
1

Tolerating Change in a
Secure Environment:
A Visual Perspective

Shawn Bohner
Virginia Tech

May 15, 2007

Common Criteria Evaluation Dilemma Common Criteria Evaluation Dilemma
Common Criteria Security Evaluations (CCSE)
Demand exceeding supply of Evaluators

Labor intensive CCSE process
Effort in Weeks and Calendar time in Months

National Information Assurance Acquisition Policy (NSTISSP #11) July 2002
mandate for security related software evaluation
Limited number of Testing Labs
And then there are all the software updates…

How can this situation be alleviated?
Relax policy & allow lesser/non-evaluated systems
Increase supply of Evaluators
Increase the productivity of Evaluators

Problem

2

Quicken and Clarify CCSEQuicken and Clarify CCSE
Improve Efficiency of CCSE Process through
Better Navigation

Reduce time in navigating the documentation
(shorten the conceptual distances)
Reduce effort and time by identifying failing
evaluations early
Reduce time for key time consuming activities

Improve Effectiveness of CCSE Process through
Better Visibility

Increase confidence of evaluations
Better decisions

Research Goals

NIST/NIAAP’s CCTool Application

CCSE via Security Impact Analysis CCSE via Security Impact Analysis
Virtual EnvironmentVirtual Environment

SIAVE Application
Security
Objectives

Target OfTarget Of
EvaluationEvaluation
(System &(System &
Documents)Documents)

Security
Requirements

EnvironmentalEnvironmental
ConsiderationsConsiderations
(Policies, Threats,(Policies, Threats,
& Assumptions)& Assumptions)

Security
Target (ST) /
Protection
Profile (PP)

Revised
TOE

CommonCommon
CriteriaCriteria
EvaluationEvaluation

Common
Criteria
Standard

Shawn Bohner and Denis Gracanin and Funded by Virginia Commonwealth Grant

SIAVE

3

The SIAVE Research VisionThe SIAVE Research Vision
Vendor Uses CCTool to Generate ST/PP
ST/PP Used to Generate TOE Template in
Vendor’s Documentation Environment
TOE Template Populated and
Updated to form the Revised TOE
Revised TOE Transformed into
Software Life Cycle Objects that
Populate the Database along with Dependency
Relationships
CC Evaluator Analyzes and Navigates Security
Dependency Database in an Immersive Virtual
Environment

SIAVESIAVE

XLST
file

Vendor’s
TOE

TOE Artifacts
& Security

Dependencies

(SQLX)

SecuritySecurity
Target/Target/

Protection Protection
ProfileProfile

Parsers Parsers

Vendor Preparation EnvironmentVendor Preparation Environment

Revised TOE
(Tagged)

Populate TOE
Template
Populate TOE
Template

XML

CC Evaluator’s EnvironmentCC Evaluator’s Environment

SIA Virtual Environment

DependencyDependency
AnalyzerAnalyzer

SIAVE

Shawn Bohner and Denis Gracanin (Funded by Virginia Commonwealth Grant)

4

Technical ApproachTechnical Approach
Employ Complementary Technologies

Software Impact Analysis (dependency based)
Software Visualization / Virtual Environments

Two Phase Approach– Evaluator then Vendor
Phase 1: Automation for Evaluator’s Tasks

Security Impacts Model to Analyze Relevant Dependencies
Visual Environment for Evaluators

Phase 2: Automate TOE capture for Vendors
Build on CCTool to derive TOE templates
Start with common Vendor Documentation Tools
Templates & Parsers for TOE Capture

ST/PP derived TOE Template Generation
Capture & Revise TOE in Vendor friendly tools
MS Word to XML translation & DBMS population

Evolution of SIAVE

TOE TemplateTOE Template

5

TOE Analysis and Navigation

VisualizationVisualization and Navigation

TO
E

A
na

ly
si

s
an

d
N

av
ig

at
io

n
TO

E
A

na
ly

si
s

an
d

N
av

ig
at

io
n

Web and File SystemWeb and File System

B
ro

w
se

r(
s)

 X
M

L/
VR

M
L

B
ro

w
se

r(
s)

 X
M

L/
VR

M
L

Dependency DatabaseDependency Database

SIAVE Prototype SIAVE Prototype

Dependency AnalyzerDependency Analyzer

TOE ConditioningTOE Conditioning
& Capture Parsers& Capture Parsers

CCToolCCTool

D
ep

en
de

nc
y

IA
 M

od
el

D
ep

en
de

nc
y

IA
 M

od
el

TO
E

C
on

di
tio

ni
ng

 &
 C

ap
tu

re

TO
E

C
on

di
tio

ni
ng

 &
 C

ap
tu

re

Basic Architecture

6

Evaluation Assurance LevelsEvaluation Assurance Levels
EAL1– Functionally Tested: Basic assurance of security by
analyzing functional specifications and guidance.
EAL2– Structurally Tested: Moderate level of assurance by
EAL1 plus high-level design and independent testing of the
security functions for vulnerability assessment.
EAL3– Methodically Tested and Checked: Provides moderate
level of assurance by including EAL2 plus evidence of sound
development practices.
EAL4– Methodically Designed, Tested and Reviewed:
Moderate/high level of assurance - highest level economically
feasible to retrofit an existing product line.
EAL5– Semiformally Designed and Tested: Provides security
engineering based upon rigorous commercial development
practices to ensure resistance to attackers.
EAL6– Semiformally Verified Design and Tested: High
assurance through security engineering techniques in a
rigorous development environment to reduce risks.
EAL7– Formally Verified Design and Tested: Highest assurance
level - requires formal design verification.

Status and Next StepsStatus and Next Steps
Completed two Phases of prototype of
Evaluator’s Visual Environment
Populated SIAVE with Initial Test TOE
Refining VE used to Analyze and Navigate TOE
artifacts during Evaluation
Next frontierNext frontier is to introduce Formalism
Moving into EAL 5-7 with formal specifications

Build on Lamsweerde’s constructive approach to
the modeling, specification, and analysis of
application-specific security requirements
Consider Specifying Systems in B or VDM++

Engaging Testing Lab to use live TOE and
explore SBIR possibilities

7

Thanks!Thanks!

