#### Cooling Climates Technologies Hawaiian Investigations 2001 National Workshop on State Building Energy Codes

July 18, 2001

Howard Wiig State of Hawaii & Erik Kolderup, PE Eley Associates



#### **Cooling Climates Technologies**





- High performance windows
- Heat pipes (and other dehumidification) options)
- ♦ UV lamps
- Roof Color, Insulation, and Radiant Barriers
- Daylighting & controls







# Develop commercial building guidelines Identify potential energy code upgrades







- Low solar heat gain coefficient (SHGC)
- High visible light transmittance (Tvis)
- Technologies:
  - Coatings
  - Tints

### Transmission Properties of Different Glass Types





#### Specularly-Selective Glazings



Blue or green tint



**Heat Mirror** 

Low-e coatings



Some retrofit window films



Life-Cycle Cost Methodology



Analysis accounting for:

- Cooling energy (DOE2.1E)
- Lighting energy including daylighting (DOE2.1E)
- HVAC system size (DOE2.1E) and cost
- Glazing cost (ASHRAE/T24 and CADMAC costs) with additional 30% markup)



Similar to LCC approach used for current Hawaii code

Also for Standard 90.1-1999 and CA standard



8

#### **Glazing Types Considered**

| Glass Type                  | SC   | SHGC | VLT  | U-factor | Inc Cost |
|-----------------------------|------|------|------|----------|----------|
| Single Clear                | 0.95 | 0.82 | 0.88 | 1.087    | \$ -     |
| Single Tint                 | 0.69 | 0.59 | 0.43 | 1.087    | \$ 0.68  |
| Single High Perf Tint       | 0.60 | 0.50 | 0.66 | 1.088    | \$ 1.86  |
| Single Reflective - Medium  | 0.64 | 0.55 | 0.39 | 1.088    | \$ 1.69  |
| Single Reflective - High    | 0.36 | 0.25 | 0.13 | 0.912    | \$ 3.18  |
| Double Clear                | 0.81 | 0.70 | 0.78 | 0.483    | \$ 5.10  |
| Double Tint                 | 0.54 | 0.46 | 0.38 | 0.483    | \$ 5.78  |
| Double High Perf Tint       | 0.48 | 0.38 | 0.58 | 0.483    | \$ 6.96  |
| Double Low-e                | 0.40 | 0.34 | 0.47 | 0.31     | \$ 8.28  |
| Double High Perf Tint Low-e | 0.25 | 0.21 | 0.35 | 0.31     | \$ 10.14 |

#### Example Fenestration Electricity Impact



#### **Electricity Impact**



## Life-Cycle Cost Comparison



## Life-Cycle Cost Comparison – West Orientation





## Life-Cycle Cost Comparison – North Orientation





#### **Optimal Glazing Results**

- Same result for all orientations and glass areas
  - High performance tint outer pane with low-e coating
  - Clear inner pane
  - SHGC = 0.21
  - VLT = 0.35

(without overhangs or other shades)



#### California 2001 Nonresidential Window Requirements



#### Maximum SHGC

|           | All         | North       |  |
|-----------|-------------|-------------|--|
| WWR       | Orientation | Orientation |  |
| 0% - 10%  | 0.46        | 0.61        |  |
| 11% - 20% | 0.36        | 0.51        |  |
| 21% - 30% | 0.36        | 0.47        |  |
| 31% - 40% | 0.31        | 0.40        |  |

#### Windows Conclusions and Next Steps



- High performance spectrally selective windows appear cost effective in Hawaii
  Potential for more stringent window requirements in Hawaii
- Continuing analysis should include:
  - Impact of shading exterior and interior
  - Impact of other orientations NE, SE, SW, NW
  - Additional window types



#### Pop Quiz (multiple choice)

- A "heat pipe" is defined as...
  - a. a heat recovery device
  - b. a conduit for heat generated by a heat pump
  - c. a police crowd-control weapon
  - d. the opposite of "peace pipe"
  - e. a & c
  - f. **b & d**
  - g. C&a
  - h. a, b, c, & d
  - i. X, Y & Z

#### Dehumidification



#### Humidity control important in Hawaii

- Required all year
- - 40% to 60% RH desired for comfort
  - < 60% RH to prevent mold growth</p>
- Material degradation and maintenance
- Energy consumption



# **Current Status In Hawaii**



- Most cooling systems designed to meet humidity requirements at full load
- Usually don't dehumidify adequately at partial load
- Many systems are oversized



- Mildew problems are common
- Some critical applications use electric reheat, at high energy cost
- Some use more efficient systems



#### **Dehumidification Alternatives**

#### Standard cooling system

- Does not provide enough dehumidification at low load
- Standard cooling with reheat
  - Good humidity control, but high energy consumption
- Heat pipe or run-around coil
  - Precools and reheats supply air
- Dual-path system design
  - Separate cooling coil for outside air
- Refrigerant subcooling
  - Improves dehumidification of packaged DX systems
- Desiccant systems



#### Heat Pipe



23

Source: Heat Pipe Technology, Inc.

#### MOISTUREMISER DEHUMIDIFICATION OPTION



Source: Carrier







#### Run-Around Loop or Heat Pipe



50% cooling load conditions



#### Dehumidification Energy Comparison



| <br>                         | Cooling and Ventilation Demand |          |          |  |  |
|------------------------------|--------------------------------|----------|----------|--|--|
| <br>System Type              | 100% Load                      | 75% Load | 50% Load |  |  |
| Standard Cooling with Reheat | 2.6 kW                         | 3.3 kW   | 5.0 kW   |  |  |
| Run-around Coil/ Heat Pipe   | 2.6 kW                         | 2.1 kW   | 1.6 kW   |  |  |
| <br>Dual Path System         | 2.6 kW                         | 2.0 kW   | 1.6 kW   |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          | 29       |  |  |
|                              |                                |          |          |  |  |
|                              |                                |          |          |  |  |

#### **Dehumidification Code Questions**



- What can and should be codified?
  - What should be limited to guidelines?
- Reheat limitations?
  - More important as IAQ becomes a bigger issue
- More stringent load calculation and system sizing requirements?
  - Avoid oversizing cooling capacity



- Part-load system efficiency/performance requirements?
  - Problem: still need cold air for dehumidification, but too cold for space conditions

Preliminary Observations and Conclusions



- If further study shows that alternatives are more cost effective, then stricter reheat limitations will be recommended.
- Difficult balance between limiting energy consumption and encouraging IAQ

# Ultraviolet Germicidal Irradiation (UVGI)



32

Look like linear fluorescent lamps

- UV-C, wavelength of 0.2537 microns
- Penetrates germ cells, destroys DNA info
- Two primary applications
  - Prevent mold growth on cooling coils
    - Coverage of about 4 ft<sup>2</sup> coil per 24 inch lamp
  - Kill organisms in air stream
    - Requires much higher light intensity
    - Tuberculosis control





#### Iolani School, Honolulu



- ♦ 35,000 ft<sup>2</sup> office and classroom building
- Six AHUs, total of 45,000 cfm
- 20 UV lamps total
- ♦ Lamps last 1.5 years
- Replacement cost approx. \$1,300/year



- Eliminated mold growth and odor
- Maintenance savings \$8,000 per year



- Report fewer complaints of respiratory problems
- Facility manager very satisfied

# Preliminary Observations and Conclusions



- All Hawaiian cooling coils grow mold!
  - Cleaning required 1 to 2 times per year
  - UV lamps effectively inhibit mold growth on cooling coils
- Primary benefits are:
  - Improved IAQ
  - Lower maintenance cost (less cleaning required)
  - Less frequent use of potentially toxic cleaning chemicals
- Energy benefits are small
  - (But mold probably reduces system cooling capacity)
- Most important applications
  - Areas with dirty/dusty air
  - Spaces with health concerns
- Code Issues
  - More appropriate for IAQ standards
  - Probably not appropriate as mandatory requirement

