Top and Electroweak Physics Recent developments from experiment, phenomenology and theory

Evelyn J. Thomson University of Pennsylvania/Ohio State University DPF 2004 August 27

Motivation

- Fundamental parameters of Standard Model
- Sensitive to Higgs mass and new physics through radiative corrections
 - Precision measurements
 - Theory challenges
- Standard Candles for detector calibration
 - Lepton identification
 - Energy/Momentum scale
 - Luminosity
- Backgrounds to many new physics signals

Outline

- Accelerators powerful enough to produce W, Z, top
 - Status
- W and Z physics
 - W and Z production cross-section
 - W width
 - W charge asymmetry
 - W mass
 - Diboson production and Triple Gauge Couplings
- Top physics
 - Top production cross-section
 - Top decays
 - Top mass
- Standard Model (and beyond) global fit

Will show selected

results! See parallel

top and

electroweak

sessions for all the

details!

Accelerators:

The decade of the Hadron Collider

TeVatron Performance

TeVatron Experiments

Top & Electroweak Physics need Trigger Electron/Muon/Tau identification Tracking and b tagging Calorimetry

Large Hadron Collider (LHC)

- Goal: find the Higgs boson or new physics!
- Initial/low lumi L<10³³cm⁻²s⁻¹ for first 3 years 2007-2009
 - <2 min bias/collision</p>
 - 10 fb⁻¹/year
 - Time for precision top and electroweak measurements

Accelerate

- Design/high lumi L=10³⁴cm⁻²s⁻¹
 - ~20 min bias/collision 100 fb⁻¹/year

International Linear Collider (ILC)

- Decision to choose superconducting "cold" technology
 - Last week! See www.interactions.org/linearcollider/
- **Design parameters**
 - Total cross-section small at high energies
 - Need very high luminosities
 - Linear
 - Need high acceleration gradients

W and Z Physics

Trigger on leptonic decays at Tevatron and LHC

Clean event signatures with low background

BR~11% per mode for $W \rightarrow \ell v$ BR~3% per mode for $Z \rightarrow \ell^+\ell^-$

CDF(D0) W and Z Event Selection

₩→ev 1 electron E_T>25 GeV, |η|< 2.8(1.1) High MET> 25 GeV

W→µv

1 muon p_T >20 GeV, $|\eta| < 1.0(1.5)$

 $Z^0 \rightarrow e^+e^-$ 2 electrons $E_T > 20 \text{ GeV}$

Z⁰→μ⁺μ⁻ 2 muons p_T>20(15) GeV

Additional luminosity uncertainty of 6% is 166pb for W and 15pb for Z

<u>A:</u> geometric and kinematic acceptance</u>

- Key quantity is boson rapidity, y
- Calculate A(y) from PYTHIA with GEANT detector simulation
 - Dominant systematics
 - E_T,P_T scale <0.4%</p>
 - Detector material < 1%</p>
- Convolve with NNLO differential cross-section
 - First complete NNLO computation of a differential quantity for high energy hadron collider physics
 - Powerful new calculation, applicable to many observables
 - Important for LHC
 - Dominant systematics
 - PDFs CTEQ6M (0.7-2.1%)

Experiment vs theory

- Precision measurements vs precision NNLO predictions
 - Theoretical uncertainty 2%
 - Experimental uncertainty 2%
 - Luminosity uncertainty 6% from total cross section
- Future: instead use W and Z as a luminosity monitor at LHC

S. Frixione, M. Mangano hep-ph/0405130

partons: MRST2002

J. Stirling, ICHEP'04

NNLO evolution: Moch, Vermaseren, Vogt

NNLO W,Z corrections: van Neerven et al. with Harlander, Kilgore corrections

LHC-HERA workshop on PDFs

p. 16

Indirect Measurement of W Width

Measure W/Z cross section ratio: many systematics cancel

W charge asymmetry

u quark carries more of proton momentum, on average, than d quark

- W⁺ boosted along proton beam direction
- W⁻ boosted along antiproton beam direction
- W charge asymmetry sensitive to u/d quark ratio at large x
 - Count e⁺ and e⁻ vs η
 - High E_T sensitive to PDFs
 - Calorimeter- seeded Silicon tracking for electrons with |η|>1
 - Charge mis-id < 2%</p>

Standard Model prediction for W mass

Radiative corrections make W mass sensitive to top and Higgs mass

Recent theoretical calculation of full two-loop electroweak corrections

Experimental measurements of W mass

Tevatron/LHC

Measure W mass from fit to

- W Transverse mass
 - Hadronic recoil model
- Muon P_T or electron E_T
 - W p_T model

Run II fit results are still blinded!

 Statistical error 50 MeV per channel

Dominant systematic uncertainty from lepton energy/momentum scale and resolution

- Most time and effort spent on detector calibration
- This is a very difficult and demanding measurement

Run 1 W mass Systematic Uncertainties

Combined Run I uncertainty 59 MeV How do we reach 40 MeV per experiment in Run II? And 15 MeV per experiment at LHC?

Most of the systematics are statistics-limited...get smarter with more data!

TeVatron Run 1	CDF $W \rightarrow \mu v$	CDF W→ev	D0 W→ev	
W statistics	100	65	60	
Lepton Energy scale	85	75	56	
Lepton resolution	20	25	19	
Selection bias	18	-	12	
Backgrounds	25	5	9	
Recoil model	35	37	35	
PT(W)	20	15	15	
PDFs	15	15	8	ו
QED corrections	11	11	12	
Γ	10	10	10	ן[

Lepton Energy scale

Some advantages to a hadron collider – many calibration samples! And uncertainties decrease with higher statistics

QCD & QED corrections

- QED radiative corrections
 - Multiple QED radiation C. Calame et al hep-ph/0402235
 - QCD+QED(FSR) in RESBOS-A Q. Cao, C.P.Yuan hep-ph/0401026
- Transverse momentum resummation at small-x?
 - TeVatron may be visible at high rapidity S. Berge et al., hep-ph/0401128
 - LHC important everywhere

DPF parallel session

W mass ILC

WW, WZ, ZZ production

- First observation of WW production at a hadron collider
 - TGC Hard to beat LEP with 40k WW pairs
 - Important background to Higgs search!
- Still searching for WZ

CDF $\sigma(WW) = 14.3 \pm \frac{5.6}{4.9} \pm \frac{1.8}{1.8} pb$ $\sigma(WZ) < 13.9 pb@95\% C.L.$ **D0** $\sigma(WW) = 13.8 \pm_{3.8}^{4.3} \pm_{1.2}^{1.3} pb$ $\sigma(WZ) < 15.1 pb@95\% C.L.$ DØ Run II Preliminary 10² Events/8 GeV/c² DATA Ζ/γ.→μμ →ττ $W \rightarrow e u v v$ W+jet/ $\gamma \rightarrow e/\mu X$ ZZ $\rightarrow e\mu X$ 0 WZ→éuX tt → eu X 10 50 150 100 200 180 m_T^{min} (GeV/c²) D0 WZ→µvµµ candidate

<u>Wy and Zy production</u>

- Photon p_T sensitive to TGC
- LHC with 30 fb⁻¹ improve LEP limits by factor 3-10

CDF $\sigma(W\gamma) = 19.7 \pm 1.7 \pm 2.3 pb$ **D0** $\sigma(W\gamma) = 19.3 \pm 6.7 \pm 1.3 pb$

 $\sigma(Z\gamma) = 5.3 \pm 0.6 \pm 0.4 pb$ $\sigma(Z\gamma) = 3.9 \pm 0.5 \pm 0.3 pb$

Top Physics

Top discovered by CDF and D0 in 1995 Very heavy! Top mass = 178.0 \pm 4.3 GeV <But only ~30 events per experiment !!!Want more top events to study properties!!! Run II σ 30% higher at \sqrt{s} =1.96 TeV

Similar mass to Gold atom! 35 times heavier than b quark

Top Production

Top pair production

Top Decay

Tagged Jet 1: Et = 62 GeV, Phi = 107, L2d = 5 mm Tagged Jet 2: Et = 40 GeV, Phi = 291, L2d = 2 mm 2 Lepton/isolated track p_T>20 GeV MET>25 GeV MET>40 GeV if m_{II} [76,106] GeV ≥2 jets E_T>20 GeV

Dilepton

Dilepton kinematics

Leptons Transverse Momentum

Lepton+Jets

1 Lepton p_T>20 GeV

MET>20 GeV

Dominant background from W+jets

Go beyond single variable like H_T Combine seven kinematic variables in a 7-7-1 neural network to improve discrimination

Top shape from PYTHIA

W+jets background shape from ALPGEN+HERWIG MC

Observe 519 events Fit result 91.3 ± 15.6_(stat) top events

$$\sigma(t\bar{t}) = 6.7 \pm 1.1_{(stat)} \pm 1.6_{(syst)} \mathbf{pb}$$

Dominant systematics are Jet energy scale uncertainty Q² scale for W+jets MC

b-Tagging: Vertices and Soft Muons

Recall Standard Model t \rightarrow Wb branching ratio is ~100%

- Every top signal event contains 2 B hadrons
- Only 1-2% of dominant W+jets background contains heavy flavor

Lepton+Jets: ≥1 SVX b-tag

Lepton+Jets: Single vs Double b-tags

Double-tagged events – cleanest sample of top quarks! Separate into 8 subsamples – single or double tag, 3 or \geq 4 jets, e or μ

Lepton+jets: ≥1SVX b-tag & kinematics

Avoid dependence on W+jets MC Use 0-tag data to model W+jets background shape

$$\sigma(t\bar{t}) = 6.0 \pm_{1.8(stat)}^{1.5} \pm 0.8_{(syst)} \, pb$$

Top acceptance Background statistics

CDF Run II Preliminary (~161.6 pb⁻¹)

Top acceptance and shape from PYTHIA MC Try MC@NLO in future

However Experimental systematics dominate: jet energy scale uncertainy b-tag efficiency uncertainty Both will decrease with more data

MC issue #1: How to use LO ME?

MC issue #1: how to use LO ME?

MC issue #2: how to use NLO?

NLO theory up to W+2jets and Wbb

MCFM J. Campbell, R.K. Ellis http://mcfm.fnal.gov

Calculations still needed

W+3jets (a distant goal)

Inclusion of b mass effects in Wbb

Nagy & Soper, hep-ph/0308127 Giele & Glover, hep-ph/0402152 W. Beenaker et al., hep-ph/0211352 S. Dawson et al., hep-ph/0311216

	Good	Bad	Users
NLO	Hard emissions	Soft&collinear emissions	Theorists
NNLO	Total rates	Hadronisation	
	W+jets Heavy flavour fraction at NLO J. Huston, J. Campbell hep-ph/0405276	No events	
MC	Soft&collinear emissions	Hard emissions	Experimentalists
	Hadronisation	Total rates	
	Outputs events	For example, W+4jets is $O(\alpha_s^4)$ Scale uncertainty of 10% leads to 40% uncertainty on total rate	

MC issue #2: how to use NLO?

Search for Single Top

1 Lepton $p_T > 20$ GeV

Exactly 2 jets $E_T > 15 \text{ GeV } |\eta| < 2.8$

MET>20 GeV

Top pair production: Summary

Many different measurements

- Test different assumptions
- Compare to look for new physics
- Combination ~20% precision
- Currently statistics-limited

Top Decay: BR(t→Wb) ≈100%?

Top Decay: BR(t→H+b)?

Does top decay to a charged Higgs instead of a W? Compare observed number of events in 3 final states

Helicity of W from top decays

Standard Model is V-A theory: predicts W from top are $F_0=70\%$ longitudinal, $F_2=30\%$ Left-handed

- Assume F₊=0.0 (ie no V+A)
 - Measure F₀

$$F_0 = 0.89 \pm_{0.34}^{0.30} \pm 0.17$$

• F₀>0.25 @ 95% C.L.

"Who says it's a fermion?" Top squark could mimic final state but W polarisation would be different

- Assume F₀=70%
 - Set limit on V+A fraction
 - F₊<0.269 @ 90% C.L.</p>

Top Charge and ttγ coupling

Standard Model top charge +2/3 implies $t \rightarrow W^+b$ Exotic top charge -4/3, then $t \rightarrow W^-b$ instead!

- Examine photon p_T and angular distributions
- Measure ttγ coupling at LHC to 3-10%
 - More difficult at Tevatron due to QED ISR from qq
 - Difficult at e⁺e⁻ linear collider to disentangle ttγ and ttZ

Top Mass: Reconstruction

- Lepton+Jets
 - Neutrino undetected
 - P_x, P_v from energy conservation
 - 2 solutions for P_z from M_{Iv}=M_w
 - Combinatorics of 4 highest E_τ jets
 - 12 ways to assign jets to partons
 - 6 if 1 b-tag
 - 2 if 2 b-tags (beware of charm!)
 - ISR
 - Extra jets
 - 4 highest E_T jets not always from top decay
 - FSR
 - Poorer resolution if extra jet not included or jet clustering leaves no well-defined jetparton match
- Dilepton
 - Lower statistics
 - Two undetected neutrinos
 - Fewer combinations only 2 jets
 - ISR/FSR as above

Final state from LO matrix element

p. 49

1 Lepton p_T>20 GeV MET>20 GeV >3 jets E_T>15 GeV, |η|<2.0

Top Mass: MC Template

 $\mathcal{P}(\text{measurement}|\text{mtop}) =$

 $\mathcal{P}(\text{measurement}|\text{partons}) \propto \mathcal{P}(\text{partons}|\text{mtop})_{j}$

MC + GEANT detector simulation + reconstruction

- Choose best combination and neutrino solution with a kinematic fit
 - M_{fit}=m_{top}=m_{top}, M_w(Iv)=M_w(qq), transverse energy of tt+X system
 - Require χ² consistent with hypothesis
 - Performance: correct combination 30%, incorrect 26%, ill-defined (ISR/FSR) 44%
- Parameterise reconstructed mass shape with MC
 - top mass dependence MC with different input top masses
 - Background shape
- Maximise Likelihood

$$m_{top} = 176.7 \pm ^{6.0}_{5.4} \pm 7.1 \, GeV/c^2$$

E(Parton-Jet) GeV

p. 51

Systematic from jet energy scale reduced by 40%

Global Standard Model Fit

<u>Changes since Summer 2003</u> Only use high Q² measurements from LEP, SLC and Tevatron

Theory inputComplete two-loop for Mwhep-ph/0311148Fermionic two-loop for sin2θeffhep-ph/0407317

Experimental input HF combination (LEP/SLC) W mass combination (CDF/D0) top mass (D0)

Summer 2004

SM constraint on Higgs boson mass

Top Mass: Tevatron Summary

Run II goal is 2.5 GeV per experiment

Dominant systematic from jet energy scale

None of the Run II preliminary measurements are in the world average

Jet Energy Scale

Absolute energy scale is the key!

- Must tune Calorimeter simulation at single particle level
- Accurate material description important – extra from new Silicon
- New GEANT simulation
- New forward calorimeter
- Data γ-jet balance statisticslimited
- Relative response
 - Data di-jet balance calibrate relative to central
- Expect systematic to decrease soon
 - Improved simulation
 - Get smarter with more statistics

Top mass @ LHC

≥ 4 jets E_T>40 GeV, |η|<2.5 2 b-tags

1 Lepton p_T>20 GeV

MET>20 GeV

- Much higher statistics...can reduce systematics
 - Double b-tags: reduce background and combinatorics
 - 87,000 top with S/B~78 with 10 fb⁻¹
 - Calibrate jet energy scale in situ using hadronic W decay!
 - b-jets achieve 1% calibration with Z+b?
- Precision 1 GeV per experiment

Top mass @ ILC

K. Desch M. Schumacher hep-ph/0407159

Top Yukawa Coupling

SM prediction is
$$g_{ttH} = \frac{\sqrt{2m_{top}}}{246 \text{ GeV}} = 1.02 \pm 0.02$$

- Important to test coupling between Higgs and top quark
- Combine LHC and LC for model independent measurement
 - LHC: pp \rightarrow ttH+X measure σ (ttH)xBR(H \rightarrow WW) to 20-50%
 - ILC: $e^+e^- \rightarrow ZH$ measure BR(H \rightarrow WW) to 2%

$$\sigma(ttH) \propto g_{ttH}^2$$

Can do with 500 GeV Linear Collider

Conclusions

- Next few years shaping up to be very interesting
 - Tevatron delivering high luminosities expect 4-9 fb⁻¹
 - More W bosons and top quarks than ever before
 - Precision measurements of top properties is it really top?
 - Very fruitful interaction between theorists and experimentalists
 - NLO and beyond calculations important for precision measurements and searches for new physics
 - Promote interaction between Tevatron and LHC
 - Tev4LHC year-long workshop
- LHC first beam expected 2007, first physics 2008
- ILC accelerating towards reality

SM Higgs sensitivity

W mass at LEP

Non-4q

CERN-EP/2003-091 LEPEWWG/2003-02

4q

