HUMASORB® TREATMENT SYSTEM FOR ARSENIC CONTAMINATED WATER

Presentation at

Vendors Forum Arsenic Water Technology Partnership New Mexico Environmental Health Conference 2003

Presented By:

H.G. Sanjay ARCTECH, Inc. Chantilly, Virginia

October 22, 2003

PRESENTATION OUTLINE

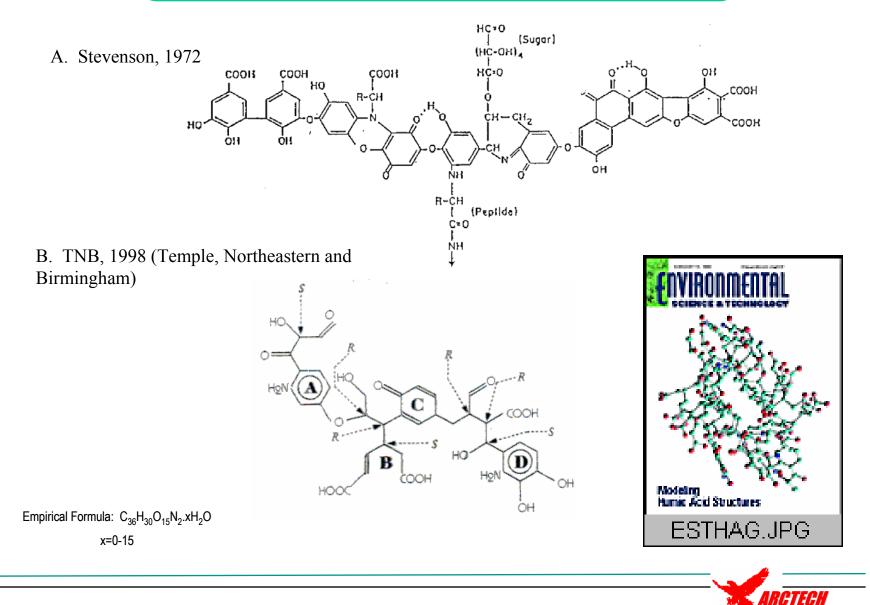
- Introduction to HUMASORB®
- Properties and Advantages of HUMASORB®
- Arsenic Removal by HUMASORB®--Case Studies
 Laboratory Scale using contaminated water
 Arsenic removal from process waste water containing organics
 Arsenic removal from waste brines containing multiple metals
- HUMASORB® System Deployment Information
- System Requirements and Residuals
- HUMASORB® System Advantages

WHAT IS HUMASORB® ?

HUMASORB®--Contaminant removal media derived from naturally occurring humic substances

High cation exchange capacity

- Ability to chelate and bind metals
- Ability to adsorb organics



HUMIC SUBSTANCES

- ☆ Natural dark brown or black, Carbon-rich and highly functionalized organic macromolecules comprising of carboxylic, phenolic, carbohydrate and enolic groups
- ☆ Humic Substances family can be classified into three main fractions based on aqueous solubility
 - ☆ Fulvic Acids The babies (<Mw> 5 KDa) Soluble at all pH
 ☆ Humic Acids - The Children and adults (lowest <Mw> 12KDa) Soluble at high pH
 - ☆ Humins Deceased member, Insoluble at all pH

MODELS OF HUMIC ACID MOLECULE

- Ambient Conditions (1,4,6 months)
- Temperature--50°C (1,2,3,4 Weeks)
- Temperature--4°C (2,4,6 months)
- 100 ppm Na₂SO₄ and Na₂CO₃ (1-day, 3, 6 months) (~420 ppm sulfate; 260 ppm carbonate)
- •100 ppm CaSO₄ and CaCO₃ (1-day, 3, 6 months) (~240 ppm sulfate; 150 ppm carbonate)
- •10,000 ppm Na₂SO₄ and Na₂CO₃ (3 months) (~42,000 ppm sulfate; 26,200 ppm carbonate)
- Biological Stability (1,2,4,6 months)

HUMASORB® IS PROVEN FOR MULTIPLE CONTAMINANT REMOVAL

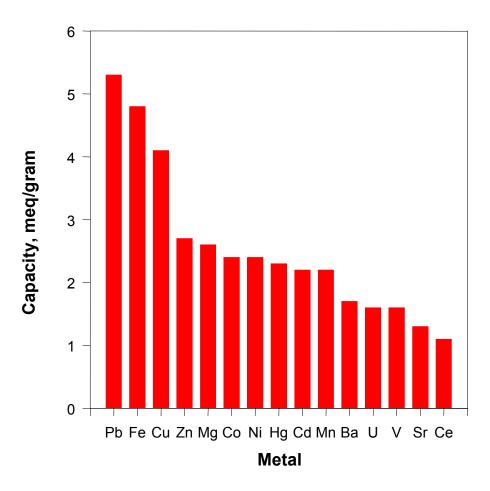
HUMASORB® EFFECTIVE ON:

Metals:

Barium, Lead, Cadmium, Chromium, Nickel, Mercury, Arsenic, Copper, Zinc, Aluminum, Cobalt, Beryllium, Iron, Zirconium, Gold, Manganese, Magnesium, Vanadium, Boron

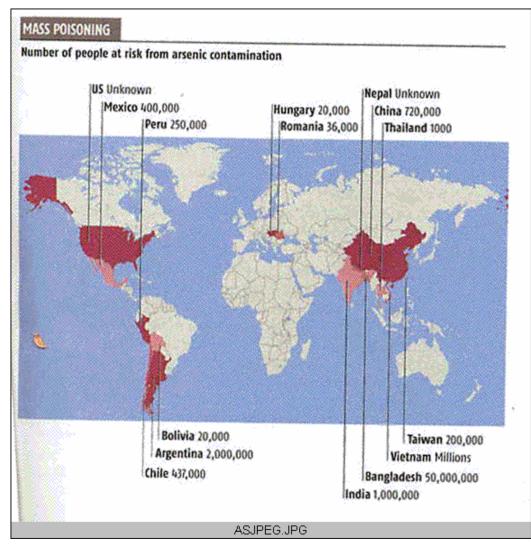
Radionuclides:

Uranium, Strontium, Cesium, Cerium (Plutonium Surrogate), Rhenium (Technetium Surrogate)


Organic Contaminants:

TCE, PCE, PCB, Chloroform, Carbon Tetrachloride

Additional contaminants under evaluation


HUMASORB® HAS HIGH CAPACITY FOR METAL REMOVAL

**: Capacity Estimated from Langmuir Model and/or Experimental Observation

ARSENIC CONTAMINATION IN WATER IS A WORLDWIDE PROBLEM

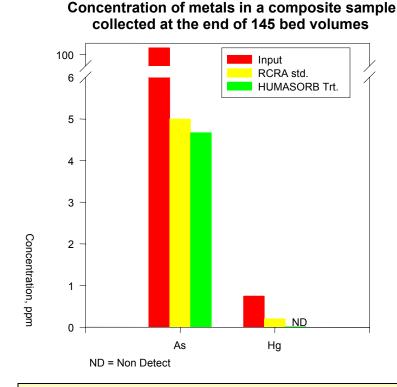
ARCTECH

** Adapted from New Scientist, August 2003

HUMASORB® IS EFFECTIVE IN ADSORBING ARSENIC FROM CONTAMINATED WATER

Sample	Arsenic (V)	
	Concentration, (mg/L)	
Initial sample (Before Treatment)	928	
Final Treated Sample	ND	

HUMASORB® IS EFFECTIVE FOR TREATMENT OF CONTAMINATED WATER IN POU SYSTEMS


Tests conducted in Prototype HUMASORB® Matka (Clay Pot)System

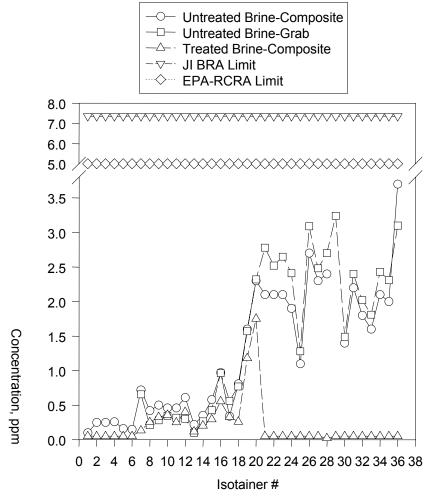
Contaminant	Concentration in Untreated Water, ppm	Concentration in Treated Water, PPM	WHO Guidelines for Drinking Water, PPM
Lead	5-20	ND	0.01
Arsenic	5-20	ND	0.01
Chromium	5-20	ND	0.05
Fluoride	3 - 20	ND	1.5

ND: Not Detected; Detection Limit: 0.002 ppm

HUMASORB® Technology is Effective for Arsenic Removal from SDS at Johnston Island

SDS Contains:

- Organic Compounds
- Sodium
- High TDS
- Toxic metals

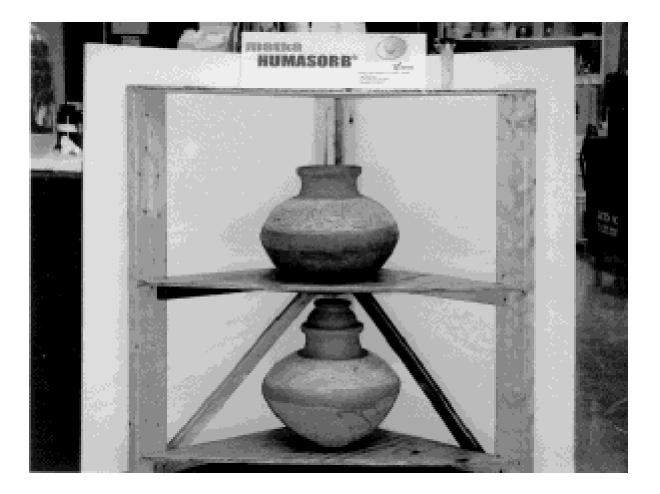

Arsenic was present as an uncharged species, while mercury was present

as cationic in the SDS

HUMASORB® Technology is Effective for Arsenic Removal from Brines at Johnston Island

Brines Contain:

- Sodium
- Bicarbonate
- Sulfite
- Fluoride
- Phosphate
- High TDS
- Toxic metals



HUMASORB® MATKA (Clay Pot) SOLUTION

- Incorporates HUMASORB® for contaminant removal
- Removes multiple contaminants to produce drinking water
- Cools water by respiration
- Easy to use and simple system

HUMASORB® MATKA SYSTEM

HUMASORB® DEPLOYMENT EXPERIENCES

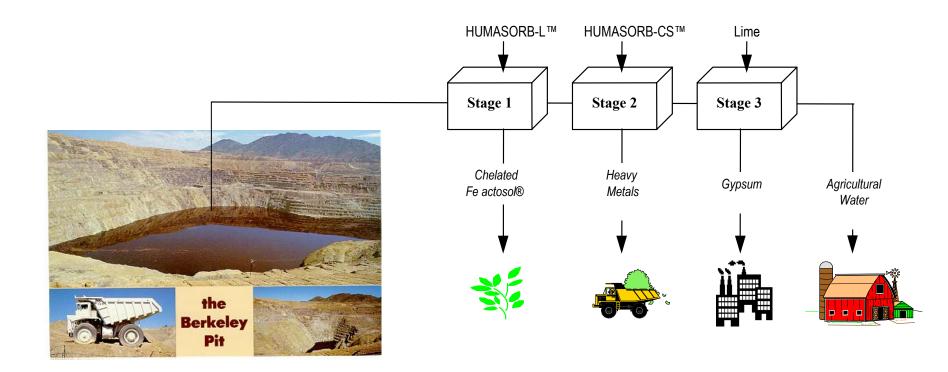
Berkeley Pit, Montana

Demonstration for treatment of abandoned mine waters in Montana

Johnston Island in the Pacific

Treatment of brines produced at chemical agent disposal facilities

Sadat City, Egypt

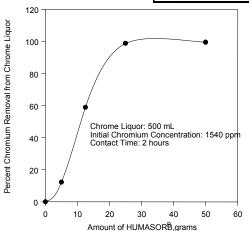

Wastewater treatment and reuse as agriculture water

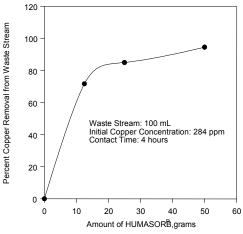
India

HUMASORB® System demonstration for toxic metal removal

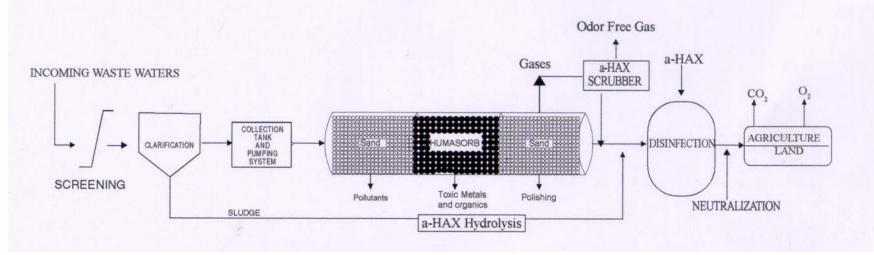
SIMPLIFIED FLOW DIAGRAM OF THE ARCTECH PROCESS TO CONVERT BERKELEY PIT WATER TO FERTILIZER AND AGRICULTURAL WATER

HUMASORB® MOBILE TREATMENT UNIT (Used for treatment at Berkeley Pit and for SDS at JI)





HUMASORB® DEMONSTRATION SETUP FOR TESTS IN INDIA


HUMASORB® SYSTEM DEPLOYED FOR BRINE TREATMENT AT JOHNSTON ISLAND

HUMASORB® System will Convert Wastewater Into Agriculture Water At Sadat City in Egypt

Economically self-sustainable

- Organic fertilizer water for creating vegetation in sandy soils
- Carbondioxide capture to reduce greenhouse gases

PROCESS REQUIREMENTS AND RESIDUALS

Utility Requirements

Power: None (POU Systems); Minimal for other systems

Residuals

- Small amount of spent media or sludge
- Non-hazardous sludge--pass TCLP

HUMASORB® PROCESS ADVANTAGES FOR TREATEMENT OF ARSENIC CONTAMINATED WATER

- Proven technology for effective removal of arsenic and other toxic metals
- Robust process for metal removal from waters of varying characteristics
- Solids generated are non-hazardous
- Effective for application in various sizes (POU, small systems, etc.)
- Simple system for easy operation

