Treatment of Actinide-Contaminated Injection Injuries

A consensus approach to protocol revision

Patrick C. Lowry
MD,MPH
Lead Physician

pat.lowry@orise.orau.gov

865-576-4049

Albert L. Wiley MD, MPH Director

al.wiley@orise.orau.gov

865-576-3131

REFERENCES

- Guidelines for Treatment of Radiation Accidents, August 2004, LANL, LLNL
 - Pgs 1-4, 6-7
- Some Considerations for Developing
 Criteria for Decorporation therapy of
 Intakes of Radionuclides, Raymond A.
 Guilmitte, PhD, Team Leader, Internal
 Dosimeter, LANL
- IAEA Publication 119, Handling of Radiation Accidents, IAEA, 1969

Goals and Objectives: Developing a Protocol for Treatment of Radiation Accidents

- Goal: Prevent the uptake of radioactive materials by the body and/or enhance the excretion of radioactive materials, thereby reducing retention time and dose received.
- Objective: Develop a treatment protocol that could be adapted to all DOE facilities and provide guidance to medical staff.

Goals and Objectives: Developing a Protocol for Treatment of Radiation Accidents (cont'd)

 Intent: The intent of medical intervention is to minimize risk associated with possible radiation doses.

Summary of Guidelines

- 1. Method intervention shall be considered if, based on early information, it appears that the committed effective dose equivalent (CEDE) from the intake may exceed **5** rem.
- 2. Administration of chelating agents shall be considered if, based on early information, it appears that the CEDE from the intake may exceed *5 rem*.

Summary of Guidelines

3. Excision of contaminated tissue shall be considered if, based on early information, the total plutonium or transuranic activity in the wound is greater than 1 nCi.

Assumptions underlying medical intervention of an actinide-contaminated injection injury

- Significant internal intakes are unplanned events.
- The are great uncertainties associated with the early estimates of dose.
- Risks associated with most medical interventions are minimal.

Assumptions underlying medical intervention (cont'd)

- The decision to use medical intervention shall be a joint decision between the patient and the Occupational Medicine (OM) Physician.
- Internal dosimetry is responsible for providing guidance to both the patient and to the OM physician to assist them in making this decision.

Criteria for medical intervention of an actinide-contaminated injection injury

- Strong suspicion of internal contamination
 - Good history plus injection injury
- Dosimetry evidence of significant internal contamination
- Early dose estimates often low, inaccurate & confusing!

Dose criteria for decision to treat: confounding elements

- Mass casualty (higher threshold to treat)
 vs limited (few people) incident (ALARA lower threshold)
- nCi vs. REM vs. DPM
 - Need good HP help to assess (for most of us)
- Difficulty assessing alpha emitters
 - Need good HP help to assess (for most of us)
 - Tissue attenuation

Decision to treat: actinide injection injury limited to a few people

- Remember: Dose reading may represent minimum dose (because of tissue attenuation, incomplete calculations, other factors)!
 - Senior, experienced HP should assist physician in accessing contamination and making final decision to treat
- Final decision, however, is physician's.

Decision to treat: actinide injection injury limited to a few people

Consensus criteria

- >1 ALI (5 rem)- decon, chelation, excise, *
- <1 rem (.2 ALI)-decon; chelation dependent upon HP assessment and doctor/patient relationship, plus principles of ALARA.
 - 1 rem may represent only superficial/shallow dose with more nuclide deeper that does not register on regular survey instruments or even wound counters

* Mass casualty: decision to treat >5 ALI (25 rem)

Treatment Modalities: internal actinide contamination of injection injuries

- 1. Irrigation of wound
- 2. Chelation Therapy: Ca- & Zn-DTPA*
 - Contraindicated for U and Np
 - Treat within first 6 hours
- 3. Excision of Contaminated Tissue

Treatment Modalities: risks

- Irrigation of wound: depends on irrigant and vigor of treatment
- 2. Chelation (Ca- & Zn DTPA) therapy: risks
 - Good safety record. However, small total number of cases and administrations
 - NDA approved because of animal studies,
 DOE REAC/TS registry, and national security considerations

Treatment Modalities: risks

- 2. Chelation (Ca- & Zn DTPA) therapy:
 - Contra-indicated in pregnant women
 - May be fetotoxic
 - Pregnancy test if must give to women
 - Very high doses of DTPA have caused liver, kidney trouble in animals
 - Mass casualty event?

Treatment Modalities: risks

3. Excision

- Risks of excision depend greatly upon the site of the wound and the nature and quantity of tissue involved
- Most excisions involve small amounts of tissue
- Consider excision if total Pu or transuranic is greater than 1 nCi?
- Chelate before start excision

Treatment of an Actinide Injection Injury

- 1. Irrigation of site with various fluids
 - water
 - Soap and water
 - Other solutions
- 2. Chelation: Ca- vs. Zn-DTPA
 - Who, what and when
- 3. Exploration/excision of contaminated area
 - Criteria?

Treatment of an Actinide Injection Injury

- Chemical characteristic of actinide often not definitely known within 6 hour "sweet" period
- Dose often not definitely known within first 24 hours. Final dose assessment often take days.
 - May require urine biodosimetry and body scan to determine effective dose

Treatment of an Actinide Injection Injury

So when do you treat?

- Treat if what you know suggests significant internal contamination through injection
- When in doubt, treat with 1 dose Ca-DTPA and await further information
- Treat if patient under 45 yrs old

When to Treat

- So when do you treat injection injuries contaminated with an actinide?
 - ASAP, but within 6 hours of the incident, if possible
 - Controversy: chelate before or after excision?

IAEA, NCRP: chelate as soon as possible

How to Treat

- Chelate asap: Ca- & Zn-DTPA for
 - FDA NDA (New Drug Application) Pu, Am,
 Cm
 - FDA IND (Investigational Drug), Pu, Am, Cm,
 Cf, Es, Th, many of Lanthanide series, Y.
 - Do not use DTPA to chelate U or Np
- Excise:
 - surgical experience helpful

How to Treat

- EFCOG-OM facilities:
 - both Ca- and Zn-DTPA is IND (investigational) product, therefore
 - Need informed consent form signed by patient
 - Need DTPA registry consent form signed by patient.

How to Treat

- Give Ca-DTPA as first dose.
 - -Give Ca-DTPA within first 24 hours, preferably within first 6 hours following internal contamination, (stronger chelator), followed by Zn-DTPA on subsequent days, as needed.
 - (after first 24 hours, Ca- & Zn-DTPA have about the same efficacy)

Caveats

- Do not give Ca-DTPA to pregnant women!
- Do not give more than 1 gm per day!
- Do not split doses or infuse DTPA!
- If DTPA is used for irrigation of wound, still give 1 gm Ca-DTPA as initial dose.
- Children?

Administration of DTPA

NDA product:

- Inhalation
- IV infusion (mixed with water or saline over 20 minutes
- Slow IV push (5 minutes)

IND product

As above, plus IM (with numbing agent, such as xylocaine

??? QUESTIONS ???

