions, this phenomenon can be clearly seen 
in Table 14. As far as the variance, this phenomena can be seen for the good barrels; those barrels for 
which the current system is able to make reliable differentiation between the best and second-best 
distributions. 

4.6.2 Matching distribution 
As mentioned earlier, the matching distribution appears to be skewed (and therefore not normal). This 
postulate has been verified by means of the statistical normality test, or the Lilliefors test as described 
above. The results in Table 12 show that most matching distributions are not normal, especially for those 
guns which display good uniqueness properties (Ruger, Beretta, Smith, and Browning). By comparing the 
histograms of the matching distributions as shown in Appendix A of Report No. 11, the following 
conclusions can be easily drawn: 

• Most matching distributions are not normal 
• The matching distribution varies between gun to gun 
• The matching distribution varies from barrel to barrel even for the same gun model 
• The matching distribution is dependant on the ammunition 

Furthermore, the barrel quality has been found to play an important role for the matching distribution.  On 
one hand, the limitation of the current sensor hardware prevents the acquisition of the features transferred 
to the bullets from high quality barrels (such as Sig and Browning). On the other hand, the limitation of 
the current matching algorithms hinders the extraction of features on the bullets fired from low quality 
barrels (such as Taurus and Hipoint). As a result, the barrels with “good” middle of the road quality 
possess the best identification capability with a matching distribution clearly distinguishable from the 
non-matching distribution. All these conclusions provide guidance for the future ballistic identification 
that the matching distribution can only be made from a specific barrel, such as the suspect gun found from 
the crime scene. 

4.6.3 Empirical Results 
In order to assess the probability of error associated with a given comparison methodology, barrel model, 
ammunition manufacture and number of control bullets, we simulated combinations of randomly selected 
“control bullets,” (index Ic in Eqn 14) and “evidence” bullets (index be in Eqn. 16), and applied the 
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Figure 27: Probability of error as a function of barrel model 

different comparison methodologies discussed in Section 4.2.3.2 to the different gun models and 
ammunitions available. Having a-priori knowledge regarding the correct classification between the 
selected control and evidence bullets allows us to determine whether the true answer to the classification 
question is a match or a non-match. In this manner, it is possible to estimate the probability of false 
positive, false negative and overall error for any combination of classification methodology, barrel, 
ammunition and number of control bullets. In this section we discuss the results obtained following this 
methodology. 

4.6.3.1 Effects of Barrel Model/Quality 
Of all the variables influencing the probability of individuality and classification error, the barrel 
make/model appears to be the most significant. Figure 27 shows the probability of error computed for all 
barrel models under consideration and all three comparison methodologies discussed in Section 4.2.3.2 
(while assuming 5 control bullets of Winchester brand). From the results shown in Figure 27, it can be 
seen that the “good” quality barrels (Beretta, Ruger, Smith & Wesson) achieve significantly lower error 
rates in the classification process (notice that the vertical scale is logarithmic.) Both “very good” quality 
barrels (SIG, and Browning) and “poor” quality guns (Taurus, HiPoint and Bryco) produce much larger 
probability of error1. As mentioned earlier, we believe that this phenomenon is due to the limitations of 
the current hardware and software. 

4.6.3.2 Effects of Ammunition Manufacture 
Since land impressions are created as a result of the interaction between a bullet and a barrel, it is 
reasonable to expect that the bullet manufacture properties (e.g., dimensions, hardness, elastic properties, 
etc) will affect the transfer of features from the barrel to the bullet. Figure 28 shows the results of using 

1 The qualification of barrel makes/models as “very good,” “good” and “poor” is not meant to be an evaluation of the quality 
of the barrel or the weapon itself, but only of the repeatability of the features transferred between the barrels of the 
make/model under consideration and the bullets fired by it. 
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Figure 28: Effect of ammunition manufacture on overall Probability of error 

the same classification approach (hard threshold) and number of control bullets (5 control bullets) for all 
barrel models with bullets of Winchester and Remington manufacture.  

As seen in Figure 28, the probability of error for Winchester ammunition is lower than that from 
Remington for all barrels other than SIG (a similar phenomenon was observed in the individuality 
evaluation, see Figure 19). However, even in the case of SIG barrels, the probability of error is so high 
with either type of ammunition (approx 44%), that it is difficult to reach any kind of conclusion from this 
phenomenon. More important, the difference of probability of error between two ammunitions is very 
significant even for good quality guns such Ruger, Beretta, and Smith. The ammunition manufacture 
appears to be the most significant variable affecting the probability of identification second only to the 
barrel manufacture.  

4.6.3.3 Effects of Number of Control Bullets 
Common sense dictates that the greater the number of control bullets used in identification, the lower the 
probability of error should be. A question of interest is then: How significant is the effect of increasing 
the number of control bullets used in classification? We evaluated the variation in the probability of error 
for 3, 4, 5 and 6 control bullets. This range of control bullets is consistent with that which a firearms 
examiner would normally fire during identification.  

The results of this analysis in the case of Hard Threshold classification approach are tabulated for both 
Winchester and Remington ammunition in Table 15. In a similar manner, Figure 29 shows a graphical 
representation of the same analysis using the normalized closest mean classification approach. As can be 
seen in both cases, for most barrel models under consideration, the probability of error does decreases as a 
result of the increase of the number of control bullets. This trend is applicable to both ammunition brands 
under consideration. 

This trend is less clear for those models for which the probability of error is relatively large to begin with 
(on the order of 30%), which are within groups of very high quality and poor quality barrels, such as the 
SIG, and HiPoint. This is probably a result from the poor classification ability of the current system for 
those gun models and ammunitions, which negates the effects of the increased number of control bullets. 
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Probability of Error Winchester, Hard Theshold 
Beretta Ruger S&W Taurus Browning HiPoint SIG BRYCO 

N
o.

C
on

tr
o 

l
B

ul
le

t 3 0.12% 0.48% 3.46% 14.90% 15.40% 34.02% 44.60% 47.67% 
4 0.05% 0.23% 2.79% 12.12% 15.06% 34.27% 44.65% 46.54% 
5 0.04% 0.11% 2.87% 11.88% 12.73% 33.19% 44.22% 46.41% 

Probability of Error Remington, Hard Threshold 
Beretta Ruger S&W Taurus Browning HiPoint SIG BRYCO 

N
o.

C
on

tr
o 

l
B

ul
le

t 3 1.08% 4.78% 17.89% 25.05% 32.18% 43.66% 43.32% 46.77% 
4 0.52% 3.51% 16.73% 20.49% 29.49% 38.81% 43.17% 45.36% 
5 0.74% 2.74% 16.28% 18.40% 28.91% 42.08% 43.64% 46.44% 

Table 15: Comparison of probability of error with respective to the number of control bullets for 
each gun model using different ammunition. 

One could also say that if bad data is provided to the classifier, the amount of data is irrelevant (trash in, 
trash out). By the same token, if the data provided to the classifier is good, the effect of increasing the 
number of control bullets is significant (see Figure 29, where the scale is logarithmic). Notice also that 
very low probabilities of error can be achieved as the number of control bullets is increased (as low as 
0.04% for Beretta with 5 control bullets, and Winchester ammunition). This is a very encouraging result.  

The probability of classification error is inversely proportional to the number of control bullets used in the 
classification process. Does this mean that it is possible to achieve any arbitrarily low probability of error 
(by increasing the number of control bullets)? Do all barrels have the same behavior in terms of 
probability of classification error decay as a function of the number of control bullets? In order to analyze 
the different barrel models side-by-side, it is convenient to normalize the improvements with respect to a 
baseline number of control bullets. Having done that, we can study the relative change in the probability 
of classification error as the number of control bullets is increased. Figure 30 shows a graphical 
representation of the decay of the probability of classification error as a function of the number of control 
bullets, where the baseline number of control bullets is three. As seen in this plot, the addition of control 
bullets decreases the probability of error for all barrel models, but not to the same extent. Consider for 
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Figure 29: Effect of Number of Control Bullets 
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Figure 30: Relative Improvement of Probability of Error as a Function of Number of Control 
Bullets; Normalized Mean, Winchester Ammunition. 

example the effect of adding a forth control bullet. While the probability of classification error for 
Browning guns decreases to approximately 78% when the number of control bullets increases from three 
to four, the probability of error for Beretta guns decreases to about 19%. Moreover, the degree of 
improvement depends on the quality of the barrel. In the case of good quality barrels, the relative 
improvement is very significant, while in the case of very good or poor quality barrels, the decrease is 
minimal. Notice too that the decay seems to be exponential.  

Figure 30 also suggests that it is not be possible to decrease the probability of error to any arbitrarily 
small number by increasing the number of control bullets, since the plots in Figure 30 seem to have an 
asymptotic behavior. Furthermore, Figure 30 suggests that it should be possible to model the expected 
probability of error as a function of the number of control bullets for any barrel model by obtaining a 
relatively minimal amount of empirical data. Although a preliminary model of this behavior was 
explored, time limitations prevented us from completing such investigation.  
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Figure 31: Effect of Classification Approach for 3 Control Bullets 

4.6.3.4 Effects of Classification Approach 
It is not surprising that the metric used to measure the degree of similarity between two distributions (and 
used in Step 4 of Table 2) plays a role in the bullet classification. Nevertheless, as seen in Figure 27 the 
effect of the classification approach (among the three approaches discussed in Section 4.2.3.2) is 
secondary when compared to that of the barrel model and ammunition manufacture.  

Figure 31 shows the variation in the probability of error for all barrels under consideration, and for all 
three classification approaches when 3 bullets are used for control purposes and the ammunition under 
consideration is Winchester. As seen in Figure 31, the classification approach has a significant effect for 
barrel models of “good” quality (Beretta, Ruger, Smith & Wesson). The effect of the classification 
approach on the remaining barrels is almost negligible. However, the significance of this phenomenon is 
questionable, since the bullets fired by these barrels present such challenges to the acquisition hardware 
and processing algorithms, that no classification approach would have been successful with them. In 
particular, notice that the probability of error for HiPoint and SIG barrels is almost 50%, meaning that the 
classification outcome is almost random.  

As the number of control bullets is increased, we have found that the different classification approaches 
tend to perform more or less equivalently. This phenomenon can be seen in Figure 32, where the same 
type of plot shown in Figure 31 has been repeated, but using in this case 5 control bullets. Notice how the 
difference in performance between the classification approaches is in this case minor even for those 
barrels considered as “good.” The reason for this result can most likely be explained by the fact as the 
number of control bullets is increased, the best and second-best similarity measures obtained by 
comparing the control bullets better approximates the associated matching and non-matching 
distributions. Therefore, the classification results are more accurate, almost regardless of the classification 
approach used. 
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Figure 32: Effect of Classification Approach for 5 Control Bullets 

4.6.3.5 Effects of Allowing “Inconclusive” Determinations 
For most gun models under consideration, the probabilities obtained of identification errors shown in are 
less than satisfactory. As already discussed, part of the problem lies in the fact that the current 3D sensor 
and software are not capable to handle the very good and poorly manufactured barrels. However, there is 
another factor which contributes to the high number of errors. So far, the only two options available to the 
classifier have been to declare a “match” or a “non-match” between an evidence bullets and the set of 
control bullets. This does not reflect all the options available to firearms examiners, who can also declare 
an “inconclusive” identification. Inconclusive identifications may be the result of a variety of factors, 
such as the condition of the evidence bullet, the condition of the suspect gun, or more relevant to our case, 
the lack of barrel individuality. The question is then: how would the performance of the proposed 
classifier change if given the option to declare an “inconclusive” identification. The approach to be 
followed is to take advantage of the definition of barrel individuality to decide if the barrel under 
consideration is sufficiently individual for identification. If not, the classifier will simply declare an 
“inconclusive” identification. During the final periods of this project, we begun to explore this possibility 
and our results are preliminary.  

Appendix C in Progress Report No. 12 includes the results of a large number of simulations performed to 
evaluate the effect of allowing for inconclusive classifications. In evaluating this option, a variety of 
approaches were tested ranging form a rank-sum based approach to a normalized closest mean approach. 
The normalized closest mean approach seemed to perform in the most consistent way, and it is defined as 
follows:  

Normalized Closest Mean: 
The normalized closest mean criterion measured the number of standard deviations between the mean of 
the matching and non-matching distributions. If the means of these distributions were not sufficiently “far 
away,” the barrel under consideration was declared not sufficiently unique, and the comparison 
“inconclusive.” More precisely, given a positive number γ , consider the following two conditions: 
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r − w /σ (r) > γ (22) 

w − r /σ (w) > γ (23) 

If either of these two conditions was not satisfied, the barrel was considered insufficiently unique, and the 
classification was inconclusive. Otherwise, the classification proceeded.  

Table 16 shows the variation of the probability of error as a function of gamma for those barrel which 
have been found to be “good” (where the term “good” indicates quality of transfer of features between 
barrel and bullet). This table considers the case where a normalized closest mean classification approach 
is taken, 5 control bullets are used, and the ammunition is of Winchester manufacture. Overall, this is 
considered to be a relatively “benign” case, where good ammunition and good barrels are used. The rows 
labeled “Pe” correspond to the probability of error in the classification process, while the rows labeled 
“Pinc” correspond to the percentage of all classification attempts where the comparison was deemed 
“inconclusive.” The probability of error data is also plotted in Figure 33. As can be seen in Figure 33, 
increasing the value of gamma as defined in Equation (22) and (23) does, in general, decrease the 
probability of error. However, this effect is not always monotonic, as in the case of Taurus, where the 
probability of error increases between Gamma = 2 and Gamma = 3.  

Although we have invested a considerable amount of effort trying to integrate the possibility of an 
“inconclusive” classification, Table 16 shows the “inefficiency” of the approach so far undertaken. As 
expected, as Gamma increases, the percentage of comparison cases which is classified as inconclusive 
increases (since higher Gamma implies a stricter requirement for the best and second-best distributions of 
the control bullets). If we consider the case of Taurus as an example, in order to decrease the probability 
of error from 10.43% to 4.17% it was necessary to classify 98.23% of the comparisons as inconclusive. 
This percentage of inconclusive classifications seems excessive. One would expect that if the initial 
probability of error is 10.43% (with no inconclusive classifications) then something on the order of 
10.43% inconclusive classifications would lead to approximately 0% probability of classification error. In 
other words, it would seem like the presented approach is too aggressive, and does not offer an optimal 
way to identify those classifications which should be labeled inconclusive. 

The reason for the apparent deficiency of the presented approach may be the following: The proposed 
approach uses the best and 
second-best similarity measures 

Beretta Ruger Smith Taurusresulting from the comparison of 
Pe 0.068 0.555 2.909 10.430the control bullets as samples of Gamma 0 
Pinc 0.000 0.000 0.000 0.000the matching and non-matching 
Pe 0.068 0.555 2.809 10.475similarity measures of the barrel Gamma 1 
Pinc 0.000 0.000 1.260 5.958model under consideration. It is 
Pe 0.068 0.422 1.813 6.830Gamma 2possible that the number of 
Pinc 1.240 1.351 15.174 59.625samples provided by the control Pe 0.061 0.111 2.723 9.566Gamma 3bullets (in the case of 5 control Pinc 6.946 4.430 27.864 90.889

bullets, only 10 sample values are Pe 0.000 0.113 1.197 4.167Gamma 4available) is too small to estimate Pinc 27.603 6.612 47.831 98.236 
the mean and standard deviation normalized Closest Mean 5 control bullets 
(see Equations (22) and (23)) of 
these distributions. This limitation Table 16: Effect of Allowing for Inconclusive Classifications 
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Figure 33: Effect of Allowing for “Inconclusive” Classifications 

will become more evident as the matching and non-matching distributions are closer to each other, as is 
the case of Taurus. Alternative approaches to integrate an inconclusive classification have been 
considered as part of this project, but we have not had the chance to evaluate their effectiveness due to 
time limitations. As an example, one possible approach would be to modify the normalized closest mean 
criterion so that in order to classify a match between the evidence and the control bullets, the normalized 
closest mean requirement becomes ρ r − e /σ (r) < w − e /σ (w) (for ρ > 1), while in order to classify a 

non-match, the normalized closest mean requirement becomes r − e /σ (r) > ρ w − e /σ (w) . If neither of 
these conditions is satisfied, then the comparison is classified as an “inconclusive.” This is a 
generalization of the original approach, where ρ = 1 and no inconclusive classifications are allowed. 

4.7 Damaged Bullet Study 
The identification of even moderately damaged bullets presents a greater challenge than the identification 
of pristine bullets. While this is the case for both human firearms examiners and automated systems, it is 
particularly true in the case of an automated system since damaged bullets will not in general conform to 
a specific shape. Figure 34 shows an example of what a moderately damaged bullet may look like as 
compared to a pristine bullet. While a pristine bullet has a round cross-section which closely 
approximates a circle, a damaged bullet will in general have unpredictable cross sections which do not fit 
a simple mathematical description. This complicates the processing of such data, since no assumptions 
can be made regarding their general shape. Damaged bullets also pose challenges at the acquisition stage, 
again due to their unpredictable shape. 

As part of this project, software and hardware to address the challenges associated with damaged bullets 
were developed. From the perspective of hardware, different bullet holders were manufactured for both 
pristine and damaged bullets (see Figure 35.) However, the main hardware problem presented by a 
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damaged bullet is created by the fact that as it is rotated in 
range of the depth sensor (the laser depth sensor can be seen in 
Figure 35) it becomes increasingly difficult to maintain the 
bullet surface within the sensor range. From the software 
perspective, the fact that damaged bullets are not cylindrical 
(nor is their shape known a-priori) necessitated the 
development of manual LEA-by-LEA acquisition software and 
processing routines. 

Although challenging, the challenges mentioned above can be 
overcome. A more significantly difference between pristine 
and damaged bullets is that while pristine bullets will in most 
cases have all their LEAs intact and available for acquisition, 
damaged bullets will normally have only a reduced number of 
LEAs suitable for acquisition (since the striations on those 
LEAs which make impact with a target will be completely 
obliterated), and even those LEAs may be deformed. From a 
statistical perspective, this implies that the amount of data 
available for each comparison may vary significantly from 
comparison to comparison. Based on the bullets which were 
generated for this study, the number of LEAs which could 
normally be acquired was 3 (compared to 5 or 6 in most 
pristine bullets.) For this reason, in studying the statistical Figure 34: Comparison of Pristine
properties of the distribution of matching and non-matching and Damaged Bullet
pairs of bullets it makes sense to consider LEA-to-LEA 
comparisons as opposed to bullet-to-bullet comparisons.  

4.7.1 Comparison of Relevant Distributions for Pristine and Damaged Bullets 
Figure 36 shows the distributions of best, second-best and non-matching LEA-to-LEA similarity measure 

bullet comparisons (blue) and 
damaged bullet comparisons (red). 
It is important to note that while 
the pristine bullets distributions 
were obtained by comparing 
pristine bullets among themselves, 
the damaged bullet distributions 
are the result of comparing 
damaged bullets against pristine 
bullets. We consider the 
comparison of damaged bullets 
against pristine bullets (as opposed 
to damaged bullets against 
themselves) because these 
comparisons are more 
representative of those made by 

values for Ruger barrels both for Winchester (left) and Remington (right) ammunition for both pristine 

firearms examiners. In most Figure 35: Acquisition of Pristine and Damaged Bullets 
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Figure 36: Distributions of best, second-best and non-matching LEA-to-LEA similarity measure 
values obtained for Ruger barrels for Winchester (left) and Remington (right) ammunition 

situations, an evidence bullet found in a crime scene will show some degree of damage. However, the 
control bullets fired by the examiner for identification purposes will be retrieved in pristine condition. 
Therefore, at the time of performing a comparison the examiner will compare the damaged evidence 
bullet against the pristine control bullets. 

The main statistical parameters (mean, median and standard deviation) associated with the distributions 
shown in Figure 36 are summarized in Table 17. As seen by these results (both tabulated and graphical), 
the quantitative nature of these distributions has not been significantly affected by the damage of the 
bullets. The most notable change takes place for the mean and median of the matching distribution for 
Winchester ammunition, where the pristine bullets achieve a median of .83, while the damaged bullets 
achieve a median of .68. In the case of the non-matching and second best LEA-to-LEA distributions 
minor shifts can also be noticed. However, these shifts do not seem to affect the satisfactory degree of 
individuality of these barrels. In the case of Remington ammunition, it is almost surprising to see that the 
matching distribution is almost the same for pristine and damaged bullets. The same type of analysis was 
performed with bullets fired by Beretta and Smith and Wesson (these are the guns which display the best 
degree of individuality.) The results in the case of Beretta barrels are shown in Figure 38, and for Smith 
and Wesson in Figure 37.  

As seen in these distributions, most of the highest scores achieved using pristine bullets become much 
less likely to be achieved for damaged bullets (this is particularly noticeable in the case of Ruger barrels). 
As mentioned before, the challenge associated with the acquisition and analysis of damaged bullets is 

best non-matching second-best 
mean median std mean median std mean median std 

Ruger 
Win pristine 0.779 0.830 0.154 0.403 0.404 0.110 0.395 0.396 0.100 

damaged 0.654 0.676 0.164 0.436 0.434 0.102 0.414 0.412 0.110 

Rem pristine 0.638 0.686 0.215 0.410 0.412 0.114 0.403 0.405 0.114 
damaged 0.655 0.695 0.195 0.455 0.456 0.103 0.437 0.434 0.107 

Table 17: Main statistical parameters of similarity value distributions for pristine and damaged bullets 
fired by Ruger bullets 
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Figure 38: Distributions of best, second-best and non-matching LEA-to-LEA similarity measure 
values obtained for Beretta barrels for Winchester (left) and Remington (right) ammunition 

significant. Therefore, this result is not surprising. Moreover, the highest similarity measure values 
achieved for pristine bullets occur for some extraordinarily repeatable LEAs. Since damaged bullets will 
not have all LEAs available for acquisition (in most cases, less than half are available), it becomes less 
likely for some of the highest LEA-to-LEA similarity values be achieved.  

Overall, the distributions achieved with damaged bullets are less “attractive” than those achieved with 
pristine bullets (i.e. their properties towards accurate classification are less favorable). This is particularly 
true in the case of Smith and Wesson using Winchester ammunition. The matching distribution achieved 
by damaged Smith and Wesson bullets of Winchester manufacture is noticeable worse than that achieved 
with pristine bullets. However, this phenomenon did not repeat for Remington ammunition. At this point 
we have not been able to explain this difference. 

Figure 37: Distributions of best, second-best and non-matching LEA-to-LEA similarity measure 
values obtained for Smith barrels for Winchester (left) and Remington (right) ammunition 
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Winchester 
Orientation LEA to LEA 

Remington 
Orientation LEA to LEA 

PFP PFN PFP PFN PFP PFN PFP PFN 

Ruger pristine 
damaged 

0.38 
3.06 

0.25 
18.33 

0.00 
4.57 

0.20 
13.06 

7.12 
25.69 

2.40 
6.11 

0.59 
29.85 

4.55 
5.56 

Beretta Pristine 1.04 0.10 0.17 0.40 1.01 1.05 0.13 3.10 
Damaged 1.67 20.59 4.87 9.41 3.73 18.82 4.64 14.41 

Smith pristine 0.54 1.50 0.04 2.10 24.67 8.00 19.49 9.90 
damaged 16.67 70.00 2.31 63.61 26.53 42.75 39.64 34.00 

Table 18: Effect of bullet damage on probability of classification error 

4.7.2 Comparison of Classification Results for Pristine and Damaged Bullets 
Having compared the distributions of LEA-to-LEA similarity measures obtained for pristine and damaged 
bullets, we turn to the question of greatest interest. To what extent does this difference affect the ability to 
perform an accurate match/non-match classification? In order to explore this issue, we performed a 
comparison of the probability of false positive and false negative identification obtained using pristine 
and damaged bullets. This comparison was performed in following two very similar approaches. The first 
approach was the same followed in Section 4.6. The second approach introduces a minor but significant 
variation of this approach. In Section 4.6 we made us of the best and second-best orientation similarity 
measures to perform a classification. In this section, due to the fact that damaged bullets often have a 
small number of LEAs suitable for comparison, we turn to the best and second best LEA-to-LEA 
similarity measures. 

With each of these two versions of the procedure described in Table 2, we performed a bullet-to-gun 
classification experiment assuming four control bullets, one evidence bullet and using the normalized 
closest mean approach described in Section 4.2.3. Furthermore, in order to evaluate the possible effect of 
bullet damage, we repeated this experiment under two scenarios: one scenario where the evidence bullet 
was in pristine condition and a second scenario where the evidence bullet was damaged. The results of 
this experiment for Ruger, Beretta and Smith and Wesson are tabulated in Table 18 (where the numbers 
are in percentage of error) for both Winchester and Remington ammunition.  

Table 18 provides a significant amount of information. Some of this information is the result of 
considering the probability of false positive and false negative classification errors separately. In the case 
of pristine bullets, Table 18 suggests that the use of LEA-to-LEA similarity measures (as opposed to 
orientation similarity measures) generally decreases the probability of false positive identification errors, 
while it increases the probability of false negative identifications errors. This observation indicates that it 
may well be possible to improve upon the results obtained in Section 4.6 for pristine bullets.  

Of greater interest for this section is the fact that the presence of damage in the evidence bullet 
significantly increases the probability of both false positive identifications and false negative 
identifications with respect to the results obtained with pristine evidence bullets. The increase in the 
number of false negative identifications is not surprising, since it is to be expected that the features found 
on damaged bullets will not have the same quality as those found on pristine bullets, resulting in a 
decrease of similarity measure values, and therefore a false negative classification. The increase of false 
positive identifications, however, is surprising. This result seems to be due to the fact that the number of 
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LEAs available for comparison in the case of damaged bullets is lower than that available in the case of 
pristine bullets. Due to this fact, the standard deviation of the mean of LEA-to-LEA similarity measures 
obtained when comparing the evidence bullet against the control bullets is higher in the case of damaged 
bullets than in the case of pristine bullets. Therefore, the probability of obtaining a relatively high LEA-
to-LEA similarity measure average is greater in the case of damaged evidence bullets than in the case of 
pristine evidence bullets, causing a larger number of false positive identifications. This observation is 
important because it would appear that the problem lies in the classification approach, not on the 
bullet data. More work remains to be done to improve the classification approach.  
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5. Conclusions 
This study was structured into three main components: The first component dealt with the effect of barrel 
wear. As a result of this portion of the study, it was demonstrated that barrel wear does not pose a 
significant challenge to firearms identification. The second component of the study dealt with the 
development of methodologies to address two main issues: a) the evaluation of the degree of individuality 
of barrels by looking at the bullets fired through them, and b) the estimation of the probability of error in 
bullet-to-barrel classifications. Both these two components of the study were analyzed using bullets in 
pristine condition. As a result of this portion of the study it was demonstrated that it is feasible to apply a 
classification approach to identify bullets fired by the same barrel as opposed to bullets fired by different 
barrels of the same manufacture and make. The third component of the study focused on the degree to 
which the conclusions of the previous sections can be applied to damaged bullets. As a result of this 
portion of the study, it was demonstrated that it is possible to link a damaged bullet to a barrel with a high 
degree of certainty. However, the achievable overall classification accuracy is inferior to that attained 
with pristine bullets. 

The key technical questions to be addressed by this study were the following: 

a) Given 3D information from a bullet's surface, what quantitative criteria should be used to establish 
the individuality of a gun? 

b) Given 3D information from a bullet's surface, what quantitative criteria should be used to establish 
that a suspect gun fired a given evidence bullet? 

c) Once such criteria are developed, can the probability of a bullet/gun match being erroneous be 
estimated? 

As part of this study, quantitative criteria to establish the individuality of a gun (question a), and to 
perform a classification (question b) were developed. These criteria were implemented and empirically 
tested with an unprecedented number of sample bullets. Estimates of the probability of error associated 
with bullet/gun classification (question c) were obtained, and the feasibility of identifying a bullet as 
having been fired by a given gun was validated based on well established statistical practices. A number 
of fundamental questions associated with bullet identification were considered and answered. Some of 
these questions were associated with the effect of a number of variables such as: the effect of barrel 
manufacture, condition and wear; the effect of bullet manufacture and condition (damaged bullets); the 
effect of the number of control bullets used in identification; the effect of various methods of 
classification, etc. Other questions were related to the soundness of common practices of firearms 
examiners. Some of these practices are related to the choice of ammunition used in an identification (to 
the extent possible, we have showed that it should be the same as that of the evidence), the test firing of a 
suspect barrel before and after it is cleaned, and other factors such as recommendations regarding the 
number of control bullets to use in an identification.  

Overall, this study provides a solid validation of the foundations of ballistic identification. However, due 
to limitations of the current system, these conclusions could not be verified for all barrel models under 
consideration. The limitations of the current system can be identified as hardware and algorithmic 
limitations. In terms of hardware, it has become evident that the depth resolution of the system used for 
this project was not sufficient for the features found on the bullets fired by barrels for which the surface 
finish of the rifling is above average. The second significant limitation of the hardware used in this 
project was the amount of data which could be obtained in a reasonable acquisition time. Figure 39 
demonstrates the significance of this limitation. The top plot of this figure shows a comparison of two 
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Figure 39: Preliminary Results Obtained with Confocal Microscope 

cross sections of LEAs based on the data attainable with the current system. This data is composed of five 
cross sections of the LEAs under consideration. Notice that based on this data, it is impossible to judge 
which portions, if any, contain useful data. The bottom of Figure 39 shows data of the same LEAs imaged 
on the top, but obtained with a confocal microscope. This data amounts to a sequence of patches 
providing a total of 512 cross sections of the LEAs of interest (the image shown is a pseudo-realistic 
rendering of the LEA surface data as seen from above the LEA). Moreover, the depth resolution of this 
instrument is an order of magnitude better than that of the current system. Notice that the data obtained 
with the confocal microscope is sufficiently dense to allow for an identification of useful portions of data 
(those portions which show clear striations). The availability of data of this quality and quantity would 
allow not only to detect smaller features than those currently detected, but it would also allow the 
development of significantly more sophisticated algorithms for ballistic identification, addressing the 
limitations of the current algorithms. Therefore, it should be clear that there is significant room for 
improvement terms of the achievable classification performance. 

The limitations of the current system to classify bullets fired by certain brands of barrels should not 
be extrapolated to suggest that firearms examiners (or an improved system) would not be able to 
attain lower probabilities of error. In fact, even with the data available, there is ample evidence that 
the results presented in this report can be improved upon. This issue may be the subject of future 
research. 

Another important consequence of this project was to bring topographical methods of bullet identification 
to the law enforcement community. In May 2000 IAI and FTI reached an agreement to develop a 
commercial system which would integrate both 2D and 3D surface data. A prototype of such system was 
unveiled to the firearms examiner’s community at the main exhibit floor of AFTE 2003 as part of the FTI 
booth. By the end of 2004, FTI began the commercialization of BulletTRAXTM-3D, a 3D based ballistic 
analysis system developed as a result of the collaboration between IAI and FTI. BulletTRAXTM-3D has 
received high praise from the firearms examiner’s community, and brings the benefits in performance of 
topographical analysis of firearms evidence to the law enforcement community.  
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