PERSONALIZED MEDICINE WITH LIGAND-TARGETED PERFLUOROCARBON NANOPARTICLES

Gregory Lanza MD PhD et al. Washington University School of Medicine Saint Louis, MO

Disclosures: •Financial Support: NHLBI, NCI •Equipment Support: Philips Medical Systems •Materials Support: Bristol-Myers Squibb Medical Imaging / Kereos, Inc •Conflicts of Interest: Kereos Co-founder with < 5% common stock ownership

GENERALIZED TARGETING PARADIGM

Targeting system: XMolecular zip codest

(MAb, aptamers, small peptides, peptidomimetics, polysaccharides, etc)

Integrins are Important Biosignatures of Neovascularity

Helen J. Mardon, University of Oxford, http://www.medicine.ox.ac. uk/ndog/mardon Fibrin Imaging

Scanning EM

clot labeled with fibrin targeted nanoparticles

Ultrasound contrast enhancement of fibrin clot in vitro using conventional clinical scanner (7.5 MHz)

Before

After

Control Thrombus Targeted Thrombus

Graphite Composite Images

IBS

H_c

P-P

Н

Improved Imaging of $\alpha_{\nu}\beta_3$ -Nanoparticles Using Information Theoretic Detectors

Melanoma Angiogenesis: Detection With $\alpha_v \beta_3$ Integrin-Targeted Paramagnetic Nanoparticles Mouse Imaging @ 1.57

Time (min) Post Injection

Schmeider, Wickline and Lanza et al MRM, 2005.

MRI Molecular Imaging (1.5T) of Thrombus

High Detection Sensitivity 0.7 x0.7mm

High Contrast and Resolution 0.1 x0.1mm

Increasing Payload High Molecular Relaxivity

Optimize Paramagnetic Lipophilic Chelate for Nanoparticles

Gd-DTPA-PE

Gd-DOTA-MeO-PE

Impact of Lipophilic Chelate on Relaxivity

Magnetic Field	Paramagnetic Chelate	lon-Based Relaxivity (s*mM) ⁻¹		Particle-Based Relaxivity (s*mM) ⁻¹	
		r ₁	r ₂	r ₁	r ₂
0.47 T	Gd-DTPA-BOA	21.3 ± 0.2	23.8 ± 0.3	1,210,000 ± 10,000	1,350,000 ± 20,000
	Gd-DTPA-PE	36.9 ± 0.5*	42.3 ± 0.6*	2,710,000 ± 40,000*	3,110,000 ± 50,000*
1.5 T	Gd-DTPA-BOA	17.7 ± 02	25.3 ± 0.6	1,010,000 ± 10,000	1,440,000 ± 30,000
	Gd-DTPA-PE	33.7 ± 07*	50 ± 2*	2,480,000 ± 50,000*	3,700,000 ± 100,000*
4.7 T	Gd-DTPA-BOA	9.7 ± 0.2	29.4 ± 0.3	549,000 ± 9,000	1,670,000 ± 20,000
	Gd-DTPA-PE	15.9 ± 0.1*	80.0 ± 0.7*	1,170,000 ± 6,000*	5,880,000 ± 50,000*

Particle Concentration Requirements for CNR=5: Dependence on Relaxivities and Field Strengths

•Model simulations: blood vs targeted tissue •Gd³⁺/particle=85,350 •Spin echo sequence (T1w)•TE:10/TR: 1100- $\frac{I_b - I_a}{N}$ 1600 CNR = $\bullet SA = 8$ •Voxel volume=0.3125

μl

•R2 adjusted for field

Atherosclerotic Expansion of the Vasa Vasorum

Wilson, et al. Circulation 105:415, 2002.

Micro CT of Isolated Pig Coronary Artery

Anti-Angiogenesis in the ApoE Mice Moulton, et al. Circulation 99: 1726, 1999.

Anti-CD31 staining

13 weeks @ 30 mg/kg/QOD (45 doses) ~ 1.6 g/kg

Histological Corroboration of Angiogenesis

Signal Enhancement in Selected Transverse Slices

Relative contrast enhancement for aorta vs skeletal muscle

—: Chol targeted
 : Control targeted
 : Chol nontargeted

Proton and Fluorine Imaging at <u>4.7T</u>

Proton Imaging

Fluorine Imaging

Measured ¹⁹F Signal is Linear with Crown-Ether (CE) Content

Selective Imaging of PFCs

Salad Dressing

Multiple API (Active Pharm. Ingredients)

Homing Ligands

Three-Dimensional

Complicated Syntheses (32+ Steps)

Polydispersed Colloid

Homing Ligand Interacts with Surface

No Targeting!!!

Properly Oriented Function Independently

Homing Ligand Interacts with Chelate

No Targeting!!!

Homing Ligand

Ratio of Components Must be Controlled

The wrong ratio of Surfactants to Oil Phase Too Much:

- Liposome formation
- Steals surfactant ingredients
- Increases emulsion particle size
- Increases polydispersity
- Decreases stability
- Inhomogeneity of lipid distribution

Too Little:

- Increases emulsion particle size
- Increases polydispersity
- Decreases stability

Source of Components Must be Determined

Natural or synthetic lipids:

- Packing of lipids effects particle size and temperatures (I.e., fluidity)
- Lysolecithin contaminants
- Unwanted proteins
- Phosphatidylserine content (apoptotic marker)
- Cholesterols (Sheep derived Prions?)
- Solvent impact e.g., Chloroform Residues
- Cost to purchase
- Analytical Cost and Specifications
- Shrinkage

Source of Components Must be Determined

Natural or synthetic lipids:

- Packing of lipids effects particle size and temperatures (I.e., fluidity)
- Lysolecithin contaminants
- Unwanted proteins
- Phosphatidylserine content (apoptotic marker)
- Cholesterols (Sheep derived Prions?)
- Solvent impact e.g., Chloroform Residues
- Cost to purchase
- Analytical Cost and Specifications
- Shrinkage

Multiple API = Complicated Process

- Complex GMP decisions/strategy in the synthesis relating to when raw materials become active ingredients
- Chemical and functional specifications
- Chirality
- Ratio of active ingredients

Minimum per particle vs Nominal Multi-level titrations Impacts on safety Independence

- Homogeneity
- Analytical Standards
- Blood/Tissue analytical methods
 Sensitivity of detection
- Pre-post formulation analyses

Analytical Tools Are Pivotal for the Pharmaceutical Development of Nanoparticle Technology

•Essential in throughout R&D to provide insight into reality versus expectation.

•Often analytical insight challenges fundamental assumptions

•Critical for process development, stability, metabolism, residue, safety,

•Critical for bioequivalence as processes evolve And For Biomedical Nanotechnology

Harder than ever because: Complex, Parenteral, 3D

And, that is just the tip of the lceberg

Complimentarity of the imaging system - optimized for detection and presentation of tiny targets in high volume clinical situations

Pharmacology and pharmacokinetics - right dose, right patient population, right drug, ...

Safety

Drug interferences

Administration dynamics

Economics

Clinical use, packaging and marketing

WU Personnel

Medical

Gregory Lanza, MD, PhD Samuel Wickline, M.D.

MR, Nuclear & US

Sciences

Patrick Winter, Ph.D. Michael Hughes, Ph.D Tillmann Cyrus MD PhD Jon Marsh, Ph.D Frank Hockett, M.S.E.E. Michal Lijowski PhD Grace Hu, M.S. Anagana Sen PhD Anne Schmeider, M.S. Kathy Crowder, M.S. Anne Morowski, B.S.

Technical

Todd Williams, B.S., R.T. (MR) Mary Watkins, B.S., R.T. (MR) **Brian Hennery, B.S. Ralph Fuhrhop** Huiying Zhang, M.D. Stacy Allen, B.S. Liz Lacy, B.S. **Peggy Brown, RDCS Michael Scott, BS Cordelia Caradine Neelesh Soman Jina Chang MD** Lynn Coulter BS RN Katherine Lehr BS RN

Philips Medical Systems

David Rolla MD Ling Shao PhD Peter Luyton PhD Stefan Fischer PhD Christopher Hall PhD Shelton Caruthers PhD Rolf Lamerichs PhD

St. Thomas' Hospital

Patrick Gaffney PhD

Burnham Institute

Erkki Ruoslahti MD PhD Jan Pilch PhD

The Dow Chemical Co.

Jaime Simon PhD Garry Kiefer PhD Phillip Athey PhD Gyongyi Gulyas PhD Keith Frank PhD Kenneth McMillan Christopher Adair MS

Bristol-Myers Medical Imaging Thomas D. Harris D. Scott Edwards Et. al.

Consultants

Sam Achilefu PhD (WU) Wynn Volkert PhD (UMC) Richard Holmes PhD (STL) J. David Robertson (MURR)