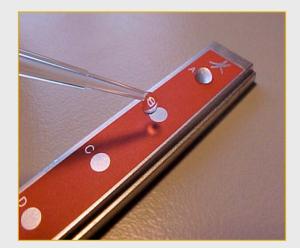
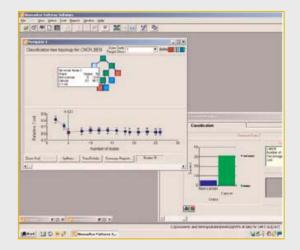
ProteinChip® Technology: A new tool for proteome analysis and biomarker discovery

Kelly A. Conrads, Ph.D.

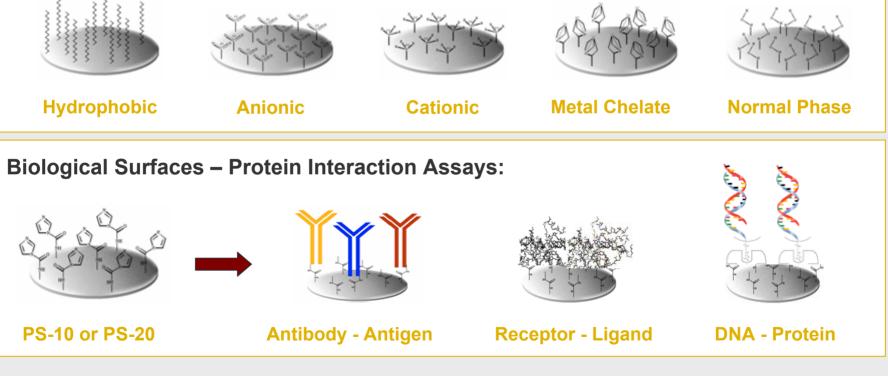
Ciphergen Biosystems, Inc. kconrads@ciphergen.com




- Background on technology What is SELDI?
- Applications
- Example biomarker discover study Ovarian Cancer

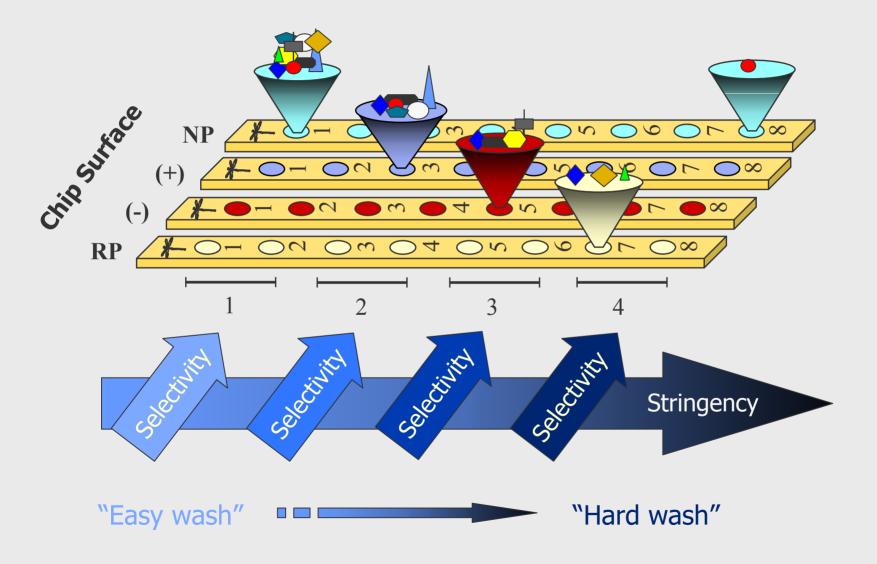
ProteinChip[®] Platform: Components

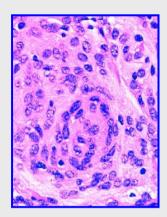
ProteinChip Arrays » Separation


ProteinChip Reader » Detection

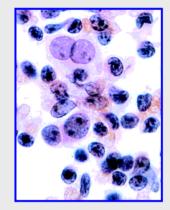
ProteinChip Software » Analysis

ProteinChip[®] Arrays: A Variety of Surfaces


Chemical Surfaces – Protein Expression Profiling:


K CIPHERGEN®

ProteinChip[®] Arrays: Retentate Chromatography



ProteinChip[®] Proteomics: Complexity of Samples

<u>Tumor Tissue</u> <u>& Cultures</u>

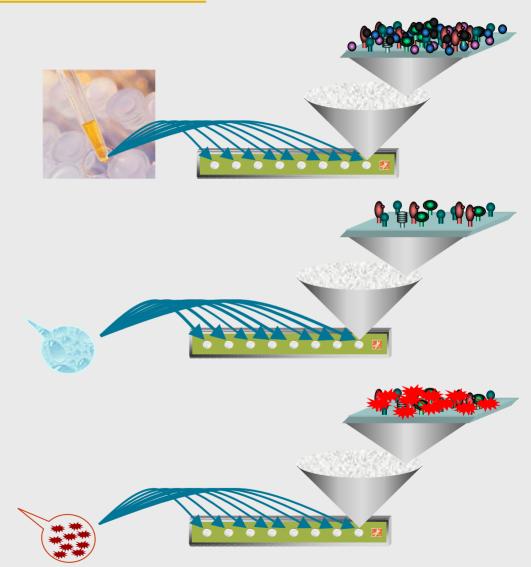
Biopsy LCM Nuclear Extracts Cell lysates Plant Extracts

Tumor Fluid

Seminal Plasma Nipple Aspirates Fine Needle Aspirates **Fluids**

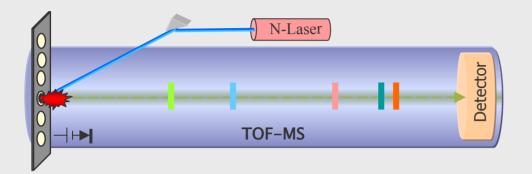
Serum Plasma Urine CSF Blood eluates

ProteinChip® Array Preparation

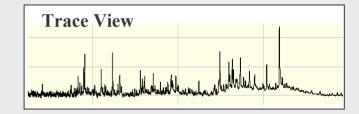

- **Step 1**: Complex protein sample is placed on a ProteinChip Array
- Proteins bind to chemical or biological sites on the ProteinChip surface

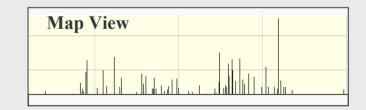
Step 2: Remove unbound proteins

- Wash the ProteinChip with appropriate stringency buffer
- Bound proteins are retained


Step 3: Add Energy Absorbing Molecules or "Matrix"

 EAM is applied to each spot to facilitate desorption and ionization in the TOF-MS Chip Reader




Detection Using SELDI

- Retained proteins are "eluted" from the ProteinChip Array by laser desorption/ionization
- Ionized proteins are detected and their mass accurately determined by Time-of-Flight Mass Spectrometry
- ProteinChip[®] software produces map of proteins showing their accurate mass and relative ion intensity

ProteinChip[®] Array Preparation: Sample Workflow

- Sample deposit (2 min)
- Allow proteins to bind to surface (45-60 min)
- Wash (5-15 min)
- Matrix deposition (10 min)
- Chip introduction (1 min)
- Chip reading (15 min)
- Data analysis (30 min to ...)

Protein Discovery and Characterization ProteinChip[®] Advantages

- Capture, detect and analyze proteins directly from crude biological samples without tagging or labeling
- Wash step analysis of protein in MS unfriendly mixtures
- Lower limit of detection:
- Small sample size:
- Medium to high throughput:
- Rapid results:
- Significant result:

1-50 fmole of protein

0.5 μΙ - 400 μΙ

8, 24, 96, or 192 samples

10 minutes

Accurate molecular weight (500 Da- 300 kDa)

ProteinChip® Applications

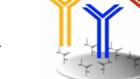
Research Proteomics Basic Research

Process Proteomics Protein Purificaiton

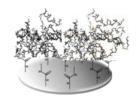
Clinical Proteomics Profiling

- Immunoassay development and screening
- Receptor-ligand assays
- Protein-protein interactions
- DNA-protein interactions
- Purification development and monitoring
- Peptide mapping and protein identification
- Analysis of post-translational modifications
- Epitope mapping
- Target discovery and validation
- Disease monitoring (drug efficacy studies)
- Toxicology
- Diagnostics

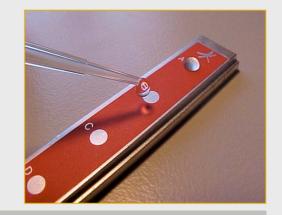
Interaction Discovery Mapping[™] Protein-Protein Interactions

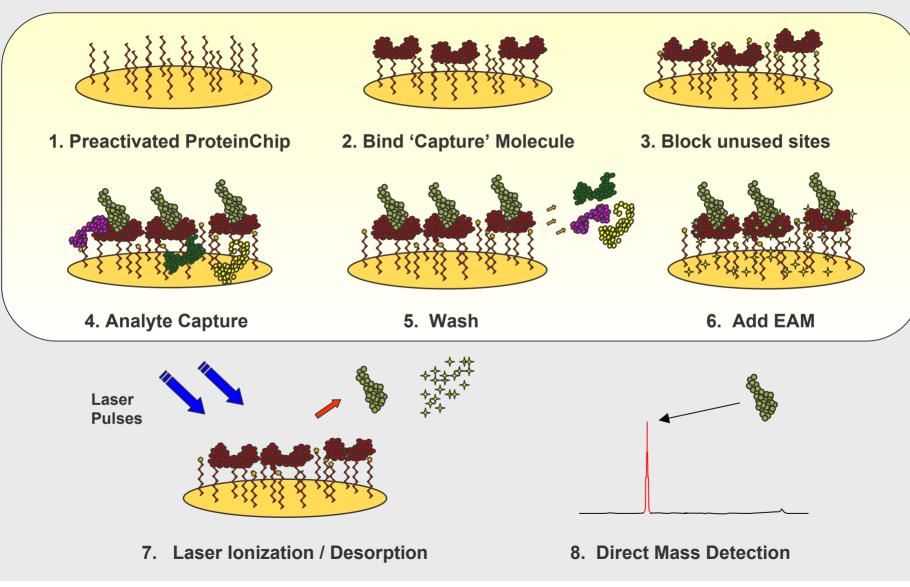


ProteinChip[®] Arrays: A Variety of Surfaces

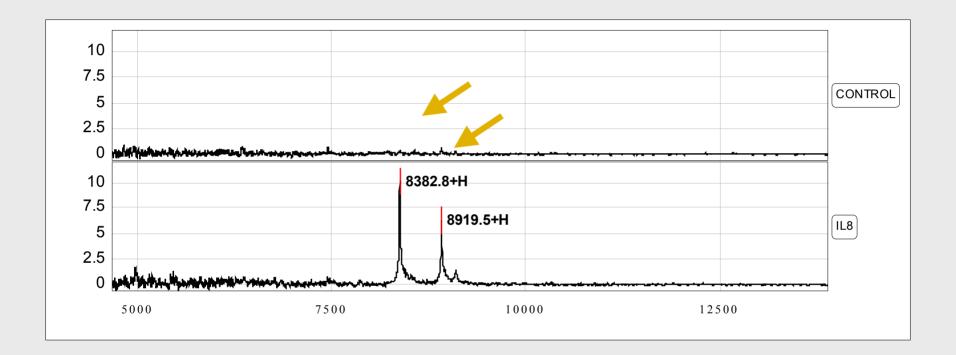


PS-10 or PS-20


Antibody - Antigen

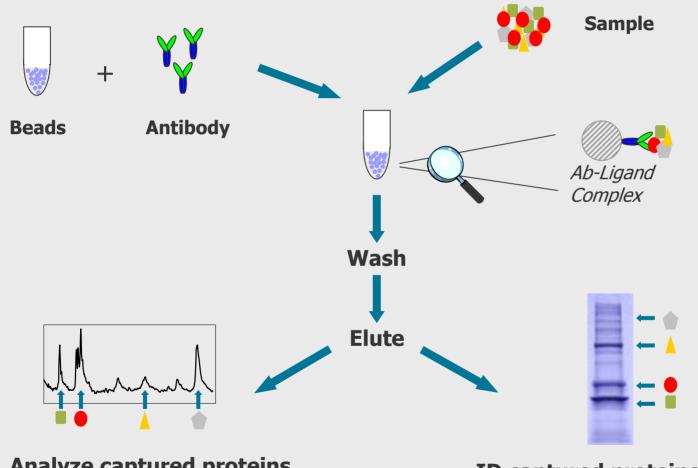


DNA - Protein



Protein-Protein Interaction Analysis

Antibody Capture of IL8



Two different isoforms detected using antibody capture

Advantage over ELISA

Protein-Protein Interaction Analysis

Analyze captured proteins using ProteinChip[®] Array

ID captured proteins using SDS-PAGE & tryptic digest etc

Protein Interactions: Beads & Arrays

Arrays

- Quick
 - <4 hrs for typical capture experiment</p>
- High-throughput
 - Up to 12 Arrays in parallel
- Easily automated
 - Simple to transfer protocols to robotics
- Ability to work with small volumes
 - 1-2 ul sample can be applied directly to the spot

Beads

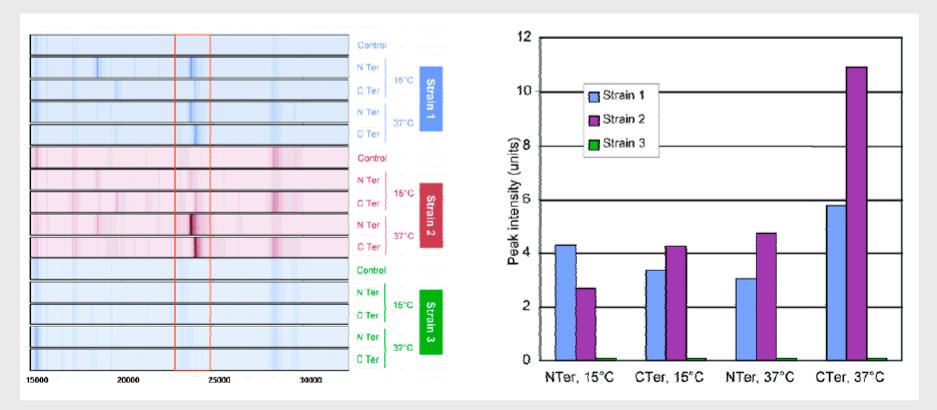
- High capacity
 - Large Dynamic Range
 - Ability to work with larger volumes

Ability to multiplex

- More than one antibody can be immobilized
- Amenable to Orthagonal sample processing
 - Coupling of affinity chromatography with subsequent purification steps

Semi-preparative Method

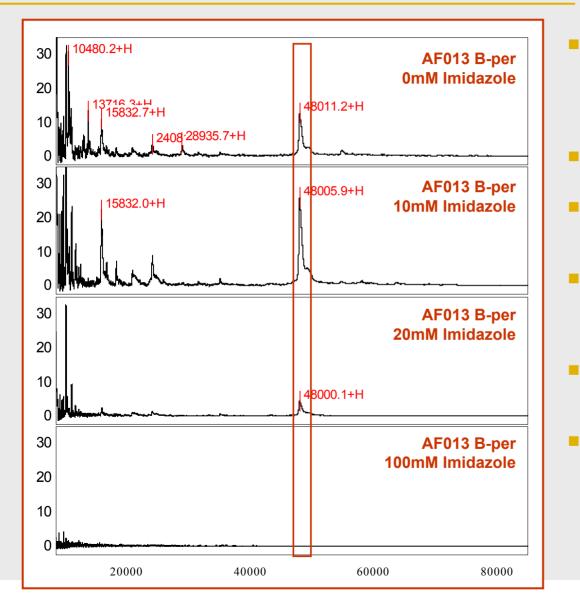
Ability to ID captured proteins



Process Proteomics Applications

Protein Purification

Expression Optimization of a His-tagged Protein



Objective: Determine the best conditions of expression of a recombinant 23.8 kDa His-tagged protein in a bacterial host strain

Conditions tested: 1. Strain, 2. Expression vector construct, 3. Temperature. **ProteinChip Array:** Selective retention of the His-tagged target is found on IMAC-Cu+2 **Results:** C-Terminal vector construct in Strain 2 at 37°C attained the highest expression levels. Time spent for monitoring expression in 15 fermentation samples: Half a day.

IMAC-Ni ProteinChip® Array

- Various amounts of imidazole were added to the binding step to determine what amount would improve the specific capture
- Protein binds to the IMAC-Ni surface, seen at 48 kDa
- The presence of low amounts of imidazole (10 mM) doesn't interfere with binding
- There are a significant number of endogenous impurity proteins binding to the IMAC surface
- The number of impurity proteins decreases as the amount of imidazole increases
- 8.5-85 kDa MW region is shown

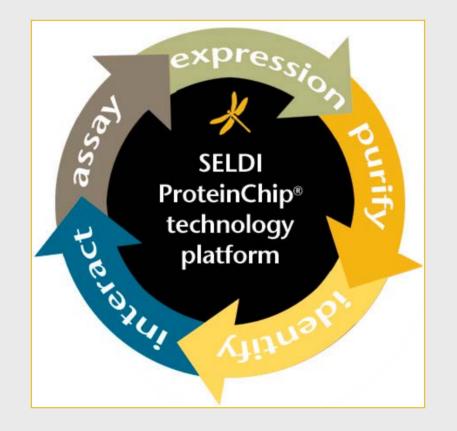
Process Proteomics: Key Benefits

A versatile technology

 Analytical capabilities for crude fermentation/CC samples through purification and final formulation

Significantly reduce analysis/purification time

- Rapid, `on-chip' analytical and purification method development
- Small sample requirement allows development to begin earlier in the process
- Reduce number of SDS-PAGE, Westerns, ELISAs, HPLC runs
- Get more information from the sample
 - Accurate MW tracking of target and impurities



Expression Difference Mapping[™] Applications

Biomarker Discovery

Pattern Track[™] Process

Pattern Track[™] Process

Discovery

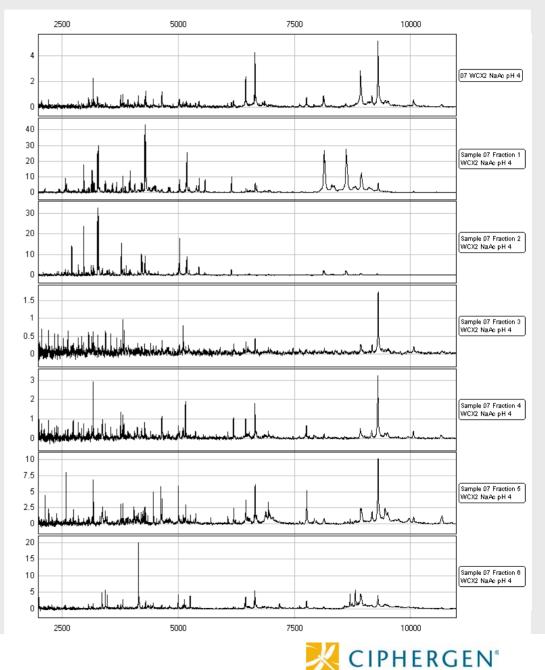
Ρ

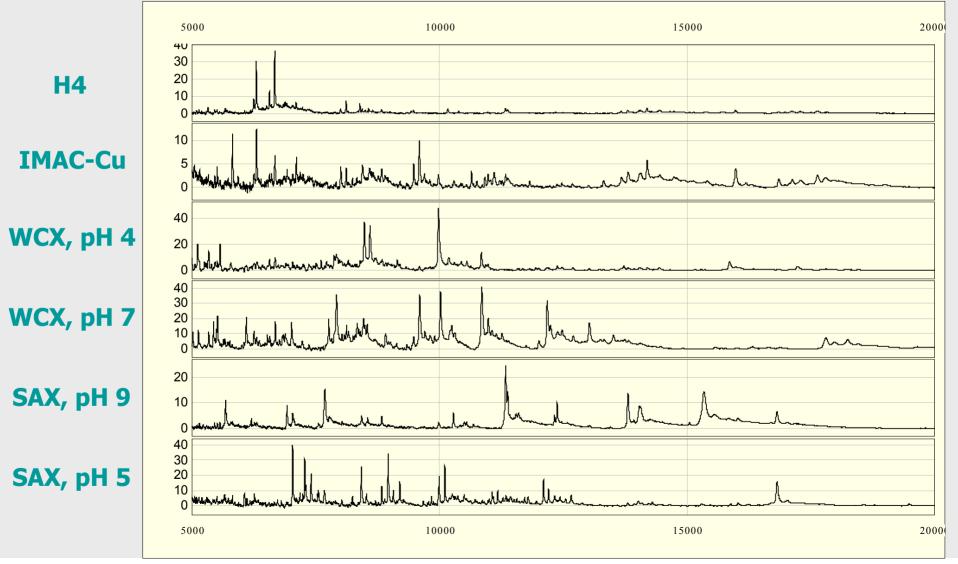
ld

Δ

•	Discovery Pilot Study: biomarker scouting study to find biomarker candidates Multiple Biomarker Candidates ••••••••	 Maximize number of conditions to discover biomarkers Univariate analysis to identify biomarker candidates Minimize number of conditions to validate biomarkers
	Validation Study: biomarker study using optimal conditions from Pilot Study to validate biomarker candidates Validated Biomarkers	 Multivariate analysis to classify patient groups based on multiple biomarker patterns
		 Biomarker Patterns[™] Software selects the best biomarker candidates
Purification	Purified Biomarkers	•SELDI Assisted Purification
dentification	Identified Biomarkers	•SEND ID on-chip peptide mapping
		•SELDI Tandem Mass Spectrometry
ssay	Quantitative Predictive Multi Biomarker Pattern Assays	•ProteinChip System, Series 4000

Maximiza number of conditions to

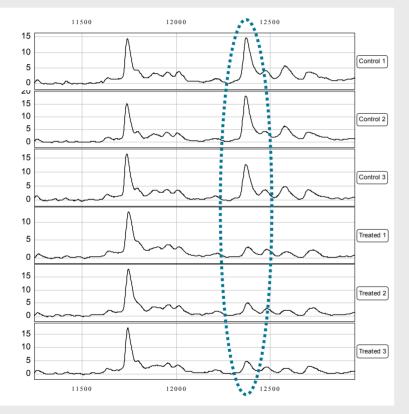

Fractionation

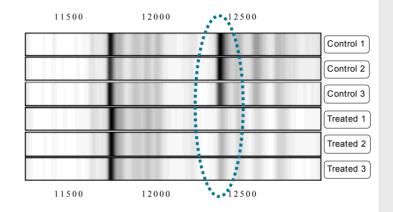


Benefits of Fractionation

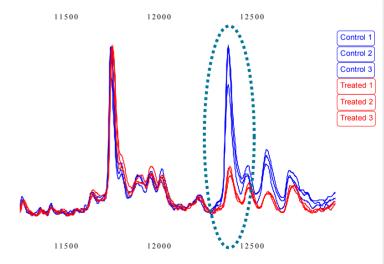
- Fractionation expands the investigated part of the proteome:
- Neat = 48 peaks
- 6 Fractions = 180 unique peaks, or 132 new peaks.

Discovery: Surface Specificity

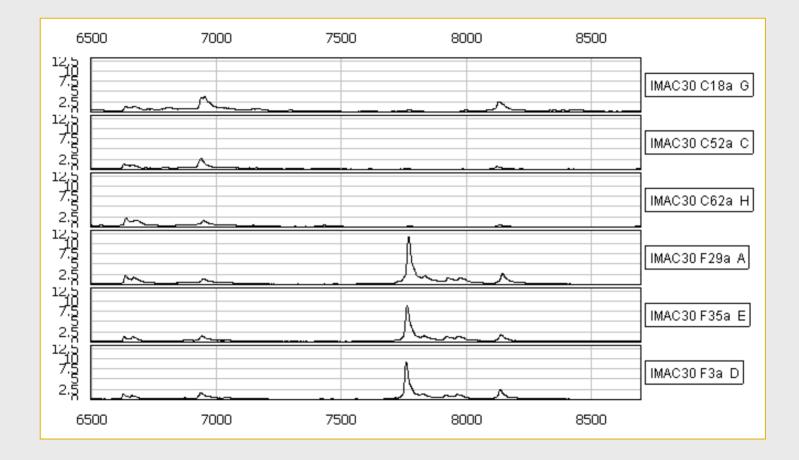




Discovery: Visualizing Biomarkers

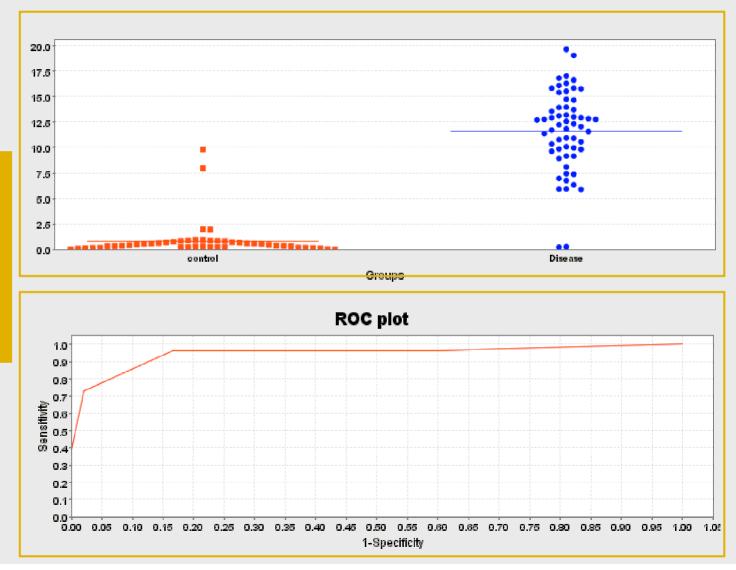

Gel View

Spectral View

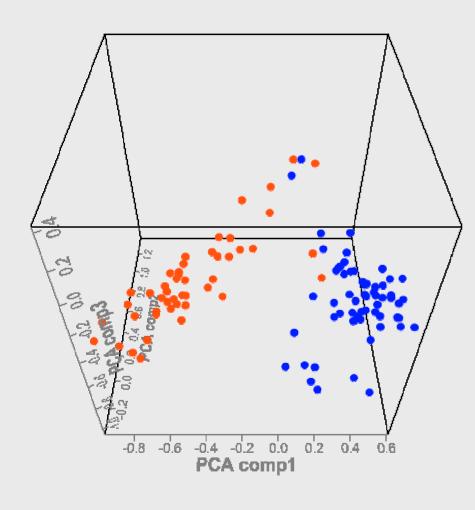


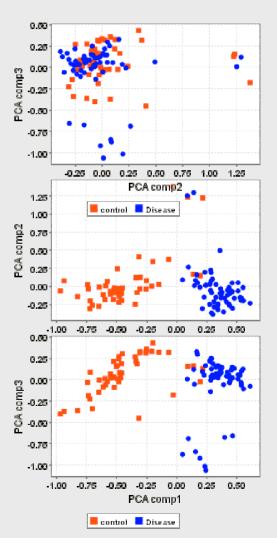
Overlay View

7.8 kDa Peak is Differentially expressed

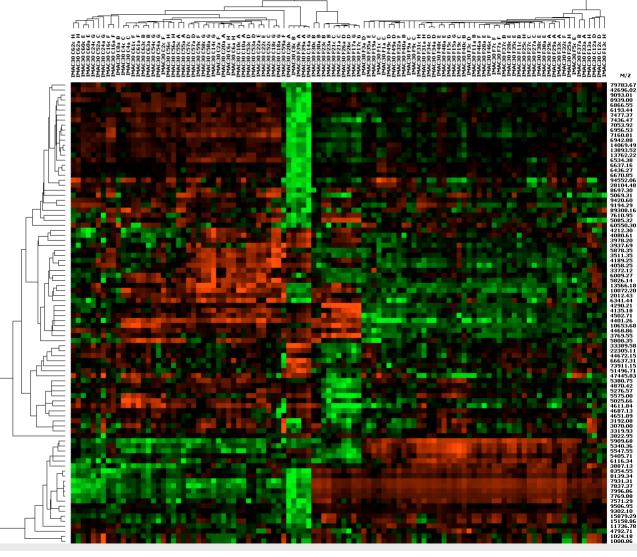


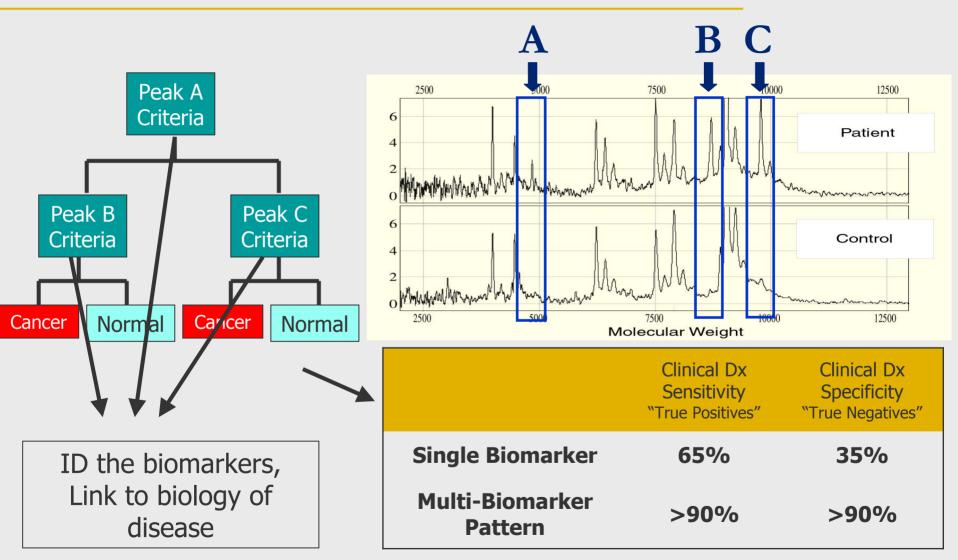
7.8 kDa Peak is Differentially expressed


7.8 kDa peak discovered on IMAC30-Cu²⁺ array, Low Mass


p-value < 0.001 AUROC = 0.947

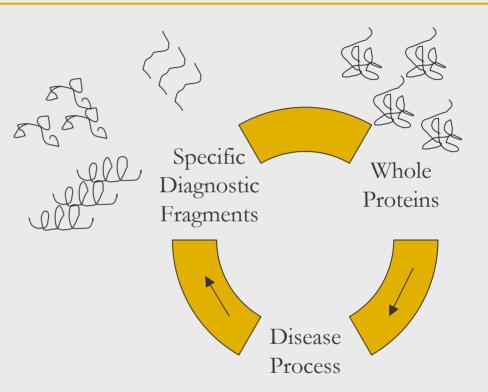
Principle Component Analysis




Heat Map Hierarchical Clustering

Hierarchical clustering and heat map creation can be performed using the CE Data Analysis Module.

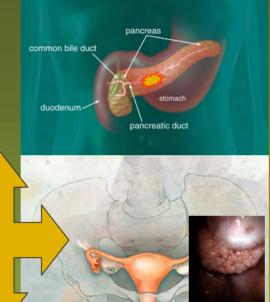
Multiple Biomarker Diagnostic Assays



Improve Predictive Accuracy and Diagnostic Value

Host Response Protein Amplification Cascade: Common Proteins Yield Uncommon Fragments

- Apolipoprotein A1
- Transthyretin
- Inter alpha-trypsin inhibitor 4
- Haptoglobin a
- Serum amyloid A
- Vitamin D Binding Protein
- C3 anaphylotoxin



Specific Disease Processes Cleave and Modify Common Proteins into Uncommon Fragments with Diagnostic Utility

Inter Alpha Trypsin Inhibitor 4 (ITIH4)

Pancreatic Cancer

nvhsgstffkyylqgakipkpeasfspr

Ovarian Cancer

mnfrpgvlssrqlglpgppdvpdhaayhpfr

Diabetes

srqlglgppdvpdhaayhpfr

Biomarkers found using SELDI technology

Cancer

- Breast
- Prostate
- Bladder
- Leukemia
- Lung
- Brain
- Pharmaceutical testing
 - Toxicity markers
 - Non-responders
- Other
 - Acute renal failure
 - Acute heart failure
 - Exposure to airborne toxins

- Neuropsychiatric
 - Depression
 - Schizophrenia
 - Alzheimer's disease
 - Parkinson's
 - Huntington's
- Infectious diseases
 - Yersinia pestis
 - Mycobacterium
 - Caulobacter
 - Streptococcus
 - Botulism
 - Prions

A Novel Multi-Marker Assay for Ovarian Cancer

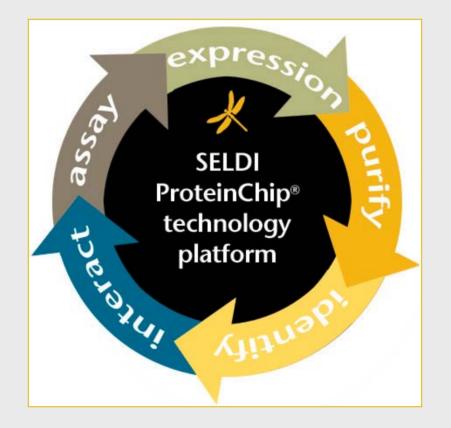
Zhang, Z. et al. (2004) Cancer Research 64, 5882-5890.

Study participants

Johns Hopkins University: Zhen Zhang, Ph.D., Jinong Li, Ph.D., Lori J. Sokoll, Ph.D., Alex J. Rai, Ph.D., Jason M. Rosenzweig, Bonnie Cameron, Daniel W. Chan, Ph.D.
MD Anderson: Robert C. Bast Jr., M.D., Yinhua Yu, M.D.
Duke: Andrew Berchuck, M.D.
Royal Hospital for Women (Sydney): Carolien van Haaften-Day, Ph.D., Neville F. Hacker, M.D.
Groningen University Hospital: Henk W. A. de Bruijn, Ph.D., Ate G. J. van der Zee, M.D.
Bart's and The London, Queen Mary School of Medicine, London University: Ian J. Jacobs, M.D.
Ciphergen: Xiao-Ying Meng, M.Sc., Eric T. Fung, M.D., Ph.D.

Basic statistics of ovarian cancer

- Prevalence 40/100,000 (1 in 2500)
- 23,000 new cases diagnosed annually
- 14,000 deaths annually
- Overall 5 year survival 20-30%
- 75% of cases are diagnosed in late stage (stage III/IV)
- **90% cure rate in stage I/IIa**
- Therefore, detection in earlier stages critical in improving overall survival



Diagnosing early stage ovarian cancer

- Low prevalence of disease places extremely high requirements on screening test
- CA-125 is the only generally accepted tumor marker for ovarian cancer
 - Elevated in ~80% of all patients with ovarian cancer
 - Elevated in <50% of patients with early stage ovarian cancer
 - Not useful for screening
 - Used typically for:
 - Initial diagnosis in symptomatic women in conjunction with other tests (e.g., transvaginal ultrasound, computed tomography)
 - *Monitoring of response to therapy*

Discovery: Expression Differences

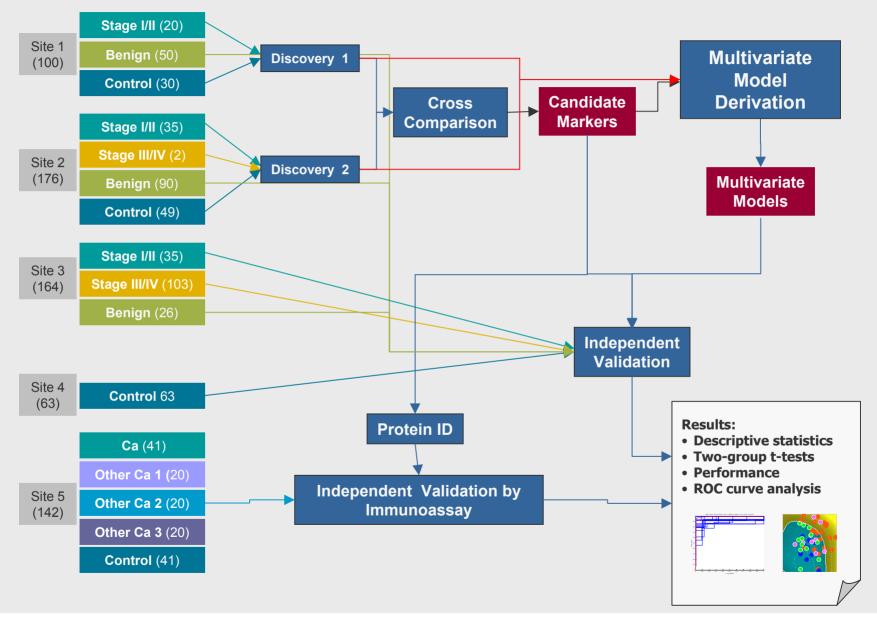
Methodology Outline

- Protein expression profiling for all samples was performed simultaneously
- Protocol: anion exchange fractionation of serum followed by binding of fractions to ProteinChip arrays
- **Each sample was bound to each array in triplicate**
- Instrument performance was monitored using
 - Insulin (test for instrument resolution)
 - Immunoglobulin (test for instrument sensitivity)
- Assay performance was monitored by processing a standard serum sample

Fractionation

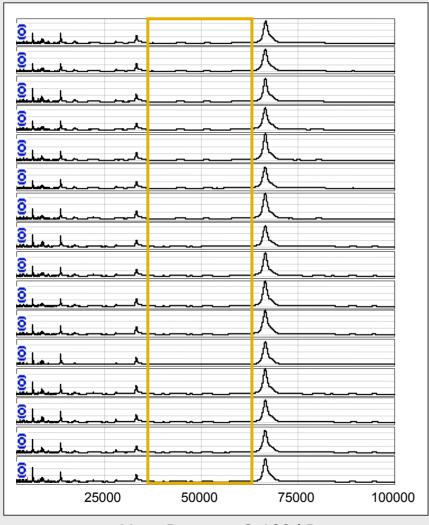
Data mining

Data pre-processing

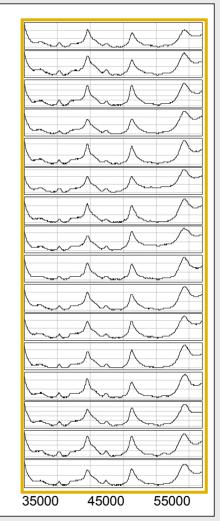

- Mass calibration, baseline subtraction, total ion current normalization
- Peak selection automated followed by manual confirmation

Data analysis

- Unified Maximum Separability Analysis (UMSA): Modified support vector machine algorithm
- Bootstrap re-sampling technique on site A and site B data separately to determine best set of peaks from independent analysis
- Biomarkers for inclusion are those that
 - Are deemed significant repeatedly during the bootstrap process
 - Change in the same direction between both sites
- Validate biomarkers on independent data set



Study design for biomarker discovery

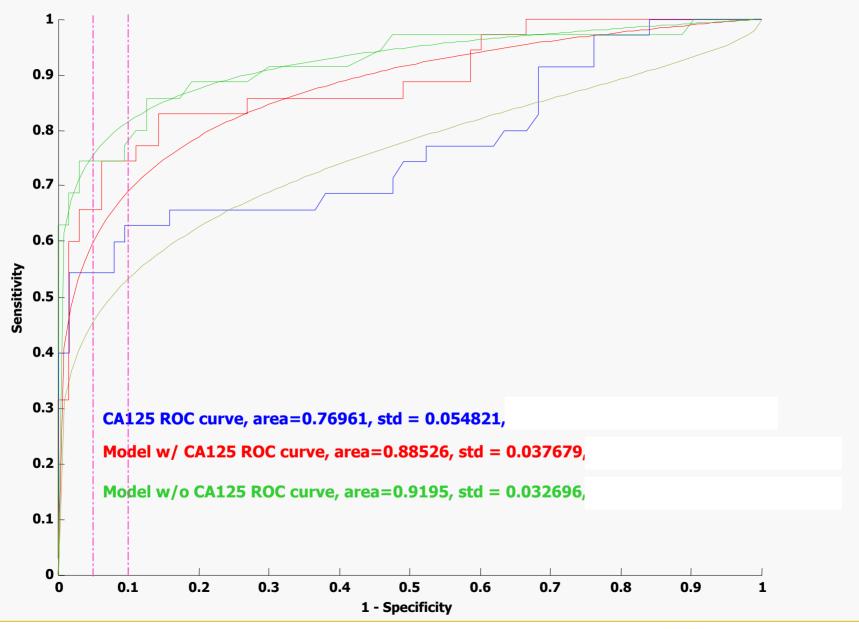


Reproducibility

Mass Range = 2-100 kDa

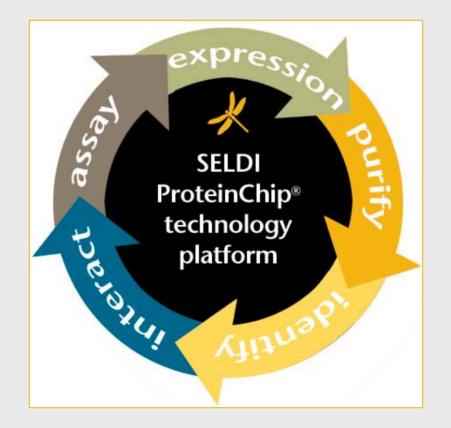
Average CV's range from 10-25%

Mass Range = 35-62 kDa



Performance of individual biomarkers in discovery set & validation set

Comparison	All epithelial ovarian cancer	Stage I/II invasive ovarian cancer
CA125, Discovery set	<.00001	<.00001
CA125, Validation set	.00001	<.00001
Marker 1, Discovery set	<.00001	<.00001
Marker 1, Validation set	<.00001	<.00001
Marker 2, Discovery set	.00002	.00004
Marker 2, Validation set	<.00001	<.00001
Marker 3, Discovery set	<.00001	.059178
Marker 3, Validation set	<.00001	.079999


P value estimated for two-group T test between healthy controls and ovarian cancer patient population

Purification and identification

ProteinChip[®] Assisted purification and ID

- Spin column chromatography, with monitoring of fractions using the ProteinChip[®] Biomarker System
- Protease digestion
- Matching of peptide fingerprint with database
- Confirmation using the Ciphergen ProteinChip Interface installed on the ABI/Sciex QSTAR[™] tandem MS

Apolipoprotein A1

- Major lipoprotein in HDL's
- Negative acute phase reactant protein
- Total apolipoprotein A has previously been reported to be decreased in patients with ovarian cancer (Kuesel et al, 1992)

- Marker identified by profiling is an N-terminal truncation of transthyretin (pre-albumin)
- Transthyretin has been reported to be decreased in ovarian cancer patients previously (Mahlck et al, 1994)

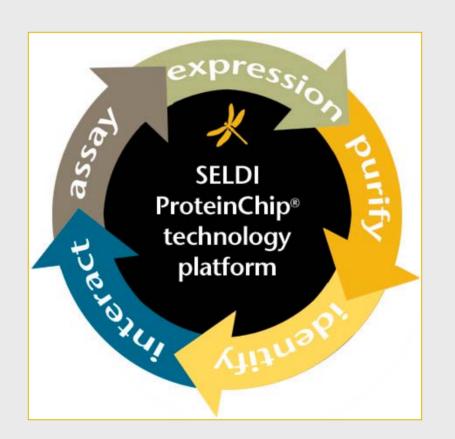
Biological function

- Homotetramer
- Transports thyroid hormone, retinol binding protein (RBP)
- Decreases in pre-albumin lead to decreases in RBP
- Decreased levels of RBP leads to malignant transformation of ovarian epithelial cells (in culture)

No reports of truncated forms

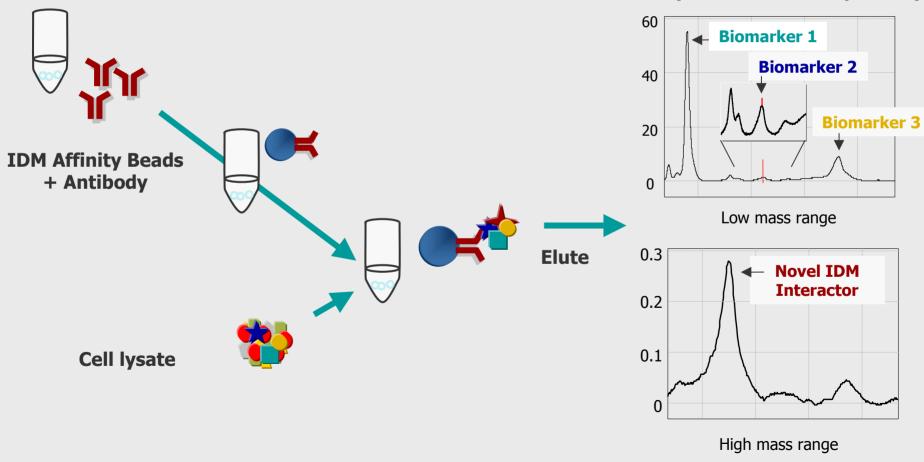
Peptide fragment of inter alpha trypsin inhibitor IV (ITIH4)

- **ITIH4 Known to be cleaved by Kallikrein enzymes**
- **Kallikrein enzyme levels known to change in Ovarian Cancer**
- Hypothesis: kallikreins, or other cancer-related proteases, may be responsible for generating fragments found in this study
- Test hypothesis using IDM platform


Specificity of marker panel

	Ovarian cancer	Breast cancer	Prostate cancer	Colon cancer
CA125	0.000000	0.39	0.07	0.86
Apolipoprotein A1 (intact)	0.0004	0.77	0.02	0.69
Transthyretin (intact)	0.00005	0.51	0.22	0.01

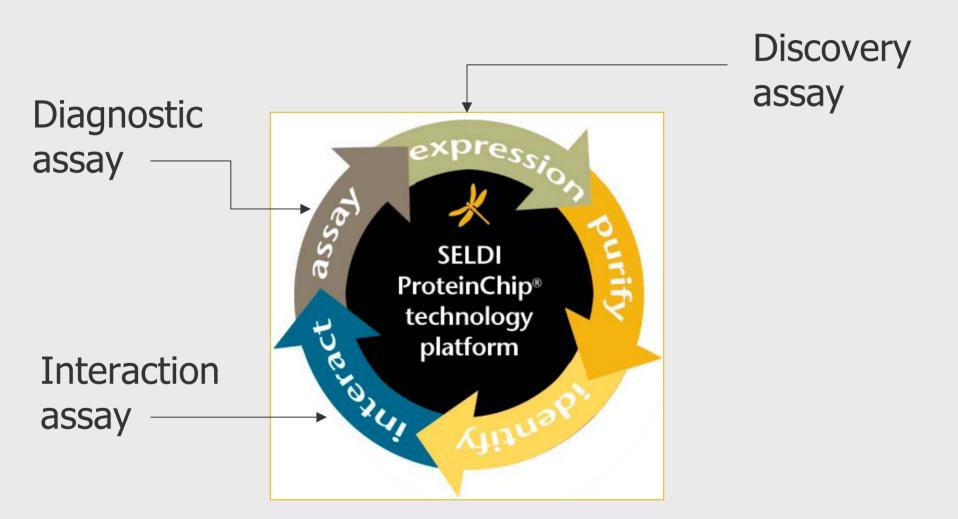
Additional specificity conferred by: Use of combination of markers Nature of cleavage products


Interacting Proteins

Secondary interaction discovery

Confirm existing interactors, discover new ones

Analysis on ProteinChip® Array


Ongoing research

Expansion of sample sets (>1500 total)

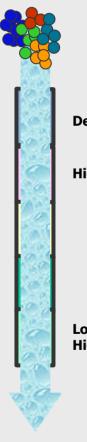
- University of Leuven (prognosis and treatment response)
- Groningen (prognosis and treatment response)
- Bart's College (screening study)
- Mayo Clinic/National Cancer Institute (initial diagnosis)
- Validation of existing marker set
- Combination of markers, novel and previously characterized
- Discovery of additional markers by
 - New generation protein expression profiling protocol
 - Interaction mapping
 - Kallikrein substrate experiments
- Development of multiplexed ProteinChip assays for markers

Pattern Track[™] Process

ProteinChip[®] System, Series 4000

Personal edition

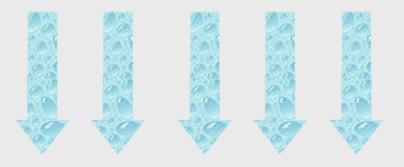
Enterprise edition


ProteinChip System, Series 4000

Superior Quantitation	Raster laser design for maximum spot coverage
	Auto laser energy setting
	Extended Linear Dynamic Range
	Improved ProteinChip Arrays and protocols
Highest Sensitivity	New detector
	New Ion Source increases ion efficiency
	Detector blanking reduces noise
	Innovative flight tube design
Highest Resolution/Resolving power	Improved fractionation tools increase resolution up to 3000 proteins
Highest Throughput	Unattended runs of up to 168 ProteinChip Arrays
Improved <i>low abundance</i> biomarker discovery	■New Deep Proteome [™] Tools to explore the last 1% of the serum proteome

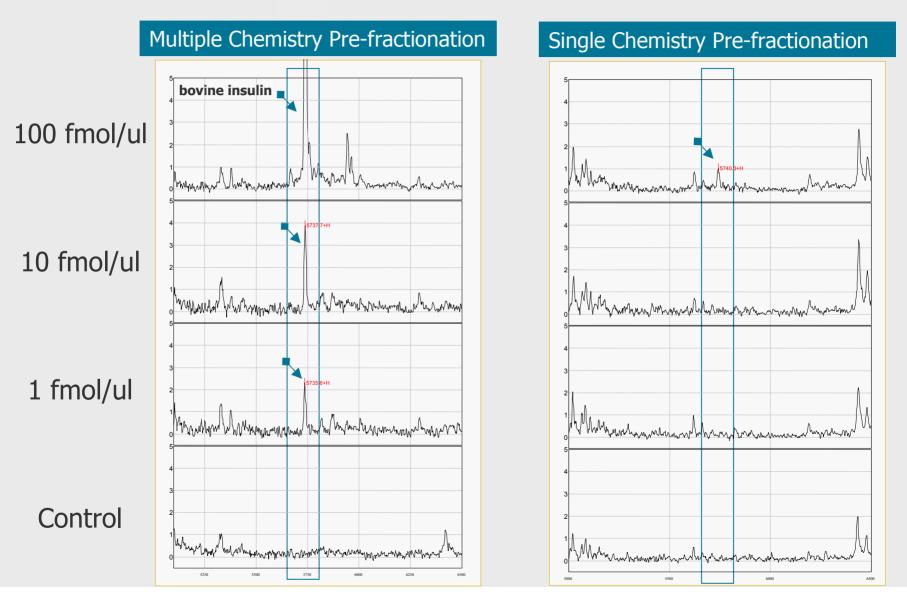
Improved Resolution/Resolving power MultiSelectTM Fractionation

Load Sample



Depletion Chemistries

High Specificity Chemistries


Low Specificity, High Capacity Chemistries

Disassentiel & Chlyneistries

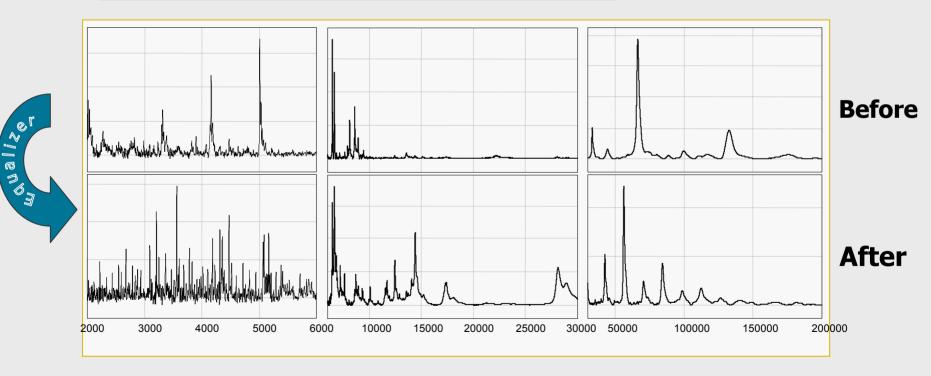
Improved sensitivity with multiple chemistry approach

Protein Equalizer[™] Beads

Affinity Bioseparation of Proteins via Combinatorial Ligands

Define Equalizer Bead Library

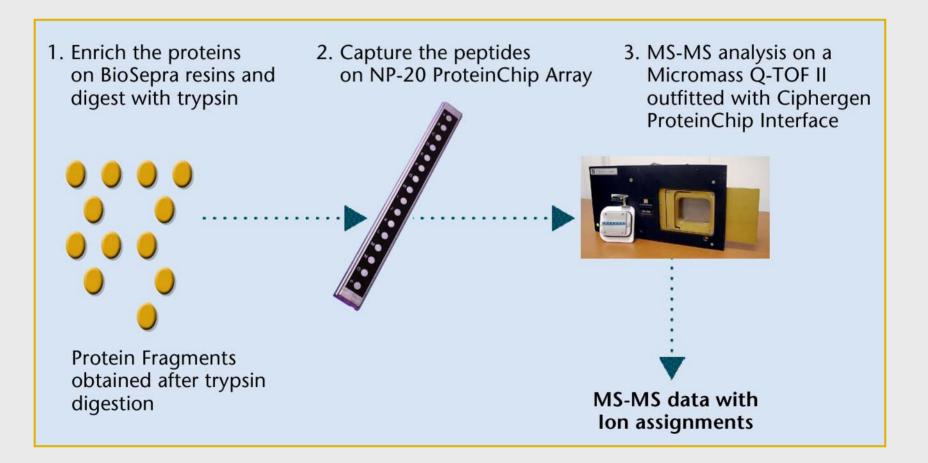
Bind Wash away Excess Elute Equalized Sample


- Each bead binds a unique protein
- Capacity of every bead is the same

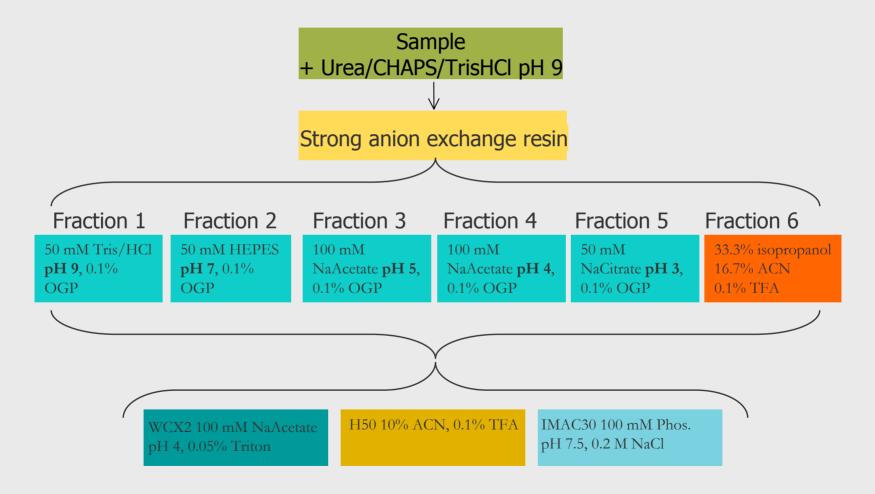
4 Yellow 4 Blue 3 Green 1 Red 1 Pink

Effect of Protein Equalizer[™] Beads on serum proteins

Unfractionated Serum profiled Before and After processing on Protein Equalizer Beads

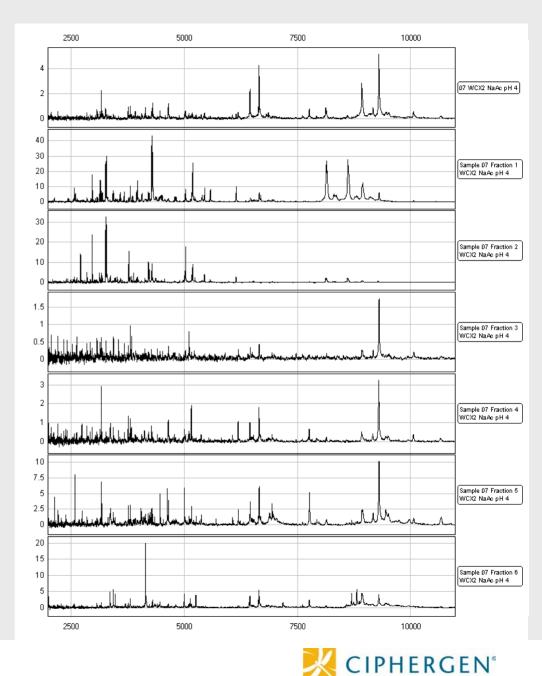


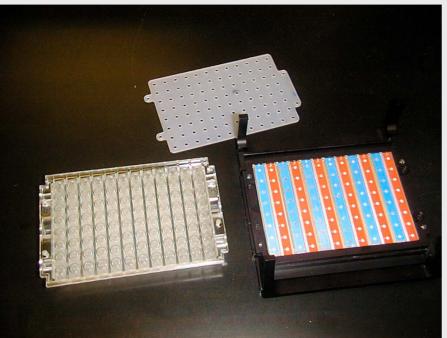
SELDI-MS Platform Protein Identification Using ProteinChip Interface


Protein Identification (Mascot Search)

Search title Database Taxonomy Timestamp Top Score	: 25 kDa : SwissProt 41.0 (206209 sequence : Rattus (6684 sequences) : 21 Mar 2003 at 13:53:43 GMT : 56 for P08009, Glutathione S-t		3194615 residues) erase Yb3 (EC 2.5.1.18) (Chain 4) (GST class-mu 3)	
Vinder of Hits	40 50 60 Probability Based Mowse Score	2. <u>H</u> <u>-</u> 7. <u>H</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	Mass: 25763 Total score: 56 Peptides matched: 11 General Score: State State	0 ST ST lass-mu 1) lass-mu 1)
Nominal mass (M _x): 25785 NCBI BLAST search of <u>PO</u> Unformatted <u>sequence</u> str Taxonomy: <u>Rattus norveg</u> Fixed modifications: Pro Cleavage by Trypsin: cur Number of mass values m Sequence Coverage: 43% Matched peptides shown : 1 PMTLGYWDIR GLAHA 51 KLGLDFPNLP VLIDG 101 NQAMDTRLOL AMVCY:	se Yb2 (EC 2.5.1.18) (Chain 4) (GST class-mu 2) 5; Calculated pI value: 7.30 8010 against nr ring for pasting into other applications icus opionamide (C) ts C-term side of KR unless next residue is P earched: 46 atched: 10 in Bold Red IRLFL EYTDTSYEDK KYSMGDAPDY DRSQWLSEKF SNKIT QSNAILRYLG RKHNLCGETE EERIRVDVLE SPJPER RKKPEYLEGL PEKNKLYSEF LGKQPWFAGN HRIFE PKCLDAFPNL KDFVARFEGL KKISDYMKSG		<pre>Match to: P08009; Score: 56 Glutathione S-transferase Yb3 (EC 2.5.1.18) (Chain 4) (6ST class-mu 3) Nominal mass (N_): 25763; Calculated pI value: 7.27 NCBI BLAST search of P08009 against nr Unformatted sequence string for pasting into other applications Taxonomy: Rattus norvegicus Fixed modifications: Propionamide (C) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Number of mass values searched: 46 Number of mass values matched: 10 Sequence Coverage: 48% Matched peptides shown in Bold Red</pre>	

Fractionation - scheme


Employed fractionation scheme:



Results – Fractions

- Fractionation expands the investigated part of the proteome:
- Neat = 48 peaks
- 6 Fractions = 180 unique peaks, or 132 new peaks.

The ProteinChip® Bioprocessor

SELDI Citations

http://www.ciphergen.com/pub/searchPub.asp

Over 200 SELDI Papers: Nature, Science, The Lancet....

About	Us Products & Services Sales & Support Technology & A	Apps Publications	Investors
ublica	tions: Search database		
I <u>Search A</u> 190 tota		mmended readings)	
ProteinC	hip Citations		
view 190.	A data-analytic strategy for protein biomarker discovery: profiling of high- dimensional proteomic data for cancer detection	Yasui, Y., Pepe, M., Thompson, M.L., Adam, BL., Wright, G.L., Gu, Y., Potter, J.D., Winget, M., Thornquist, M., Feng, Z.	2003
view 189.	Haptoglobin-alpha Subunit As Potential Serum Biomarker in Ovarian Cancer: Identification and Characterization Using Proteomic Profiling and Mass Spectrometry	Ye, B., Cramer, D.W., Skates, S.J., Gygi, S.P., Pratomo, V., Fu, L., Horick, N.K., Licklider, L.J., Schorge, J.O., Berkowitz, R.S., Mok, S.C.	2003
view) 188.	A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer's disease	Carrette, O., Dematte, I., Scherl, A., Yalkinoga, O., Corthals, G., Burkhard, P., Hochstrasser, D.F., Sanchez, JC.	2003
view 187.	Stereoselective Inactivation of Yorpedo californica Acetylcholinesterase by Isomalathion: Inhibitory Reactions with (1R)- and (1S)-Isomers Proceed by Different Mechanisms	Doorn, J.A., Thompson, C.M., Christner, R.B., Richardson, R.J.	2003
view 186.	Estradiol Control of Expression and Levels of Estradiol-Binding Proteins in the Medial Preoptic Area, Medial Hypothalamus and Pituitary	Gao, G., Herbert, Z., Kong, J., Gabrielson, N., Mautz, A., Wu, D., Jirikowski, G.F., Caldwell, J.D.	2003
view 185.	Modern Tumor Marker Discovery in Urology: Surface Enhanced Laser Desorption and Ionization (SELDI)	Gretzer, M.B., Partin, A.W., Chan, D.W., Vetri, R.W.	2003
view 184.	Putative protein markers in the sera of men with prostatic neoplasms	Lehrer, S., Roboz, J., Ding, H., Zhao, S., Diamond, E.J., Holland, J.F., Stone, N.N., Droller, M.J., Stock, R.G.	2003
view 183.	Extraction of oxytocin and arginine-vesopressin from serum and plesma for radioimmunoassay and surface-enhanced leser desorption-ionization, time-of-fight mass spectrometry	Cool, D.R., DeBrosse, D.	2003
view 182.	Presenilin-1, Nicastrin, Amyloid Precursor Protein, and gamma-Secretase. Activity Are Co-localized in the Lysosomal Membrane	Pasternak, S.H., Bagshaw, R.D., Guiral, M., Zhang, S., Ackerley, C.A., Pak, B.J., Callahan, J.W., Mahuran, D.J.	2003
view 181.	beta-Secretase Cleavage at Amino Acid Residue 34 in the Amyloid beta Peptide is Dependent upon gamma-Secretase Activity	Shi, XP., Tugusheva, K., Bruce, J.E., Lucka, A., Wu, GX., Chen- Dodson, E., Price, E., Li, Y., Xu, M., Huang, Q., Sardana, M.K., Hazuda, D.J.	2003
view 180.	Use of ProteinChip™ Array Surface Enhanced Laser DesorptionIonization Time-of-Flight Mass Spectrometry (SELDI-TOF MS) to Identify Thymosin Beta-4. A Differentially Secreted Protein from Lymphoblastoid Cell Lines	Diamond, D.L., Zhang, Y., Gaiger, A., Smithgall, M., Vedvick, T.S., Carter, D.	2003
view 179.	Analysis of complex autoantibody repertoires by surface-enhanced laser desorption/ionization-time of flight mass spectrometry	Grus, F.H., Joachim, S.C., Pfeiffer, N.	2003
view 178.	Applications of high-throughput methods to cancer metastases	Keller, E.T., Yao, Z.	2002
view 177.	Macrophage proteomic fingerprinting predicts HIV-1-associated cognitive impairment	Luo, X., Carlson, K.A., Wojna, V., Mayo, R., Biskup, T.M., Stoner, J., Anderson, J., Gendelman, H.E.,	2003

Over 51 papers featuring SELDI at the 2004 AACR meeting (NCI, JHU, MD Anderson, Stanford etc. covering biomarker applications for all majors cancers

20 Million Possible Diagnostic Patterns from 12 Common Proteins

- Apoliprotein A1
- Transthyretin
- Inter alpha-trypsin inhibitor 4
- Haptoglobin
- Serum amyloid A
- Vitamin D Binding Protein
- C3 anaphylotoxin
- Apolipoprotein A4
- C4 Anaphylatoxin Des-Arg
- Alpha-1 antichymotrypsin
- Apolipprotein C1
- Human Serum Albumin

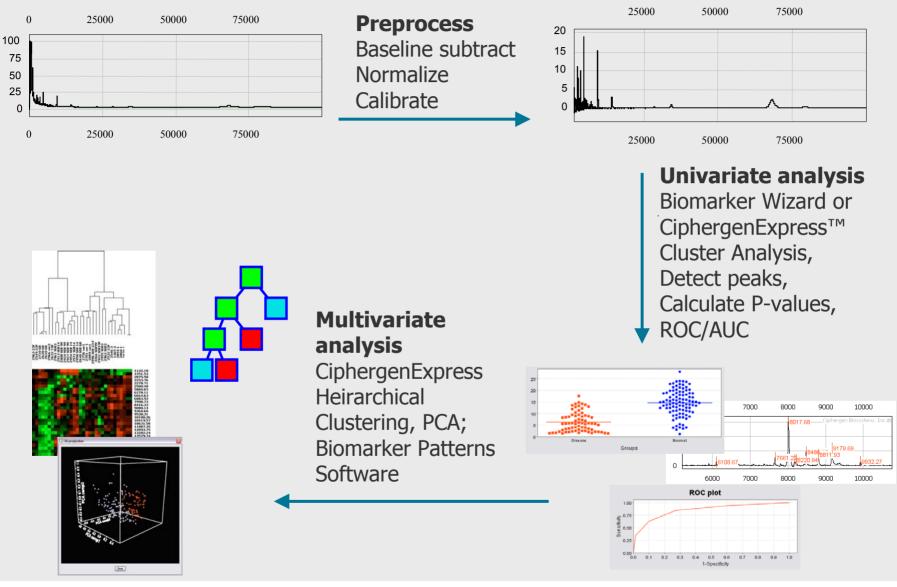
12 Most Common Proteins

X 5 Fragments (estimate)

• Fragments !

60x59x58x57...

20 Million Possible Diagnostic Patterns



Individual markers have low correlation to each other

	CA125	Marker 1	Marker 2
CA125	1		
Marker 1	-0.26	1	
Marker 2	015	.32	1
Marker 3	.05	-0.42	07

Flowchart of data analysis

K CIPHERGEN®

