The Chemical Speciation of Sr and Trivalent Actinides in Tank Waste: Implications for subsurface transport and waste processing

> Andrew Felmy Marvin J. Mason Odeta Qafoku Zheming Wang Yuanxian Xia David Dixon

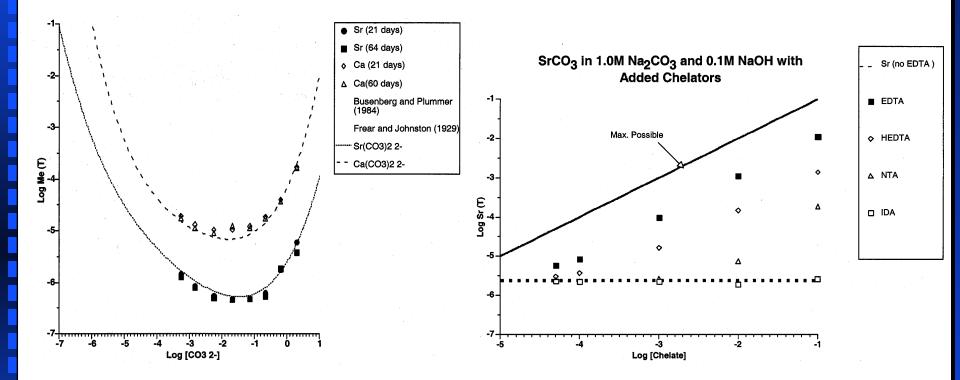
EMSP Workshop, Richland WA, May 6-7 2003

The Pacific Northwest National Laboratory, Richland WA

AN-107 Diluted Feed Composition (Felmy et al. 2000)

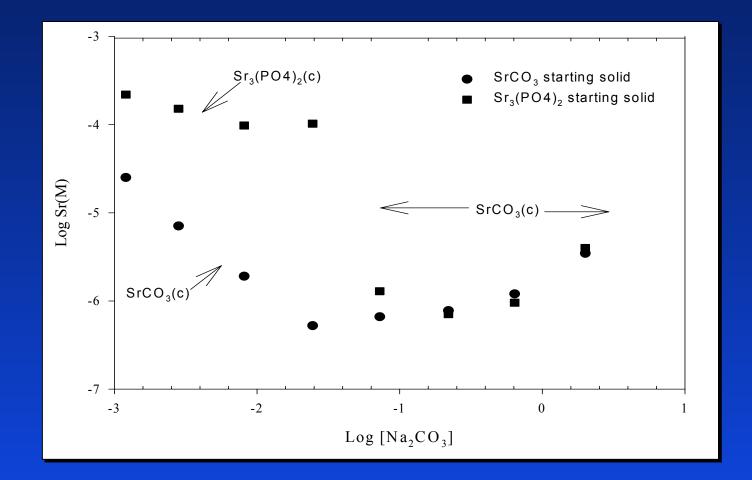
Major Compounds	Concentration (m)	Minor Components	Concentration (m)	Organic Ligands	Concentration (m)
Na⁺	8.9	Al	1.7x10 ⁻¹	Glycolate	.30
NO ₃	3.1	Ba	3.4x10 ⁻⁵	Gluconate	.022
NO ₂	1.3	Ca	1.3x10 ⁻²	Citrate	.055
CO ₃ ²⁻	1.6	Ce	2.3×10^{-4}	EDTA	.024
OH	0.84	Cd	4.9x10 ⁻⁴	HEDTA	.0094
SO_4^{2}	0.1	Cr	3.3x10 ⁻³	NTA	.037
PO ₄ ³⁻	0.037	Cs	1.1x10 ⁻⁴	IDA	.056
*F ⁻	0.39	Cu	3.9x10 ⁻⁴		
Cl	0.046	Fe	2.4×10^{-2}		
		K	3.8x10 ⁻²		· · · · · · · · · · · · · · · · · · ·
		La	1.9x10 ⁻⁴		
		Mn	2.3x10 ⁻³		
		Nd	5.8x10 ⁻⁴		
		Ni	7.9x10 ⁻³		
		Pb	1.45x10 ⁻³		
		Sr	3.5x10 ⁻⁵		
		U	3.6x10 ⁻⁴		
		Zn	3.4×10^{-4}		
		Zr	5.6x10 ⁻⁴		· · · · · · · · · · · · · · · · · · ·

* IC analysis probably includes formate and acetate



Radionuclides (Tank AN-102, Urie et al. 2002)

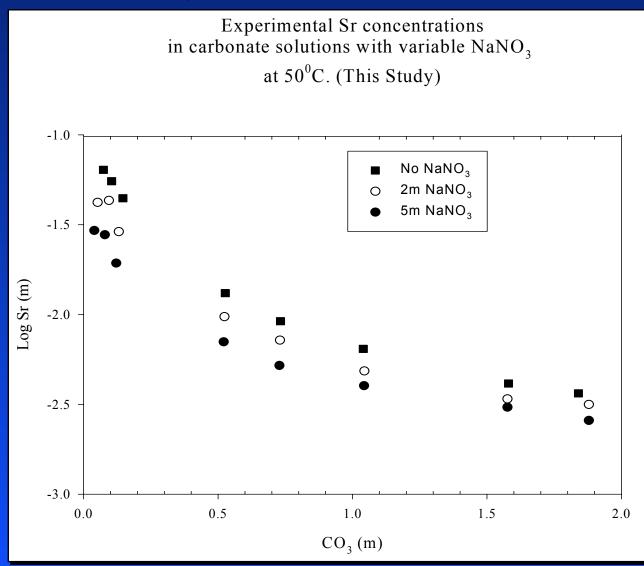
Analyte	Supernatant	Wet Centrifuged Solids
	(µCi/ml)	(μCi/g)
⁶⁰ Co	8.49E-02	5.71E-02
⁹⁰ Sr	5.72E+01	1.44E+02
⁹⁹ Tc	1.48E-01	9.88E-02
¹²⁵ Sb	NM	2.E-01
¹³⁷ Cs	3.69E+02	2.16E+02
¹⁵² Eu	NM	1.E-02
¹⁵⁴ Eu	2.31E-01	5.12E-01
¹⁵⁵ Eu	1.00E-01	3.20E-01
²³⁸ U	NM	2.18E-05
²³⁷ Np	1.20E-04	9.21E-04
²³⁸ Pu	1.65E-03	1.19E-02
²³⁹ Pu	6.47E-03	5.56E-02
²⁴⁰ Pu	2.01E-03	1.50E-02
^{239/240} Pu	5.90E-03	4.17E-02
²⁴¹ Am	1.65E-01	4.21E-01
^{242}Cm	6.29E-04	2.E-03
^{243/244} Cm	6.71E-03	1.72E-02


Sr Speciation

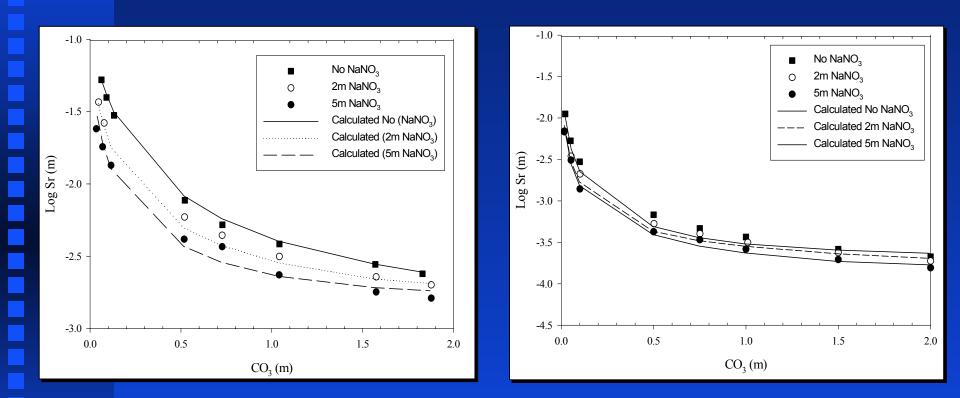
- Developed a thermodynamic model for predicting the aqueous speciation and solubility of Sr in the tank waste.
- Began with inorganic Na-Ca-Sr-OH-CO₃-H₂O system to high ionic strength.
 - ◆ Sr²⁺-OH⁻ interactions weak
 - Strongest inorganic complexes (SrCO₃(aq), Sr(CO₃) $_2^{2-}$)
- Conducted chelate displacement studies as a function of carbonate concentration for several of the possible chelators in tank waste.
 - If the chelate complexes are too weak to displace Sr(CO₃)₂²⁻ then there is no need for definitive data.

Solubility of SrCO₃ in Na₂CO₃ showing formation of Sr(CO₃)₂²⁻ (e.g., SrCO₃(c) + CO₃²⁻ = Sr(CO₃)₂²⁻)

The Solubility of SrCO₃ in 1.0M Na₂CO₃ with Organic Chelates



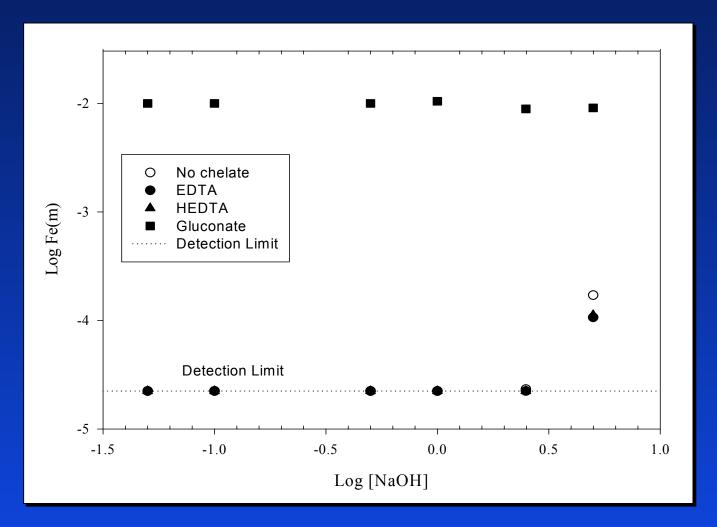
Stability of $SrCO_3(c)$ and $Sr_3(PO4)_2(c)$ starting materials as a function of added Na_2CO_3 . Initial PO₄ concentration in the $Sr_3(PO4)_2(c)$ experiments was 0.03M. Samples equilibrated for 357 days.


Comprehensive Studies

- Developed an extensive set of solubility data for SrCO₃.
 - ◆ Temperatures (25 –75°C)
 - ◆ Na₂CO₃ (0.01m to 1.8m)
 - \diamond NaNO₃ (0 to 5m, extends to 9m total Na)
 - EDTA and HEDTA included
 - Data set should span the range of conditions expected in tank processing.

Effects of Na⁺ on SrEDTA²⁻ Stability

Final Thermodynamic Modeling

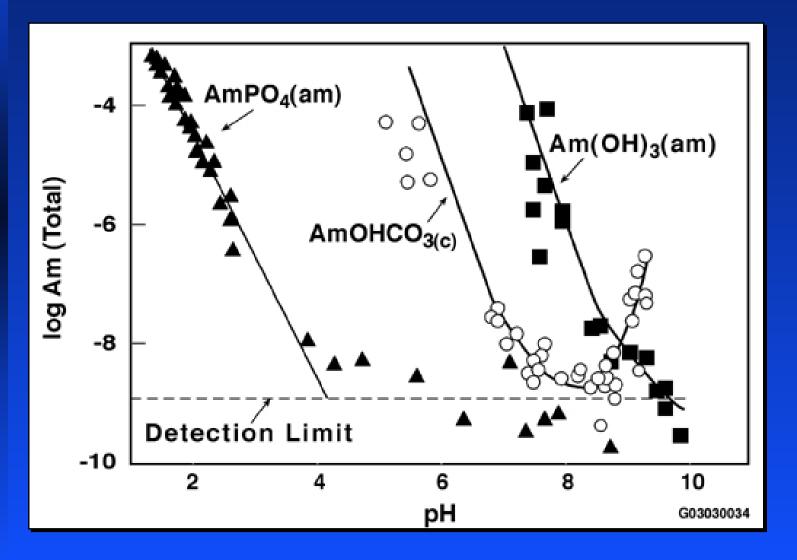

The solubility of $SrCO_3(c)$ with added EDTA (a) and HEDTA (b) as a function of carbonate concentration at different concentrations of NaNO₃ and a over the temperature of 75°C. 0.1M chelate concentrations.

Competing Metal Ions

Four metal ions besides Sr are potentially important EDTA or HEDTA.

- ♦ Al, Fe, Ca and Ni
- Metal ion competition for the chelates can dramatically effect the solubility of SrCO₃.
- Preliminary studies reduced this to only Ca and Ni.

The thermodynamics for Na-Ca-OH-CO₃-EDTA-HEDTA-H₂O and Na-Ni-OH-CO₃-EDTA-HEDTA-H₂O systems is also required.


The solubility of $Fe(OH)_3(am)$ in the presence and absence of 0.01M EDTA, HEDTA or gluconate as a function of NaOH concentration. Equilibration time 7 days.

Trivalent Actinide Speciation

- Thermodynamic models for inorganic ligands available
 - Includes: OH, SO₄, PO₄, F, CO₃, NO₃ (review of Felmy and Rai 1999)
 - Predict dominant species in the waste tanks should be either carbonates (An(CO₃)₃³⁻ or hydrolysis species (An(OH)₄⁻) and the stable solid should be the hydroxide

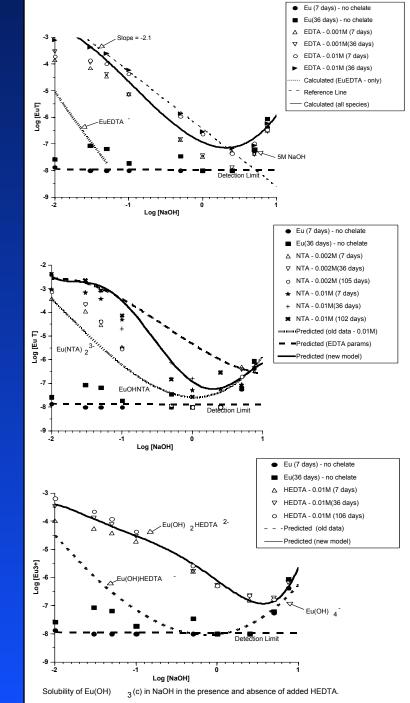
◆ Aqueous concentrations low (10⁻⁸M)

Trivalent Actinide Phase Boundaries

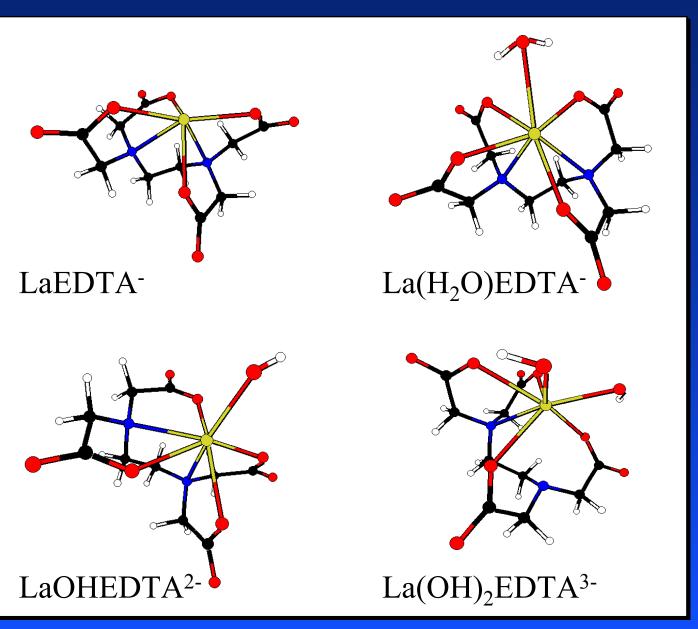
Approach (focus on chelates)

- Solubility studies on Eu(OH)₃ as a function of chelate and base concentration.
 - ◆ EDTA, HEDTA, NTA, initiated gluconate
 - Chelate ineffective in solubilizing hydroxide precipitate cannot be a dominant aqueous species.
- Eu(III) and Cm(III) fluorescence measurements of speciation.
- Molecular simulations of species structure and binding energy.

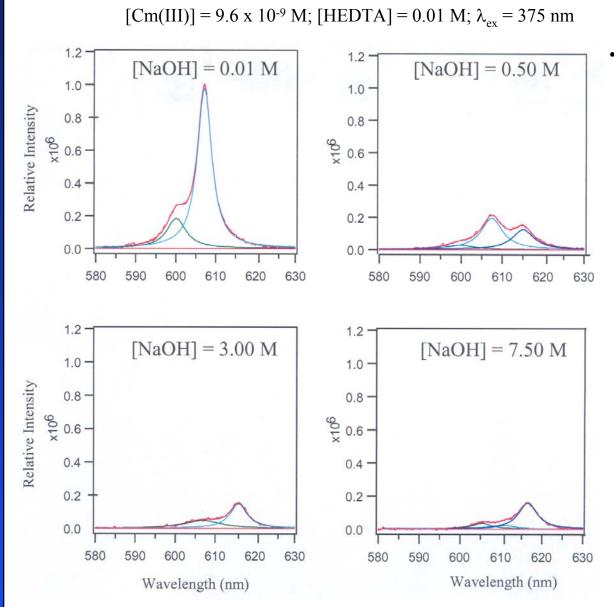
From Felmy et al. (2001)


Eu(OH)₃(c) Solubility in the presence of chelators at high base

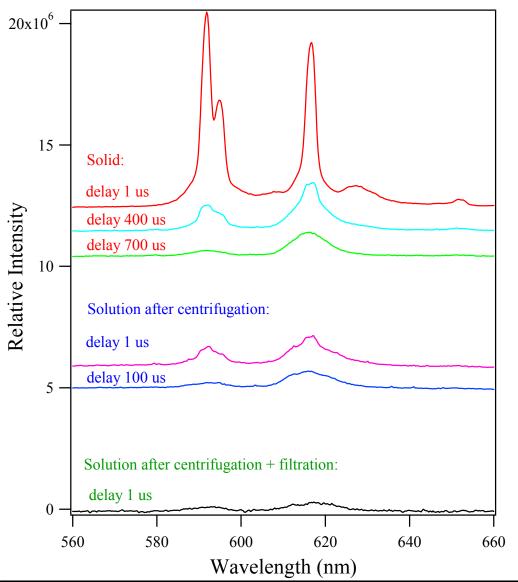
Modeled by assuming the presence of mixed metal-chelate-hydroxide complexes


NTA

HEDTA


EDTA

Asymmetry of Chelate-metal Binding allows Formation of Mixed Metal-chelate-inorganic Species


Fluorescence Emission Spectra of Cm(III) in The Presence of HEDTA at Different NaOH Concentrations

• Simulation of fluorescence intensity data for the species with $\lambda_{max} = 617$ nm fails to produce a constant stability constant

Time-resolved Fluorescence Emission Spectra of Eu(III) in the Presence of 0.001 M HEDTA and Excess Solid $Eu(OH)_3$ (s)

Reaction time: 72 hours; filter pore size ~ 4 nm; $\lambda_{ex} = 375$ nm

- Strong sorption of HEDTA at solid europium hydroxide
- Centrifugation leaves europium hydroxide particulates in the solution
- Further filtration removes most europium oxide particles

Other Studies

Silicate complexation of Sr, Co, and trivalent actinides
Sr – only weakly complexed
Trivalent actinides – strong monomeric and polymeric complexes

Tetravalent actinide – chelate complexation

◆ EDTA, citrate, gluconate

 Gluconate the strongest at high base – may stabilize Am(IV) especially in the presence of permanganate

Initiated studies on U(VI) speciation at very high carbonate and phosphate (BX – tank waste) – accurate source term

Chemical Speciation in Tank Waste (Current Situation)

- Sr speciation
 - Absence of chelates dominated by neutral or anionic carbonate complexes
 - Presence of chelates simple metal-chelate complexes (SrEDTA²⁻)
 - Accurate thermodynamic models available
- Trivalent actinides/analogs (Am, Cm)
 - Low base
 - \sim No chelate carbonate complexes (Am(CO₃)₃³⁻)
 - Chelates mixed metal-hydroxyl-chelate complexes
 - ☞ Thermodynamic models available (25⁰C)
 - ◆ High base (0.1 (no chelate) to 0.5M (chelates) NaOH)
 - Nanoparticle release from the tanks could dominate
- Importance of silica speciation (Am, Co), tetravalent actinide complexation (chelates), and U(VI) phosphate/carbonate being studied