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Abstract

We describe the development and implementation of an efficient spectral element code for
multimillion gridpoint simulations of incompressible flows in general two- and three-dimensional
domains. Key to this effort has been the development of scalable solvers for elliptic problems
and a stabilization scheme that admits full use of the method’s high-order accuracy. We review
these and other recently developed algorithmic underpinnings that have resulted in good parallel
and vector performance on a broad range of architectures and that, with sustained performance
of 319 GFLOPS on 2048 nodes of the Intel ASCI-Red machine at Sandia, readies us for the
multithousand node terascale computing systems now coming on line at the DOE labs.

1 Introduction

One of the primary motivations driving high-performance computing is to augment scientific exper-
iments as a means of investigation. To this end, we are working with several collaborators on the
development and use of a spectral element code for comparative numerical and experimental studies
on challenging problems in fluid mechanics and heat transfer. As illustrated in Fig. 1, these problems
include the generation of hairpin vortices resulting from the interaction of a flat-plate boundary layer
with a hemispherical roughness element [25, 26]; flow in a carotid artery; Rayleigh-Taylor instabili-
ties [28]; forced convective heat transfer in grooved and grooved-flat channels [12]; and modeling the
geophysical fluid flow cell (GFFC) space laboratory experiment of buoyant convection in a rotating
hemispherical shell [14]. This paper presents a brief overview of the critical algorithmic and imple-
mentation features of our numerical approach that have led to efficient simulation of these problems
on modern parallel architectures.

Our simulations are based on numerical integration of the unsteady incompressible Navier-Stokes
equations,

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u

−∇ · u = 0,

coupled with appropriate boundary conditions on the velocity, u. Temporal discretization is based
on stable, high-order, operator-splitting formulations that permit large time steps (typ. a convec-
tive CFL of 1–5). Spatial discretization is based on spectrally convergent, high-order, weighted
residual techniques employing tensor-product polynomial bases on deformed quadrilateral or hex-
ahedral elements. The resultant symmetric systems are solved using conjugate gradient iteration
with scalable Jacobi and additive Schwarz preconditioners. For the latter, we have developed a fast
parallel coarse-grid solver that readily scales to thousands of processors. The tensor-product bases
lead to matrix-free operator evaluations having favorable storage and work estimates of O(KNd)
and O(KNd+1), respectively, for discretizations in lRd involving K elements of order N . Moreover,
the tensor-product-based operator evaluation can be cast as matrix-matrix products, implying that
the work complexity estimate has an extremely low constant on modern cache-based architectures.
Because the weighted residual formulation requires only C0 continuity, the use of boundary-minimal
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Figure 1: Recent spectral element simulations. Clockwise from top left: hairpin vortex generation
in wake of hemispherical roughness element (Reδ = 700); flow in a carotid artery; two-dimensional
Rayleigh-Taylor instability; temporal-spatial evolution of convective instability in heat-transfer aug-
mentation simulations; spherical convection simulation of the geophysical fluid flow cell (GFFC) at
Ra = 1.1× 105, Ta = 1.4× 106.

bases implies that the stencil depth does not increase with order, and interprocessor communication
costs are consequently equivalent to standard low-order formulations.

Our production code runs on a number of different platforms, including the Cray T3E, the SGI
Origin2000, the IBM SP, networks of workstations, and the ASCI-Red machine at Sandia. The
code handles general axisymmetric, two-dimensional, and three-dimensional flow configurations;
supports a broad range of boundary conditions for hydrodynamics and multiple-species transport;
and is currently being used for a variety of applications, as illustrated in Fig. 1. For performance
benchmarking, we consider the first of these, the interaction of a flat-plate boundary layer with
an isolated hemispherical roughness element, at Reynolds number Reδ = 1600. Simulations of the
hairpin vortex problem have been run on 2048 333 MHz nodes of ASCI-Red in both in single- and
dual-processor mode, with sustained performance of 319 GF being achieved for the latter.

The paper is organized as follows. Section 2 provides an overview of the spectral element method.
Section 3 discusses matrix-free operator evaluation. Section 4 gives a brief outline of the time
advancement scheme. Section 5 describes the principal components of the linear solvers. Section 6
discusses implementation and tuning issues. Performance results for simulations on ASCI-Red are
presented in Section 7. A brief conclusion is given in Section 8.
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Figure 2: Spectral element discretization in lR2 showing gl nodal lines for (K, N) = (3, 4).

2 Spectral Element Discretization

The spectral element method is a high-order weighted residual technique developed by Patera and
coworkers in the ’80s that couples the tensor product efficiency of global spectral methods with the
geometric flexibility of finite elements [18, 21]. Locally, the mesh is structured, with the solution,
data, and geometry expressed as sums of Nth-order tensor product Lagrange polynomials, based on
the Gauss or Gauss-Lobatto (GL) quadrature points. Globally, the mesh is an unstructured array
of K deformed hexahedral elements and can include geometrically nonconforming elements. The
discretization is illustrated in Fig. 2, which shows a three-element mesh in lR2 with the GL grid for
the case N = 4. Also shown is the reference (r, s) coordinate system used for all function evaluations.
Functions in the mapped coordinates are of the form

u(xk(r, s))
∣∣
Ωk =

N∑

i=0

N∑

j=0

uk
ijh

N
i (r)hN

j (s) , (1)

where uk
ij is the nodal basis coefficient; hN

i is the Lagrange polynomial of degree N based on the
GL quadrature points, {ξN

j }N
j=0; and xk(r, s) is the coordinate mapping from the reference domain,

Ω̂ := [−1, 1]d, to Ωk. The use of the GL basis for the interpolants leads to efficient quadrature for
the weighted residual schemes and greatly simplifies operator evaluation in the case of deformed
elements.

For problems having smooth solutions, such as the incompressible Navier-Stokes equations, ex-
ponential convergence is obtained with increasing N , despite the fact that only C0 continuity is
enforced across element interfaces. This is demonstrated in Table 1, which shows the error in com-
puted growth rates when a small-amplitude Tollmien-Schlichting wave is superimposed on plane
Poiseuille channel flow at Re = 7500, following [9, 20]. The amplitude of the perturbation is 10−5,
implying that the nonlinear Navier-Stokes results can be compared with linear theory to about five
significant digits. From Table 1, it is clear that doubling the number of points in each spatial di-
rection yields several orders of magnitude reduction in error, implying that just a small increase in
resolution is required for very good accuracy. The significance of this is underscored by the fact

Table 1: Spatial and temporal convergence, Orr-Sommerfeld problem, K = 15
∆t = 0.003125 N = 17 2nd Order 3rd Order

N α = 0.0 α = 0.2 ∆t α = 0.0 α = 0.2 α = 0.0 α = 0.2
7 0.23641 0.27450 0.20000 0.12621 0.12621 171.370 0.02066
9 0.00173 0.11929 0.10000 0.03465 0.03465 0.00267 0.00268

11 0.00455 0.01114 0.05000 0.00910 0.00911 161.134 0.00040
13 0.00004 0.00074 0.02500 0.00238 0.00238 1.04463 0.00012
15 0.00010 0.00017 0.01250 0.00065 0.00066 0.00008 0.00008
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(256, 16) α = 0.0, t = 1.0

(256, 16) α = 0.3, t = 1.5

(256, 8) α = 1.0, t = 1.5

(256, 8) α = 0.3, t = 1.5

(1024, 8) α = 0.05, t = 1.2

(256, 16) α = 0.05, t = 1.2

Figure 3: Vorticity contours for high Reynolds number simulations of shear layer roll-up at different (K, N)
pairings: (a–d) “thick” shear layer, ρ = 30, Re = 105, contours from -70 to 70 by 140/15; (e–f) “thin” shear
layer, ρ = 100, Re = 40, 000, contours from -36 to 36 by 72/13 (cf. Fig. 3c in [4]).

that, in three dimensions, the effect on the number of gridpoints scales as the cube of the relative
savings in resolution.

While accuracy is important for simulation it is equally necessary to have stability. We have
recently developed a filter-based stabilization procedure for spectral element methods that greatly
improves their performance in high-Reynolds number applications [11]. The filter is applied once
per timestep and only requires (inexpensive) local interpolation to suppress the Nth mode in each
element. The parameter α in Table 1 reflects the strength of the filter, with α = 0 implying no
filtering and α = 1 implying complete suppression of the Nth mode. The results in Table 1 show
that the filter slightly degrades spatial accuracy, but that exponential convergence is nonetheless
attained. More remarkable are the temporal convergence results, which show that O(∆t2) and
O(∆t3) convergence is attained for the filtered case, despite the fact that the third-order scheme
on its own (α = 0) is unstable. In this case, the stability provided by the filter permits the use of
higher-order temporal schemes, thereby allowing a larger timestep for a given accuracy.

The benefits of the stable high-order schemes are perhaps best demonstrated by results in Fig.
3 for the high Reynolds number shear layer roll-up problems studied in [3, 4]. Doubly periodic
boundary conditions are applied on Ω := [0, 1]2, with initial conditions

u =
{

tanh(ρ(y − 0.25)) for y ≤ 0.5
tanh(ρ(0.75− y)) for y > 0.5 , v = 0.05 sin(2πx) .

Each case consists of a 16 × 16 array of elements, save for (e), which is 32 × 32. The timestep size
is ∆t = .002 in all cases, corresponding to CFL numbers in the range of 1 to 5. Without filtering,
we are unable to simulate this problem at any reasonable resolution. In (a), we see the results just
prior to blowup for the unfiltered case with N = 16, corresponding to an n× n grid with n = 256.
Unfiltered results for N = 8 (n = 128) and N = 32 (n = 512) are similar. Filtering with α = 0.3
yields dramatic improvement for n = 256 (b) and n = 128 (d). Although full projection (α = 1) is
also stable, it is clear by comparing (c) with (d) that partial filtering (α < 1) is preferable. Finally,
(e) and (f) correspond to the difficult “thin” shear layer case [4]. The spurious vortices in (e) are
eliminated in (f) by increasing the order to N = 16 at fixed resolution (n = 256). We note that the
converged result in (f) was unattainable by the second- or fourth-order schemes considered in [4] at
resolutions of n = 512 or n = 256, respectively.
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3 Operator Evaluation

The computational efficiency of spectral element methods derives from their tensor product bases
(1). To illustrate, we express the stiffness matrix for an undeformed element k in lR2 as a tensor
product sum of one-dimensional operators,

Ak = B̂y ⊗ Âx + Ây ⊗ B̂x , (2)

where Â∗ and B̂∗ are the one-dimensional stiffness and mass matrices associated with the respective
spatial dimensions. If uk = uk

ij is the matrix of nodal values on element k, then a typical matrix-
vector product required of an iterative solver takes the form

(Akuk)lm =
N∑

i=0

N∑

j=0

(B̂y,mjÂx,liu
k
ij + Ây,mjB̂x,liu

k
ij) (3)

= ÂxukB̂T
y + B̂xukÂT

y .

The latter form illustrates how the tensor product basis leads to matrix-vector products (Au) being
recast as matrix-matrix products, a feature central to the efficiency of spectral element methods.

Similar forms result for other operators and for complex geometries. For example, evaluation of
the discrete Laplacian for a deformed hexahedral element in lR3 takes the form

Akuk =




Dr

Ds

Dt




T


Grr Grs Grt

Grs Gss Gst

Grt Gst Gtt







Dr

Ds

Dt


 uk , (4)

where Dr = (I ⊗ I ⊗ D̂), and so forth, and the Gij ’s are diagonal matrices of order (N + 1)3 that
combine the quadrature weights with the Jacobian and metrics associated with the transformation
from the physical to computational domain. The total work per element for the evaluation of (4)
is 12N4 + 15N3. As the main memory to cpu bandwidth on modern cache-based architectures
lags processor performance, an important criterion in algorithm selection is the number of required
memory references. The total number of such references is 7N3 per element, which is on par with
standard low-order schemes. Note that Ak in (4) is full, implying that the work and storage would
be O(N6) if it was explicitly computed and stored. Similar storage and memory access requirements
hold for the other operator evaluations.

4 Time Advancement

The Navier-Stokes time advancement is based on the second-order operator-splitting methods de-
veloped in [2, 19]. The convective term is expressed as a material derivative, and the resultant form
is discretized via a stable second-order backward-difference formula:

ũn−2 − 4ũn−1 + 3un

2∆t
= S(un) ,

where S(un) is the linear symmetric Stokes problem to be solved implicitly, and ũn−q is a velocity
field at time step n − q that is computed as the explicit solution to a pure convection problem.
The subintegration of the convection term permits values of ∆t corresponding to convective CFL
numbers of 1–5, thus significantly reducing the number of (expensive) Stokes solves.

The Stokes problem is of the form
[

H −DT

−D 0

](
un

pn

)
=

(
Bf
0

)

and is also treated by second-order splitting, resulting in subproblems of the form

Hun
i = f

i
,
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for the each velocity component (i = 1, . . . , 3), and

Epn = gn .

Here, H is a diagonally dominant Helmholtz operator representing the parabolic component of the
momentum equations and is readily treated via Jacobi-preconditioned conjugate gradients; E :=
DB−1DT is the Stokes Schur complement governing the pressure; and B is the (diagonal) mass
matrix in the velocity space. E is a consistent Poisson operator and is effectively preconditioned by
using an overlapping additive Schwarz procedure based on low-order Laplacians [9, 10].

5 Solvers

Efficient solution of the Navier-Stokes equations in complex domains depends on the availability of
fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is
the leading contributor to stiffness, as the characteristic propagation speed is infinite. Our pressure
solution procedure involves two stages. First, we exploit the fact that we are solving similar problems
from one step to the next, by projecting the current solution onto a subspace of previous solutions.
The remaining component is then computed using a scalable domain-decomposition-based iterative
solver.

When solving unsteady problems with iterative methods, significant computational savings can
be realized by first projecting the solution at time level n onto the space of l previous solutions to
generate a high-quality initial guess and then solving only for the perturbation. For the pressure
problem, this amounts to computing

E∆pn = gn − Ep̄n, p̄n := arg min
q∈Vl

∥∥p− q
∥∥

E
, Vl := {pn−1, . . . , pn−l} ,

(typ., 1 ≤ l ≤ L ∼ 25). The projection is implemented via the following Gram-Schmidt process

(i) p̄ =
l∑

i=1

αip̃i
, αi := p̃T

i
gn.

(ii) Solve : E∆p = gn − Ep̄ to tolerance ε. (5)

(iii) p̃
l+1

= (∆p−
l∑

i=1

βip̃i
)/||∆p−

l∑

i=1

βip̃i
||E , βi := p̃T

i
E∆p.

The first step computes an initial guess, p̄, as a projection in the E-norm (||p||E := (pT Ep)
1
2 ) of pn

onto an existing basis, {p̃
1
, . . . , p̃

l
}. The second computes the remaining (orthogonal) perturbation

L = 0

L = 26

L = 0

L = 26
ε

Figure 4: Iteration count (left) and residual history (right) with and without projection for a
1,658,880 degree-of-freedom pressure system associated with spherical convection problem of Fig. 1.
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to a specified absolute tolerance, ε. The third constructs an orthonormal basis for Vl by augmenting
the approximation space with the current (orthonormalized) solution. The approximation space is
restarted once (l > L) by setting p̃

1
:= pn/||pn||E . The projection scheme requires two matrix-vector

products per timestep, one in step (ii) and one in step (iii). (Note that it is not possible to use
gn − Ep̄ in place of E∆p in (iii) because (ii) is satisfied only to within ε.)

As shown in [7], the projection procedure can be extended to any parameter-dependent problem
and has many desirable properties. It can be coupled with any iterative solver, which is treated as
a black box (5ii). It gives the best fit in the space of prior solutions and is therefore superior to
extrapolation. It converges rapidly, with the magnitude of the perturbation scaling as O(∆tl)+O(ε).
The classical Gram-Schmidt procedure is observed to be stable (∆p is nearly orthogonal to Vl) and
has low communication requirements because the inner products for the basis coefficients can be
computed in concert. Under normal production tolerances, the projection technique yields a two-
to fourfold reduction in work. This is illustrated in Fig. 4, which shows the reduction in residual
and iteration count for the buoyancy-driven spherical convection problem of Fig. 1, computed with
K = 7680 elements of order N = 7 (1,658,880 pressure degrees of freedom). The iteration count is
reduced by a factor of 2.5 to 5 over the unprojected (L = 0) case, and the initial residual is reduced
by two and one-half orders of magnitude.

The perturbed problem (5ii) is solved using conjugate gradients, preconditioned by the additive
overlapping Schwarz method introduced by Dryja and Widlund [5]. The spectral element implemen-
tation summarized here was developed in [9, 10]. The preconditioner is expressed as

M−1
o := RT

0 A−1
0 R0 +

K∑

k=1

RT
k Ã−1

k Rk .

It requires a local solve for each (overlapping) subdomain (Ã−1
k ), plus a coarse-grid solve (A−1

0 ) based
on the spectral element vertex mesh. The operators Rk and RT

k are simply Boolean restriction and
prolongation matrices that map data between the global and local representations, while R0 and
RT

0 map between the fine and coarse grids. The method has a natural parallel aspect in that the
subdomain problems can be solved independently. Parallelization of the coarse-grid component is
less trivial and is discussed below. The local subdomain solves exploit the tensor product basis of
the spectral element method. Elements are extended by a single gridpoint in each of the directions
normal to their boundaries, and a low-order finite element Laplacian, Ãk, is constructed on the
extended domain, Ω̃k, using a form identical to (2). Fig. 5 contrasts a two-dimensional example of the
domain extension with an earlier unstructured approach based on the finite element method (FEM)
[9]. With the tensor product-based construction, it is possible to exploit the fast diagonalization
method (FDM) [17], in which the inverse of Ã−1

k (2) is expressed as

Ã−1
k = (Sy ⊗ Sx)[I ⊗ Λx + Λy ⊗ I]−1(ST

y ⊗ ST
x ) ,

∂Ω̃k¶
?

Ωk

q q q
q q q
q q b×

q q q
q q q
b b b

q q q
q q q

q qb×
q q
q q
q q

b
b
b

b b b
b b b
b b b

b
b
b

q q
q q
q q

q q
q q q
q q q

b× b b b
q q q
q q q

q q
q q q
q q q

b×

Figure 5: Degrees of freedom (open circles) for FEM-based (left) and tensor-product-based (right)
discretizations of local problems. Values at nodes marked “⊗” are set to zero by Rk. Homogeneous
Dirichlet boundary conditions are applied on ∂Ω̃k.
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Table 2: Additive Schwarz for cylinder problem, N = 7, ε = 10−5

FDM No = 0 No = 1 No = 3 A0 = 0
K iter cpu iter cpu iter cpu iter cpu iter cpu
93 67 4.4 121 10 64 5.9 49 5.6 169 19
372 114 37 203 74 106 43 73 39 364 193
1488 166 225 303 470 158 274 107 242 802 1798

where S∗ is the matrix of eigenvectors and Λ∗ the diagonal matrix of eigenvalues solving the gen-
eralized eigenvalue problem Ã∗z = λB̃∗z. The tensor product forms involving S∗ can be applied
via fast matrix-matrix products as in (3). A significant advantage of the tensor product basis is the
complexity for the local solves, which is of the same order as the matrix-vector product evaluation,
O(KN3) storage and O(KN4) work in lR3, with significantly smaller constants because the Lapla-
cian is simpler than the consistent Poisson operator, E. While the tensor product form (2) is not
strictly applicable to deformed elements, it suffices for preconditioning purposes to build Ãk on a
rectilinear domain of roughly the same dimensions as Ωk [10].

Table 2 shows the performance of the FDM-based overlapping Schwarz procedure for the two-
dimensional model problem of start-up flow past a cylinder at ReD = 5000 considered in [9]. The
polynomial degree is N = 7, and the meshes are obtained through two rounds of quad-refinement
from an initial mesh having K = 93 elements. The results are contrasted with the FEM-based
local solves of varying overlap, with No = 0 corresponding to block-Jacobi preconditioning (no
overlap) and No = 1 corresponding to the standard minimal overlap case (one-point extension).
The importance of the coarse-grid component is illustrated by the A0 = 0 case, which shows an
eightfold increase in iteration count over the corresponding case of No = 3 with a coarse-grid solve.
As noted in [9], the increase in iteration count with K is due to the presence of high aspect ratio
elements in this model problem. In practice, this effect is mitigated by the fact that low wave
number modes that degrade the performance are removed by the projection procedure described
above. Table 2 shows that the FDM is competitive with the FEM in terms of iteration count,
but is faster overall because of the speed of local solves. In three dimensions, the unstructured
FEM approach is not competitive with the tensor product approach due its higher computational
complexity.

As the example of Table 2 illustrates, a coarse-grid component is central to the efficiency of pre-
conditioners for problems having slowly decaying Green’s functions. As is well-known, the solution
of the coarse-grid problem, x0 = A−1

0 b0, is frequently a source of inefficiency on large distributed-
memory architectures [6, 13]. The difficulty arises because the solution and data are distributed
vectors, and A−1

0 is completely full, implying the need for an all-to-all communication. Moreover,
because there is very little work on the coarse grid (typ. O(1) d.o.f. per processor), the problem is
communication intensive. We have recently developed a fast coarse-grid solution algorithm based
on projection that readily extends to thousands of processors [8, 24]. For A0 ∈ lRn×n symmetric
positive definite, and X := (x̃1, . . . , x̃n) a matrix of A0-orthonormal vectors satisfying x̃T

i A0x̃j = δij ,
the projection of x onto the range of X (R(X)) is computed as

x̄ :=
n∑

i=1

αix̃i = XXT b, αi := x̃T
i b. (6)

Since x̄ is the best fit in R(X) ≡ lRn, we have x̄ = x and XXT = A−1
0 .

The projection procedure (6) is similar to (5i), save that the basis vectors {x̃i} are chosen to be
sparse. Such sparse sets can be readily found by recognizing that, for any gridpoint i exterior to the
stencil of j, there exists a pair of A0-conjugate unit vectors, êi and êj . For example, for a regular
n-point mesh in lR2 discretized with a standard five-point stencil, one can immediately identify half
of the unit vectors (associated, e.g., with the “red” squares) in lRn as unnormalized elements of X.
The remainder of X can be created by applying Gram-Schmidt orthogonalization to the remainder
of lRn. In [8, 24], it is shown that nested dissection provides a systematic approach to identifying a
sparse basis and yields a factorization of A−1

0 with O(n
2d−1

d ) nonzeros for n-point grid problems in
lRd, d ≥ 2. Moreover, the required communication volume on a P -processor machine is bounded by
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Figure 6: ASCI-Red solve times for a 3969 (left) and 16129 (right) d.o.f. coarse grid problem.

3n
d−1

d log2 P , a clear gain over the O(n) or O(n log2 P ) costs incurred by other commonly employed
solution methods.

The performance of the XXT scheme on ASCI-Red is illustrated in Fig. 6 for a (63 × 63)
and (127 × 127) point Poisson problem (n = 3069 and n = 16129, respectively) discretized by a
standard five-point stencil. Also shown are the times for the commonly used approaches of redundant
banded-LU solves and row-distributed A−1

0 . The latency∗2 log P curve represents a lower-bound on
solution time, assuming that the required all-to-all communication uses a contention-free fan-in/fan-
out binary tree routing. We see that the XXT solution time decreases until the number of processors
is roughly 16 for the n = 3969 case, and 256 for the n = 16129 case. Above this, it starts to track the
latency curve, offset by a finite amount corresponding to the bandwidth cost, which is bounded by
3n

1
2 log P in the two-dimensional case. We note that XXT approach is superior to the distributed

A−1 approach from a work and communication standpoint, as witnessed by the substantially lower
solution times in each of the work- and communication-dominated regimes. Further performance
results and analysis of the XXT algorithm are presented in [24].

6 Implementation and Tuning

Our parallel implementation follows the standard message-passing-based SPMD model [15] in which
contiguous groups of elements are distributed to processors and computation proceeds in a loosely
synchronous manner. The code is constructed from flexible and efficient C and Fortran modules.
The computational kernel is built from optimized basic linear algebra subroutines (blas) (primarily
level 3). Our communication routines are built on top of the NX or MPI message-passing libraries.

For a given polynomial degree N define N1 := N +1 and N2 := N−1. Then the local subdomain
solves, (Ã−1

k ), and application of the derivative, D∗, Helmholtz, H, and pressure, E, operators require
matrix-matrix products of form (n1 × n2) × (n2 × n3), where n1 = N1, N

2
1 , N2, or N2

2 , n2 = N1 or
N2, and n3 = N1, N

2
1 , N2, or N2

2 . In addition, mapping from (to) the pressure mesh to (from) the
coarse grid requires matrix-matrix products of form (2 ×N2) × (N2 × 2) and (N2 × 2) × (2 ×N2),
respectively.

As matrix-matrix products account for over 90% of the flops in a simulation, maximizing dgemm
performance is paramount. Table 3 shows performance figures, obtained on one 333 MHz node of
ASCI-Red in single-processor mode, for the matrix-matrix product calling configurations (n1, n2, n3)
encountered in an order N = 15 simulation. On ASCI-Red we have several versions of dgemm to
choose from: the standard version obtained with the -lkmath link option (lkm); the version jointly
developed by Sandia and Intel obtained with the -lcsmath link option (csm); and a version being
developed for matrices with n2 ≤ 20 by Greg Henry at Intel (ghm). In addition to the library
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Table 3: mflops for (n1×n2)× (n2×n3) matrix-matrix product kernel on ASCI-Red
n1 n2 n3 lkm ghm csm f3 f2
14 2 14 23 20 25 41 43
2 14 2 29 23 21 77 68

16 14 16 100 113 114 130 119
16 14 196 107 95 95 89 110

256 14 16 85 100 100 105 67
14 16 14 78 74 74 106 99
16 16 16 82 138 83 105 102
16 16 256 113 147 93 97 118

196 16 14 91 192 147 122 105
256 16 16 90 105 148 111 69

routines, we tested two hand-unrolled versions, both of which unroll the n2 loop completely. The
first, f2, has n3 control the outer loop while the second, f3, has n1 control the outer loop. We note
that all data in the matrix-matrix product timings is noncached. Unfortunately, no single method
was superior across all cases. For the performance study in Section 7, we selected one set from the
best of the table (which we label as perf. in the results section) and one set without the new library
(which we label as std.).

Since iterative solvers are used, the principal communication kernel is the gather-scatter operation
required for the residual vector assembly procedure. Because data is always stored on an element-
by-element basis, the gather-scatter procedure required for residual evaluation is combined into
a single communication phase wherein nodal values which are shared by adjacent elements are
exchanged and summed. This is a single local-to-local transformation, rather than separate gather
and scatter phases common to many finite element implementations. Communication overhead is
further reduced through use of a recursive spectral bisection based element partitioning scheme to
minimize the number of vertices shared amongst processors [22].

The gather-scatter operation is implemented by using a stand-alone MPI/NX-based message-
passing utility that supports a vector mode for problems having multiple degrees-of-freedom per
vertex as well as a general set of commutative/associative operations [27]. The easy-to-use interface
requires only two calls:

handle=gs-init(global-node-numbers,n) and ierr=gs-op(u,op,handle),

where global-node-numbers() associates the n local values contained in the vector u() with their
global counterparts, and op denotes the reduction operation performed on shared elements of u().

Each node on ASCI-Red consists of two Zeon 333 MHz Pentium II processors with 128 megabytes
of shared memory that can be run in a message-passing (internode)/SMP (intranode) mode. The
fact that we employ nonoverlapping storage for elements and have loops over blocks that exhibit little
or no data dependence implies that we can easily gain additional, intranode, parallelism by splitting
the loops and spawning additional threads. To achieve this, we use the -Mconcur compiler option
and directives. Currently, we have cast the three most time-consuming routines into dual-processor
mode: the matrix-vector product routines for the pressure operator, E; the Helmholtz operator, H;
and the local subdomain solves, Ã−1

k . This approach was sufficient to attain 82% dual-processor
efficiency.

7 Performance Results

We have run our spectral element code on a number of distributed-memory platforms, including
the Intel Paragon at Caltech, the Cray T3E-600 at NASA Goddard, the SGI Origin 2000 and IBM
SP at Argonne, the SGI ASCI-Blue machine at Los Alamos, and the Intel ASCI-Red machine at
Sandia. For this paper we concentrate on recent timing results for the hairpin vortex problem
of Figs. 1 and 7. This problem is of interest in its own right because it provides a vehicle to
study organized transition to turbulence [1, 16, 23]. For benchmarking considerations, we consider
impulsively started flow at Re = 1600, with an initial condition consisting of a Blasius profile with
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Figure 7: Profile (top) and planform (bottom) views of hairpin and secondary vortices generated
in a boundary layer by a hemispherical roughness element for ReR = 850. The spectral element
parameters are (K,N) = (1021, 11).

boundary layer thickness δ = 1.2R. The mesh used for these simulations was obtained via an oct-
refinement of the production mesh used for the transitional boundary layer/hemisphere calculation
of Fig. 7 and contains K = 8168 elements of order N = 15 (27,799,110 gridpoints for velocity,
22,412,992 for pressure).

Performance results on ASCI-Red are presented for up to 2048 333 MHz nodes in single- and dual-
processor mode. Total times are for the time-stepping portion of the runs only. During production
runs, usually 14 to 24 hours in length, our setup and I/O costs are typically in the range of 2–5%.
To determine floating-point operation count, we access the hardware operation counters via calls to
the perfmon library. In addition, we have instrumented the code to provide various performance
metrics, including a per processor flop count. The two methods yield results within 2% of each
other. Finally, all floating-point calculations were done in 64-bit precision.

Figure 8 shows time per step for the first 26 timesteps (left) and the pressure and (x-component)
Helmholtz iteration counts (right). The significant reduction in pressure iteration count is due to the
difficulty of computing the initial transients and clearly shows the benefits gained from the pressure
projection procedure. In typical production runs the number of pressure iterations per timestep
settles in at between 30 and 50, which is consistent with the behavior exhibited in the iteration plot.
We note that the average time per step for the last five steps of the 319 GF run is 17.5 seconds.
Tables 4 and 5 present total time for the 26 timesteps and sustained performance. We note that
additional routines were dual-processor enabled subsequent to the creation of Table 4 which resulted
in a 10% increase in efficiency. Finally, the coarse grid for this problem has 10,142 distributed
degrees of freedom and accounts for 4.0% of the total solution time in the worst-case scenario of
2048 nodes in dual-processor mode. If the A−1 approach were use instead this would have increased
to 15%.

8 Conclusion

We have developed a highly accurate, stabilized spectral element code based on scalable solver
technology that exhibits excellent parallel efficiency and sustains high mflops. It attains exponential
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Figure 8: P = 2048 ASCI-Red-333 dual-processor mode results for the first 26 timesteps for (K,N) =
(8168, 15): solution time per step (left) and number of pressure and (x-component) Helmholtz
iterations per step (right).

Table 4: ASCI-Red-333: total time and gflops, std. dgemm
K = 8168, N = 15

single dual
P time (s) gflops time (s) gflops
512 6361 47 4410 67
1024 3163 93 2183 135
2048 1617 183 1106 267

convergence, allows a convective CFL of 1–5, and has efficient multilevel elliptic solvers, including a
coarse-grid solver that requires minimal communication. The code currently runs on thousands of
processors and is clearly ready to run on machines with tens of thousands of processors.
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