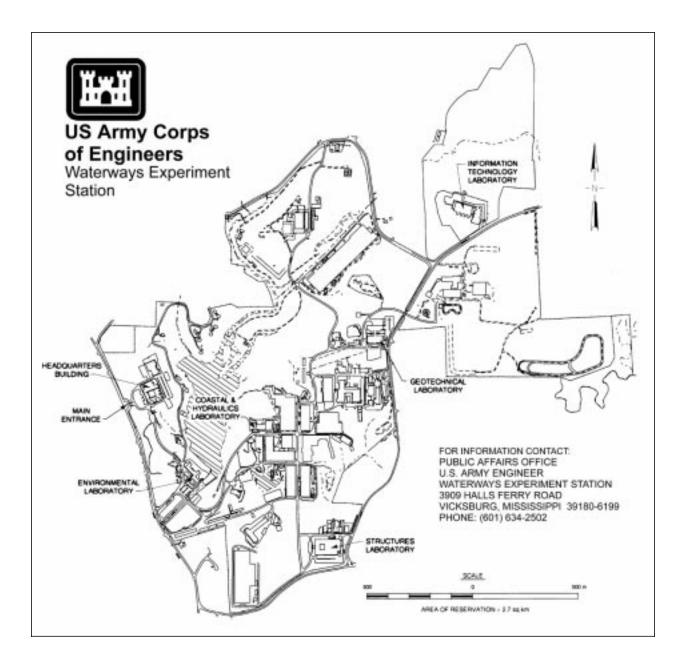
Upper Mississippi River - Illinois Waterway System Navigation Study ENV Report 3 September 1997


Physical Forces Study, Kampsville, Illinois Waterway

by Stephen T. Maynord, Sandra K. Martin

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Interim report Approved for public release; distribution is unlimited

Prepared for U.S. Army Engineer District, Rock Island Rock Island, IL 61204-2004 U.S. Army Engineer District, St. Louis St. Louis, MO 63103-2833 U.S. Army Engineer District, St. Paul St. Parl, MN 55101-1638

Waterways Experiment Station Cataloging-in-Publication Data

Maynord, Stephen T.

Physical forces study, Kampsville, Illinois Waterway / by Stephen T. Maynord, Sandra K. Martin ; prepared for U.S. Army Engineer District, Rock Island, U.S. Army Engineer District, St. Louis, U.S. Army Engineer District, St. Paul.

171 p. : ill. ; 28 cm.

"ENV report 3"

Includes bibliographic references.

1. Illinois Waterway (III.) — Navigation — Mathematical models. 2. Waterways — Illinois — Navigation — Mathematical models. 3. Mississippi River — Navigation. I. Martin, Sandra K. II. United States. Army. Corps of Engineers. Rock Island District. III. United States. Army. Corps of Engineers. St. Louis District. IV. United States. Army. Corps of Engineers. St. Paul District. V. U.S. Army Engineer Waterways Experiment Station. VI. Upper Mississippi River-Illinois Waterway System Navigation Study. VII. Title. VIII. Title: Interim report for the Upper Mississippi River-Illinois Waterway System Navigation Study. TA7 W3499 R5U7 ENV rept.3 1997

Contents

Preface
1—Introduction 1
Background1Physical Forces Objectives1Scope of Report2
2—Prototype Kampsville
Prototype Data Collection3Instrumentation3Events4Analysis of Data4Tows Selected for Comparison with Physical Model5Definitions5Variation in Prototype Data5
3—Physical Model Description
Similitude
Introduction11Verification13Draft Correction14One-Barge-Wide Verification Experiments15
5—Production Experiments and Results
Series 1, Rake Experiments.16Series 2, Pool El 418.0.17Series 3, Pool El 419.4.17Series 4, Pool El 427.0.18Series 5, Vertical Velocity Distribution Experiments18Series 6, Stationary Boat Experiment.18

Series 7, Variability of Physical Model Return Velocity Data	19
Series 8, Drawdown Distribution	19
Series 9, Numerical Model Output	19
6—Analysis	21
Vertical Velocity Profile	21
Upbound/Downbound/Influence of Ambient Currents	
Normalized Velocity Distribution	22
Data Variability	23
7—Summary and Conclusions	24
References	26
Figures 1-99	
Tables 1-56	
SF 298	

Preface

The work reported herein was conducted as part of the Upper Mississippi River-Illinois Waterway (UMR-IWW) System Navigation Study. The information generated for this interim effort will be considered as part of the plan formulation process for the System Navigation Study.

The UMR-IWW System Navigation Study is being conducted by the U.S. Army Engineer Districts of Rock Island, St. Louis, and St. Paul under the authority of Section 216 of the Flood Control Act of 1970. Commercial navigation traffic is increasing, and in consideration of existing system lock constraints, will result in traffic delays that will continue to grow into the future. The system navigation study scope is to examine the feasibility of navigation improvements to the Upper Mississippi River and Illinois Waterway to reduce delays to commercial navigation traffic. The study will determine the location and appropriate sequencing of potential navigation improvements on the system, prioritizing the improvements for the 50-year planning horizon from 2000 through 2050. The final product of the System Navigation Study is a Feasibility Report, which is the decision document for processing to Congress.

The work was performed by personnel of the Hydraulics Laboratory, U.S. Army Engineer Waterways Experiment Station (WES) during 1994-1996. The study was under the direction of Mr. Frank A. Herrmann, Jr., Director, Hydraulics Laboratory (HL); Mr. Richard A. Sager, Assistant Director, HL; and Dr. Larry L. Daggett, Chief of the Navigation Division (HN), HL. The study was conducted by Dr. S. T. Maynord and Dr. S. K. Martin, both of the Navigation Effects Group, HN.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin, and the Commander was COL Robin R. Cababa, EN.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

Background

The Upper Mississippi River-Illinois Waterway System (UMR-IWWS) Navigation Study evaluates the justification of additional lockage capacity at sites on the UMR-IWWS while maintaining the social and environmental qualities of the river system. The system navigation study is implemented by the Initial Project Management Plan (IPMP) outlined in U.S. Army Engineer Districts, St. Paul, Rock Island, and St. Louis (1994). The IPMP outlines Engineering, Economic, Environmental, and Public Involvement Plans.

The Environmental Plan identifies the following: significant environmental resources on the UMR-IWWS; the impacts to threatened and endangered species; water quality; recreational resources; fisheries; mussels and other macro invertebrates; waterfowl; aquatic and terrestrial macrophytes; and historic properties. In a preliminary way the plan also considers the systemwide impacts of navigation capacity increases, while assessing potential construction effects of improvement projects. The physical forces studies are part of the Environmental Plan.

Physical Forces Objectives

According to the IPMP the objectives of the physical forces studies are as follows:

- *a.* Use Illinois State Water Survey (ISWS) field data to calibrate and validate the physical model.
- b. Increase density of field measurements to refine their spatial distribution.
- c. Make a range of measurements which could not be made in the field.
- d. Expand measurements to different cross sections.
- e. Carry out statistical data analyses.

- *f.* Develop models by combining existing field data with new data developed from physical model.
- g. Evaluate the feasibility of developing numerical solutions.

Scope of Report

The Kampsville site was one of several sites used in the physical model to achieve the physical forces objectives outlined in the previous paragraph. (Several references are made to the Clark's Ferry site on the Mississippi River, the second site examined.) Specifically, the Kampsville site study evaluated the far field velocities and drawdown induced by underway tows. Far field refers to all areas except those beneath and immediately adjacent to the tow. The Kampsville study gives primarily the following: physical force data, an understanding for developing analytical models, and numerical model verification of far field effects.

2 Prototype Kampsville

Prototype Data Collection

ISWS collected physical data on the hydrodynamic changes associated with tow and barge traffic movement on the UMR-IWWS. These data were collected from the Illinois and Mississippi Rivers. A detailed report on the Kampsville prototype investigation is found in Bhowmik, Soong, and Xia (1993).

The Kampsville site is located on the IWWS at river mile (RM) 35.2 in a relatively straight reach (Figure 1). A reconnaissance trip, before the actual field data collection, gathered information on site characteristics, bathymetry, cross-sectional profiles, discharge, suspended sediment, and bed materials. The actual field data collection trip included collecting data on ambient conditions and during an event. Data were taken for three periods relative to each tow event: (a) pre-passage, (b) actual passage, and (c) post-passage. Trip 1 field data were collected for seven consecutive days (October 11-17, 1990), and trip 2 for three consecutive days (August 13-15, 1991). Trip 2 collected wave and velocity data especially during evening hours when water surface was calm. Figures 2 and 3 show cross sections for trips 1 and 2, respectively.

Instrumentation

Data were collected with (a) two Interocean current meters (model S4's), (b) two Marsh McBirney (MMB) 527 velocity meters, (c) four MMB511's, and (d) one wave gauge. The instruments were placed in the experiment reach for data collection. Velocity data in both the x- and y-directions were sampled at one sample per second. Positive x-velocities were downstream and positive y-velocities were toward the left bank. Wave data were sampled at 10 samples per second.

For trip 1, velocity meters were deployed as shown in Figure 2. The three MMB511's at 33.5 m from the right bank were mounted at vertical heights of 0.31, 1.22, and 2.44 m above the riverbed. These MMB511 meters were utilized to measure the variations of horizontal velocity components at various heights above the bed. The trip 1 wave gauge was 11.3 m from the right bank.

For trip 2 the velocity was measured at locations shown in Figure 3. Three MMB511's were mounted at vertical heights of 0.46, 1.31, and 2.13 m above the riverbed 22.9 m from the right bank. The trip 2 wave gauge was 9.1 m from the right bank.

Discharges and stages were measured at different times during trip 1 and trip 2. Table 1 shows discharges, average channel velocities, average flow depths, and water-surface elevations.

The average water-surface slope on this reach was 0.196 m/km (0.096 ft/mile) during trip 1 and 0.051 m/km (0.025 ft/mile) during trip 2. These slopes are determined by the daily stages at Hardin, IL, RM 21.6 and Pearl, IL, RM 43.1.

Events

Trip 1 monitored 25 barge trips and trip 2 monitored 22 barge events. Tables 2 and 3 (trips 1 and 2, respectively) give the name, date, draft, barge configuration, tow speed relative to earth, distance from the center line of the tow to the bank, and the tow direction.

Analysis of Data

Prototype and physical model data contained velocity and water level changes not caused by the tow. These changes included the normal fluctuations found in turbulent flow, eddies shedding from upstream bends, and changes from upstream structures or tributaries. Comparisons between the model and prototype must be based on tow-induced motion and not on extraneous components found in both prototype and physical model. Filtering out unwanted information, if a limiting frequency can be identified, is one alternative. Since prototype tows are generally 300 m long and travel at about 3 m/sec, the time the tow is adjacent to the measuring point is about 100 sec, which roughly defines the period of the event and leads to a frequency of 0.01-Hz interest. To make certain that tow information is not filtered, a limiting frequency of 0.02 Hz was selected for filtering the data. Filtering out fluctuations above a certain frequency was needed because model velocity, prototype velocity, and wave meters had different frequency responses. For example, the prototype electromagnetic velocity meters sampled at 1 Hz, but the acoustic Doppler velocity meters used in the physical model sampled at 25 Hz, equivalent to 5 Hz in the prototype. A fast Fourier transform (FFT) filtered out components of velocity or drawdown occurring at frequencies greater than 0.02 Hz in both the prototype and the physical model. The physical model was filtered after scaling values to their prototype equivalent. Plots are presented in Figures 4 to 12 of unfiltered and filtered data from the William C. Norman prototype tow. These plots suggest that under the trip 1 flow and pool elevation, ambient conditions in the Illinois River vary significantly due to long period variations that have frequencies similar to the tow event.

Tows Selected for Comparison with Physical Model

Six prototype tows were selected for comparison with the physical model. Selection was based on the following:

- *a. Number of meters functioning during experiments.* Some tows were not used because one or more meters malfunctioned.
- b. Tow configuration and draft. To simulate tow events producing the maximum deviation from ambient conditions, only 3-wide by 4- or 5-long, loaded barges were used in the adjustment/calibration of the physical model. Events producing the maximum deviation from ambient were desired so the model would correctly reproduce the worst river conditions. Also note that the 3-wide by 5-long, loaded tow is a standard configuration.

The six tows selected were *William C. Norman, Rambler, Charles Lehman,* and *Mr. Lawrence* from trip 1 and *Jack D. Wofford* and *Olmstead* from trip 2.

Definitions

Experiment result terms are defined as follows:

- *a.* The terms "left bank" or "right of the thalweg" refer to positions in the cross section when looking at the cross section in a downstream direction.
- *b.* Ambient velocity is the velocity measured without tow traffic effects but close enough to the tow passage to eliminate variations due to flow and/or stage changes. In the Illinois Waterway at Kampsville, the prototype data presented for the *William C. Norman* suggest that ambient velocity should be measured over at least 5 minutes to obtain a representation of the mean.
- *c*. Impact velocity is the maximum velocity or minimum velocity that occurs during the tow event for a given mechanism. For example, the impact velocity from return currents would be the maximum velocity (for upbound tows) or minimum velocity (for downbound tows) that occurs adjacent to the vessel. The return velocity is the difference between the impact velocity and the ambient velocity.

Variation in Prototype Data

It is important to recognize that the prototype data in the verification process are subject to variation caused by measurement inaccuracy in tow speed, tow draft, tow position, tow alignment, water velocity, water level variation, and ambient discharge. Also of concern is the following: lack of knowledge about the propeller speed, applied horsepower, shape of the barge bow, and whether the physical model had a straight constant cross section whereas that of the prototype varied longitudi- nally. All barges in the prototype verification experiments were reported to have a 2.74-m draft. The writers' experience suggests that the draft of the loaded barges could have been ± 0.15 m (6 in.). Tow alignment relative to the river axis could be skewed by several degrees resulting in an effective tow width greater than the sum of the widths of the barges. To screen the prototype data for possible inconsisten- cies, the Schijf (1949) equation was used to compute the average return velocity and drawdown (Table 4). Therefore, consider that the Schijf equation provides a cross- sectional average return velocity and the prototype data are near-bottom velocity data from which a maximum value was extracted. The prototype data for each tow event were examined for a similar ratio of maximum observed return velocity/Schijf average return velocity. The filtered data from each prototype velocity meter were analyzed for the maximum return current/Schijf average return current (Table 5). For the Kampsville site, meters not close to the channel boundary were expected to have similar values for a given tow event. Meters 332, 642, 1000, 999, 040, and 071 were not close to the boundary. Meters 999 and 1000 were also expected to give similar results because they were at the same lateral position and are away from the channel perimeter. The only data that are clearly suspect are Olmstead meter 1000 and Mr. Lawrence meter 1000 because they differ significantly from the other meters for that tow event. The other meters gave similar values as expected.

It is not possible to define the variability of the prototype data by comparing the same event run numerous times as will be done in the physical model experiments. However, two tow events, the *Jack D. Wofford* and the *Olmstead*, were nearly identical in speed, direction, distance from right bank, draft, configuration, channel cross-sectional area, and flow rate. As shown in Table 5, these two tows produced similar values at all meters.

The variation of the ambient velocity about the mean from the filtered data could establish the significance of tow-induced changes. For example, if natural stream velocity variations over periods about 100 sec (100 sec based on period of tow event) are \pm 5 cm/sec, one might conclude that tow-induced changes less than 5 cm/sec are no different from the natural variations. The filtered prototype data were analyzed for the maximum and minimum values prior to any tow effects. The relative ambient velocity variation was found by dividing the difference between maximum and minimum values by two and then dividing by the mean ambient velocity (Table 6). Using an average value from Table 6 as a guide, natural velocity fluctuations (with periods similar to a tow event period) fluctuate about the mean ambient current an average of \pm 12 percent.

3 Physical Model Description

Similitude

Similarity of form resistance, flow patterns, and water surface changes in navigation models is best achieved when the ratio of inertia to gravitational forces is the same in model and prototype. This ratio, the Froude number F, is defined as

$$F = \frac{V}{\sqrt{gD}} \tag{1}$$

where

V = generally the vessel speed

g =gravitational constant

D = characteristic length such as depth, draft, or vessel length

The equations of hydraulic similitude, based on the Froude criteria, express the mathematical relations between the dimensions of hydraulic model and prototype quantities. General relations for transferring 1:25 scale model data to prototype equivalents are as follows:

Characteristic	Dimension ¹	Scale Relations Model: Prototype			
Length	$L_r = L_p/L_m$	1:25			
Area	$A_{r}=L_{r}^{2}$	1:625			
Velocity	$V_r = L_r^{1/2}$	1:5			
Time	$T_r = L_r^{1/2}$	1:5			
Discharge	$Q_r = L_r^{5/2}$	1:3,125			
Roughness Coefficient	$N_r = L_r^{1/6}$	1:1.71			
Force	$F_r = L_r^3$	1:15,625			
Revolutions or frequency	$R_r = 1/L_r^{1/2}$	5:1			
¹ Dimensions are in terms of length.					

However, viscous forces cannot be neglected in physical navigation models. If interest is in the forces on a vessel (for example, towing tank studies), the relatively higher viscous forces in the physical model cause greater frictional resistance on the model vessel. If the interest is in the forces the vessel imposes on the waterway (such as this study), the relatively higher viscous forces in the model cause the model vessel to be effectively larger than the prototype vessel due to the larger boundary layer effects. The following section on model calibration will show how this model dissimilarity is overcome.

Model Flume and Appurtenances

The navigation effects flume (Figures 13 and 14) is 125 m long, 21.3 m wide, and has a maximum 1.22-m depth. The last 1.52 m on both ends has a 2.13-m depth. Ten pumps, each having an approximate discharge capacity of 0.16 cu m/sec, recirculate flow through the flume. A sharp-crested overflow weir at the upstream end of the flume evenly distributes the flow across the flume.

The center 61 m of the flume was used for the 1:25-scale Kampsville experiment site. Marine plywood sections were installed to form a composite cross section representing conditions at mile 35.2 on the Illinois River. The upstream end of the plywood section had curved entrance walls for a smooth transition into the experiment section. The data collected by the Illinois River Hydrographic Survey on 6/22/88 and the data collected by ISWS on 10/15/90 and 8/8/91 determined the composite cross section. This composite section was heavily weighted toward the ISWS data. The coordinates of the physical model section are as follows:

Distance from Thalweg , m	Elevation ¹				
-213.0 (top of left bank)	428.0				
-152.5	409.0				
-61.0	406.5				
0.0 (Thalweg)	406.5				
61.0	406.5				
100.6	410.0				
155.5 (top of right bank)	428.0				
¹ All elevations (el) cited in this report are in feet referred to the National Geodetic Vertical Datum (NGVD). To convert to meters, multiply by 0.3048.					

This cross section was used along the full length of the 61-m-long plywood section.

The 1:25-scale towboat (Figure 15) was modeled after the Corps' Motor Vessel (MV) *Benyaurd* and is 52 m long by 12.3 m wide by 2.74-m draft. The model

towboat is equipped with two main and four flanking rudders, open-wheel 2.74-m diameter propellers, and can be radio controlled for self-propelled operation. The 1:25-scale sheet metal barges simulated 59.5-m-long by 10.7-m-wide barges with variable draft. Individual barges were connected by C-clamps to form the desired tow configuration. All barges had boxed ends except the lead barge the bow of which had a raked end. All experiments (except a limited series of experiments to evaluate the effects of the rake angle) were run with an 0.8-rad (45-deg) rake on the lead barge.

A towing carriage maintained consistent speed and alignment for the model tow and operated on steel rails set to grade that extended the length of the flume. The connection between the tow and the towing carriage was designed to allow complete freedom of vertical movement, push the tow at one point near the center of gravity, and maintain the desired tow alignment (Figure 16).

This study focuses on the far field effects of the tow. A previous study by Maynord (1990) conducted with and without propeller operation suggests the propeller has little impact on far field flows in these channel sizes. Analysis of the flow amount passing through the propellers shows that about 2 percent of the waterway is passing through the propellers, which suggests limited impact on far field effects. The present study began with a series of experiments to further evaluate the effects of propeller flows on far field velocity and drawdown. Results of the physical model experiments suggested little impact but were not conclusive enough to conduct experiments without propeller operation. So, the speed to operate the propellers was a problem since prototype data collected by ISWS did not include the power or revolutions per minute (RPM) in the prototype experiments. The method used in the study described in this report first calibrated the model towboat bollard push (push when speed = 0) against propeller speed and applied voltage on a d-c power supply. Next an equation was applied that was developed by Toutant (1982) defining the bollard push for an open-wheel propeller as

$$BP_o = 23.57 (Hp)^{0.974}$$
⁽²⁾

or for a kort nozzle as

$$BP_k = 31.82(Hp)^{0.974}$$
(3)

where BP is the bollard push in pounds and Hp is the total towboat horsepower. Knowing towboat horsepower from the ISWS data, the BP was computed using the Toutant equations. This BP provided an upper limit for a given horsepower towboat. The power setting, with some adjustment for tow speed, used 75 percent of the upper limit in most experiments. This approximate method is appropriate for far field experiments but will not be used in subsequent physical forces studies that address the near field area beneath and immediately adjacent to the tow.

Instrumentation

Wave heights were measured with two wave gauges in the nearshore zone on both channel sides. The wave gauges were capacitance type gauges manufactured at the U.S. Army Engineer Waterways Experiment Station.

Velocity measurements were taken using eight acoustic Doppler velocimeters (ADV's) (Kraus, Lohrmann, and Cabrera 1994). Six probes were threedimensional (3-D) and two were two-dimensional (2-D) side-looking probes that measured velocity in the horizontal plane. One and sometimes two of the 3-D probes were upward-looking probes and the remainder were downward-looking probes. The ADV's took data approximately 5 cm from the transmit and receive transducers. The side-looking 2-D probes were needed for shallow-water velocities since the 3-D probes would not work in shallow water due to the 5-cm offset. The ADV's use acoustic sensing techniques to measure flow in a remote sampling volume. No cables enter in the water, and the measured flow is relatively undisturbed by the presence of the probe. Data are available at an output rate up to 25 Hz. The horizontal velocity range is ± 2.5 m/sec and no zerooffset in the velocity output. Data can be collected as close as 5 mm from a solid boundary. The ADV's require certain size particles present in the water to measure the water velocity. Hollow glass spheres having a mean diameter of 10 microns and specific gravity slightly greater than one were used as the seed material in the model. Using low or no ambient velocity causes a problem since the seed will settle to the bottom while waiting for the model to stop moving as a result of distributing the seed. However, this was not a major problem because ambient velocities were high enough to keep the seed in suspension. Positive x-velocities were downstream and positive y-velocities were toward the left bank.

The ADV's and the wave gauges were positioned at approximately the midpoint of the plywood experiment section at station 62 (62 m from downstream end of concrete flume). A wave gauge and 2-D and 3-D ADV's are shown in Figure 17.

When the physical model was selected for studying navigation effects on the UMRS, the ambient conditions in the physical model were envisioned as free from the significant variations observed in the prototype data. This was not the case since the model had significant variations in ambient conditions. These variations were attributed to pump variations, eddies in the approach and exit to the plywood experiment section, and long-period oscillations in the basin set up by vessel movement. To overcome these variations, the physical model data were filtered like the prototype data. After scaling the physical model data to its prototype equivalent, an FFT filtered out all data frequency greater than 0.02 Hz.

4 Model Calibration

Introduction

Model calibration adjusted parameters in the physical model until the physical model and the ISWS prototype data agreed. The following three areas are suspected of causing differences between the model and prototype:

a. The physical model needs adjustment because the boundary layer along the vessel and along the channel perimeter grows faster in the physical model than in the prototype. This phenomenon occurs in all physical navigation models operated according to the previously presented Froudian scaling criteria. By using equal Froude numbers in a navigation model that is smaller than the prototype, the Reynolds number will be smaller in the model than in the prototype. The smaller Reynolds number in the model results in a faster growing boundary layer that causes the tow's effective size to be larger than in the prototype. To quantify the boundary layer effects, the displacement thickness is computed. This thickness indicates the distance by which the external streamlines are shifted owing to the formation of the boundary layer. Using the Prandtl-Schlichting skin friction equation for a smooth flat plate at zero incidence (Schlichting 1968) and computing the displacement thickness results in the following derived equation

$$d_{I} = \frac{0.292L}{\left[\log\left(R_{L}\right)\right]^{2.58}}$$
(4)

where

 d_I = displacement thickness

- L = plate length, set equal to the total barge length herein
- R_L = plate Reynolds number defined as VL/n
- V = free stream velocity set equal to vessel speed relative to the water and determined from $V = V_s + V_r + V_a$
- V_s = vessel speed relative to the ground

- V_r = average return velocity from Schijf
- V_a = ambient velocity, positive for upbound, negative for downbound
- n = kinematic viscosity of water

In an unpublished study, a 1:37.5-scale navigation effects model was adjusted by reducing the draft of the barges to account for the dissimilarity of boundary layer. This comparison between model and prototype was approximate because the channel shape was a rough representation. Vessel length was 304.8 m. The required draft correction D_C is shown in the following tabulation.

River	Vessel Speed m/sec	Return Velocity m/sec	D _c m	δ _{1m} m	d _{1p} m	d _{1m} - d _{1p} m	D _/d _{1m} - d _{1p}	
Ohio	3.30	0.10	0.46	0.70	0.31	0.39	1.18	
Illinois	2.77	0.19	0.69	0.72	00.31	0.41	1.68	
$d_{,p}$ = prototype displacement thickness $d_{,m}$ = model displacement thickness *37.5								

Model and prototype temperatures were 10 and 20 $^{\circ}$ C, respectively. In this tabulation all the dissimilarities between boundary layer on the vessel and the channel perimeter have been lumped into conditions on the vessel. The draft correction can be computed from

$$D_C = C(\mathsf{d}_{lm} - \mathsf{d}_{lp}) \tag{5}$$

$$d_e = d_a + D_C \tag{6}$$

where *C* is a coefficient that must be determined experimentally. Adding D_C to the actual model draft d_a results in effective draft d_e of barges. The Ohio and Illinois River results in the tabulation show a value of C of 1.18 and 1.68. These values will be compared to the Kampsville experiments in the draft correction section below.

b. When the physical model is started from rest, flume length limitations dictate a faster acceleration than in the prototype. The acceleration for the physical model is shown in Figure 18. The tow in conjunction with the towing carriage becomes a wave generator that creates a wave in front of the tow. This wave is not as significant in the prototype because of the slower prototype acceleration and also tow motion in the prototype is initiated much farther from the measurement point. The "wavemaker" in

the prototype (the barges) generally is powered by about a 3,728-kW (5,000-hp) towboat whereas the towing carriage in the model has a scaled power of up to 111,855 kW (150,000 hp). Stated differently, the inertia of the vessel and the water in front of the vessel is significant compared to the power of the prototype tow and the resulting acceleration is low. These inertial forces in the model are insignificant compared to the power of the carriage.

c. The physical model flume length prohibits velocity/wave measurements for a significant time after tow passage because the startup wave generated by the tow bounces off the flume end wall and returns to the experiment section. Once this happens, the physical model data are not valid. Wave suppression devices are not effective for the long-period wave and are difficult to employ when flowing water is part of the experiment flume.

The verification process will show that the physical model reproduces the most significant tow displacement effects—the maximum return velocity and drawdown.

Verification

The Kampsville verification compared maximum return velocity and drawdown for three tow events and developed rules for adjusting the model that resulted in agreement between model and prototype. These rules were then applied to three different tow events to determine the level of agreement between model and prototype. All six tows were three barges wide, loaded to 2.74 m, and either four or five barges long. The tows for developing the adjustment rules were the William C. Norman (trip 1), Jack D. Wofford (trip 2), and Olmstead (trip 2). The Jack D. Wofford and Olmstead were nearly identical in all respects. The ambient depth-averaged velocity distribution in the physical model for the William C. Norman conditions is shown in Figure 19. The three tows used to research the rules and to determine the level of agreement between model and prototype were the Rambler, Charles Lehman, and Mr. Lawrence (Oct 15) and were from trip 1 at Kampsville. For each of the six prototype tows, five replicate runs of the physical model were conducted. At each probe, the five replicate runs were analyzed for maximum (or minimum) velocity alongside the tow, maximum drawdown, and the ambient velocity or water level before the tow effects arrived at the measurement location. These values were analyzed for outliers using the Chauvenet criterion given in Coleman and Steele (1989). This criterion specifies that all points should be retained that fall within a band around the mean that corresponds to a probability of 1-1/(2N) using Gaussian probabilities. For the five replicate experiments in Kampsville, Chauvenet's criterion specifies that data were discarded only if they departed from the mean by more than $1.65S_r$ where S_r is the standard deviation of the sample of five points. All remaining experiments were averaged for comparison with the prototype data. The ambient velocities were averaged as were the maximum (or minimum) velocities alongside the tow for each probe. The difference between these two averages defined the maximum

return velocity that represented the physical model for each probe. The same technique was used for drawdown.

The initial experiment series was conducted with all physical model parameters scaled to the previously presented Froudian criteria, which require geometric similarity between model and prototype. Results comparing maximum return velocity and drawdown for the William C. Norman, Olmstead, and Jack D. *Wofford* are shown in Table 7. It is quite clear that the physical model over estimates return velocity and drawdown when using geometric scaling and the Froude criteria. This was the expected result based on the boundary layer concerns presented previously. The next series of experiments was conducted with reduced model barge draft to offset the greater boundary layer growth in the physical model. Also of concern at this stage was the startup wave, which was not present in the prototype data. Efforts were directed at reducing the magnitude of the startup wave because of concern that the presence of the startup wave might affect the return velocity and drawdown. Various model accelerations were tried with no significant impact, probably because the limited model length prevented significant reduction of the acceleration. The best agreement of return velocity and drawdown with the least startup wave was found with a 2.28-m draft on all barges except that the bow of the lead barge was drafted 1.14 m. This change in draft on the lead barge had no apparent impact on the return velocity but minimized the amplitude of the startup wave. Results for the William C. Norman, Olmstead, and Jack D. Wofford are presented in Tables 8 and 9. This same draft correction was used to simulate the Rambler, Charles Lehman, and Mr. Lawrence which were not used to develop the draft correction. Results are shown in Tables 10, 11, and 12, respectively.

To compare the model and prototype, the most consistent data were expected at meters farthest from the channel perimeter. Meters close to the perimeter (998 and 1001) could easily be affected by local channel bottom irregularities and by differences between boundary layer growth in the model and prototype. Scatter plots of meters 332, 642, 999, 1000, 040, and 071 are shown in Figures 20 and 21 for the three rule development tows and the three tows used to research the rules, respectively. Lateral distribution of return velocity in both model and prototype is shown in Figures 22-26 for each tow. Actual and filtered time-histories for the *William C. Norman* physical model data using the corrected draft are shown in Figures 27-33.

Draft Correction

In order to obtain an effective draft of 2.74 m, the actual draft was adjusted by the draft correction. The draft correction used for the six Kampsville verification experiments was 2.74 m - 2.28 m = 0.46 m and is compared in Table 13 to the difference in displacement thickness for the six tows used in the verification process. The six verification experiments yielded an average *C* for Equation 5 of 1.72, which is close to the value determined in the previous experiments for the Illinois River. A draft correction coefficient *C* of 1.72 from the Kampsville experiments will be used to compute D_C (Equation 5) and effective draft d_e (Equation 6) in the Kampsville experiments and will be compared to subsequent experiments using the Clark's Ferry reach on the Mississippi River.

These results showed that the physical model is limited in the minimum draft that can be simulated in the model. Unloaded model barges draft about 0.6 m. With a draft correction of approximately 0.46 m for five long barges, the minimum draft that can be researched in the physical model is about 1.06 m at the 1:25 scale.

One-Barge-Wide Verification Experiments

After completion of the production experiments described in the next chapter, two attempts were made at comparing the physical model to prototype data from loaded, one-barge-wide tows. The first experiments were run with the *Luke Burton* from trip 1. Bhowmik, Soong, and Xia (1993) show this is a one-wide by three-long "mixed" tow. Experiments were conducted with three 10.7-m by 59.5-m barges end to end (Table 14). Model values were about 60 percent of prototype values. The average return velocity from the Schijf equation was 0.115 m/sec and yielded an average ratio of physical model return velocity to Schijf return velocity of 1.18, consistent with previous results. Further examination of the prototype experiments showed that the mixed tow was actually a mixed chemical tow of unspecified length. The difference in widths made this comparison invalid. The unknown size of the prototype prevented further comparisons with this prototype tow.

The second one-barge-wide experiments were run with the Dixie Express from trip 2. Based on conversations with the company owning the Dixie Express, this tow consisted of two asphalt barges 15.9 m wide by 76.2 m and 83.8 m long for a total length of 160.0 m. Two model barges 13.3 m wide by 74.4 m long were placed end to end for a total length of 148.8 m. To offset the lesser model beam width, the model barges were drafted to an equivalent draft of (15.9*2.74)/13.3 = 3.28 m. To account for boundary layer differences, an actual model draft of 2.93 m was used and was based on a value of C in Equation 5 of 1.72. Model results are shown in Table 15. The average of the four prototype return velocities divided by the Schijf average return velocity is 1.19, which is consistent with previous results. The average of the four physical model experiments divided by the Schijf average return velocity was 0.63, which is different from all previous results and from the subsequent production experiments. It is possible that offsetting the lesser beam width with increased draft had some effect on these results, but the low ratio of physical model return velocity/Schijf suggests a problem with the physical model data. The need to proceed with the subsequent Clark's Ferry site prevented additional experiments to resolve this problem.

5 Production Experiments and Results

Experiments evaluated the return velocity and drawdown for experiment conditions and meter positions not addressed in the prototype experiments, after adjusting the physical model to reproduce the prototype. The verification experiments were conducted with the same meter position as the prototype tests. Where to measure the velocities in the vertical was an issue that had to be resolved. Analysis of vertical velocity profile data showed that if the meter was too close to the bed, the maximum change resulting from tow passage may not have been captured. The physical forces study also compared physical model results to a depth-averaged numerical model, the HIVEL-2D (Stockstill, Martin, and Berger 1995). With the exception of the vertical velocity profile experiments, all velocities in the production runs were measured at 60 percent of the local depth below the water surface. This position ensured that the maximum change produced by the tow will be measured and, therefore, directly compared to HIVEL-2D. The following paragraphs detail each experiment series.

Series 1, Rake Experiments

An initial experiment series determined the influence of rake configuration on navigation-induced forces. The rake configuration refers to the shape of the bow on the lead barges. All experiments were conducted with boxed ends at all connections between barges. Previous experiments have shown a significant increase in the resistance of barges with increasing rake angle at medium to high vessel Froude numbers (Latorre and Ashcroft 1981). However, at low vessel Froude numbers that are typical of UMRS tows, results from Latorre and Ashcroft show a small effect of tow configuration on barge resistance. It is not known if this low Froude number effect also applies to rake angle. Data were collected and evaluated for experiments run at variable speeds with bow rake angles of 0.05, 0.08, and 0.16 rad (26, 45, and 90 deg) in conjunction with stern rake angles of 0.16, 0.16, and 0.08 rad (90, 90, and 45 deg), respectively. Tow configuration for these experiments was two wide by four long and actual draft of 2.74 m. The experiments were conducted with no flow and water-surface el 422.9.

The first experiments, also the first experiments in the navigation effects flume, were conducted with the 0.08-rad (45-deg) rake angle. These data were not as consistent as later data, had a high degree of variability, and are not shown on the drawdown and return velocity (X-direction only) plots versus tow speed in Fig-ures 34-38. As discussed in the previous paragraph, these experiments were run with the rake angle on the stern of the barges varying as well as the bow rake angle.

Subsequent experiments and the previously discussed verification experiments were conducted with an 0.08-rad (45-deg) rake angle. By adjusting the model draft until the model return velocity and drawdown matched the prototype data, the 0.08-rad (45-deg) rake angle was forced to mimic whatever rake angle was represented by the prototype data. The distribution of actual rake angles occurring in the prototype was not known.

Analysis of rake angle data will be conducted after rake angle data are collected in the Clark's Ferry physical model.

Series 2, Pool El 418.0

Two experiments (five replicates for each experiment) were conducted at pool el 418.0, with a discharge of 625 cu m/sec, and loaded three-wide by four-long tows. The tow was positioned 1.5 m left of the thalweg and the bollard push propeller thrust was 354.5 kN (79,688 lb). A cross section showing velocity probe locations is shown in Figure 39 and a summary of experiment conditions is shown in Table 16. All velocity probes were set at 60 percent of the depth below the water surface except for probe 4, which was set at 38 percent below the water surface. Wave gauges were set at 70 m right of the thalweg and 100 m left of the thalweg. Ambient, maximum impact velocity, maximum return velocity, and maximum drawdown below normal water level are shown in Tables 17 and 18.

Series 3, Pool El 419.4

Fifteen experiments (five replicates each) were conducted at pool el 419.4, with a discharge of 180 cu m/sec, loaded and partially loaded barges, and two drafts. The cross section is shown in Figure 40 and a summary of experiment conditions is shown in Table 19. Ambient, maximum impact velocity, maximum return velocity, and drawdown below normal water level for each experiment are shown in Tables 20-34. To obtain a representative data set for vector plots shown in Fig- ures 41-57, the five replicate experiments were averaged, and one was selected as the most representative of the mean of the five experiments. Because the vector plots can provide only a finite number of vectors, the maximum value was not always indicated but is provided in the tables. Table 35 summarizes the positions of the velocity probes for each experiment.

Series 4, Pool El 427.0

Twelve experiments (five replicates each) were conducted at pool el 427.0, with discharges of 1,281 and 2,094 cu m/sec, three-wide by five-long barges, and loaded and partially loaded barges. The cross section is shown in Figure 58, and experiment conditions are summarized in Table 36. The ambient velocity distribution is shown in Figure 59. Ambient velocity, maximum impact velocity, maximum return velocity, and drawdown below normal water level for each experiment are shown in Tables 37-48. Vector plots for each representative experiment selected based on the mean of the five replicates are shown in Figures 60-71. Because the vector plots can provide only a finite number of vectors, maximum values were not necessarily shown in the vector plots but are provided in the tables. The position of the velocity probes for each experiment is summarized in Table 49.

Series 5, Vertical Velocity Distribution Experiments

Three experiments (five replicates each) determined the vertical distribution of velocity changes induced by the tow. Table 50 shows the vertical distribution for the downbound *William C. Norman* experiment ND58VD at 81.25 m left of the thalweg. Table 51 shows the distribution of vertical velocity for pool 419.4 experiment KLU488 at 81.25 m left of the thalweg. Table 52 shows the distribution for pool 427.0 upbound experiment KHVU38 at 87.5 m left of the thalweg.

Series 6, Stationary Boat Experiment

Experiment WCNSP evaluated the determination of return velocity and drawdown by running water past a stationary vessel. The advantage was that a highly dynamic event was changed into a steady event where measurements were easier. The average channel velocity was set equal to vessel speed relative to the water. An attempt was made to simulate the conditions in the William C. Norman experiments, but the water surface in the flume became relatively rough when the average channel velocity approached the 2.4-m/sec relative vessel speed. The stationary boat experiment was conducted with an average channel velocity of 2.1 m/sec with all other conditions the same as in the William C. Norman experiment. Velocity probes were numbered from 1 to 8 starting on the left bank and were positioned at station 62 and probe position PP1 from the pool el 419.4 experiments. The pool elevation was 421.8 and all probes were set at 60 percent of the local depth below the water surface. First the velocity was measured at the eight probes with the tow far downstream of the meters to establish the ambient condition. Then, the bow of the tow was positioned at stations 52-80 in 2-m increments and velocities were measured for about 180 sec (model) at each

station. Finally, the average velocity over the 180-sec time period was determined for each probe at each tow location. The average ambient velocity for each probe was subtracted from the average velocity for each probe at each location. Results are shown in Figure 72 and Table 53 with the maximum value shown at the bottom. The average of the maximums is 0.23 m/sec, which is 1.26 times the computed Schijf average return velocity of 0.183 m/sec. The ratio of 1.26 is consistent with prototype results shown in Chapter 2. Note that the data show the highest return velocities were near the vessel and near the shoreline with lesser magnitude between. Additional stationary boat experiments were not conducted because it is difficult to simulate the higher vessel speeds because of the rough water surface and because boundary conditions are different caused by the channel bottom not moving relative to the boat.

Series 7, Variability of Physical Model Return Velocity Data

The variability of the physical model was evaluated by replicating experiment ND58Q2 nine times. All experiments were run in one day, which eliminated the variability due to setting the flow and stage in the model. Experiment conditions were identical to those for *William C. Norman* and velocity meter locations were the same as the PP1 in the pool el 419.4 experiments. The verification runs were different from those of the *William C. Norman* because the vertical position of the velocity meters was set at 60 percent of the depth from the surface. Results of the nine replicates are shown in Table 54. Comparison of the maximum return velocity average from the nine experiments with the physical model verification run from *William C. Norman* and the *William C. Norman* prototype data are shown in Figure 73. Replicate D was closest to the mean of all nine replicates. Velocity vectors for replicate D are shown in Figure 74.

Series 8, Drawdown Distribution

In conjunction with the nine replicate experiments of ND58Q2 on variability of return velocity data, the wave gauges were positioned at various locations across the channel to measure the distribution of drawdown during vessel passage. Results are shown in Table 55.

Series 9, Numerical Model Output

The November 1994 version of HIVEL-2D simulated the *William C*. *Norman* condition of experiment ND58Q2. Comparison of maximum return velocity from prototype, physical model, and numerical model is shown in Figure 73. Comparisons of the time-histories between numerical model and

physical model for replicate D are shown in Figures 75-82. Probe positions PP1 (Table 35) for pool el 419.4 were used in the experiments.

HIVEL-2D was also used to assess the adequacy of the navigation effects flume's length. Was the 61-m-long asymmetric section long enough for currents to establish around the tow that are representative of long river reaches? The HIVEL-2D output for the *William C. Norman* downbound tow was plotted at stations 42 to 92 in 10-m increments (Figure 83). A similar plot for an upbound tow traveling at 1.9 m/sec (identical to *William C. Norman* in all other respects) is shown in Figure 84. Ignore magnitudes in Figures 83 and 84 since these are presented in physical model units. Figures 83 and 84 show that the tow reaches a near-equilibrium magnitude of return velocity suggesting that flume length is adequate for measurements at station 62.

A second numerical simulation used the Kampsville section in a reach much longer than represented by the physical model. Results from the numerical model of the long reach and the numerical model of the flume simulation were nearly identical. Comparison of magnitudes of maximum return velocity for the *William C. Norman* from numerical model and prototype showed that the numerical model was 6 percent greater than meter 999; 5 percent greater than meter 332; 2 percent greater than meter 642; 26 percent greater than meter 040; and 4 percent greater than meter 071. The average of the five meters was 9 percent.

6 Analysis

Vertical Velocity Profile

In addition to the physical model data on vertical velocity profile, the Kampsville prototype data from meters 998, 999, and 1000 were analyzed for vertical profile changes. The number of events where all three meters were functioning was limited; trip 2 did not have enough events to be useful. Maximum return velocity was determined from the ISWS report by taking the difference between the impact and the ambient velocity. Only those events producing a maximum return velocity of 0.1 m/sec or greater were used in the analysis because lesser values are difficult to separate from ambient velocity. For trip 1 conditions, meter 998 was 0.31 m above the bottom, meter 999 was 1.22 m above the bottom, and meter 1000 was 2.44 m above the bottom at a location where the local depth was about 3.4 m.

Results from the physical model and the prototype data in Table 56 suggested the flow depth can be separated into two zones: (a) an upper zone where the velocity change due to vessel-induced return velocity is nearly uniform. and (b) a lower zone where the changing boundary layer tends to limit the maximum tow-induced return velocity. The dividing zone between the two is probably not a fixed percentage of the depth but depends on channel boundary layer growth, which in turn, depends on vessel speed and length, return velocity magnitude, boundary roughness, local depth, and ambient velocity magnitude. From the model and prototype tows where vertical distribution was measured, the return velocity change at the position farthest from the bed was treated as being in the upper zone and used to normalize velocities measured at all positions closer to the bed. Upbound and downbound prototype data near the bed were highly variable. For the upbound tows shown in Table 56, the velocity profile is uniform except for the meter located at 0.31 m above the bed. This suggests that the dividing line between the upper and lower zones is somewhere between 0.31 and 1.2 m above the bed. For downbound tows, the profile has a similar but greater reduction near the bed but also has a peak at a point about 1 m above the bed that is not found in the upbound data. In either case the use of measured velocities at 60 percent of the local depth below the water surface captures close to the maximum tow-induced return velocity.

Upbound/Downbound/Influence of Ambient Currents

Data from pool el 418.0, pool el 419.4, and pool el 427.0 are plotted in dimensionless form in Figures 85-98. Velocities are normalized by dividing by the Schijf average return velocity computed using the vessel speed relative to the water and the effective draft.

One question that must be answered in development of analytical models of tow effects is how do tow-induced currents add or subtract from ambient currents for upbound and downbound tows? At present, analytical models assume that tow currents add directly to ambient currents. For example, return current from the tow is added to ambient current for an upbound tow and subtracted from the ambient current for downbound tows. Tow speed relative to the water is presently determined by vessel speed over the ground minus (for downbound) or plus (for upbound) the average channel velocity. The question then is should the velocity near the tow, rather than the average channel velocity, determine the vessel speed relative to the water for use in analytical models? To evaluate this hypothesis, tow events were plotted where upbound and downbound tows had the same or nearly the same speed relative to the water. Results for events with similar speeds are shown in Figures 85-90 and 93-96. Results show that adding and subtracting from ambient flows produces similar results for pool el 418.0 and 419.4 experiments in Figures 85-90. Three of the four pool el 427.0 experiments in Figures 93-96 show the average return velocity for the upbound tows higher than return velocity for downbound tows for one channel side. The conclusion on the correct addition of ambient currents will await further data collection in the Clark's Ferry physical model.

Normalized Velocity Distribution

A second issue in development of the analytical model is developing a dimensionless or "unit" time-history of the return velocity. In the analytical model, equations predict the maximum return velocity during vessel passage. This maximum return velocity is the basis for normalized time-histories of return velocity. Return velocity was normalized by first subtracting the ambient velocity and then dividing by the maximum return velocity. Time was normalized by dividing by the time required for barge passage defined as total barge length/vessel speed relative to the ground. Prototype, physical model, and numerical model return velocities were normalized using this procedure and are shown in Figure 99. Proto- type data from the six verification tows were averaged to develop the empirical time history in Figure 99. Meter 999 was used from the prototype data because its vertical position relative to the bed is similar to this study's physical model experi- ments where the meters were positioned 60 percent of the local depth below the water surface. The three upbound tows and the three downbound tows from the prototype experiments showed no significant difference when normalized using this procedure. The physical model experiments used to

develop the average normalized curve were (a) the upbound KLU335C, KLU488C, KLRU49C, and KLLU49C; and (b) the downbound KLLD51C and KLRD49C. All physical model analysis used the probe closest to prototype meter 999. The numerical model curve was based on the *William C. Norman* tow using the position closest to meter 999. The physical model and prototype data differ only near the bow of the tow where the physical model experiences a significant bow velocity not observed in the prototype for reasons previously discussed. The numerical model reaches a peak return velocity earlier in the tow event and departs from the prototype and physical model after tow passage, possibly related to the absence of propellers.

Data Variability

The nine *William C. Norman* physical model experiments (Table 54) were used to determine the standard deviation of the maximum return velocity. The maximum return velocity was determined for each experiment by taking the difference between the ambient and the maximum impact. The standard deviation was determined for each probe based on the nine replicates. The average standard deviation for the eight probes was 12 percent of the maximum return velocity. For example the nine replicates from probe 6 had an average maximum return velocity of 0.234 m/sec. The standard deviation of the nine probe 6 replicates was 0.12(0.234) = 0.028 m/sec.

7 Summary and Conclusions

Ambient flow conditions in both the physical model and the prototype had significant variations at a large range of frequencies including the frequency at which the tow effects occur. A fast Fourier transform filtered information above 0.02 Hz.

Prototype return velocity and drawdown compared to physical model return velocity and drawdown in the Kampsville site showed that the Froude model with geometric scaling of vessel size resulted in model values greater than the prototype. The physical model draft had to be reduced from purely geometric scaling for agreement between model and prototype. The physical model also generated a wave and flow at the bow greater than the prototype data. This bow effect was likely related to the rapid acceleration that must be used in the physical model because of the limited flume length.

Variability of return velocity was evaluated using nine identical experiments in the physical model. The standard deviation of the maximum return velocity was 12 percent of the maximum return velocity.

Rake angle experiments determined the effect on return velocity and drawdown. It appears from Figures 34-38 that values for drawdown and return current are consistently higher for 0.16 rad (90 deg) than 0.05 rad (26 deg). Further conclusions will await additional experiments on the Clark's Ferry physical model.

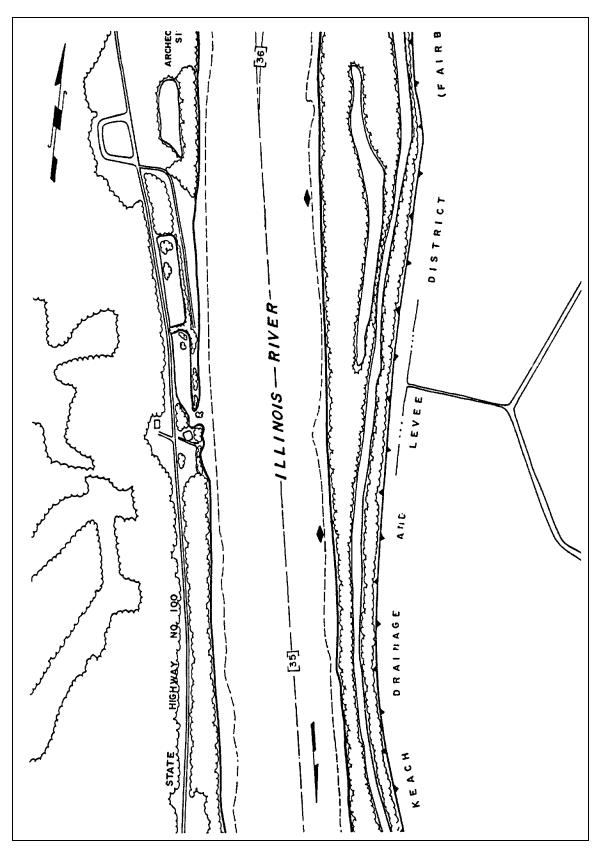
Experiments were conducted using a stationary boat in a flow moving at the speed of the vessel, which changed a dynamic event to a steady one making measurements much easier. However, the rough water surface present when simulating high vessel speeds makes this form of experimenting questionable.

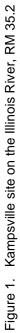
The vertical profile of return velocity change was investigated to determine how to interpret and compare return velocities taken at different distances from the bottom. During passage of a tow, the flow depth can be separated into a lower zone in which boundary layer growth can inhibit maximum return velocity and an upper zone in which the return velocity is nearly uniform. The lower zone is generally confined to the lower 0.5 m of the depth.

Experiments were conducted to determine the influence of upbound versus downbound tows relative to variable magnitudes of ambient currents. For low

ambient currents, influences were negligible. Further conclusions regarding this issue will await additional data from the Clark's Ferry model.

A normalized return velocity time-history was developed for future use in analytical models that require the time-history of vessel changes. The magnitude of return velocity was normalized by the maximum return velocity, and time was normalized by the time required for the barges to pass a given point.


A numerical simulation using the HIVEL-2D model assessed the flume length adequacy as well as comparing return velocity and drawdown from the prototype, the physical model, and the numerical model. Numerical simulations of the physical model flume and of a much longer reach with the same cross section (over the entire length) as the experiment section showed that the 61-mlong experiment section in the physical model resulted in return velocity and drawdown equal to long river reaches. The return velocity magnitude in the numerical model and the prototype *William C. Norman* were compared. The maximum return velocity from the numerical model was 9 percent greater than the prototype based on the average of results at five velocity meters.


A large body of far field physical forces data in the form of return velocity and drawdown form were developed in this study. These data are available for future development of analytical models and for numerical model verification.

References

- Bhowmik, N. G., Soong, T. W., and Xia, R. (1993). "Physical effects of barge tows on the Upper Mississippi River System: Analysis of existing data collected by the Illinois Water Survey from the Kampsville Site on the Illinois River," Draft Progress Report No. 2, Illinois State Water Survey, Champaign, IL.
- Coleman, H. W., and Steele, W. G. (1989). *Experimentation and uncertainty analysis for engineers*. John Wiley, New York.
- Kraus, N., Lohrmann, A., and Cabrera, R. (1994). "new acoustic meter for measuring 3D laboratory flows," *Journal of Hydraulic Engineering*, ASCE, 120(3), 406-412.
- Latorre, R., and Ashcroft, F. (1981). "Recent developments in barge design, towing, and pushing," *Marine Technology* 18(1), 10-21.
- Maynord, S. T. (1990). "Velocities induced by commercial navigation," Technical Report HL-90-15, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Schijf, J. B. (1949). No Title. Seventeenth International Navigation Congress, Lisbon, Portugal, Section 1, Subject 2, 61-78.
- Schlichting, H. (1968). *Boundary-layer theory*. McGraw Hill, 6th Edition, New York.
- Stockstill, R. L., Martin, S. K., and Berger, R. C. (1995). "Hydrodynamic model of vessel generated currents," *Regulated rivers: research and management*, 11, 211-225.
- Toutant, W. T. (1982). "Mathematical performance models for river tows," presented at Winter Meeting, Great Lakes and Great Rivers Section, The Society of Naval Architects and Marine Engineers, Clarksville, IN.

U.S. Army Engineer Districts, St. Paul, Rock Island, and St. Louis. (1994). "Upper Mississippi River- Illinois Waterway System Navigation Study, Baseline Initial Project Management Plan," St. Paul, MN.

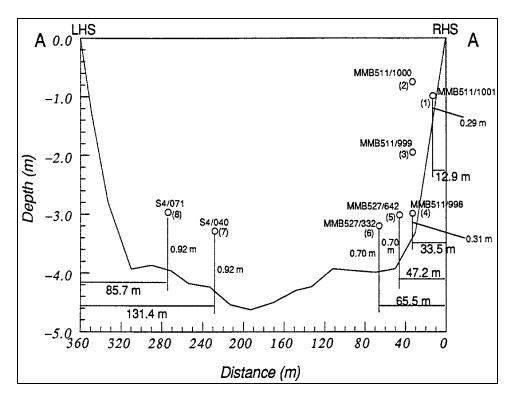
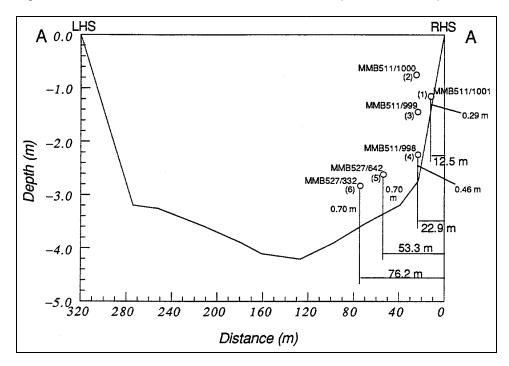
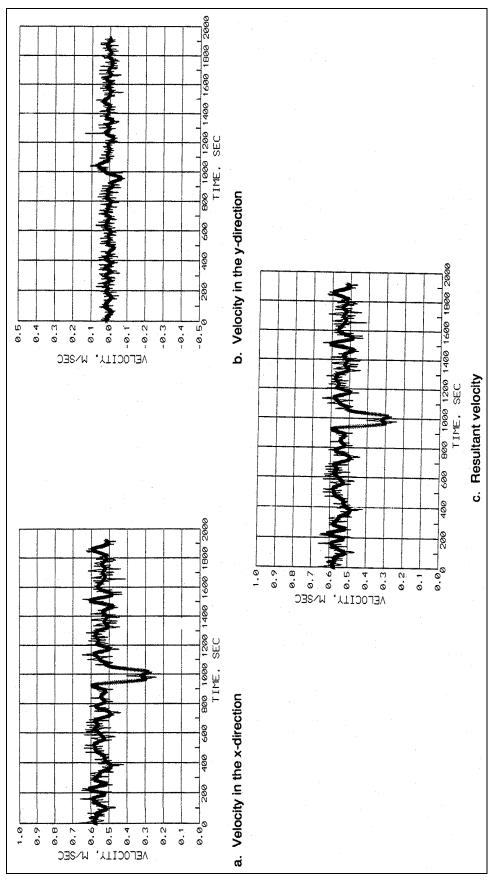
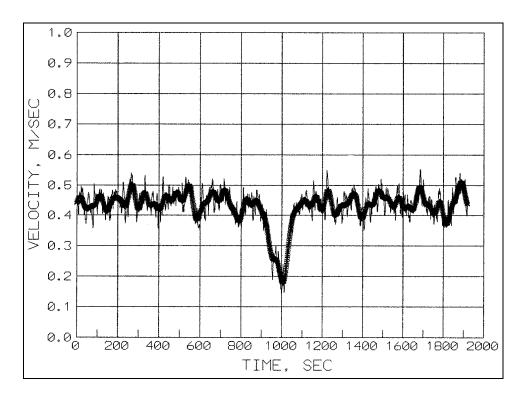
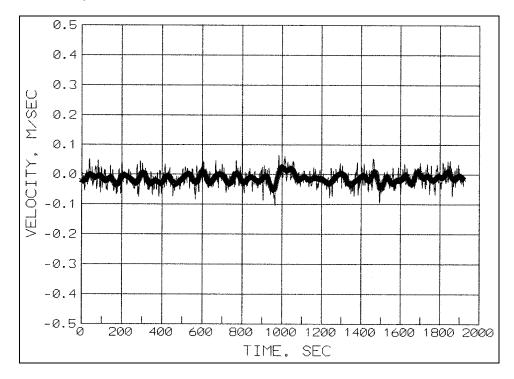
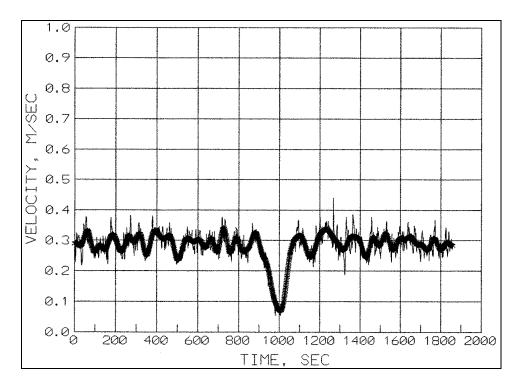


Figure 2. Cross section of the Illinois River at the Kampsville site for trip 1


Figure 3. Cross section of the Illinios River at the Kampsville site for trip 2



a. Velocity in the x-direction

b. Velocity in the y-direction

Figure 5. Prototype data, Wiliiam C. Norman, meter MMB527/642

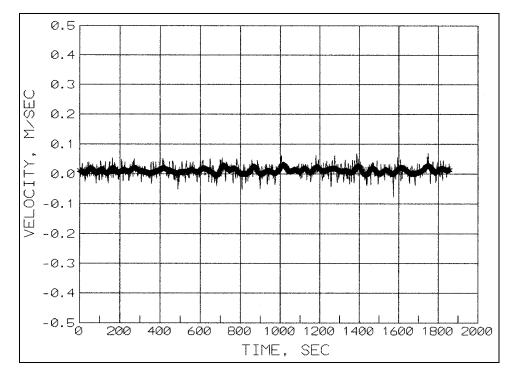
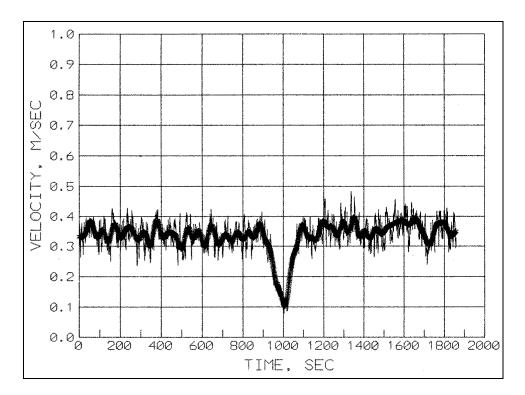



Figure 6. Prototype data, William C. Norman, meter MMB511/998

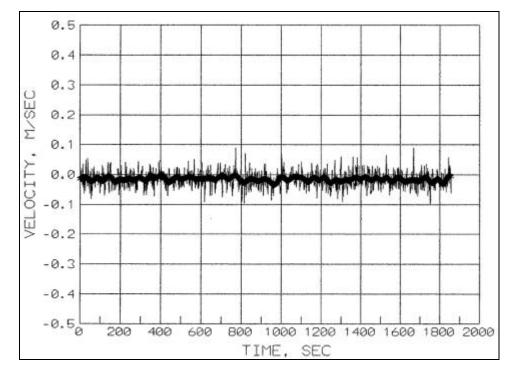
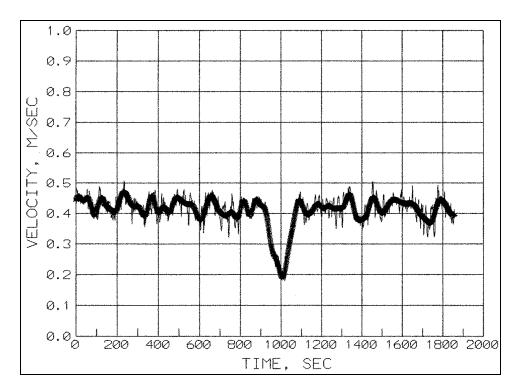



Figure 7. Prototype data, William C. Norman, meter MMB511/999

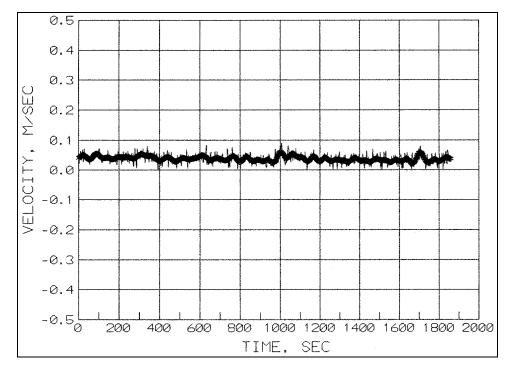
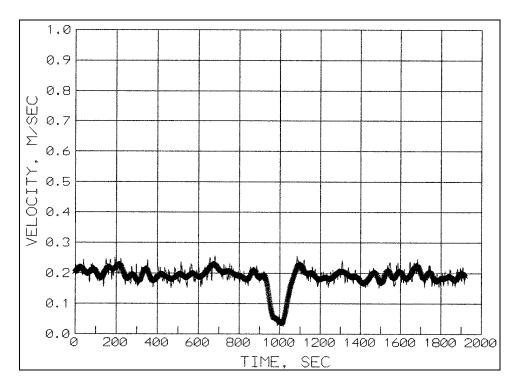



Figure 8. Prototype data, William C. Norman, meter MMB511/1000

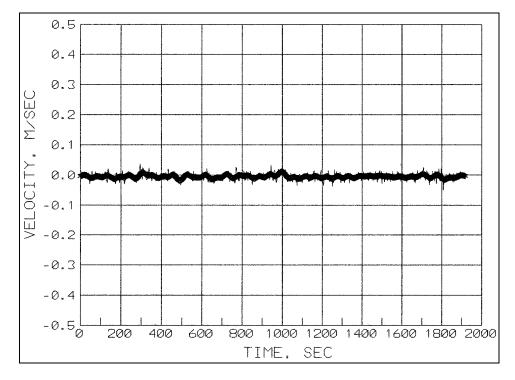
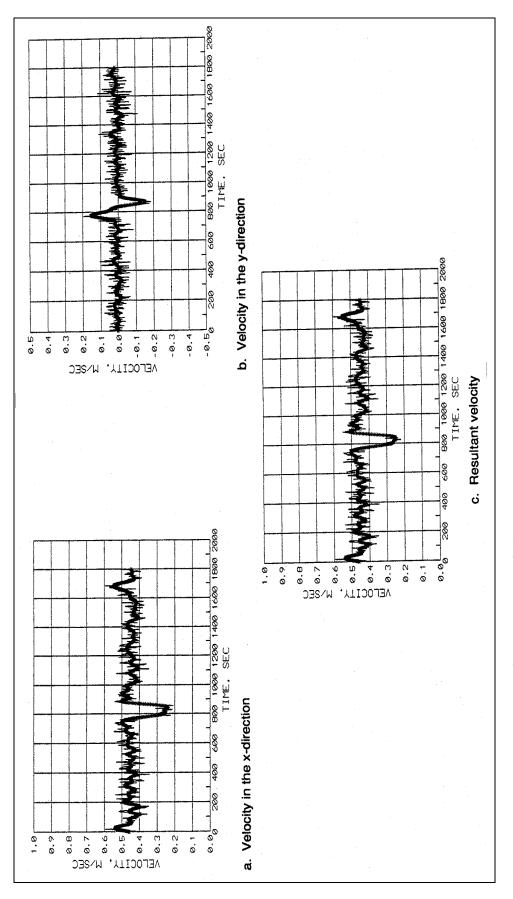
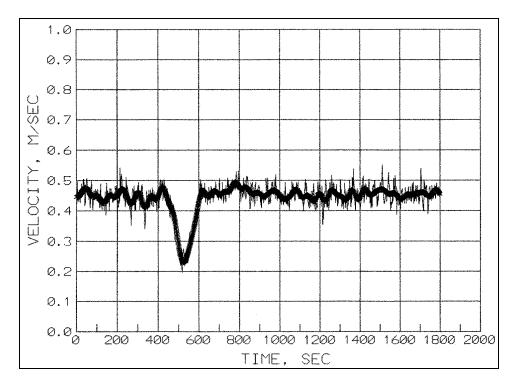




Figure 9. Prototype data, William C. Norman, meter MMB511/1001

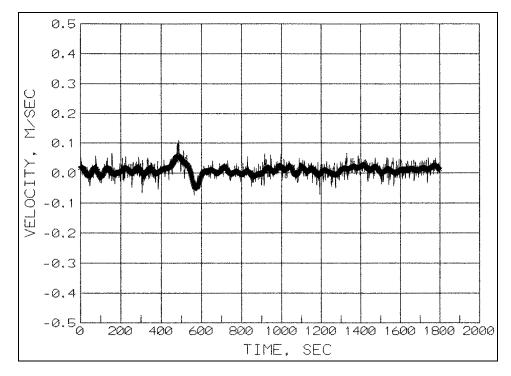


Figure 11. Prototype data, William C. Norman, meter S4/071

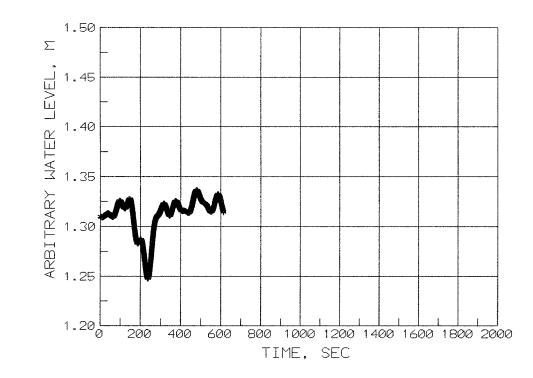
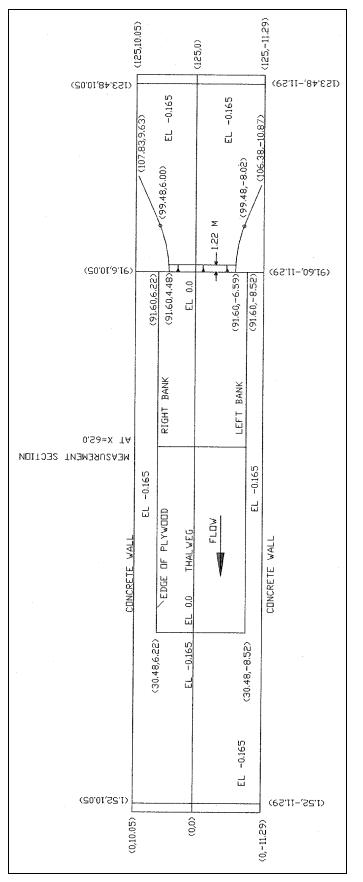
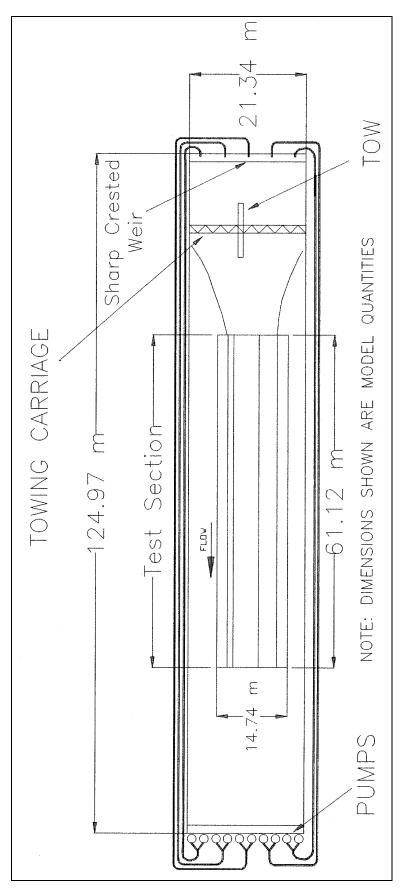




Figure 12. Prototype data, William C. Norman, wave gauge

a. Flume dimensions

Figure 13. Dimensions and schematic of Kampsville Reach in navigation effects flume (Continued)

b. Details of discharge system

Figure 13. (Concluded)

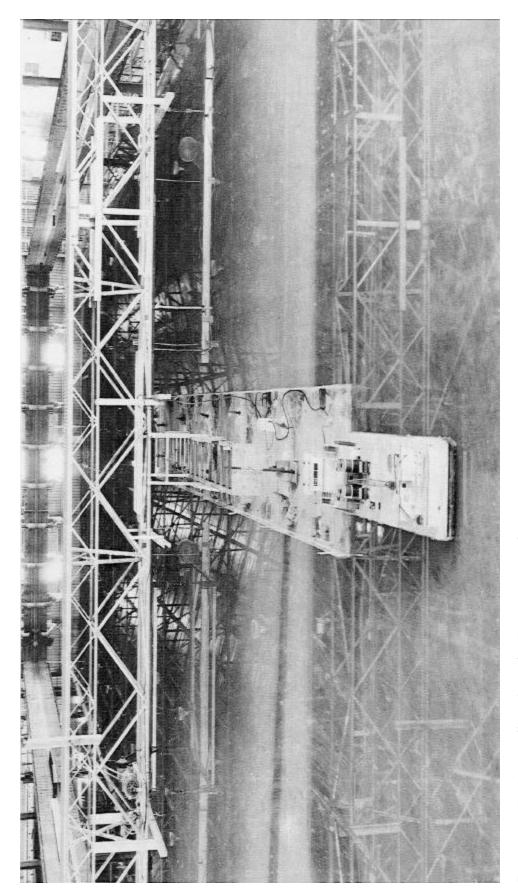


Figure 14. Navigation effects flume (looking downstream)

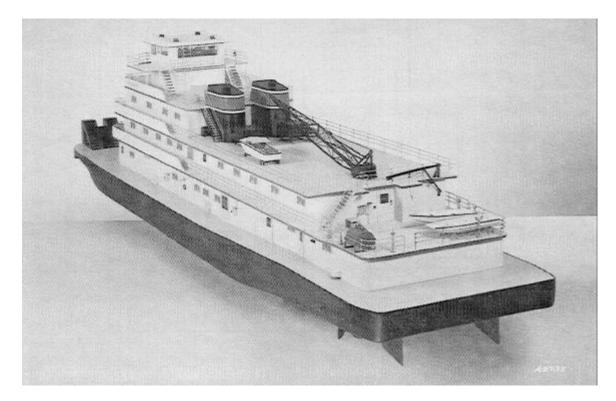
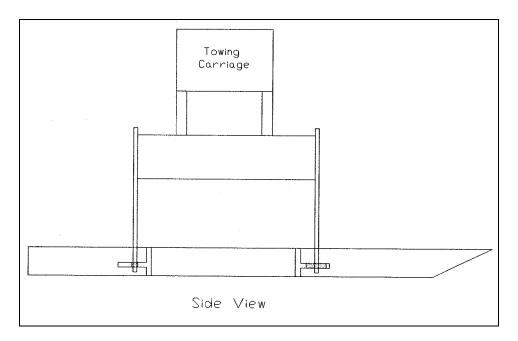
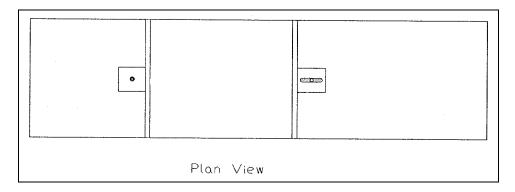




Figure 15. 1:25-scale towboat MV Benyaurd

a. Side view

b. Plan view

Figure 16. Connection between tow and towing carriage

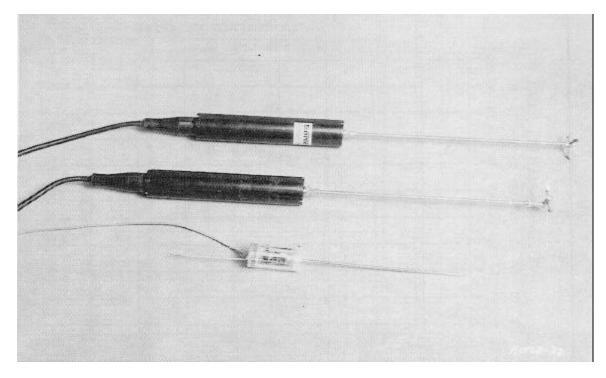


Figure 17. 2-D and 3-D ADV's and wave gauge

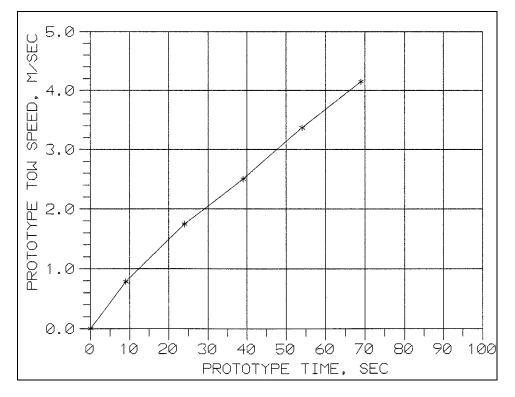


Figure 18. Acceleration of model tow

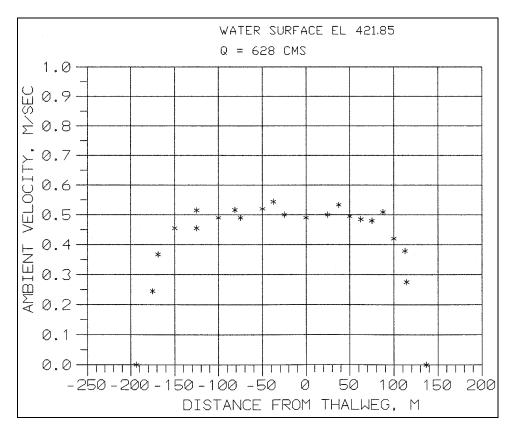


Figure 19. Ambient velocity distribution for William C. Norman test condition

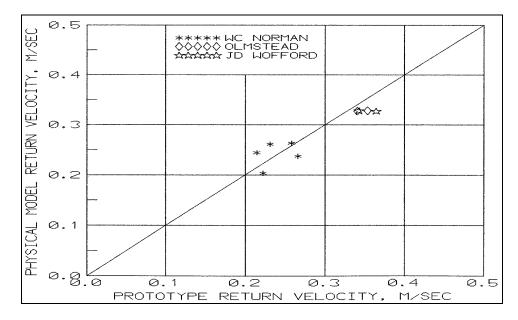


Figure 20. Physical model return velocity versus prototype return velocity, verification runs for vessels *William C. Norman, Olmstead*, and *Jack D. Wofford* with 2.28-m draft

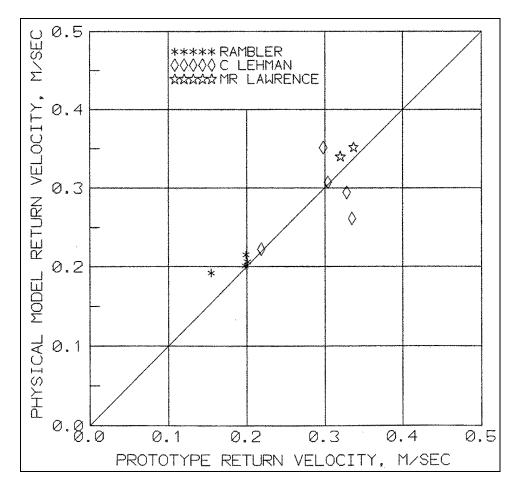


Figure 21. Physical model return velocity versus prototype return velocity, verification runs for vessels *Rambler*, *Charles Lehman*, and *Mr. Lawrence* with 2.28-m draft

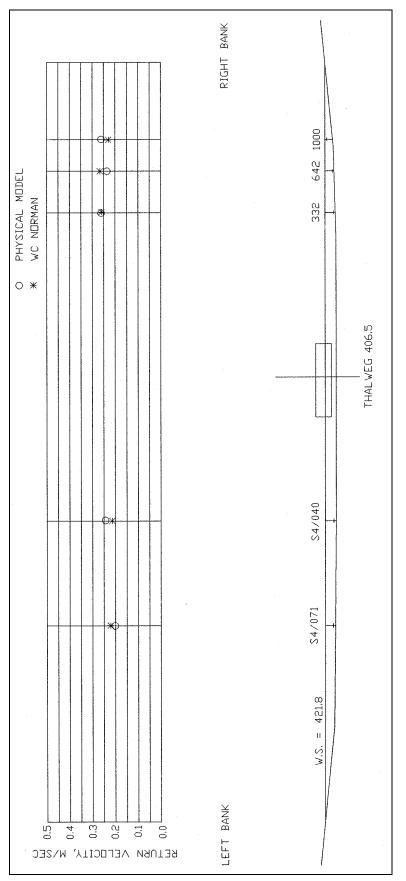


Figure 22. Physical model return velocity versus prototype for William C. Norman

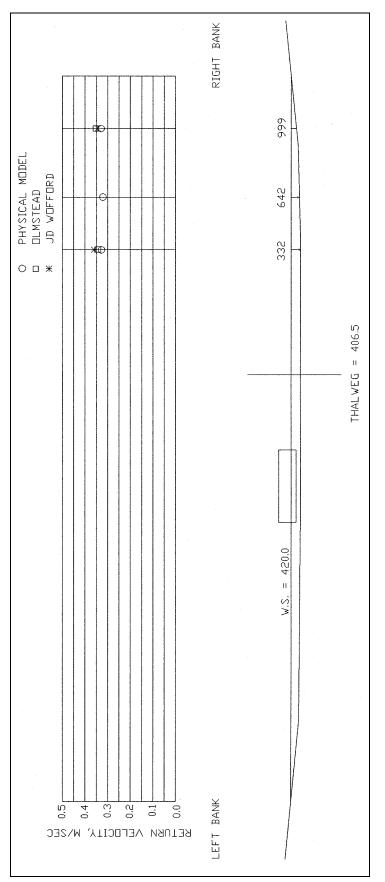
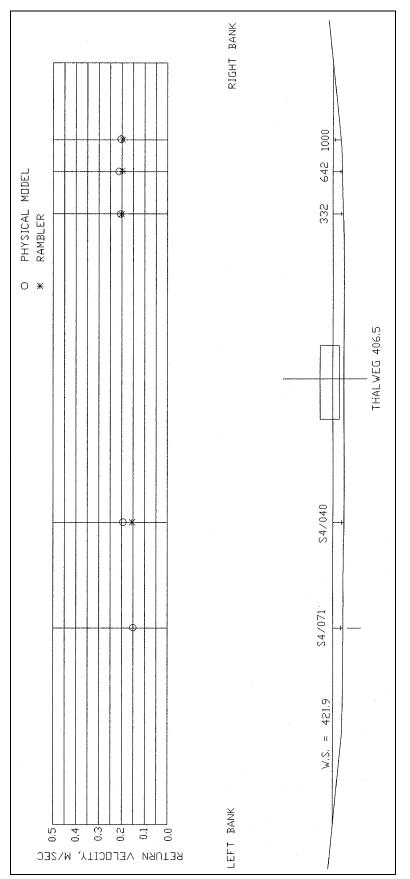
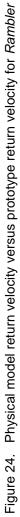




Figure 23. Physical model return velocity versus prototype return velocity for Olmstead and Jack D. Wofford

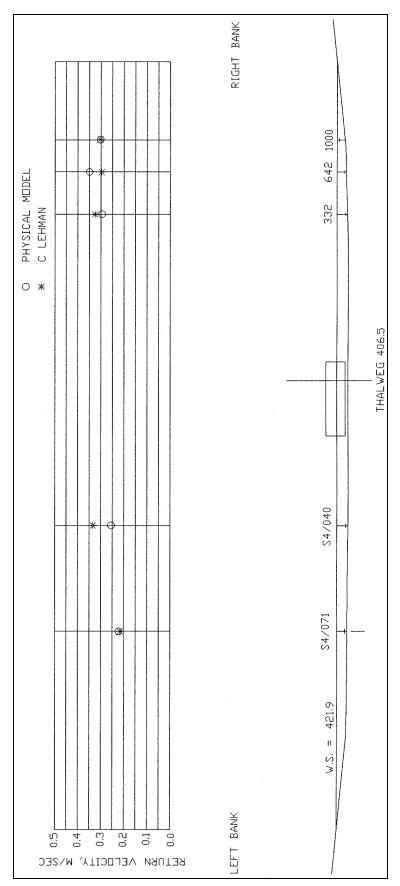


Figure 25. Physical model return velocity versus prototype return velocity for Charles Lehman

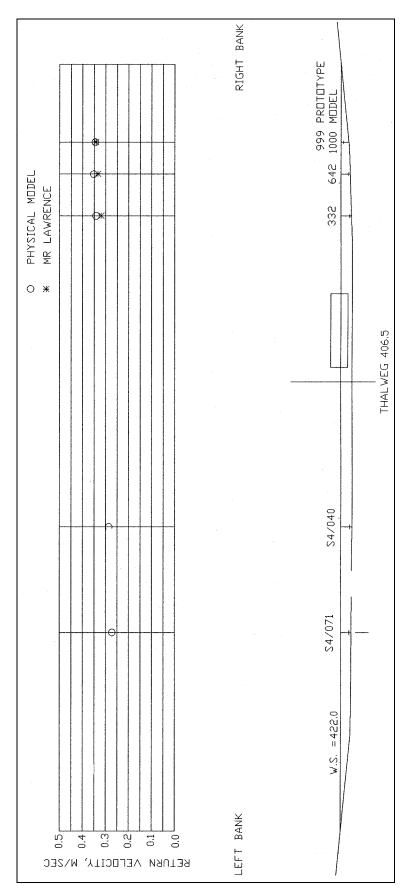
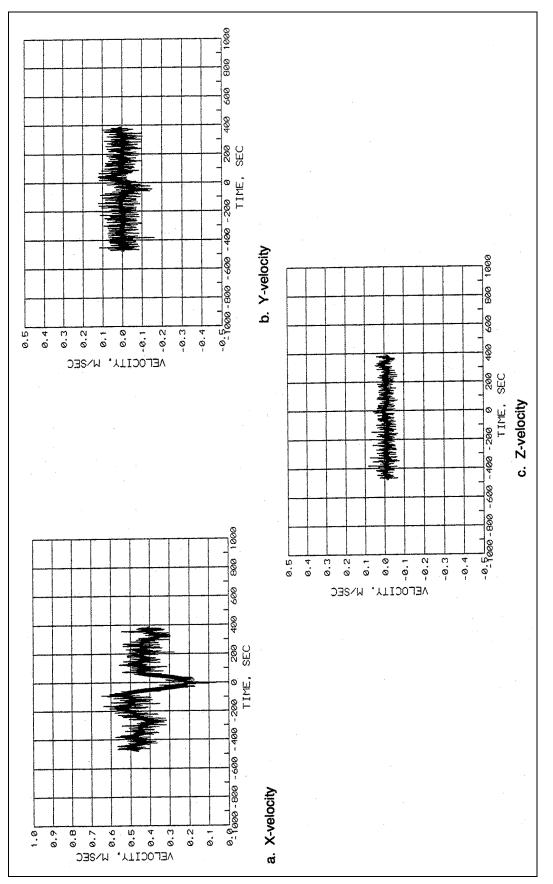
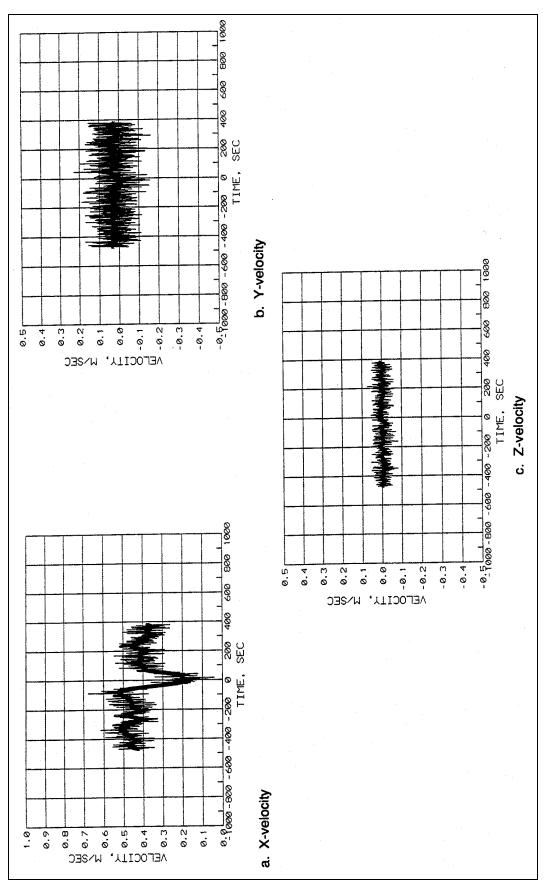




Figure 26. Physical model return velocity versus prorotype return velocity for Mr. Lawrence

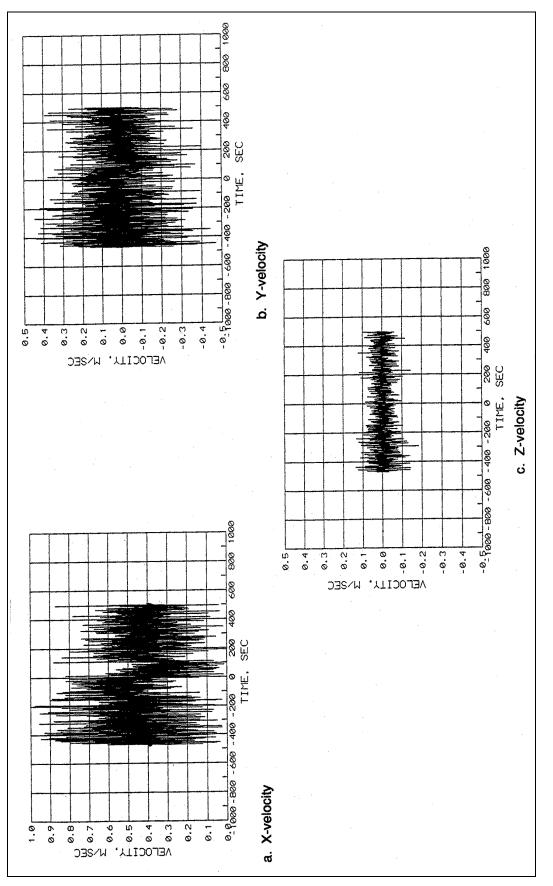


Figure 29. Physical model data, William C. Norman, meter at location of S4/040

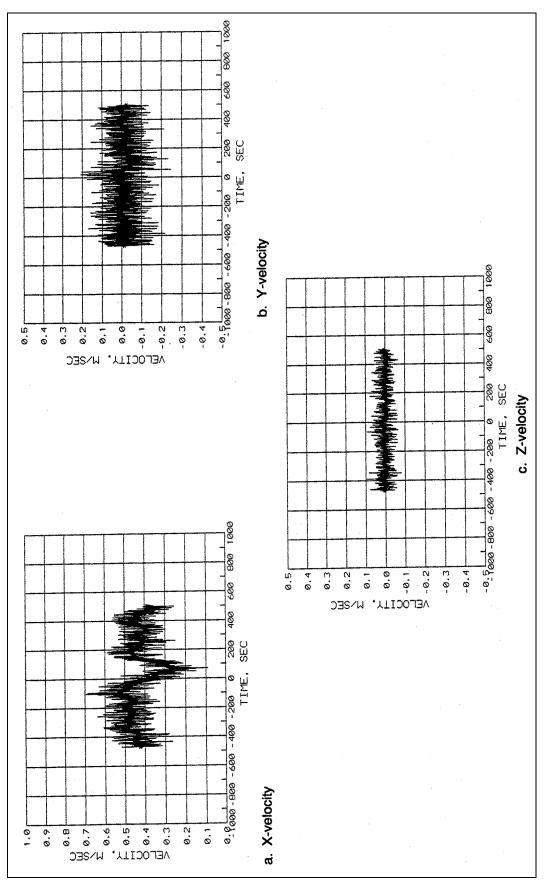
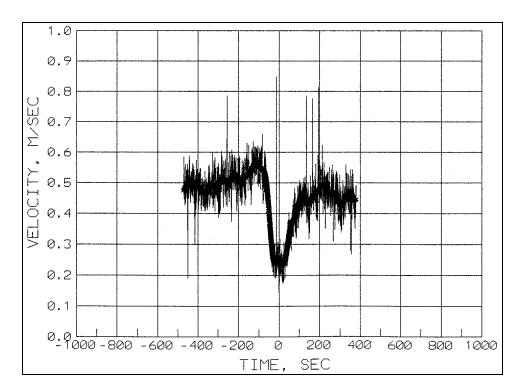
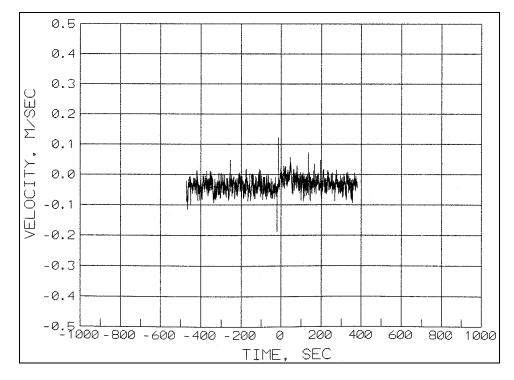
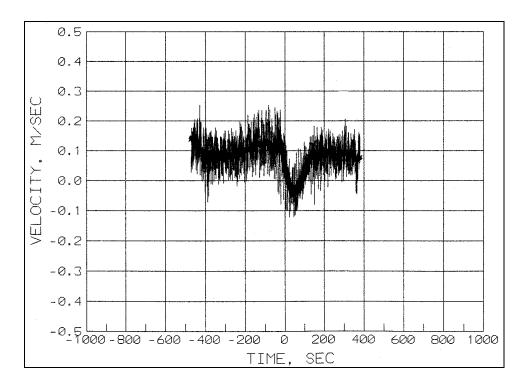
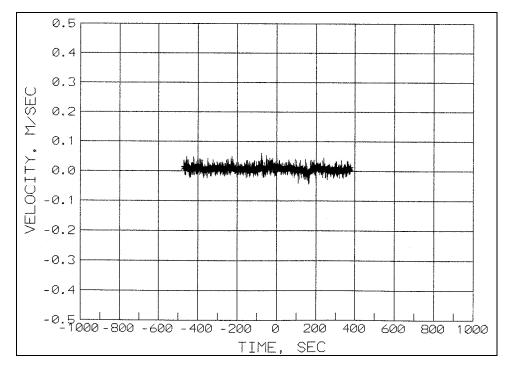




Figure 30. Physical model data, William C. Norman, meter at location of S4/071



a. X-velocity



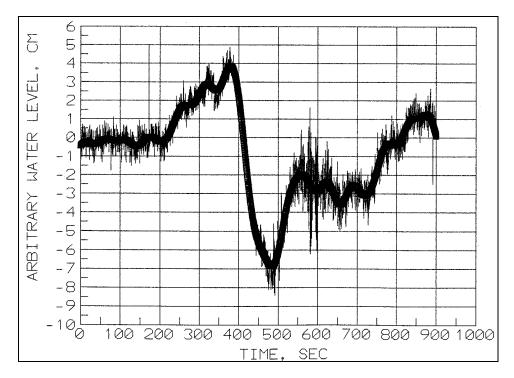
b. Y-velocity

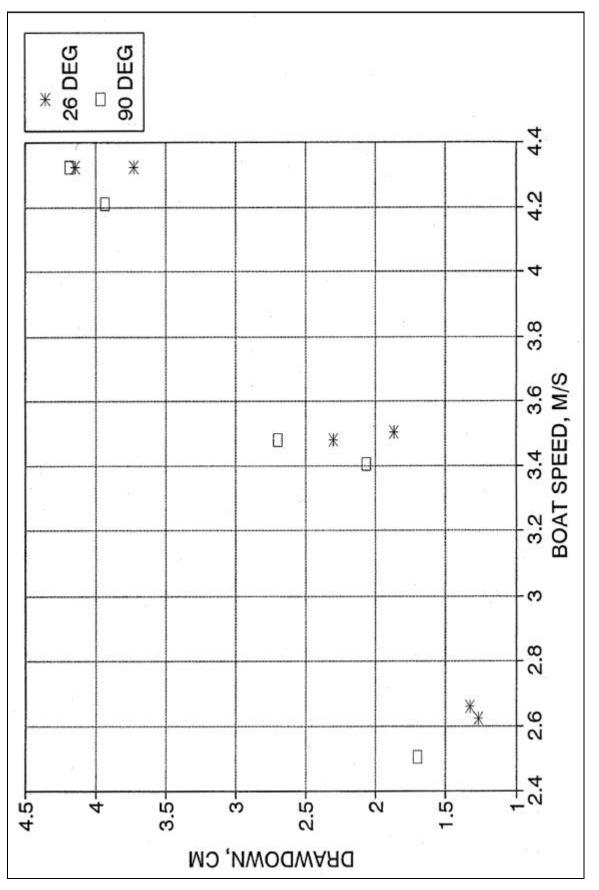
Figure 31. Physical model data, *William C. Norma*, meter at location of MMB511/1000

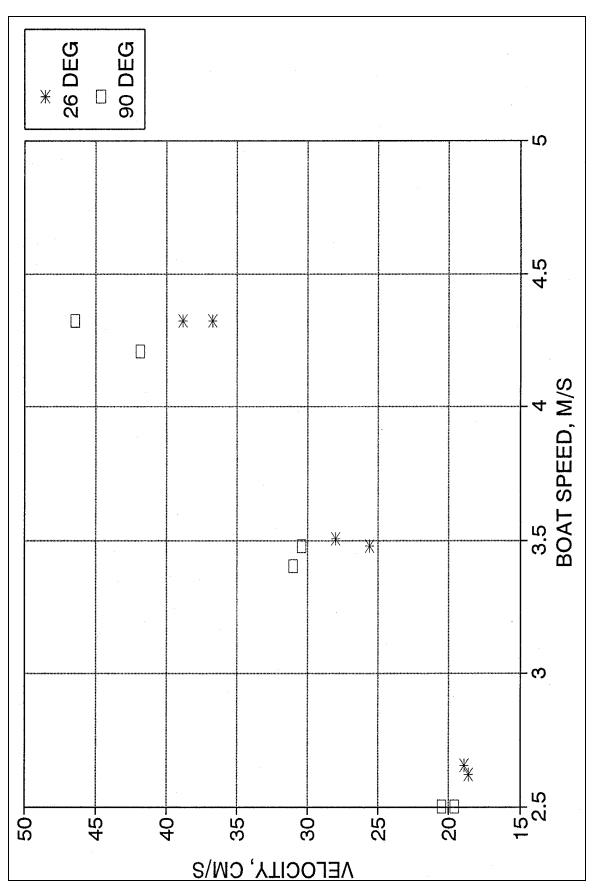
a. X-velocity

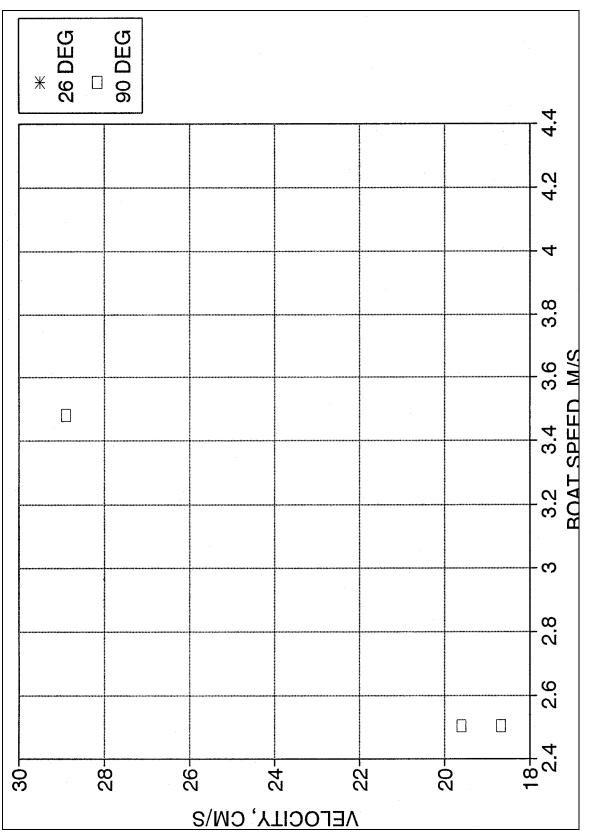
b. Y-velocity

Figure 32. Physical model data, *William C. Norman*, meter at location of MMB511/1001






Figure 33. Physical model data, William C. Norman, wave gauge



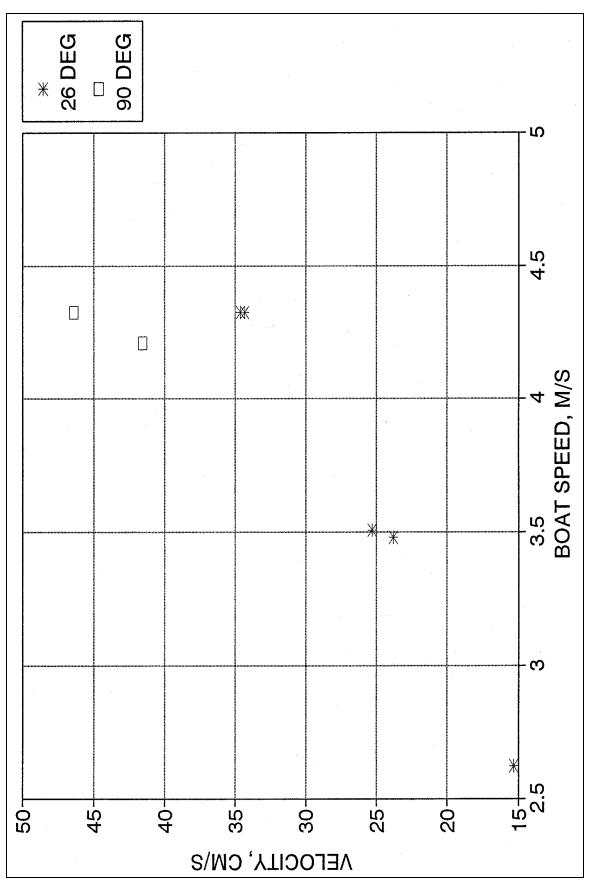


Figure 38. Rake experiments, return velocity, x direction, near bank

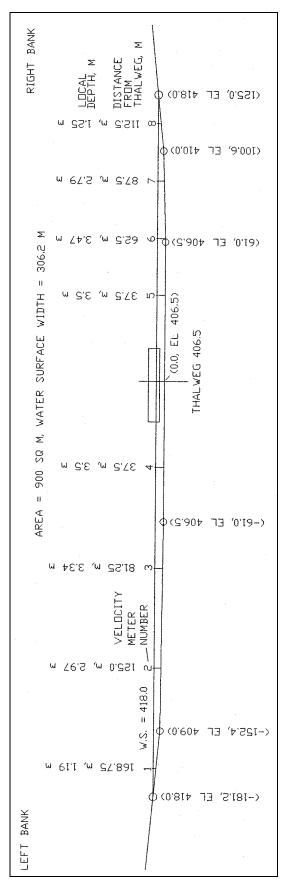


Figure 39. Cross section and meter locations for pool el 418.0 experiments

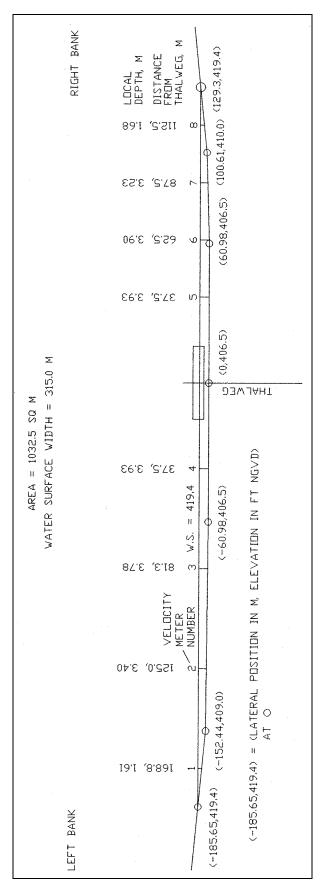
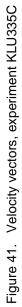



Figure 40. Cross section and meter locations for pool el 419.4 experiments


Ý	*7.5	4-15.5 4-21.2	1.61-1	4 -14.9	▲ -18,9	4 18,9	4-12.2	F- K	TORS
	€ 6,7	4,21▲ ▲18,8	4 −18.8	4 −17.5	4 18,8	★ 20.5	4 9,7	6 7 8 9 VELOCITY (CM/SEC) LOCATED TAIL OF AROW	VELOCITY VECTORS TEST KLU3350
 	₹7.0	4-19.7	4-16.8	4-12.5	0'61₩	4-17.3	4 -11,4		ELOCIT TEST
	4 4:5	4-16./ 4-17.4	a −18.1	€'1'3	4 -17.6	4 −16.3	4 0.5	DF ARR	K
	45.6 1	1.01-+	4 18.3	4 −18.6	4-18,2	419.7	4 -12.7	E: VELD 6.	
	4 1.4	♣-15.2	4-15,7	4 −13.5	4-15,1	4 −15.7	\$6,6		
	1.2 .	♣ 7.8 ▲12.3	+ 12.3	4-1 3.6	♣-14,1	4 −13.8	▲ 5.7	α 100 4	
	₹1.7 • 0.0	♣7.8	€ -11,9	4 -11,0	4-13.5	4 -12.6	≜ 5.6	2 3 BDW, M ∕100 44.7 44.7 413.0 415.0 415.0 415.0 415.0 415.0	₩ 9: 8: 1: 8:
	5, 8 5, 8 7, 8	4-17.7	a∺15.2	♣ 14.2	4-15,2	£-17,5	€'6 ♥	R□M 46.1 46.1 414.4 414.4 414.4 414.4 414.4	414.0
	▲61 8.10 B	+-13.3 +-16.5	4.4		4 -18.1	4-21,6	4 -14.0	TANCE TANCE *15.4 *11 *15.4 *11 *15.4 *11 *28.6 *2 *28.6 *2 *28.6 *2 *28.6 *2 *28.6 *2	+24.7 +22.3 +1910 -1 0 B□W, M /1
	4-15.4 		38.2	38.6	28.6	4-30.6	★ -22.3	-1 0 DISTAN 2014 11 1 2015 41.8 15.4 2014 14.8 15.4 2015 4250 2011 4-36.6 231 2015 238.6 2015 238.6 2016 2016 2016 2016 2016 2016 2016 2016	Q
	♣-20.4	41.1	441.3	37.9	433,4	436.4	4	- 2 - 2 - 26.5 4-19.5 - 419.5 - 43.1 4 - 43.1 4 - 40.6 4 - 43.8 - 40.7 4 - 40.7 4 - 36.7 4	867 - C- L- ₩
	- 53.3	4-43.7	445.1	43.8	€.75₽	440.6	432.7	-3 -2 -3.2 -12.4 -18.4 -23.3 -19.5 -30.236.534.9.5 -35.0 -44.143.740.6 -37.037.143.8 -40.7 -37.039.4 -40.639.4	
	+_1/.4	35.0	34.0	36.6	437,5	0.75	4-26.7	-4 -3 -2 -1 DIS DIS 19 4174 418.4 423.3 419.5 420.4 414.8 41.9 417.4 418.4 423.3 419.5 420.4 414.8 424.5 4-30.2 4-36.5 4-34.1 4-36.6 42.5 4-30.2 4-36.5 4-34.1 4-36.6 42.5 4-30.2 4-41.4 40.5 4-31.4 4-37.9 4-37.6 -33.8 4-37.5 4-0.6 4-37.9 4-36.7 4-32.3	+24.3 +26.7 - 4 DI S
	2,cI+	5.62	430.1	428,4	4.16	31.5	+-22,3	ι τ ν τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	♥ 1
	4-12.5	€-28.9	4 30,9	*28.1	4-29.5	€	4-25,3	· 	

	¥ 8.0	4-16.0	≜ −18,9	4-19.0	4 19,6	▲ -20.6	4 18.6	4-12.7		DAT							STORS 8C
	\$8.4	4 ⊷14,9	4-19.5	≜ −18.2	4-19,1	4-21.5	€19.9	4 -12,3	- თ	LOCATE							TY VECTO KLU488C
	≜ 8.9	4- 14.7	4 —19,4	≜ —19,5	4 −16.8	4-22,9	4 −18.6	≁ -13,3		4/SEC)							VELOCITY VECTORS TEST KLU488C
	₹7.6	4 -14.6	4 −18.0	≜ −18,1	1.91	4-22.6	4 −-19.6	4 11.8	-	VELOCITY (CM/SEC) LOCATED TAIL DF ARROW							A
	▲ 4,8	4-12,9	4 −15.1	4 −16,9	₫-14.5	420.2	4-15.2	\$ 8,0									
-	46.5	4-13,7	4-16.5	4-17.1	≜ -15,4	4 −18.9	4-17.1	4 -12,8	- IN								
_	1.3♥	48,2	4 10.1	4.9,7	\$ 9,4	4-14.3	a 7.8	1.6	100 1								
-	4.8	₹3,5	4 5.4	4 48	\$ 5.8	410.3	4 4.9	▲ 0.5	2 3 BDW, M /100		1 01			œ	7	01	
-	4.1.	6'£₽	₹4.7	3 .2	ထ က်န္န	4 10.5	4 4,3	1:2 ,	FROM BC	1 126 3.8	▲7,3 ★3.5 ●● 1 ★4.7		0 0 4 8		a 14.6 a 7.7	4 11.0 4 2.2	1 00
	\$ 2.6	∉7,3	▲ 8.7	▼ 5.1	0.0 4	4-16.0	4 -14.6	∉-11.0		4 -27,3 4 ,2.7	▲-32.2 ▲18.1		47.7 <i>2</i> 7.1		39,4 📲 26,1	36.1 423.9	-1 0 BDW, M /100
_	- 27.3	32,2	42.4	48.7	47.7	31.6	-39.4	36,1	DISTANCE	7 4-40.6	-43.3			4-35.6	9 🛥 -45,6 🛥 -39,4	t 4 -42.1 4 -36.1	-1 B□W,
_	45.7	46,9		53.6	-53.0	41.6	-49,9	-₩ 4'8			48.0 4		-55.4 <u>4</u> -53.0	44,1 🛥41,6	64	51.4 448.	-2 FRDM
	50.1 +				-61.2 ·			6,6,6	_	★ 25.3 ▲ −44.2 4 −−50.1 4 −−48.0 4	46,44 51,94		61.2	4.8 🖛 48,1 🙇	.7, 1 4 − 52.7 4	<u>♦</u> 44.4 <i>♦</i> 51.4	-3 -2 DISTANCE FROM
-	+ 25.3 +		35,9	35.2	413	6'66	-36.9		- ლ 1		▲-32,9 4- 	35.2			★ -28,9 ★ 36,9 4 47,1 4 52,7 4 52,5 4	4-31.1	-3 DISTA
-	* 9,4	← 17.1 ←	8.61	4-19,4	+ 53.6 + 53.6		<u>+ -</u> 22,5 4	d −±4,4 d −	- +	A15.2	4 -21.9 4 -23.1	2 ,9,2	4 2333 4	4-35.6	4 -28,9	4-21.7	. 4
-	4 8.6	4-16.1		4-16.7	▲ -20.4	<u> </u>	▲1 7.7	4-10.6	- ເ ນ								

Ĩ	▲6.3	4-19.3	4 -19,4	4-18.1		*_16.0	4 -18.9	1,15	\$-11.2		T A	
	€ 6.0	4-21,3	¥-20.2	4 -19.9		18.3	4-18,2	4-21.5	4 10.3	- 6	VELOCITY (CM/SEC) LOCATED TAIL OF ARROW	VELOCITY VECTORS TEST KLU640D
	₹6,7	▲ -15.5	4-19,2	4-19.5		* _18.3	4-19.6	4-19.7	4 -11.8	00	− S E C S Z S E C	ELOCIT TEST
	₹7,5	4 20,0	4 -18,3	← 17.0		4-15,7	4-20.2	4 18.6	+ 11.6		CITY (C) DF ARRI	Ч Н
	€.0	4-17,8	A-18.0	≜ -15.8		*J5.3	4-20.6	4-19.0	+11.7	- v		
-	₹°2	4 -10.9	4 -15,1	4 −11.6		₹ 11,6	4-16.2	4-17.2	₹7.7	- U		
	₹0.9	410.2	\$ 8,6	6 .6 *		₹ 8,5	4 -13.5	4 -11.4	₹3,1	A /100		
	\$6'8	a 8 10	4 n	3.75		¥. 80	t.e.	હ્યું જ 1	12.1	, N		
	10,4 🕈	4 9℃	a €	10.1 🏞		8.7*	2.6 b	4 80 10	11.7 +	FROM B 2	7.01 I.2.3 7.01 I.2.3 9.5 I.0.9 13.7 8.07 13.7 8.07 8.4.2 3.5 8.4.2 3.5 8.1 I.2.3 8.1 I.2.1	100
	7.0 🖝	4,015	9.5 \$	13.1	1 Ç	13./*	¢.∿ ⊾	4 4	▲ 100	DISTANCE	€0.0 1.6 €3.8 4.4 €3.5 8.7 €42.2 17.5 23.9 20.6 £3.9 20.6 £3.9 20.6	-1 0 B□W, M /100
	4-20.0	4		42,2	d C	C.C.C.	32.7	4-29,2	-22.1	- I-	 444.0 444.0 444.0 444.0 444.0 451.5 4-59.1 4-59.3 4-68.0 450.3 4-68.8 444.3 	
	44.0	61.6		72.7			68.0	68.7	68,8	ା ପ +	2 4 57.6 4 2 4 57.6 4 2 4 57.6 4 1 4 − 85.0 4 1 4 − 85.0 4 1 4 − 83.0 4 1 4 − 88.8 4 1 4 − 8	
		76.2 <	88.7	96.1♣			91.5 4	87,6 🐥	4 .76	۱ ۳	€5.6 452.3 463.2 457.6 444.0 €5.6 452.3 463.2 457.6 444.0 444.6 +72.4 +76.2 +72.8 4-69.1 451.5 88.7 88.7 81.1 4-69.1 451.5 84.8 88.7 4-81.0 4-72.7 50.2 91.6 90.5 4-72.7 61.1 4-71.2 90.5 4-73.5 55.4 77.2 91.5 63.0 55.4 -72.9 87.6 44.1 56.4 -72.9 87.6 44.1	-3 -2 DISTANCE FROM
	₹-25.6 ▲	44.6	₹51.5		, , , ,	61.1	55 %			- 4	47.3 €5.6 €5.4 44.6 €5.2 4.51.5. €1.7 50.2 26.7 61.1 *36.1 *55.4 *40.0 *56.4	-4 DIS
	4 4.6	4-20.2	-23.0	4-21.5		612	-25.4	◆ ~27.8	4-18.6	ں ب	· · · · · <i>F</i> F W W -	i .
	1,8 ►	4 -14,9	4-20.7	4-19.6	,	561 192	♦ -20.9	4 21.5	æ.11.4	ι		

0'6 ♥	4 -15.6 4−17.0	16.6	16.3	4-13.1	4 10.0	TED AT	VELUCIT VECTURS TEST KLD3546
▲ 8.1	♣17.4 ♣16.2	≜- 15,9	25.1	€-14.9	& 9.2		KLD3546
▲ 9.1	4-16.5 4-16.6	4-17.2	4-16,4	4-12,9	▲ 8.6		TEST
▲ 6.8	▲ -15.7 418.3	4-14.6	20.7	₫-11,4	4 .1	VELOCITY (CM/SEC) LOCATED TAIL DF ARDW	>
- €:2₹	13.2 16.0	17.2	* 8.9	₹ 9.5	0.4 •	NDTE: VEL 4	
€.9	1.0 A 0.1	▼ 4 ,	C) A	4,4	4.4	- m 🛛	
4,1♥	₹2.8 4.8	A4.7	≰ 5,5	\$ 5.9	3.5 .	- a	
	6. 2. 11.2	10.7	11.9	æ 9.7	a 2,1		
+11.4	▲ -22.4 ·	52.5	422.1	4 −14,9	★ 9,9 .		
4 -13, 4	A-25.0 A-23.0	4-20.7	- 17,5	1.02-+	4-14.0	ANCE 2.9 45.3 2.9 45.3 2.9 45.3 5.0 4-19.6 5.0 4-	-
≜ -15,7	▲21.9 ▲24.2	4-21.5	4-21.0	4-20.6	a −14.8		M /10(
1:51	4 −23.0 4 −−25,8	4-23.7	26.7	▲ 21.1	4 -15.7	6.5 ▶ 4.4 ₽	Ű Ń,
4-12,8	▲ 22,4 4 23,1	4-22.6	21.7	4-20,9	4 -12.9	4 80 4 80 4 80 4 8 7 7 7 7 7 7 7 7 7 7 7 7 7	FRDM M
4-12,8	4-20.6 4-21.5	419.9	+-22.2	4-18.6	+ 11.3	8.9 110 110 110 110 110 110 110 110 110 11	
1 5.5	4 -23.1	4-22.9	4-23.3	4-22.4	4-16,1	-7 -6 +14.6 +11.4 +1.3 +24.4 +22.4 *18.4 +24.4 +25.7 *22.0 +17.4 +14.9 +12.9 +17.4 +14.9 +12.9 +13.8 +9.9 44.9 -1 0	DISTANCE
+12.2	4-20.2 4-22.3		4 21,0	4-19.3	+ 13,7	-7 -14.6 +11.4 +14.6 +11.4 +24.4 +22.4 +24.4 +22.5 +22.2 +22.1 +17.4 +14.9 +13.8 +9.9	4

2.7 1	+-17.0 +-16.5		4 -16.2 4 9.4	CCM/SEC) LDCATED AT CCM/SEC) LDCATED AT RRDW VELOCITY VECTORS	KLD506A
≉ 9,6	1.91 - ►	★ -20.4	+-20.2 +11.6		
▲ 11.8	♣-23.4 ♣-23.3	4 -22.5 4 -16.1	+-21.0 +11.2		TEST
+11.3	▲18,9 ▲22,8	22.8 14.4	▲17.2 ▲ 8.0	4 5 6 7 VELOCITY (CM/SEC) LOCATED AT TAIL DF ARRDW VELOCITY VECTOR	
01 1 1 1 1 1	0.6 av>		0 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7		
20.9	11.6 + 16.4-*	4.6	7.0♥ 18.2→	- m Z	
22.1-	12.8 * 14.0 *	10.8 *	4 −207	/100	
م ۵	14.0 14.0	13.1 13.1	2. 2.15 ₹	× − − × × × × × × × × × × × × × × × × ×	
4 10.6	▲23.3 ▲25.4	A-28.0	▲-18.4 ▲10.3		
4-17.8	هــــــــــــــــــــــــــــــــــــ	4 −29.2 4 −26.9	▲25.6 ▲19.0	DISTANCE FROM BOW, -2 -1 0 -2 -1 0 -2 -1 0 -1 -	0
-16.6	4 25.8 4 27.3	▲26.5 ▲25.8	 4-22.7 4-17.5 		M /100
d−16.5	 €7.3 €6.2 	4 26.7 4 24.1	4 24,0 4 18,4	15 ★ 16.4 ★ 16.	BDV,
+ -15.0	▲ - 24.6 ▲ - 24.4	* 24.2 • - 22.6	 4-20.7 4-14.5 	22.1-+ 12.84 14.04 14.04 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	FROM
d=14.0	♣_23,4 ≜25,4	4 23.0	420.0 4-14.8	8.5 b 1.4 0 10. 1.4 0 13.4 1.4 0 1.4	DISTANCE
4 9,9	▲ —18,8 ▲ 20.0	1.24-18.4	4—16,9 ▲10,2	-7 -6 -1 -6 -16.1 410.6 4.18 6 -16.1 410.6 4.18 6 -27.8 + 23.3 715.4 -28.2 + 28.0 23.8 -28.2 + 28.0 23.8 -28.2 + 28.0 23.8 -28.2 + 28.0 23.8 -1 0 -1 0	DIST
\$6\$		6.01 19.9	4− 17.1 4 9.7	-7 -7 -16.1 410.6 -26.1 410.6 -27.0 4-23.3 -27.0 4-23.3 -27.1 4-25.3 -27.1 4-18.4 -11	

Figure 45. Velocity vectors, experiment KLD506A

\$8.6	4-16.9 4-15.7	420.4	4-18,9	4-17,2	4 10.5	CM/SEC) LOCATED AT ARDW VELOCITY VECTORS
4 ,6	418.8 ♦-18.2	*21.5	4-21.4	A -19.3	4-12,2) LOCATED , TY VECTO
▲ -10.7	4 -18.7 4 -17.6	◆ - 23,7	4 −19.2	4 -19,4	4-10.6	CCM/SEC) RDW FLOCT
4 9.6	4-19.4 4-20.1	-26,5	*12.3	4-18.4	\$7.7	4 5 6 7 VELOCITY (CM/SEC) LOCATED AT TAIL OF AROW IAIL OF AROW VELOCITY VECTOR
4.1 🕨	8. 9. 9 . 6. 6	25.4	* 6.8	¢ 6.]	9,2,4	
20.7-+	15.6-* 17,9-*	12.3	5.2	8 .7 *	4 −1.81	
22.0-	13.1- * 15.8- *	7.7	8) 	10.7 +	19.7	Z /100 Z
6.2 %	€ 6° € 12:2	14.6	A 13.3	വ ഗ് ക	6.8¥	Σ Ω Ω
▲ -13.0	♣23.9 ♣27.0	A -29.4	4-24.3	4 18,9	4 -13.2	
419,2		4 31.5	0.62	4 28.0	4 -21.9	-2 -1 0 DISTANCE FRIM BUW, 41 • 41 • 41 • 41 • 41 • 41 • 41 • 41 •
4 −18,8	-23.5	426.3	426.7	425.8	4 18,8	
4 −18.8	23.3	4 - 24.8	A-26.9	4-28.3	4-18.9	
4 -13,9	20.520.5	4 -24,3	4 -24.9	422,4	4 -13.3	22.0-+ 13.1+ 13.1+ 13.8+ 13.1+ 19.7+ 19.7+
4 −18,8	▲20.0 ▲20.0	426.4	€ ,49	-23.7	4 18.4	-6 -5 33 6.2 17.3 + 33 6.2 17.3 + 20.9 12.2 13.3 + 20.9 12.2 13.7 + 23.8 14,6 10 + 23.8 14,6 10 + 23.8 14,3 + 0 + 10.0 5.2 4.0 + 10.1 1 + 7 A M C 1 - 10.1 1 + 10.1
4 −14,4		425.0	4-24.0	4 −17.5	4 -12.1	
4 -13.7	↑-14.7 ↑-11.2		▲ 23.6	4-18.6	4-12.9	-7 +17.1 +13.0 +25.0 +23.9 +28.3 +27.0 +28.3 +24.3 +25.5 +18.9 +18.1 +13.2 -1 -1 -1

964	4 -14,4	4 −18.3	+ 11.3	+ −16.9	€ -10.9	TED AT	TORS
\$ 10.4	€17.9 €22.3	* 22.1	* 21.1	e.05	4 -£2,7		N VECTO
	4-19.5 4-23.2	4.4	1.61-*	£19.3	4-11.4	6 (CM/SEC RRDW	VELOCITY VECTORS
4-12.1	4 −-18.8 4 21.0	23.6	15,2	4 16,9	▲8.7	4 5 VELOCITY TAIL OF A	K
4.5 b	4.9 9.14 9.9	53.9	و د له	\$ 5.7	7.3♥	D T E	
17.0	16.3- * 15.0- *	10.8	¢.9	4 €'Ω	16.5-1		
20.3-	13.7* 12.0**	4 6.6	7.1 A	4 6'8	20.9 \$	2 /100	
10.4+	8 ₽4 14.3	13.4	3 ,9,6	ໝຸ 🥐 ເປັ	42.7	FROM BOV, M /100	
↓ 11.7	-22.5 -27.2	4 -25.9	€-19.9	♣ −16,4	410.2		
4-19.4	€ <u></u> 29.8	6'62\$	▲ 23.6	425,9	4-19.7	ANCE	€
4 -16.9	▲ -25.3 ▲ -26.3	425.0	4-25.2	4-20.6	4-16.6	148+ 133 133 133 133 133	13.6 • 7.3 • 3 M /100
+-15.7	4	42 6.3	▲ 25.0	423,1	419,9	-4 -3 20.3-+ 18.3-+ 17.0-+ 20.3-+ 18.3-+ 17.0-+ 13.7* 15.8* 16.3* 12.0* 12.4* 15.0* 9.9* 13.1* 10.8* 7.1* 5.7* 6.9*	^{20,1} → 16,5+ 1 2 B□W,
4 −14.6	▲ 23.1	▲ 25,1	« 2 3.5	4 22.2	* -15.6		20.9★
4 −13.7	★ 24.2 ★ 23,9	▲ 23,2	4-20.5	420.0	4 -15,4	C 8 9 6 6 1 1 3 1	7.7 14.1 ANCE
▲ 10.0	4 -22.2 4 -19,8	4 19.2	4 19,0	1 6.3	*11.1	-7 -6 -17.5 +11.7 & 3 -17.5 +11.7 & 3 -29.0 -25.5 16.9 -29.0 -25.9 23.3 -29.0 -25.9 23.3 -29.0 -25.9 23.3 -29.0 -25.9 23.3	A10.2 A10.2 A
★ 10.3	4-21.7 4-21.7	4-18.2	4 −17,5	4-15,5	4-10.5	-7 +17.5 +11.7 +17.5 +11.7 +17.5 +11.7 +26.7 +26.5 +26.7 +26.4 +26.4 +19.9	Å -16.4

Figure 47. Velocity vectors, experiment KLD506D

▲22.5 ▲22.1 ▲28.5	4-26.6 4-26.7 4-26.4	8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	(CM/SEC) LOCATED AT ARROW VELOCITY VECTORS TEST KLD659A
+14.9 +16.2 +-22.4	★-20.8 ★-21.2 ★-20.3	4 −16.3	ITY VECTO
+-14.4 4-14.0 4-17.6 4-19.5	*-18.4 *-15.8 *-16.2	v. v. ∽	(CM/SEC) RRDW /ELOCI
▲12.7 ▲12.5 ▲12.5 17.2	17.5 10.8 12.6		VELOCITY (CM/SEC) LOCATED TAIL OF ARROW VELOCITY VECTO
13.2 7.1 15.2 24.1 24.1	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6:82 • - 4	NDTE: TA
42.5 34.8 4 0.6 4 3.3 4 3.3	30.7	4 ² 4 0	Z
33.8 29.2 29.2 29.2 29.2	27.8-4	/100 2	
4 1.	19.0 19.0 11.2 8.8 8.4 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	29 4-2/6 4-230 7 4-26	
20.3 	₹ 34.3 €.7.8 €.7.8	FRDM B	
+24.7 430.7 436.9 +39.9	4 36,7 4 34,4 4 33,1	TANCE	29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6
▲			
+-14.1 +20.1 +26.6 +27.3	+ 27.0 + 55.6		35.8-5 44.6-5 42.5-5 35.5-5 25.1-8 32.8-8 34.8-8 28.7-5 28.1-8 35.7-8 40.6-8 37.5-5 29.2-8 35.7-8 40.6-8 29.0 ⁶ 29.2-8 35.7-8 43.3-8 46.6-8 29.2-8 33.2-5 38.4-8 33.0 ⁻⁸ 19.65 27.0-8 31.6-8 29.0 ⁶ 27.8+ 31.1-8 30.7-8 20.9+ 22.48 31.1-8 30.7-8 20.9+ 23.28 35.7-8 35.7-8 35.3-8 20.78 31.1-8 30.7-8 20.9+ 20.78 35.7-8 35.3-8 35.3-8 20.78 31.1-8 30.7-8 35.3-8 20.78 31.1-8 30.7-8 35.3-8 20.78 31.1-8 30.7-8 35.3-8 20.78 35.7-8 35.3-8 20.78 35.3-800000000000
▲-18.9 ▲19.7 ▲25.8 ▲26.5	4 4 5 5 7 7 7 8 7 8 7 8 7 8 7 8 7 8 8 8 8 8		25.1+ 28.1+ 28.1+ 29.2+ 29.2+ 29.2+ 29.2+ 29.2+ 29.2+ 29.2+ 27.8+
+11.5 +-16.0 +-21.8 +-21.1	▲22.5 ▲20.4 ▲ -18.4	- 2 -	4 ² 201 4 ¹² 201 4 ¹² 15.2 15.1 4 ¹² 15.2 17.1 15.2 15.1 17.1 15.2 15.1 17.1 15.2 15.1 17.1 15.2 15.1 17.1 15.2 15.1 17.1 15.2 15.1 17.1 15.2 15.1 17.1 19.0 15.1 17.1 19.0 15.1 17.1 19.0 15.1 19.0 15.1 17.1 19.0 15.1 19.0 15.1 19.0 15.1 17.1 19.0 15.1 19.0 15.1
▲ 15.0 ▲ 15.0 ▲ 19.8	6.05 19.9	+II:2 - ₽ - 1	 20.3 42.3 42.3 42.3 42.3 43.1 419.3 41.1 *35.1 41.1 *35.1 41.1 *35.1 41.1 *35.1 41.1 *55.1 41.1 *55.1 41.1 *55.1 41.1 *55.1 41.1 *55.1 42.8 *2.4 42.8 *2.4
410.9 4-15.2 4-20.5 4-19.0	 18.8 20.7 4−18.1 	+11.2 - 7 - 7	+25.1 +20.3 +25.1 +20.3 +32.8 +-30.1 +37.8 +-38.7 +-39.2 +-41.1 +-39.2 +-41.1 +-37.6 +-34.3 +-36.6 +-34.3 +-36.9 +28.7 +25.4 +23.0 1 -1

+ 15.5 + 15.8 + 15.8	4 26,8	-23.9	-21.1	\$,9,6	ED AT	VELOCITY VECTORS TEST KLRU49C
+-16.8 +-17.3 +-17.3 +-17.6 +-14.9	4-27,3	4-25,9	4-21.0	★ 10.7	LDCAT	ITY VECTO KLRU49C
+-16.5 +16.8 +16.8 +17.2 +14.7	26.6	27.2	4-19.5	4-9.2	6 7 8 VELOCITY (CM/SEC) TAIL DF ARDW	/ELOC TEST
+ 15.5 + 15.5 + 16.0 + 14.5	4 -25,1	428.1	4 -16,1	€-11.9	L DF AR	-
+ 6.11.4 6.11.4 1.121.4 1.1.9	6.02	₹26.2	4-15.4	₹ 2.2	Ш.	
+11.9 +11.9 +14.5 +13.5	21.2	1 −26.3	4 −15.8	6'6★		
▲ ▲ ▲ ▲ 4 00.1 5 0.7 0 0.7	*14.4	€_16.7	¥ 8,3	3,3 %	4	
	10.9 F	*11.3	4 4,2	4.5 %	S S S S S S S S S S S S S S S S S S S	
2.5 2.2 0.3 € ▲ ▲ 2.8 0.3 € € 4	10.9 X	410.3	≜ 6,8	3.6*	211 211 211 211 201 201 201 201	/100
11/ 12/ 13/ 13/ 13/ 13/ 14/ 13/ 14/ 14/ 14/ 14/ 14/ 14/ 14/ 14/ 14/ 14	20.1	* 21,2	4 −16.9	4 10.2	ANCE 44.1 43.5 48.9 49.7 49.7 49.7 49.7 49.7 49.7 49.7 49	Σ
43,6 • 43,6 • 44,1 • 49,7	48.9	43.8	441.6	- 33.5	-1 0 DISTANC	M BOW,
58.1 47.3 59.2	54,4	51.7		43.5	-2 -1 -2 -1 -2 -2 -5 -2 -3 -5 -2 -4 -7 -5 -2 -4 -7 -5 -5 -4 -7 -5 -5 -4 -5 -5 -5	E FROM
		53.3	÷51.9	43.7		-3 DISTANCE
	41.0	40.9	40.6	≁ 31.2 ↓		-4 DIS
▲ 8.0 ▲ 11.8 ▲ 13.8 ▲ 14.1	22,0	-22.6	4 £7.7 ●	4 -16,8		E
+10.2 +13.4 +17.8 +17.8	420.2	≜ −16,6	4 21,8	★ 11.8	и 1	

Figure 49. Velocity vectors, experimetn KLRU49C

★ ↑	4- 16.5	4-16.6	4 -13.1	0'6 🕈	ICORS
+12.8 +13.9 +22.0	₹~19.5	ľ∠1- +	4-15,7	€,9,3	5 6 7 ARRDW CM/SEC) LOCATED A1 ARRDW CCATED A1 ARRDW CCATED A1 TEST KLRD49E
+-16.2 + 14.9 - 22.1 26.6	*- 20,3	≁ -15.1	4-17.9	4 -11.0	6 (CM/SEC RDW TEST
▲15.7 ▲15.7 ▲15.0 ▲15.0	21.5	* -11.9	1.71-	4 5,4	VELIAIL DF ARDW TAIL DF ARDW TAIL DF ARDW TAIL DF ARDW TAIL DF ARDW
124 11.6 11.6 19.3	18.7	₹5.1	4 ,5	4,2	
22.44 17.24 19.2.44 19.2.44 19.2.44	4 0.01	▲ ຜູ້	4.0 A	11.7+	
21.6-+	11.5	0. 8	ಗ. ಕ	15.2- 4	A 100
6.2₽ 8.3.3₽ 8.0.0₽ 8.11 19.4₽	15.0 •	6 88 8	പ്	4.6 %	
+21.4 +19.6 +19.6 +19.6 +29.1	24.3	* 16.9	4-18.1	I'6≱	
+ - 22.0 + - 22.0 + - 22.0 + - 29.3	€29.0	4-24.5	4-23.0	+ −18.8	ANCE
+ - 20.5 + + 19.3 + - 26.1	4 25.0	▲ 25,6	4-25.5	4 −16.4	
↑ 19,7 ↑ 19,7 ↑ ↑ 19,6 ↑ ↑ 19,7 ↑	4-25.2	4 -25.8	4-27,9	4 -20.4	
+-19,2 +-17,7 +-21,2 *-21,2	▲25.0	4-24.8	423.1	4 -14,9	11:5 2 11:5 2 11:5 2 3:6 3:6 4 3:6 3:6 4 3:6 3:6 4 3:6 3:6 4 3:6 3:6 4 3:6 1:5 5 3:6 3:6 4 3:6 1:5 5 3:6 1:5 5 3:7 5 3:6 1:5 5 3:7 5
↑ 18.1 ↑ 18.1 ↑ 16.5 ↑ 21.6	4 24,7	 €4,3 	423.7	4-16,7	
	4 -21.7	4-22.5	4 −-21.0	±11.7	
▲ 13.3 ▲ 116.4 ▲ 116.4 ▲ 118.5 ▲ 119.7	▲ 20,0	-22.0	€20;9	4-12.7	-7

	▲7.8 ▲ 9.1	≜ −18,1 ♣ ~15,9	+ −22,3 + −22,2	 4-21.6 4-20.2 	 	9 6 TAATA 7 AT						VELOCITY VECTORS TEST KLLU490
_	\$ 9.0	▲ 18,4 ▲	+ 122-+	 €1,2 € 	↑ 19,95 11,19,5 11,10,2 11,0,2	7 8 CMASECALI	TAIL OF ARROW					VELOCITY TEST K
	€'9	4 -16,6	2.02-	4 20.9	↑ 18.5 ↑ 18.5 ↑ 19.8 ↑ 10.6	9	IL DF A					
	\$4.4	4-11.0	4-16.3	≜ -15,4	+-14.7 Å18.0 ♦-5.0	 						
	₹7,9	∉-14.3	420.0	418.2	+-17.3 +-13.0 +-18.8 +9.5		-					
	1.3*	45,7	₹ 8	€.11. *	▲8.5 ▲7.6 410.3 1.6♥	3 4 M /100						
	2,9♥	₹3,5	€'2'	4 .9,4	4 4 4 60.2 8 4 50.2 9 50 50 2) U	▲ 1.0	▲ 6,6	* 8,4	4 11,6	ब्हो6,4 હ्युं,6,4	4 66
-	5.3 8	42.4	46.5	4 6,9	8 4 4 5 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	FROM B	.0 ▲8.5	4 3.7	9.1 \$16.9	¥ 17.4		6
-	▲ 8.5	4 -13,7	* 16.9	*17,4	▲0.7 ▲ 25.4 5.5	DISTANCE F	 4-30.5 4≥1.0 	4 ⊷33,4 4 23,1	1,92 ¥ 7,14 ¥	44.2 430.1	45.2 \$20.6	-1.9 +-39.1 10.8 5.5 ⁴ -1 0 B□W, M /100
	4-30,5	▲ 33,4	41.7	44.2	50.6 	-1 0 DIST		4-35.0 <41.7 <44.2 <44.3 <41.9 <38.9 <33.4	€ 49.5 € 47,4 ₹ 41,7	 4-52.1 ⁴-48.8 ⁴-44.2 	4 -37.2 4 -48.6 4 -52.4 4 -5.2 1 -59.0 4 -57.0	v
	440.1	41,9	449,5	4 52.1		୍' ଧ୍	4 −40.6 4 −39.3	44,2 🛥 44,3	-50.8 -52.8	-52.952.7 -	▲-36.1 ₹-35.5 4 4-43.7 4 -52.8 4	-61157.756 2 CEFRDM
_	4 40.6	4,2	4 50.8	4 52.9		۳ ۱	▲-35.6	5,0 ⊲ 41.7 ⊲ -	4 -36.3 4 45.6 4 −50.8 4 −52.8		4 3 4 48.6 3 4 44.2 64.54	-3 1 -3 1 7 AN(
	4-27.8	435,0	436.3	38.1	42.4 42.4 42.3 42.3	4	■ 19,4 4-27,8	4 -28,3 4 3 5	\$ 26.6 \$ -36	429.6 4-38	18.4 42.4 42.9.1 4-36.3 423.9 4-41.34	■14.1 = 33.34 -4 DIS
	4 −15,9	▲ -22.2	23,9	426.1	 ▲12.5 ▲ 30.0 ▲ 30.0 ▲ 9.9 	۲ ۱						
	▲ 10.4	4 −19.3	4 -17.4	4-25,4	4,11.9 425.1 419,4 € 8.1	I						

	▲7.3 ▲ 3.2	4 −16.9 4 −14.2	4 -15.8	4 -19,5	28.6 → 31.9 28.6 → 31.9 4-17.2 → 16.5 4-19.9 → 15.4 +14.7 → 10.2	3 4 5 6 7 NITE: VELIDITY (CMAREC) I DIATEN AT						VELOCITY VECTORS TEST KLLD51C
	4 8.5	4 −15,6	4 −18.6	4-21.2	+ -23.2 4 -20.8 + 14.8		ARROW					TEST
	4 10.8	← 14.7	4-15.4	4 -17.8	38.1 ★-21.1 ★-21.1	FI DC11	TAIL DF A					>
	63¥	.≜ 10	8. 9	10.5	27.4 10.4							
	8'8	5.7	9 4 9	8,4	18.7~	- ഡ						
	10.4	▲ ∠'∠	10.2*	7,6 🍽	16.3 • 13.7 • 16.1 • 27.5 •	M /100						
_	17.6-+	≜ 2,4	♦ 6.1	7 ,4								
	13.8-	4 −16.7	4 −20,0	-21.7	+32.4 +29.1 +29.7 +-22.7	-1 0 From Bow,						
_	4,4	<u>▲</u> 20.9	A -25.9	4-25.2	4 - 28.2 4 - 28.2 4 - 29.5 4 - 29.5	-2 DISTANCE	4 2,9 ▲ 8.0	⊲ 4,5 ∢ 8,9	6.8 A11.7	10.5 13.6 p	27.4 -32.1 27.4 -15.8 10.4 -15.8 5.7 -19.2 4.6 -19.2	- 4
	1.7	4 20,8	4 21,5	6'23-	+-26.3 +-26.3 +17.6	- ΥΙΩ 	27 b	4.2 ▶	6.J	₩. 1. 2. 2. 2.	4	3 M ∕100
	₹3,9	4-21.2	4-52.2	425,4	 424.7 426.4 4-18.7 		8.4 *	9.0 🖝 5.7 🖝	4 76 ▲ 86	11.1 * 4 *	16.3 b 17.5 b 18.7 b 23.6 b 17.5 b 18.7 b 23.6 b 13.7 b 16.8 b 17.9 b 14.6 b 16.1 b 19.4 c 17.3 b 11.0 b 16.1 b 19.4 c 27.6 c 20.5 b 27.5 c 27.6 c 20.5 b 17.5 c 20.5 c 20.5 c 17.5 c 20.5 c 20.5 c 17.5 c 20.5 c 20.5 c 17.5 c 20.5 c 17.5 c 20.5 c 17.5 c 20.5 c 17.	, B□ ≪ B□ ~-
	4 10.3	€ -20.3	21.3	6.15*	+ 26.1 + 25.1 + 24.8 + 18.9	10 - 1 4	10.4 ♦	7.7	10.2	7.6♥		FROM
	£.7.₽	4 −1,7.8	4-20.6	4-22.0	+ -23.9 4 -24.4 +13.8	. μ Ι	17,6-> 16.1->	4 .42.4 5.9 ⊳	0 ▲ 8,7♥	1 ► 5.2		ANCE
	\$.6.≯	4 −16.5	4 −18,1	4-19,2	 421.6 421.4 4-16.3 4-11.6 	9	13.8 - ¢ 16.3- ¢	4 -16.7 4 9.4	€-20.0 ¥ _{13.0}	*_21.7 ¥14.1		DISTANC
	₹ 2'5	+ −16.3	4-18.0	4-19.5	+-20.3 +-22.5 +14.3		4 56	4-20.3	4 -24.5 4 -20.0	★ 25.6 ₹ -21.7	-31.5+ 4-30.1 + + 29.0+	1

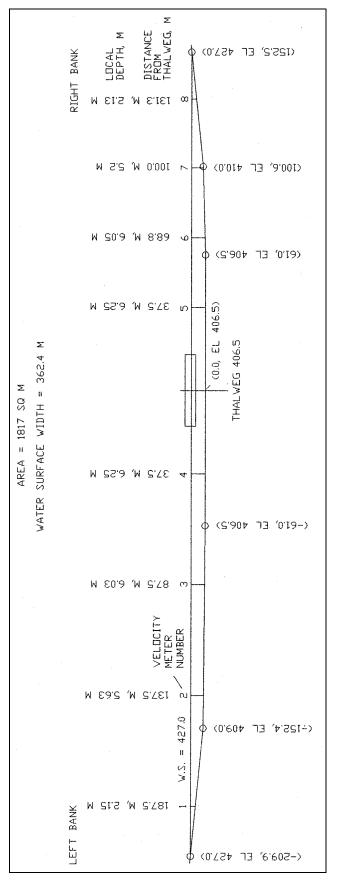
Figure 52. Velocity vectors, expeirment KLLD51C

	≜ 6.6	4-16,1	4-20.2	20.5	* 19,4	419,0	420,2	1 .51 ◆		CTORS
1	4 6.0	4 −15,9.	4-19.8	* 20.6	€-17.9	1.81	4-19,9	4 −11.5		
	4 5,9	4 −14,6	1.61+	1.15	-18.3	▲ 18.6	419,6	4 −10.8	8 − E E U V S E U V S E	
	4 6,5	4-14.6	▲ 18.5	£20,3	▲ 18.1	4-18.5	419.7	4 -10.0	VELOCITY (CM/SEC) LOCATED AT TAIL OF ARROW	~
	4 6.6	4—15,3	4-16.9	* 21,3	-20.6	▲ 18,0	6'/]+	4 -10.7		
	\$ 7.2	4-14,8	4 −−17.0	+20.7	21,2	4-17.7	4-20.7	€,9,4		
	4 2'0	4-13.2	← -14,9	18.6	417.4	4 17,1	416,7	4 6,9	- 4	
	≰ 6,8	4- 13,4	≁14,9	4 16.6	6.71-	4-15.6	a16.9	4 7.5	= = = = = = = = = = = = = = = = = = =	1
_	€.8	4-15,0	▲ 18.8	* 20.3	420.0	420,8	421.2	4-12.9	1□M B 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 18.8 19.6	/100
-	47,4	4-17,6	4 18.8	0.12	420.5	22.0	4-22.7	4 −13,9	DISTANCE FR DISTANCE FR ====================================	-1 0 B□W, M /100
	4-15.4	4-22.7	€72 ~ •	€ .93	32.4	426.8	428.7	≜ 18,8	◆9.1 	
	1.6 🕈	421.0	±8	432.6	435,5	32,7	429,0	▲ 20.8	-2 -1 -2 -1 = -2 -1 = -2 -2 -2 -2 = -13.8 = 14.1 = -18.5 = = -14.1 = -18.5 = = -14.1 = -18.5 = = -14.1 = -26.2 = = -21.2 = -28.2 = = -20.1 = -26.8 = = -20.6 = -24.1 = -26.8 = = -20.6 = -24.1 = -26.8 =	E FROM
-	▲3.3	♣-14,1	4-12.5	4-12.4	7.12	\$-23.4	← _24.1	4-14.9		-3 DISTANCE
	43.3	4-12.5	4-15.0	4-14.8	£-19,3	→ −17.7	4-19.7	4-9,9	43 45.2 43.3 45.2 43.3 413.5 412.5 415.9 413.5 415.0 415.0 415.0 415.0 412.5 4	-4 DI
_	4 5,5	4 −12.9	4 17,8	4 −14,1	4 20.0	♣ —19,4	4	≁ 9.7	- 1	
	4-8,7	4-15,2	418,9	▲ 20,0	421,4	4 −−20,9	419.1	4 -10.6	_ ហ៊	

Figure 53. Velocity vectors, experiment KL1U46E

+ + + + + + + + + + + + + + + + + + +		◆ 11.4	CM/SEC) LOCATED AT ROW	61E
▲7.8 ▲-15.9 ▲-19.7 ▲-18.1	+-21.2 +-20.8 +15.8	+ 10.7		KL1U61E
+-10.1 +-14.7 +19.3	4 19,8 420.6 4 18,8	80		TEST
+ 9.8 + 16.8 + 20.6	 4-20.8 421.1 419.2 	+-12.4 7 7	VELDCITY (CM/SEC) LDCATED TAIL DF ARRDW VELOCITY VECT	
▲ 8.3 ▲ 16.4 ▲ -20.2 ▲ -18.9	€.19.6 18.3		NDTE: VEL TAIL	
♦ 6,9 ♦ 16.1 ♦ 18.8 ♦ 19.3	€-19.3 •-17.9	vu –	Z	
▲3.9 ▲14.9 ▲18.3 ▲18.3	♣— <u>1</u> 8.7 ♣— <u>1</u> 6.7 ♣—14.8	4 8.8 100 4		
0.4 +11.7 +15.9 +15.2	 4-13.1 4-13.0 4-12.0 	44 + +8. 2 3 B□W, M /100	▲17.2 ▲17.2 ▲17.2 ▲17.5 ▲17.5 ▲17.5 1 1	
▲1.7 ←12.3 ←15.1 ←15.6		+7.3 I 2 FROM BC	412.2 419.1 4-24.0 4-24.3 4-24.7 4-24.4 4-24.4 4-24.5	100
+-12.2 419.1 424.0		DISTANCE F	1 1 7.8 *24.8 *22.9 *18.3 *12.2 5.5 *29.3 *24.0 *19.1 5.5 *29.3 *29.3 *24.0 5.5 *29.3 *29.3 *24.0 5.5 *29.3 *29.3 *24.0 5.5 *29.3 *32.7 *24.0 5.5 *29.3 *32.7 *24.0 7.5 *39.3 *34.4 *21.3 9.1 1 1 1 7.4 *36.1 *27.7 *24.7 3.5 *30.1 *27.7 *24.4 3.5 *30.1 *27.7 *24.3 5.5 *30.1 *27.7 *24.5 7.4 30.1 *27.7 *27.5 7.1 0 1 1	ЫШМ, М /100
+-22.9 4-30.3 4-35.1 35.1	34.6	0 DIST	1 1 1 *10.7 *17.8 *24.8 *22.9 *10.7 *17.8 *24.8 *22.9 *18.6 *26.5 *29.7 *30.3 *23.6 -32.4 -37.3 -32.1 *23.5 -32.4 -37.3 -32.1 *23.5 -32.4 -37.3 -32.4 *21.5 -36.7 -30.9 *32.7 *31.5 -39.3 -40.3 -31.6 *31.5 -49.1 -39.3 -40.3 *31.5 -42.5 -38.1 -36.7 *31.6 -37.4 -36.1 -36.7 *31.6 -37.4 -36.1 -36.7 *31.6 -37.4 -36.1 -36.7 *27.7 *26.9 *33.5 -30.1 *26.9 *33.5 *30.1 *27.7 *26.9 -33.5 -1 0	
↑-17.8 ↑-17.8 ↑-26.5 ↑-32.4 ↑-37.5	42.5		43.7 45.0 410.7 +17.8 43.7 45.0 410.7 +17.8 411.0 41.4 +18.6 -26.5 413.1 41.3 42.5 -32.4 413.6 99.2 21.5 -37.5 413.6 99.2 21.5 -37.5 *13.6 99.2 21.5 -37.5 *20.0 24.2 44.4 -49.14 *20.1 *26.2 34.0 -37.5 *21.1 *16.7 *26.9 -33.5 *13.1 *16.7 *26.9 -33.5 *13.1 *16.7 *26.9 -33.5	
45.0 411.4 4-11.4 4-9.2	24.2 26.2 26.2 25.4		43.6 43.7 45.0 410.7 41.7 411.0 411.4 418.6 41.5.5 413.1 413.4 418.6 41.5.5 413.7 413.1 413.6 41.4.1 413.6 49.2 21.5 41.4.1 413.6 49.2 21.5 41.4.1 413.6 49.2 21.5 41.6.7 420.1 26.2 37.2 41.6.7 420.1 26.2 37.2 41.6.7 420.1 26.2 37.2 41.6.7 420.1 26.2 37.2 41.6.7 420.1 416.7 46.9 41.6.7 413.1 416.7 26.9 410.4 413.1 416.7 26.9 410.4 413.1 416.7 26.9	UIS I ANCE
▲3.6 ◆-11.7 ◆-16.5 ◆-14.1	▲ ▲ ▲ ▲	4 -10.4 −	8 43.6 9 41.7 9 41.6 1 41.4 1 41.4 1 41.6 1 41.6 1 41.6 1 41.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C1U
.≈4.6 ♣-11.1 ♣-15.6 ♣-14.5	↑ 15.3 ↑ 15.9	8 8 0 8 0 1 1 1 1 1 1		
45.1 4 9.6 4 −17.6	+-15.6 +-16.5	2 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

L L	+_16.3	419,4	421.2		4-21.0	418,5	4.71-*	4-12,4	EDAT	VELOCITY VECTORS TEST KL1U76E
	€.\' +13,3	 4.04 	4 −19,4		4 20.6	4 20.4	*_16.6	4 -12,3	ГОСАТ	
	4-13.6	4 -20,6	4-18.0		4-18.7	4-18,8	4 −18,1	₽ 11.8	CDW/SEC)	ELOC
	4-15.0	₹ -20,8	4-21.7		1.15-+	4-20.2	4-17.1	4 -12,1	VELIGCITY (CM/SEC) LIDCATED AT TAIL DF ARDW	>
	▲-15.3	4 19,0	4-21.9		▲ 20.5	420.9	4-14.5	4-12.1	NDTE: VELL	
- C 6 6	+ +15.1	4-18.0	4-21,3		4-19.6	4 18.7	4 −17.0	4-12.1		
- c 75	4-12.5	4-15.8	4-17.7		4 −19,6	≜ −16,8	2,12,5	£,9,3	100	
	0'A ▼ 4'0	4 −13,3	4-14.2		4-13.5	€ -14,4	▼ 8.3	45.7	B⊡W, M /100 4.8 4.8 4.8 4.5 5.5 5.5 5.5 5.5 1.00	
468	▲2.4	# 4,9	≜ 1.3		A 5.7	\$ 5.1	6 .7	4.8 b	□M 455 451 101 101 200 200	100
2.1.	≜ 5,5	₹7.6	10.1		10.0	æ 11.0	₹7.6	4.7		-1 0 BOW, M /100
+16.1 -	31.4	1.75	-43.1		40.6	38.9	32,1		DISTANCE	
	43.5 4		55.6	-	63.9	-58.7 4-		-57.7		FRDM
42.9	ŧ	a-16.9 a	4 −14,0 4 −−		27.0	0.65	23.2	4 −14.5	<pre> 450 450 450 450 450 414.0 414.0 414.0 414.0 418.6 27.0 422.1 23.1 23.2 415. 1 1 4.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	-3 DISTANCE
5.1	4 10.9	4-15,4	≁ -15.7		▲ 19.5	 4-22,4 4 	4-21.7	-20,0	5:1 ▲ 4:5:4 ▲ 4:5:4 4 4:5:4 4 4:5:7 4 4:5:	
۳. ۳. ۳.		21.1	1 6.8		418.7	≜ 19,6	♣—17,4	*12.3	▲15.6 ▲17.5 ▲17.5 ▲17.5 ▲6.3	- 1
		 4 20.8 ★ 	18.9		 20.8 	4 21.5	≜ −19.5	*10.5		


Figure 55. Velocity vectors, experiment KL1U76E

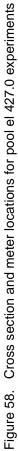

	 3.1 3.1 3.8 4.15.3 4.15.1 4.17.9 4.20.6 	+-19,1 ↔-19,6 +-18,8 +19,4 24,2 *	• - 0	VELDCITY (CM/SEC) LDCATED AT TAIL DF ARDW	VELOCITY VECTORS TEST KLEU49B
	●2.8 ●14.0 ●21.4	4-20.7 4-18.1	101 1-2-9 7	Y (CM/SEC ARRDW	VELOC TEST
_	43.5 ≜—16.5 ≜19.2	*21.0 *17.5	e –	VELOCITY TAIL OF /	
	₹2.4 14.1 4.20.5	+i7.8 +-17.0	- v	NDTE: T <	
_	2.4 3. +13.2 5. +-19.6 7 +-16.1	5 1 9.5	- 4		
-	1.1.2 7 ●11.1.3 6 ● −17.5 3 ● −16.7	4 V	7 46.8 1 46.8 3 M ∕100		
-	.0 41.0 88 4-10.7 5.0 4-15.6 5.0 4-15.6 2.8 4-15.3	2.1 +-15.7 1.6 4-13.1 7 17.2	× × × × × × × × × × × × × × × × × × ×	 42.9 42.9 413.1 416.1 415.2 414.2 415.5 414.2 415.5 414.2 415.5 414.2 	· •••
	429 ★10 +131 +818 -151 +150 +136 +128	4-17.6 +12.1 4-15.5 +11.6 16.7	8.4 +10.2 +6.8 0 1 DISTANCE FROM	▲15.9 ▲15.9 ▲15.9 ▲23.2 ▲23.2 ▲22.7 ▲22.7	√, M ∕100
	6.2 2.9.5 2.9.5 2.9.5	24.9	, ↓		-2 FROM BOW,
	5 • 7.8 51 • 23.3 10 • 20.3 14 • 28.5	.4	- °'	5.8 9.4 9.5 7.1 420.5 426.1 426.2 420.5 426.1 425.2 420.5 426.1 425.2 21.9 -32.4 -33.0 21.9 -33.1 4-30.5 21.9 -33.1 4-32.4 36.9 -33.1 4-34.4 36.9 -40.4 -31.7 20.1 -34.6 -31.7 20.1 -34.6 -31.7 20.1 -24.6 -27.4 20.1 -24.6 -27.4	-
	58 * 8 5 0.5 * 2 6.1 4.7 * 33.0 1.9 * 32.4	36,9		4.8 5.8 9.5 7/1 4.8 5.8 9.5 7/1 +15.5 +20.5 +25.1 +26.1 +25.2 +14.4 21.9 -33.1 +23.2 +14.4 21.9 -33.1 +29.4 *26.0 36.9 -33.1 +29.4 *26.0 36.9 -33.1 +29.4 *26.0 36.9 -33.1 +29.4 *26.0 36.9 -28.0 *29.4	-3 DISTANCE
	44,1 15,5 15,5 19,5 17,5 17,5 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,4 1,5 1,5 1,3 1,3 1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	/	- 4	4.8 4.155 4 4.155 4 4.14.4 4 1.14.4 14.4	. +
-	4,3 €4,1 1,4 €1,5 €1,5 5 1,1 €1,5 5 1,1 €1,7 5 1,7 5	+-20.4 +-23.4 +-23.0 +-23.6 +10.4 +20.9			

Figure 56. Velocity vectors, experiment KLEU49B

\ 0.0 0.0	4 −18.8	18,9	1 8,9	420.1	★ 10.1	4 -11.9	9 ED AT	VELOCITY VECTORS TEST KLEU67D
4,6 5,7 5,7	4-19,8	4 −18.7	▲ 21.2	≜ 20.2	6'21	⊄ -11.7	ГПСАТ	
44.8	4-16.3	4 21.0	4 20.3	4 −−20.2	æ-16.2	4 -11.5	8 SCM/SEC	ELOC TEST
≪6.1 ♣-16.4	▲-18.5	-18.1	★ 21,4	4 20,0	18.5	4-12.2	7 JCITY ((DF ARH	>
45.7 ♣-16.9	4-19.3	4−16,1	4 21.1	5.61*	4 ,14,8	4 -11.3	5 6 7 8 9 NUTE: VELOCITY (CM/SEC) LOCATED TAIL OF AROW	
₹6.9	4-16.2	4 -20,5	4-20.7	£.03-	23,9	4 10.8		
₹ 3.0 4 10.6	±-17,3	9.61-+	419.0	4 ⊷16,1	4 -16.4	€'6'⊅	4	
▲13 ▲6.3	412.1	≁ 11.8	4-12.6	∉-11.0	* 17.5	€ 4.1	a 47.5 47	
0.6¥ ≜6.2	49.Ü	₹ 9.2	4 7.2	▲ 7.8	★ 11.2	₹ 1	C 2 2 2 2 2 2 2 2 2 2 2 2 2	100
2,9♥ 4,5 4,5 8,2,4	4 ,9	₹ 4.9	\$ 8.1	410.2	46.6	₹3,4		-1 0 B□W, M /100
45,9 2. ≜-15.6	-24.2	27.8	28.4	-21.3	20.6	*12,9	0 1 4 4 4 4 4 4 4 4 3 1 1 4 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1	
★ 9,4	4	-38.2	37,5 4	-38,6	33.3	33.0	-3 -2 -1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2 FRDM
*13.5 35.3	, [44.3	49.1	-47,5	44.4	-41.1 4	4 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	-3 DISTANCE
	,			ļ	f	+	-3 -3 -3 -3 -3 -3 -3 -3 -3 -3	-3 DISTA
*12.4	27,2	1.62	52.3	42.7	40.1	* 36.6	-4 -3 -04 12.4 -0.4 12.4 -19.2 +22.1 +19.2 +27.2 -14.9 +29.1 -33.3 +42.7 +33.3 +42.7 +33.3 +42.7	-4
€4.8 16.1	-20.6	4-17.9	-24.7	426.6	4-27,0	4-20.4		
2'9' 2'9	255	♣17,4	-25.0	4-23.0	+-23.0	4-16.9	က ၊	

Figure 57. Velocity vectors, experiment KLEU67D

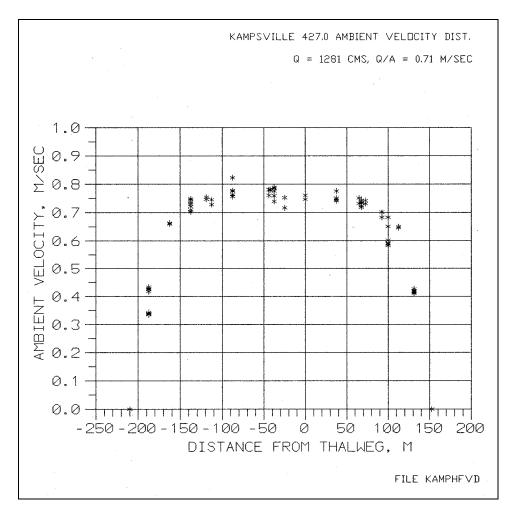


Figure 59. Ambient velocity distribution for pool el 427.0, disharge 1,281 cu m/sec, average channel velocity 0.71 m/sec

-41.1 39.0 42.6 38.3 41.2 -53.0 32.5 38.3 41.3 -59.0 -60.3 -52.7 -48.7 -51.6 77.3 -80.8 57.4 59.4 57.4 57.4 -80.7 57.4 57.4 57.4 57.4 -80.7 57.4 57.4 57.4 57.4 -80.7 57.5 72.9 71.3 66.1 -68.5 72.9 71.3 66.1 69.0	113 713 740 792 81.2 84.1 695 15 +-30.8 +-31.2 32.1 33.7 +-33.9 31.5 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 6 7 8 9 M /100 NIDTE: VELICITY CM/SEC> LICATED AT TAIL DF ARROW CM/SEC> LICATED AT	VELOCITY VECTORS TEST KHEU38B
529 -522 -49.0 -43.1 -43.5 529 -522 -49.0 -43.1 -43.5 66.9 64.0 -62.4 -58.1 -63.5 77.5 83.8 -66.9 78.3 63.5 77.5 82.4 78.3 63.5 73.2 82.5 76.8 68.6 68.6	918 79.6 -81.4 -33.9 -74.3 -67.3 -67.3 -67.3 -37.8 -41.4 -41.9 -39.4 -38.4 -32.9 -32.9 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -451 4431 40.6 -65.6 4331 40.6 -59.9 -62.3 -65.2 46.3 49.3 40.6 -73.1 -73.5 -61.4 -73.5 46.6 <	+41.1 +41.4 +42.0 +41.9 +43.1 +37.9 +38.4 +33.9 +34.2 +0.7 -4 -3 -2 -1 0 1 DISTANCE FR⊡M B□W, M /100

	-411	-79.4 — 86.1 — 77.9 — 82.5 — 59.6 4 56.8 4 63.0 • 69.3 • 67.7 4 71.1 4 77.1 4 77.1 4 78.0 4 84.0 6 50.5 4 60.5 4 63.6 6 57.5 6 57.5 6 82.0 6 82.0 6 83.7 57.5 6 82.0 6 82.4 8 .37	-74.1	-791 4 - 93.0 4 - 79.8 4 - 75.3 4 - 75.5 4 - 75.5 4 - 75.5 4 - 75.5 4 - 79.8 4 - 79.8 4 - 75.3 4 - 75.3 4 - 75.5	-79,7 4	-353 -435 -49,6 -45,4 -44,7 -34,5 -27,0 -33,3 -33,3 -32,2 -3,1 -35,8 -32,6 -34,5 -32,3 -32,3 -32,5 -34,5 -32,3 -34,5 -3,5 -34,5 -3,5 -32,5 -32,5 -32,5 -32,5 -32,5 -34,5 -3,5 -34,5 -3,5 -2,5 -1,0 1 2 2 3 4 5 6 7 8 9 9 -4 -3 -2 -1 DISTANCE FROM BOW, M /100	4 40.4 4 450 4 50.6 4 50.7 4 50.2 4 -51.6 4 -50.1 4 43.9 4 39.4 4 24.4 4 25.4 4 -51.7 4 -53.6 4 -51.7 4	4-73.7 4-81.9 4-88.8 4-86.1 4-83.3 4-78.9 4-80.4 4-82.5 4-70.2 4-57.7 4-66.8 4-69.6 4-83.9 4-86.5 4-94.1 4-86.9 4-85.9 4-77.6 4-77.6 4-77.1	← -800 ← 88.9 ← -90.2 ← -83.2 ← -87.8 ← -88.0 ← -72.7 ← -74.4	4 -838 4 -930 4 -986 4 -947 4 -947 4 -929 4 -854 4 -823 4 -756 4 -819	<mark>4-8</mark> 2.9 4-8 1.6 4-8 3.7 4-8 6.8 4-8 0.9 4-79.9 4-80.2 4-75.9 4-76.2 4-74.2	4356 443 4446 446.5 444.4 45.5 48.6 -1 1 1 1 1 1 1 -4 -3 -2 -1 0 1 VELOCITY VECTORS DISTANCE FROM BOW, M /100 TEST KHEU56E
-	▲41.1 ▲ ▲60.3 ▲	4-79,4 4-60.5		4	£.62	-5 -4		4-6.84-69.6		4 83.8 4 -93.0	4 - 8 2.9 4 - 8 4.6	•

Figure 61. Velocity vectors, experiment KHEU56E

FROM BOW, M /100 1 VELOCITY VECTORS TEST KH0U38D	ЯПМ
452.3 448.8 445.0 441.6 439.0 435.1 435.5	4 48,8
a-8 9,4 a- -81.5 a- -80.3 a -73.6 a 78,4 a 74,8	▲ 88.6 ▲ 84.0 ▲ 93.0 ▲ 90.1 ▲ 89.4 ▲ 81.5 ▲ -
۲-95.5 هـ91.1 هـ-86.9 هـ-91.9 هـ-80.7 هـ-79.5	
	♣
t10.0.4	
★ 64.8 ★ 68.9 ★ 69.9 ★ 71.7 ★ 74.2 ★ 70.9 ★ 74.7 ★ 66.3 ★ 67.2 ★ 59.0 ★ 56.6 ★ 81.8 ★ 89.5 ★ 93.1 ★ 99.3 ★ 93.1 ★ 93.7 ★ 84.1 ★ 77.0 ★ 73.2 ★ 68.5	←64.8 ←68.9 ← 69.9 ←-71.7 ←-74.2 ←-70.9 ← ←-81.8 ← -89.5 ▲ 99.34 <u>←</u> -97.9 4 - 101.9 4
HILE: VELOCITY (CM/SEC) LOCATED AT 4-618 4-613 4-537 4-485 4-467 4-425	4 60.9
DISTANCE FROM BOW, M /100	
-1 0 1 2 3 4 5 6 7 8 9	-5 -4 -3 -2 -1
48.8 441.6 435.1 437.3 430.7 4-28.4 4-28.3 434.6 4-32.8 431.0 432.7 432.3	ţ
B15 4	
	Ţ
<u></u>	
	ļļ
	 451.3 ▲63.1 ▲60.9 ▲

Figure 62. Velocity vectors, experimetn KHOU38D

-35.7 -34.5 -31.1 -44.4 -43.0 -45.4 -41.6 -53.7 -53.1 -59.6 -58.2 -58.5 -58.1 -56.0 -64.7 -64.7 -71.7 -70.7 -70.1 4-66.1 -65.4 -58.2 -71.7 -70.7 -70.1 4-66.1	-76.0 4	-68.1	M /100 4 5 6 7 8 9 M /100 NDTE: VELOCITY (CM/SEC) LOCATED A TAIL DF ARDW	VELOCITY VECTORS TEST KH0U53C
Image: constraint of the state of the st	→ 75.7 → 78.4 → 77.2 → 77.2 → 77.9 → 7 → 78.4 → 76.5 → 87.8 → 98.1 → 96.5 → 81.8 → 71.4 → 7	79,0 81,1 90,5 90,4	-5 -4 -3 -2 -1 0 1 2 2 DISTANCE FROM BOW, -5 -4 -3 -2 -1 0 1 2 2 DISTANCE FROM BOW, -440 -691 -691 -698 -697 -671 -691 -931 -931 -944 -446 -691 -698 -697 -671 -691 -931 -944 -446 -691 -698 -693 -613 -760 -671 -639 -679 -646 -686 -807 -997 -1067 -1040 -960 -277 -715 -664 -656 -686 -807 -997 -1067 -1040 -960 -277 -715 -664 -656 -595 -755 -766 -632 -913 -756 -693 -618 -772 -699 -996 -1059 -1040 -1036 -1049 -1067 -1010 -991 -772 -616 -673 -961 -1016 -965 -954 -908 -918 -772 -912 -905 -941 -1016 -965 -954 -908 -619 -477 -472 -913 -490 -529 -561 -611 -6779 -649 -908 -9756 -728 -649 -913 -490 -529 -561 -611 -6779 -646 -916 -756 -758 -649 -913 -490 -529 -661 -611 -6779 -646 -918 -756 -758 -649 -914 -910 -629 -661 -611 -6779 -649 -918 -756 -758 -649 -914 -910 -629 -661 -611 -6779 -646 -918 -756 -758 -649 -914 -910 -629 -661 -611 -6779 -646 -918 -756 -758 -649 -914 -910 -629 -661 -611 -6779 -646 -918 -756 -758 -649 -914 -910 -629 -661 -611 -6779 -646 -918 -756 -758 -649 -914 -916 -914 -911 -6779 -646 -918 -756 -758 -649 -914 -916 -916 -916 -916 -916 -916 -756 -758 -649 -914 -916 -916 -916 -916 -916 -916 -916 -756 -758 -649 -914 -916 -916 -916 -916 -916 -916 -916 -916	-4 -3 -2 -1 0 1 DISTANCE FROM BOW, M /100

+36.1 +-44.5 +-42.9 +-11.0 +-45.2 +60.7 +-65.1 +-73.8 +-73.0 +-45.2 68.0 71.2 +-71.4 +-72.6 +-72.8 65.0 +-71.2 +-71.4 +-72.6 +-70.8 65.0 +-72.7 +-79.2 +-71.6 +-70.8 65.1 +-79.2 +-71.6 +-70.8 66.4 +-73.5 +-77.8 +-77.7	E: VELOCITY (CM/SEC) LOCATED AT TAIL OF AROW	VELOCITY VECTORS TEST KH0D50D
-34.6 -28.3 -31.5 -37.6 -28.3 -31.5 -57.6 -55.0 -56.0 - -58.8 -59.8 -62.7 - -66.9 -60.1 -66.8 - -70.7 -60.3 -66.7 -	-618 - 57.5 - 62.5	
		465.7 426.8 430.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
←-38.8 ←-42.0 −41.4 ←-38.8 ←-42.0 −41.4 −68.7 ←-73.5 ←-70.8 −70.7 ←-73.5 ←-75.7 −69.7 ←-74.5 ←-75.7 −82.4 ←76.9 ←-77.1		€7.7 €2.8 €26.2 T 1 1 2 FRDM BDW, M
+-39,4 +-41,2 +-44,4 +57,1 +41,2 +-44,4 +57,1 +57,0 +71,3 +70,5 +57,0 +70,9 +78,9 +74,6 +70,9 78,9 +74,6 +70,9 78,9 +74,6 +86,6	→ 77.1 → 75.6 → 78.9 → 73.3 → 73.6 → 33.8 → 36.0 → 34.9 → 36.6 → 35.6 → 1 1 1 1 1 → 7 -6 -5 -4 → 35.6 → 7 -6 -5 -4 → 35.6 → 7 -6 -5 -4 → 35.6 → 7 -6 -5 -4 → 35.6 + 7 -6 -5 -4 → 55.0 + 34.6 +28.5 +34.6 +28.8 +60.0 +55.8 + 63.9 -65.9 +62.6 +55.8 +60.0 +55.8 +60.1 + 70.9 76.3 -70.2 +60.1 +65.3 +60.3 +60.3 +60.3 + 94.8 -81.0 -55.2 -70.7 -67.5 +61.9 +67.5 +61.9 +57.5 +61.9 +57.5 +61.9 +67.5 +61.9 +67.5 +61.9 +57.5 +57.5 +61.9 +57.5 +61.9 +57.5 +61.9 +57.5 +57.5 +57.5 +57.5 +57.5	+325 +30,3 +28,6 +28,8 -1 0 DISTANCE

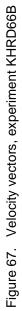

8 +28.3 +27.4 +33.7 +40.1 +44.6 +2.1 +43.1 1		<pre>-209 +221 +-310 +-357 +-368 +-371 +-373 1 2 3 4 5 6 7 M /100 NDTE: VELOCITY (CM/SEC) LOCATED AT TAIL OF ARROW</pre>	VELOCITY VECTORS TEST KH0D66E
85 85 58 60 58 60 58 57 58 57 58 57 58 57 58 57 58 58 57 58 58 58 57 58 58 57 58 58 57 58 58 57 58 57 58 58 57 58 58 57 58 58 57 58 58 58 58 58 58 58 58 58 58	7,9 • 59,6 9,9 • 64,0 3,1 • 64,4	B□V,	
			 BID4 -7314 -65.7 + 64.4 + 65.9 4 -58.8 4 -55.8 4 -58.7 + 64.64 - 71.54 - 75.9 4-36.6 +31.5 +29.9 +24.8 +22.9 +20.9 +8.4 +22.1 +26.0 +31.0 +36.6 7-1 0 1 2 3 4 DISTANCE FRDM BDW, M /100

Figure 65. Velocity vectors, experimetn KHOD66E

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	• • • • • • • • • • • • • • • • •	+410 +44 -417 -412 409 -423 408 1 1 1 1 1 1 1 3 4 5 6 7 8 9 /100 NDTE: VELDCITY (CM/SEC) LDCATED AT TAIL DF ARDW	VELOCITY VECTORS TEST KHRU38B
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	836 <u>4</u> 89.6 <u>4</u> 85.4 <u>96.8</u> <u>95.2</u> <u>88.5</u> <u>4</u> 76.9 <u>4</u> 82.5 <u>4</u> 73.0 <u>69.1</u> <u>4</u> 69.1 <u>4</u> 73.7 <u>4</u> 73.7 <u>4</u> 71.8 <u>4</u>	→ 612 → 62.3 → 48.7 → 46.1 → 42.0 → 41.3 -3 -2 -1 0 1 2 2 2 1 1 1 1 1 2 2 41.3 35.1 43.0 44.1 35.1 43.0 44.1 35.1 43.0 44.1 35.1 43.0 44.1 35.1 43.0 44.1 35.1 43.0 45.0	+50.3 +59.5 +56.7 +61.2 +62.2 +62.3 +55.1 +48.7 +53.0 +46.1 +47.4 -4 -3 -2 -1 0 1 DISTANCE FROM BOW, M /100

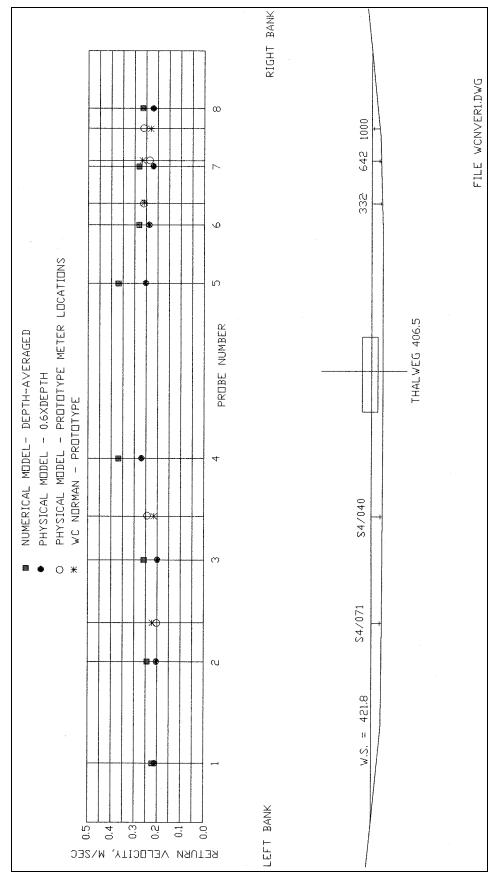
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	 4-57.3 4-56.3 4-52.6 4-72.0 4-77.2 4-56.4 81.0 4-77.2 4-78.4 40.3 	+328 +34.3 +44. +47.1 +50.4 +44.4	VELOCITY VECTORS TEST KHRD66B
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	485.9 491.0 491.0 475.8 471.9 450.9 4 472.1 472.8 475.8 457.0 4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		*44,9 *39,1 *32,4 *27,6 *30,4 *32,8 *33,3 *34,3 *36,5 *43,1 *45,0 1 1 1 1 -1 0 1 2 3 -1 0 1 2 3 4 DISTANCE FROM BOW, M /100

	▲ —_74.1	82.6	65.6 4 4.0 4 44.0	6	AT				IORS
442.1	↓ 72.4	80.7	80.5 425.5 425.5 65.5	ω	LDCATED				VELOCITY VECTORS TEST KHLU38D
4 -39,4	4 75.8	€76.0	81.4 81.4 78.4 6.5.1 	7	1/SEC) I				ELOCIT TEST
4-43.0	1.6	4 76.9	4 − 79.5 4 − 71.5 4 − 68.7 4 − 43.8	Q	VELDCITY (CM/SEC) LDCATED TAIL DF ARROW				
441.2	▲70.8	4 70.0	84.5 84.5 44.0	Q					
8.76	+59,7	65.9	↑ 7.6 ↑ 77.0 ↑ 38.9	4	NDTE				
-37.6	4 .0,9	6 8.9	7.4.7 1.1.7 1.1.6 1.1.3 	/100					
436.9	6 2.9	72.1		B⊡W, M ,					
43.2	476.2	80.5	↑ 76.1 ↑ 63.5 ↑ 44.3	FROM J	6.43.7	2 4 −85.1	9 4 78.4		x1
44.9	81,2	* 83.9	67.2 61.0 45.4	0 DISTANCE	▲-50.3 ▲ 44.9	4 −81.6 4 −81	4 -84,0 4 -83		1 0 1 /100
L •52.9	92.0	4 85.0	8.29 90,6 92,9	-1 DIS		0.92.0			−1 B□W, M
4-58.5		0.001	90.4 90.4 64.2 64.2	ປ	+62.0 ▲ 58.5	-90.4 & -90.2 ▲	-98,0 4 -100.0 4		FRDM
58.2	· L'16		95.3 92.3 68.9	ო 	 €2.1 4 5 8.2 4 6 2.0	- ₽ ′7 6 1	94.24-101.04- 95.74-9354-		DISTANCE
	• 0.0	€.5 ¢		4	▲47.9 4 .54.6 4 -62.1	4-85.0 4-90.0 4-97.2 4-97.7 4-90.4 4-90.2 4-90.8 4-92.0 4-81.6 4-81.2 4-85.1	هــــــــــــــــــــــــــــــــــ	-76.2 +19.3 +90.4 +80.0 -74.1 +73.3 +90.8 +90.4 +87.2 83.5 +74.1 +73.3 +90.4 +87.2 48.3 +74.1 +73.3 +90.4 +87.2 48.3 +74.1 +73.3 +90.4 +87.2 48.3 +74.1 +73.3 +90.4 +87.2 48.4 +74.0 +85.5 +83.3 +87.6 +87.6	
 ∢50.1	82.1	83.6	 4.7 4.7	ч Г Г	¥	¢í ∳ ♥		476.2 4-74.1 446.0	└_
40.9	4.2.2	▲ 86.1	70.8 76.7 45.6						

	· · · · · · · · · · · · · · · · · · ·
4 79.6 4 5.4 4 60.7 4 60.7 4 80.7 4 80.7 4 76.1 4 76.1 4 82.3 4 79.0 4 74.8 4 65.4 6 60.7 4 67.6 4 80.7 4 7 80.7 4 7 80.7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-
<u>4</u> -722 4-783 4-779 4-829 4-77.3 4-82.3 4-81.4 4-74.4 4-66.1 4-66.5 4-58.4 4-75.9 4-74.7 4-	74.7 4
▲76.2 ▲81.9 ▲83.2 ▲79.0 ▲83.2 ▲78.8 ▲79.9 ♦77.2 ♦58.3 ▲-58.9 ▲-58.9 ▲-58.9 ▲-73.2 ▲-73.2 ▲-78.2 ▲	78.2 4 87.0 4 90.5 4 85.6
	4 44
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5	5 6 7
DISTANCE FROM BOW, M /100 NDTE: VELOCITY (CM/S	VELDCITY (CM/SEC) LDCATED AT
444.3 440.2 439.3 436.5 431.9 430.2 429.7 435.7 435.7 438.9 442.1	MUNA
478.8 477.7 477.8 467.7 4 -65.4 4 -60.7 4 -66.5 4 -67.6 477.9	
حـــ79.0 حـــ74.4 حــ66.2 حــ66.1 حــ66.5 حــ61.1 حـ58.4 حــ64.8 حـــ75.9 حــ72.4	
4-77.8 4-77.2 4-57.9 4-51.8 4-58.3 4-58.3 4-58.1 4-58.9 4-62.1 4-73.2 4-80.7	
← 64.5 ← 67.8 <u>← 56.7 ← 55.5 ← 58.8 ← 53.2 ← 50.3</u> ← -83.4 ★ 64.9 ★ 66.8 ← 56.7 ★ 48.9 ★ 47.4 ★ 45.7 ★ 44.7.4 ★ 45.7 ★ 44.7.4 ★ 45.7 ★ 44.5.1	
€2.6 €2.6 €2.6	
-1 0 1 2 3 4 VELOCIT DISTANCE FROM BOW, M /100 TEST	VELOCITY VECTORS TEST KHLD66C

Figure 69. Velocity vectors, experimetn KHLD66C

+ -97.7 + -98.7 + -75.2 + -70.6 + -65.2 + -70.7 + -65.2 + -70.3 471.4 +	7.8 4 12.7 4 16.7 4 16.7 4 14.9 4 16.7 4 16.8 4 10.3 4 16.3 4 16.3 4 16.9 4 16.9 4 16.7 4 10.7 2 4 16.5 4 15.5 4 1	2.4 - 141.6 4 - 138.9 4 - 136.4 4 - 125.1 4 - 129.0 4 - 106.7 4 - 121.2 4 - 118.4 4 - 114.5 4 - 112.6 4 - 10.4 7.2 4 - 141.1 4 - 153.9 4 - 142.2 4 - 133.9 4 - 116.6 4 - 132.3 4 - 112.1 4 - 128.7 4 - 122.8 4 - 124.1 4 - 115.9 4 - 111.1	51	-3 -2 -1 0 1 2 3 4 5 6 7 8 9 DISTANCE FROM BOW, M /100	MOTE: VELOCITY (CM/SEC) LOCATED AT *751 *751 *755 *751 *757 *880 *942 *884 *86.7 *94.0 *75.2 *75.3 *10.0 *10.75 *116.7 *126.8 *116.7 *75.2 *75.3	 +1400 ★1278 ★1367 ★149.6 ★137.4 ★131.6 ★137.2 ★121.4 ★17.5 +103.9 ★112.4 ★146.8 ±14.6 ★137.7 ★130.5 ₹139.6 ₹124.1 ★12.1.7 ★123.0 ★103.9 ★112.4 ₹148.4 ±14.6 ★137.9 ★130.5 ₹139.6 ₹124.1 ★123.0 ★120.8 ₹122.4 \$148.4 ±141.6 \$135.9 \$1381.4 ±136.4 \$4117.3 \$125.1 \$123.8 	★-130.0 ★-127.2 ★-147.4 ★-141.1 ★-148.6 & -153.9 ★-135.7 ★-133.9 ★-117.9 ★-119.1 ★-135.1 ★-134.5 ★-149.5 ★ -149.5 ★ -142.2 ★-139.3 ★ -143.2 ★-121.0 ★-126.6	93 4715 4817 4786 4764 4737 4752 4539 4572 4579 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				- 4 4-	475.1 474.5 484.3 4-97.7 4-88.0 4-110.9 4-107.5 4-116.3 4-127.9 4-137.5	 →-1400 →-127.8 →-140.8 →-146.8 →-144.6 →-146.8 →-144.6 →-144.6 →-144.6 →-144.6 →-144.6 →-135.9 	★-1300 ★-127.2★-147.4 ←-141.1 ←-148.6₄ ★-1191 &-135.1 ★-134.5 ≮-132.7 ★-136.3≉	+81.7 +78.6
64.6		4 18.3	₹67.8					



1 1 1 1 1	▲ 106.5 ▲ 134.0 ▲ 139.3 ▲ 123.3 ▲ 118.1 ▲ 117.0 ▲ 124.1 ▲ 131.1 ▲ 124.0 ▲ 54.0 ▲ 54.9 ▲ 62.7 ▲ 62.3 ▲	Z 3 4 5 6 7 NDTE: VELDCITY (CM/SEC) LOCATED AT TAIL DF ARDW	VELOCITY VECTORS TEST KH0D64D
		-7 -6 -5 -4 -3 -2 -1 0 1 DISTANCE FROM BOW, M /100 -727 +693 +659 +568 +588 +663 +663 +629 +658 +727 +693 +554 +569 +568 +588 +663 +663 +662 +629 +658 +727 +693 +554 +569 +568 +588 +663 +663 +662 +628 +688 +727 +129 +128 +128 +106 +113 +1217 +128 +114 +107 +128 +128 +128 +128 +128 +128 +128 +128	457.5 454.3 456.3 455.9 453.2 447.9 452.0 454.0 455.3 454.9 460.8 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 71. Velocity vectors, experiment KHOD64D

						TEST
					[]	
x 0.4 x 4.0 x 5.0 x 5.0 x 0.0	0 0 0 X	0'0 X	0 ^{.0} ×	0 ^{.0} x		ESSE WCNS
x -1.0 x -6.0 x -6.0 x -1.0	×	×	×	×	- a	JARY VESSEL TEST WCNSP
×0.5 ×-3.0 ×-1.0 ×-2.0	CU OX	сц О _х	S, Sol	×0,6		STATIONARY VESSEL TEST WCNSP
L ×1.0 ×-1.0 ×-6.0 ×-1.0	0.0 X	0'4'.	x1.0	×1.4		ST
x 5,5 x 0,2 x 1 4,0 x 1 2,0	0'0' S	-4× 0_4×	×, M.1	0 ^X 4		
	×1.8	×40	× 4_	×10.4	/100	
N .	x17.9	×11.3	×11.3	×15,1	− 1 B□ W, M	VESSEL,
	x19,9	_x 14.3 _x 14.3	×20.2 ×16.3	×23.3 ×20.9 ×15.1		≻
x28.7 x20.2 x8.8 x22.1	x21.6	×14.3	x20.2	х хо хо хо хо		JSED E M/SEC
×26.2 ×23.0 ×10.2 ×26.3	×26.9	_× 18,1	×20.8	6.03×		JE CAL
	×24,4	_× 15,8	2'2	<u>с</u>		CHANC
x5.2 x13.2 x8 x10.9 x12.2 x1 x-6.0 x0.4 x1 x10.6 x11.5 x8	×14.5	00 00 ×	×12.9 ×13.3 ×1	×10.3 ×1	-3 DISTANCE	DCITY TURN
x5.2 x10.9 x10.6 x10.6	×11.5	ex G	×12.9	×6.3		L VEL To re
- x 5.3 x 9.8 x - 5.0 x - 5.0	< 8.1 <	×5,2	_× 11.5	х Ц	- 4	LONGITUDINAL VELOCITY CHANGE CAUSED B EQUIVALENT TO RETURN VELOCITY, CM/SEC.
x2.2 x10.1 x-8.0 x10.7	×10.9°	×7.7	х 9.5	0'0 [×]		= LONGITUDINAL VELOCITY CHANGE CAUSED EQUIVALENT TO RETURN VELOCITY, CM/SE
<u> </u>						×7.7 =

Figure 72. Stationary vessel test, experiment WCNSP

-32.4 -33.2 -35.6 37.8 34.4 -45.3 -47.1 -51.2 -47.6 42.8 -55.5 -54.9 -55.5 -52.6 42.8 -55.5 -54.9 -55.5 -52.6 -51.4 -53.5 -54.9 -55.5 -52.6 -51.4 -53.5 -52.6 -51.4 -51.6 -53.5 -52.6 -51.4 -51.6	+ 46.6 4 48.6 4 52.3 4 52.9 4 48.5 + 31.9 + 32.9 4 35.8 4 36.8 + 32.5 4 5 6 7	TAIL OF AROW	VELOCITY VECTORS WC NDRMAN ND58Q2D
	→ 42.6 → 33.7 → 26.3 → 16.9 0 1 B□W, M /100		
		34 4 7 56 51 84 4 7 7 96 7 4 1 7 96 7 7 4 1 7 96 7 7 1 7 96 7 96 7 96 7 96 7 96 7	4
	-1- -1. -1. -1.	222 428.7 432.4 434.6 435.5 442.0 43.3 434.6 429.9 4-39.5 445.3 448.4 429.9 4-39.5 445.3 4-45.8 432.7 4-53.1 4-55.5 4-55.1 432.7 45.3 14-55.5 4-45.6 447.7 435.5 445.0 445.6 447.7	+3:,9 +32.4 + 100
	81 4	₹222 €287 ★ 4-3555 4-280 € 4-3555 4-295 4 4-367 4-531 4- 4-355 4-36 4 4-355 4-36 4	<mark>4.2 4217 4251 4-31</mark> 7 2 3 8□W, M ∕100
		▲ 32.9 ▲ 32.9 ▲ 22.9 ▲ 24.5 ▲ 34.5 ▲ 33.1	
	- −	 422.8 419.0 424.0 428.5 430.0 428.5 437.7 437.7 437.7 437.7 433.7 	418.7 1 FRI
	- C	1 1 1 +-37.8 +-35.6 +27.9 +22.8 +-37.8 +-38.4 +-35.6 +27.7 +-34.0 +-48.2 +-46.9 +-37.3 +-30.0 +-48.2 +-46.9 +-37.3 +-30.0 +-48.2 +-46.9 *-37.3 *-32.2 +-60.9 41.5 *-37.3 *-32.2 +-60.2 51.1 -58.0 *-33.6 +-55.7 -55.4 -50.2 *-38.6 +-55.7 +55.5 +50.2 *-36.0	33.9 429.4 426.3 T DISTANCE
		+37.8 +38.4 +35.6 +57.8 +38.4 +35.6 +58.2 +46.3 +48.2 +46.9 +43.5 +46.0,9 +46.9 +43.5 +6.0,2 +51.6 +56.9	¥
	- 7 → 51.2	→ 37.8 → 337.8 →60.99,4 →60.99,4	₩ 998 1- 1-
	A 4 36.0		

Figure 74. Velocity vectors, William C. Norman ND58Q2D

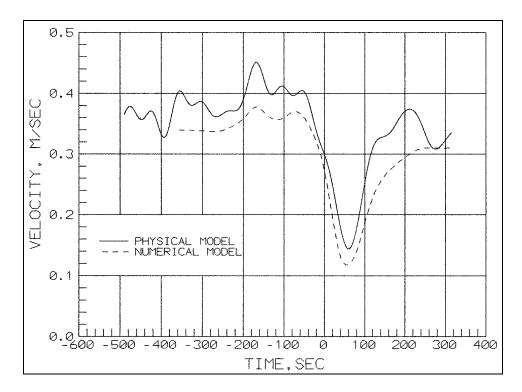


Figure 75. Physical model versus numerical model, probe 1, 168.8 m left of Thalweg

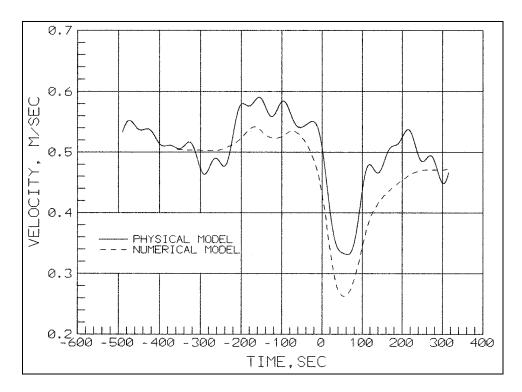


Figure 76. Physical model versus numerical model, probe 2, 125.0 m left of thalweg

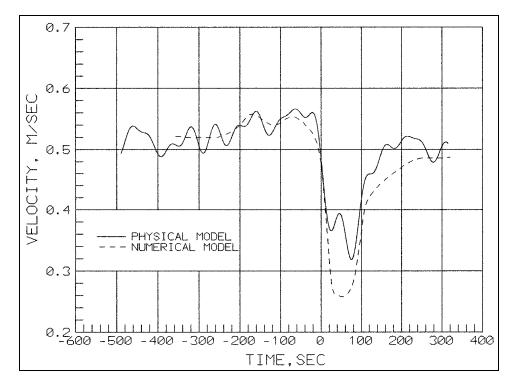


Figure 77. Physical model versus numerical model, probe 3, 81.3 m left of thalweg

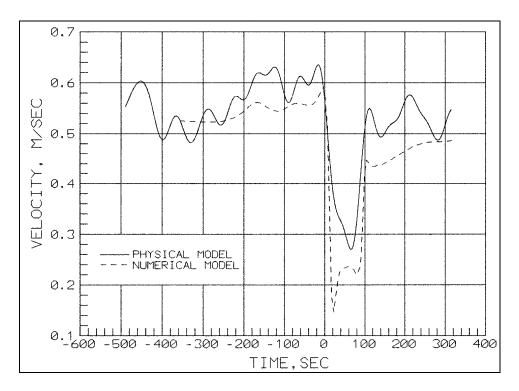


Figure 78. Physical model versus numerical model, probe 4, 37.5 m left of Thalweg

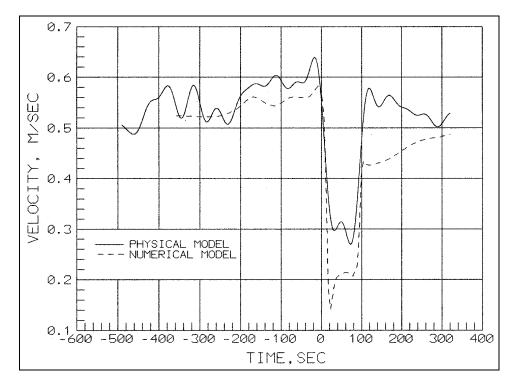


Figure 79. Physical model versus numerical model, probe 5, 37.5 m right of thalweg

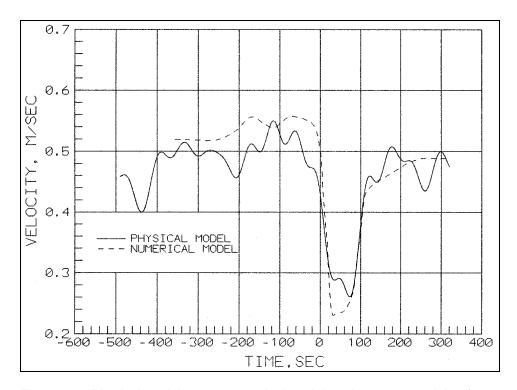


Figure 80. Physical model versus numerical model, probe 6, 62.5 m right of thalweg

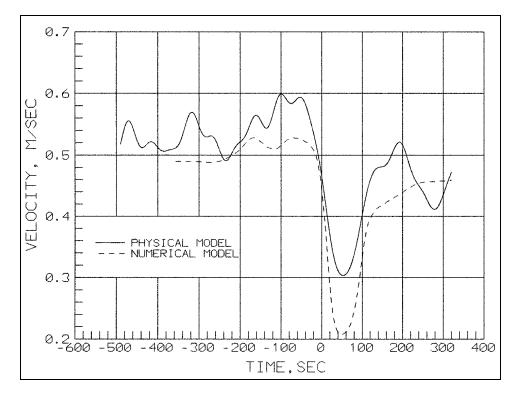


Figure 81. Physical model versus numerical model, probe 7, 87.5 m right of thalweg

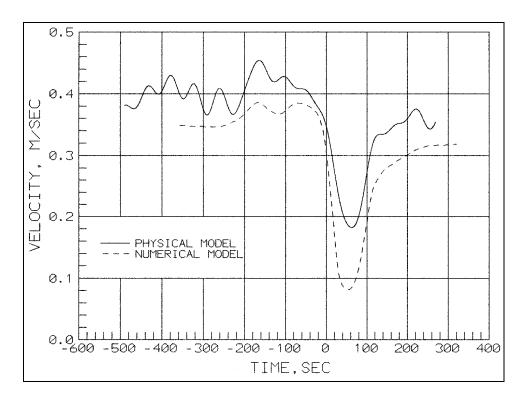


Figure 82. Physical model versus numerical model, probe 8, 112.5 m right of thalweg

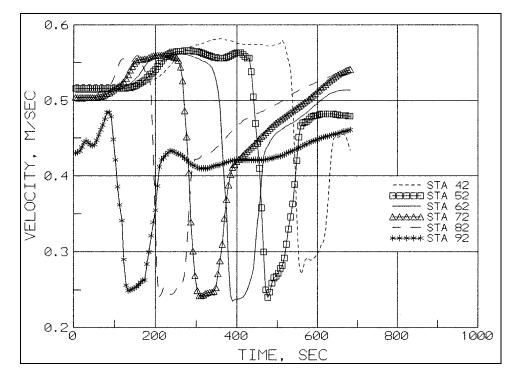


Figure 83. Variation of vessel effects along length of physical model, downbound tow, based on probe 6 of numerical model

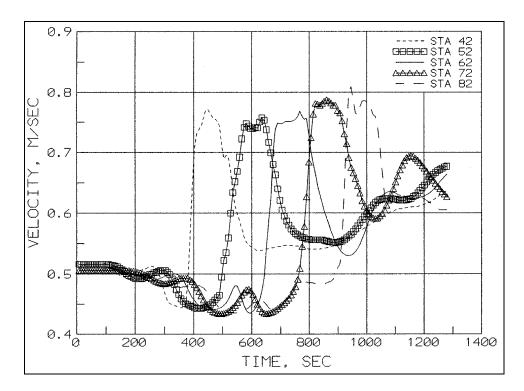


Figure 84. Variation of vessel effects along length of physical model, upbound tow, based on probe 6 of numerical model

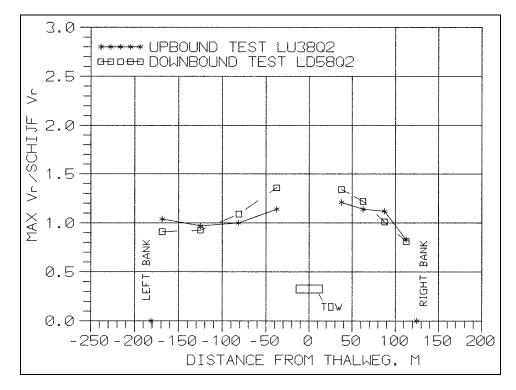


Figure 85. Dimensionless return velocity, experiments LU38Q2 and LD58Q2

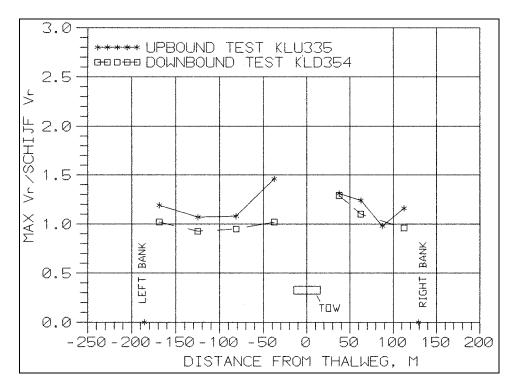


Figure 86. Dimensionless return velocity, experiments DKU335 and KLD354

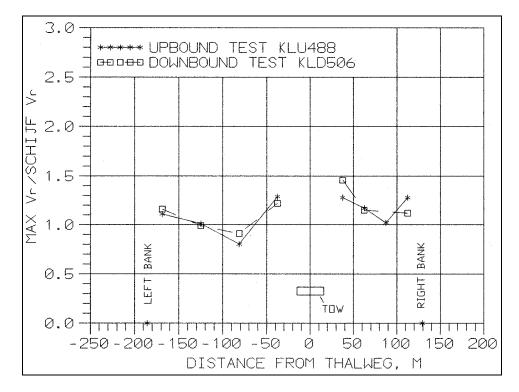


Figure 87. Dimensionless return velocity, experiments KLU488 and KLD506

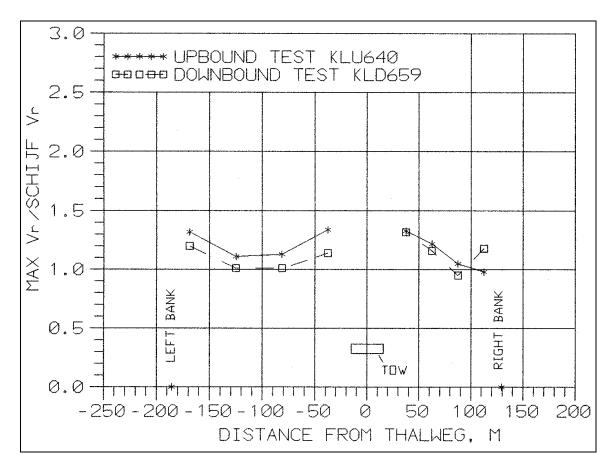


Figure 88. Dimensionless return velocity, experiments KLU640 and KLD659

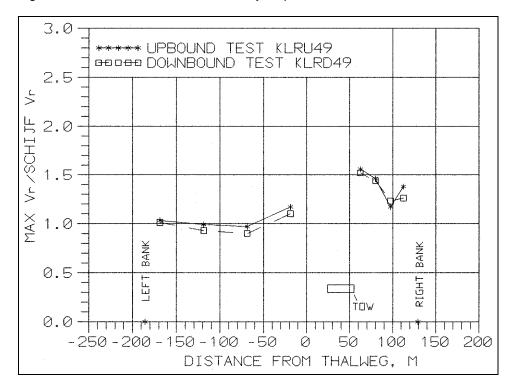


Figure 89. Dimensionless return velodity, experiments KLRU49 and KLRD49

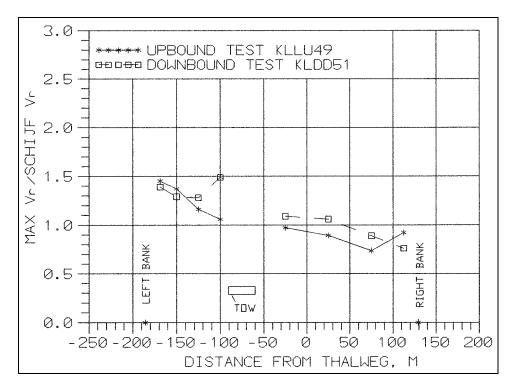


Figure 90. Dimensionless return velocity, experiments KLLU49 and KLDD51

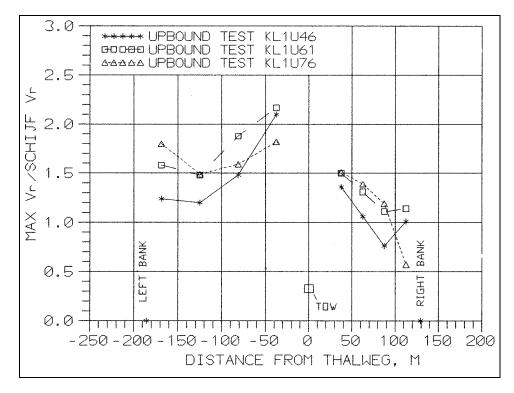


Figure 91. Dimensionless return velocity, experiments KL1U46, KL1U61, and KL1U76

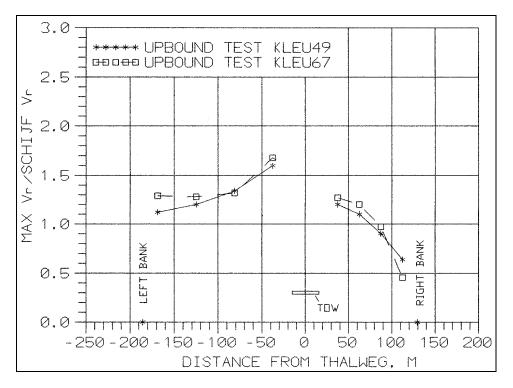


Figure 92. Dimensionless return velocity, experiments KLEU49 and KLEU67

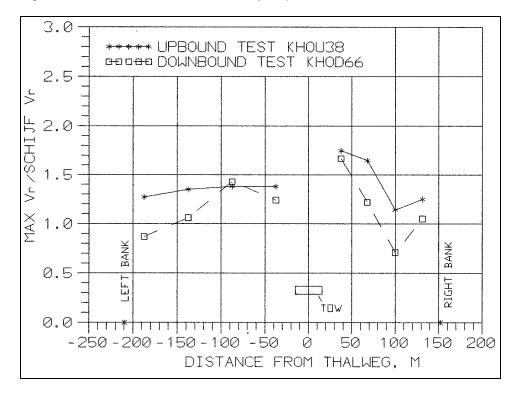


Figure 93. Dimensionless return velocity, experiments KHOU38 and KHOD66

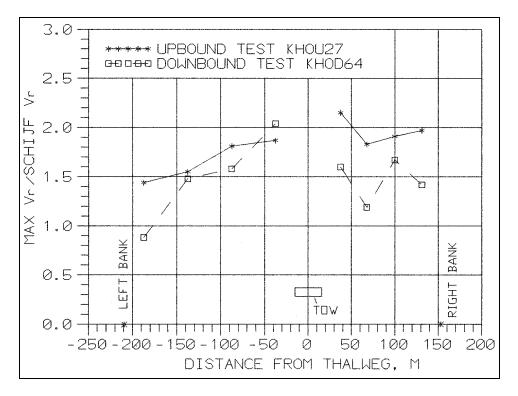


Figure 94. Dimensionless return velocity, experiments KHOU27 and KHOD64

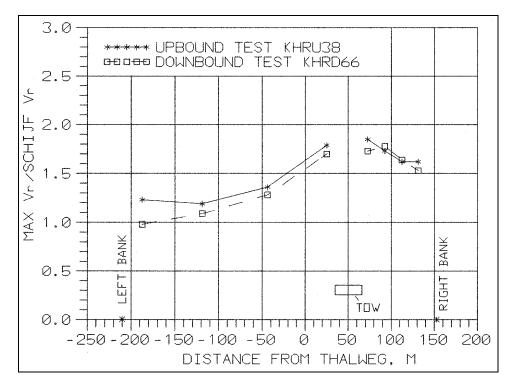


Figure 95. Dimensionless return velocity, experiments KHRU38 and KHRD66

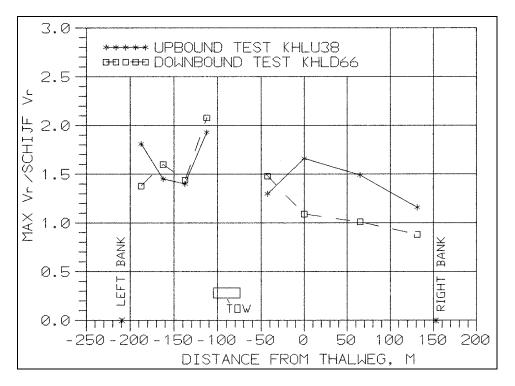


Figure 96. Dimensionless return velocity, experiments KHLU38 and KHLD66

Figure 97. Dimensionless return velocity, experiments KHOU53 and KHOD50

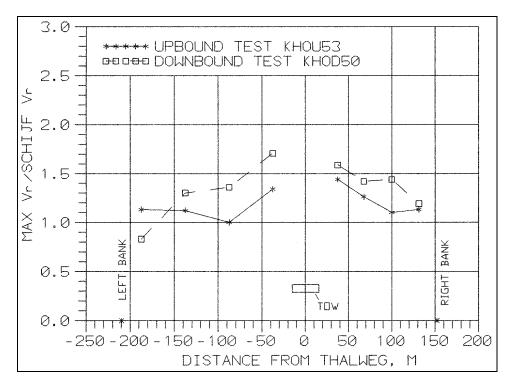


Figure 98. Dimensionless return velocity, experiments KHEU38 and KHEU56

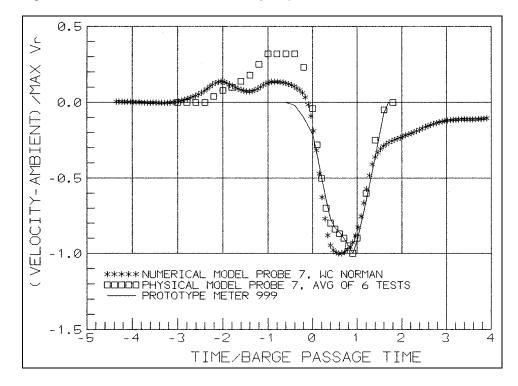


Figure 99. Dimensionless time-history of return velocity

Table 1Water Discharge, Average Velocity, Average Depth, andWater-Surface Elevation for the Kampsville Site

Date	Discharge cu m/sec	Average Channel Velocity m/sec	Average Flow Depth m	Water- Surface Elevation ¹
		Trip 1		
10/10/90	413	0.36	3.44	
10/11/90				420.7
10/12/90				421.2
10/13/90				421.8
10/14/90				421.9
10/15/90	772	0.58	3.64	422.0
10/16/90				422.1
10/17/90				422.2
10/18/90	817	0.61	3.91	
		Trip 2		
8/8/91	329	0.29	3.51	
8/12/91-8/15/91				420.0
¹ In feet referred to	the National Geodeti	c Vertical Datum.		

Table 2 Traffic (Table 2 Traffic Characteristics for Trip 1	s for Ti	1 1										
Date	Name of Vessel	đ	Screws	Kort	Length m	Width m	Number of Barges	Config- uration	Barge Type	Draft m	Speed m/sec	Distance from Center Line to Bank m	Direction Bound
10/11	Mallard	1650	2	ч	26.8	9.1	2	1x2	Chemical	0.61	3.83	122	Down
	Nicolas Duncan	1530	2	n	39.0	8.5	6	3x3	Grain	1.32	2.88	155	Down
	Bill Gee	2800	2	у	36.9	10.1	3	2x1+1	Coal	1.31	4.76	140	Down
10/12	Mr. Aldo	5600	2	у	44.2	14.6	14	2x1+3x4	Grain	2.74	2.78	130	Down
	Floyd H. Blaske	5000	2	у	51.8	12.2	12	3x4	Grain	1.63	2.18	115	Up
10/13	Marvin E. Norman	1800	2	u	31.1	10.4	16	3x5+1	Grain	0.61	1.69	115	Up
	Luke Burton	4200	2	у	43.9	10.7	3	1x3	Mixed	2.74	2.93	138	Up
	Sugarland	3375	2	u	42.1	12.8	12	3x4	Grain	2.29	1.88	170	Up
	William C. Norman	1800	2	n	33.5	10.4	12	3x4	Grain	2.74	2.90	138	Down
	Frank H. Peavey	3800	2	u	42.7	11.6	23	4x5+3	Grain	1.17	1.75	150	Up
	Conti Karla	3060	2	u	34.8	10.5	16	3x5+1	Grain	2.34	1.70	145	Up
	Margaret O.	5600	2	y	42.1	13.4	10	2x5	Grain	2.53	2.75	150	Up
10/14	Lydia E. Campbell	4200	2	у	43.9	10.7	3	1x3	Grain	2.74	3.24	180	Up
	Mr. Paul	5600	2	у	44.2	14.6	8	2x4	Chemical	1.68	2.76	155	Down
	Rambler	2000	2	u	27.4	9.1	12	3x4	Grain	2.74	2.48	138	Down
	Mr. Lawrence	5600	2	у	44.2	14.6	15	3x5	Grain	1.75	2.56	165	Up
	Mallard	1650	2	c	26.8	9.1	7	3x2+1	Mixed	2.13	2.68	175	Up
	Charles Lehman	5600	2	У	44.2	14.6	13	1+3x4	Coal	2.74	1.85	145	Up
	Nicolas Duncan	1530	2	c	39.0	8.5	б	3x3	Grain	2.74	1.52	130	Up
												J.	(Continued)

Table	Table 2 (Concluded)												
Date	Name of Vessel	đ	Screws	Kort	Length m	Width m	Number of Barges	Config- uration	Barge Type	Draft m	Speed m/sec	Distance from Center Line to Bank m	Direction Bound
10/14 (Cont)	Jeffboat	6000	2	y	44.2	14.6	15	3x5	Grain	2.74	1.84	115	Up
	Mary Ann	2250	2	L	30.5	9.1	15	3x5	Grain	0.61	1.90	105	Up
10/15	Ardyce Randall	5600	2	У	44.2	14.6	15	3x5	Grain	2.74	2.36	155	Down
	Mr. Paul	5600	2	У	44.2	14.6	15	3x5	Grain	1.61	2.25	130	Up
	Exxon St. Louis	3800	2	c	42.7	13.4	4	2x2	Petroleum	2.74	2.25	175	Up
	Margaret O.	5600	2	У	42.1	13.4	12	3x4	Cargo	2.03	3.83	130	Down
	Mr. Lawrence	5600	2	У	44.2	14.6	15	3x5	Cargo	2.74	3.16	115	Down
10/16	A.L. Smith	1800	2	c	:	:	8	2x4	Cargo	2.48	2.80	140	Down
	Ste. Genevieve	1600	2	c	23.2	7.9	12	3x4	Cargo	0.61	1.66	150	Up
10/17	Nicole Brent	1400	2	c	22.9	7.9	2	1x2	Chemical	2.74	2.86	150	Up
	Frank H. Peavey	3800	2	۲	42.7	11.6	5	1+2x2	Cargo	2.74	3.05	170	Down

Table 3 Traffic (Table 3 Traffic Characteristics for Trip 2	ics for]	Irip 2										
Date	Name of Vessel	역	Screws	Kort	Length m	Width m	Number of Barges	Config- uration	Barge Type	Draft m	Speed m/sec	Distance from Center Line to Bank m	Direction Bound
8/13	Ranger	850	2	У	21.3	9	5	2x2+11	Hopper & Chemical	2.74	1.90	230	Down
	Dixie Patriot	3200	2	ч	33.5	10.4	3	1x3	Hopper	2.74	2.48	175	Down
	Orleanian	4300	2	L	42.7	11.6	13	3x4+1	Hopper	1.92	2.02	160	Up
	Pat Breen	5600	2	y	44.2	14.6	15	3x5	Hopper	2.66	2.29	160	Down
	Dixie Express	1700	2	L	26.2	8	2	1x2	Asphalt	1.52	3.40	180	Down
	J Anne Stegbauer	3200	2	и	36.6	10.7	2	1x2	Chemical	2.74	4.11	150	Up
	Ste. Genevieve	200	2	u	12.2	4	11	2x3x3	Hopper	0.61	2.48	100	Up
	Bob White	3600	2	ч	40.5	10.5	9	3x3	Closed Hopper	2.74	1.37	285	Down
8/14	Night-14-01						11	2+3x3	Hopper	2.74	1.62	140	Up
	Night-14-02						6	3x3	Chemical	2.74	4.05	250	Down
	Irving Crown	2400	2	u	31.4	6	7	32x2	Hopper	2.74	1.59	220	Up
	Gordon Jones	4200	2	ч	44.8	11.7	15	3x5	Hopper	2.74		170	Down
	George W. Schamble	1800	2	c	26.1	6	2	2x1	(Unknown)	0.61	3.83	170	Down
	Katherine L.	1600	2	ч	31.1	8	2	1x2	Hopper	0.61	3.21	200	Down
	T. B. Morto	4200	2	ч	45.7	10.7	12	3x4	Hopper	1.52	2.18	200	Up
	Julie White	1700	2	c	26.8	11.6	12	3x2+2x3	Hopper	2.38	2.20	170	Up
	Ranger	850	2	У	21.3	6	1	1x1	Hopper	0.61	3.50	150	Up
	Illini	1600	2	۲	24.4	8	12	3x4	Hopper	0.78	2.18	210	Up
												J.	(Continued)

Table	Table 3 (Concluded)												
Date	Name of Vessel	dН	Screws	Kort	Length m	Width m	Number of Barges	Config- uration	Barge Type	Draft m	Speed m/sec	Distance from Center Line to Bank m	Direction Bound
8/14 (Cont)	Bronwynne Brent	5400	2	y	42.7	12.8	Q	2x3	Hopper	0.61	2.32	180	Down
	Sugarland	3375	3	ч	42.1	12.8	1	1×1	Hopper	0.61	2.67		Up
	Frank Stegbauer	3200	2	ч	39.6	10.7	1	1x1	Chemical	0.61	4.12		Down
8/15	Bill McCormick	3200	2	у	45.3	10.5	8	2x4	Hopper	2.21	2.07		Down
	Marvin E. Norman	1800	2	c	31.1	10.4	9	2x3	Unknown		1.75	190	Down
	Olmstead	5920	2	у	42.1	13.4	15	3x5	Coal	2.74	2.19	180	Up
	Jack D. Wofford	5000	2	У	51.8	12.2	15	3x5	Hopper	2.74	2.22	180	Up
	Dixie Express	1800	2	c	30.5	8	2	1x2	Asphalt	2.74	2.58	200	Up
	Hal D. Miller	2400	2	c	32.9	6	2	1x2	Work	2.74	2.33	190	Down
	Jesse Brent	4300	2	ч	36.6	12.2	2	2x1	Hopper	1.52	3.72	220	Down

Table 4 Schijf Return Velo	ocity and I	Drawdowi	n for Verific	ation Tows		
Tow		Speed through		Channel Top	Schijf	
(Width x Length)	Direction Bound	Water m/sec	Channel Area, sq m	Width m	Return Velocity, m/sec	Drawdown, m
Milliam C. Normon (2)(4)		2.40	1000	220	0.00	0.055

William C. Norman (3x4)	d	2.40	1269	330	0.22	0.055
Olmstead (3x5)	u	2.50	1091	319	0.29	0.078
Jack D. Wofford (3x5)	u	2.50	1091	319	0.29	0.078
Rambler (3x4)	d	1.93	1279	331	0.16	0.078
Charles Lehman (3x4)	u	2.40	1279	331	0.22	0.055
Mr. Lawrence (3x5)	u	3.1	1289	331	0.24	0.064

Table 5 Maximum Prototyp Tows	e Returr	n Velocit	y/Schijf A	Verage F	Return Vo	elocity fo	or Verifi	cation
				Ν	Neter			
Тоw	332	642	1000	999	998	1001	040	071
William C. Norman (3x4)	1.17	1.21	1.05	1.11	1.01	0.72	0.97	1.01
Olmstead (3x5)	1.17		0.23	1.22	0.70	1.04		
Jack D. Wofford (3x5)	1.26			1.18	0.74	1.12		
Rambler (3x4)	1.26	1.24	1.24	1.11	0.78	0.91	0.96	
Charles Lehman (3x4)	1.49	1.35	1.38	1.35	1.00	0.92	1.52	1.00
Mr. Lawrence (3x5)	1.33	1.40	0.78	1.42	1.34	0.94		

Table 6Relative Ambient Velocity Variation in Prototype

					Meter			
Тоw	332	642	1000	999	998	1001	040	071
William C. Norman	12 (0.54)	13 (0.45)	11 (0.42)	13 (0.35)	15 (0.29)	14 (0.20)	15 (0.45)	6 (0.45)
Rambler	10 (0.53)	13 (0.44)	10 (0.48)	12 (0.39)	15 (0.29)	12 (0.23)	11 (0.45)	
Note : (Maximur	m - Miniı		* Averag bient, m/s		t Velocity))*100		

Table 7Verification Data Using Geometrically Similar Froude Model, William C. Norman,Olmstead, and Jack D. Wofford

		Prototype	Prototype		Dra	wdown
Probe Number	Physical Model Return Velocity ¹ m/sec	Ambient Velocity, m/sec	Minimum Velocity, m/sec	Prototype Return Velocity ¹ m/sec	Physical Model Average	Prototype
		-	William C. Normar	1	1	
332	0.305	0.542	0.284	0.258	0.112	0.072
642	0.325	0.446	0.180	0.266		
998	-	0.293	0.071	0.222		
999	-	0.350	0.105	0.245		
1000	0.306	0.423	0.192	0.231		
1001	0.170	0.195	0.036	0.159		
040	0.307	0.452	0.238	0.214		
071	0.275	0.454	0.232	0.222		
			Olmstead		-	
332	0.462	0.166	0.506	0.340	0.159	0.072
642	0.439					
998	-	0.070	0.272	0.202		
999	0.441	0.126	0.479	0.353		
1000	-	0.019	0.085	0.066		
1001	0.393	0.053	0.356	0.303		
	_		Jack D. Wofford			
332	0.462	0.140	0.504	0.364	0.159	0.086
642	0.439	-	-	-		
998	-	0.063	0.277	0.214		
999	0.441	0.117	0.459	0.342		
1000	-	-	-	-		
1001-	0.393	0.038	0.364	0.326		
1 Ampliant	ninimum velocity.	1			1	1

								Return Ve	locity, m/sec
Probe	Physical	Model Velo	city, m/sec	, for Replica	ite		Prototype	Physical	Drototuro
Number	Α	в	с	D	Е	AVG	Velocity m/sec	Model	Prototype
				Ambi	ient Velocit	у			
332	0.453	0.442	0.459	0.426	0.474	0.451	0.542	0.263	0.258
642	0.467	0.437	0.416	0.434	0.417	0.434	0.446	0.237	0.266
998							0.293		0.222
999							0.350		0.245
1000	0.489	0.478	0.473	0.469	0.498	0.481	0.423	0.261	0.231
1001	0.097	0.115	0.137	0.171	0.162	0.136	0.195	0.178	0.159
040	0.450	0.450	0.487	0.502	0.476	0.473	0.452	0.244	0.214
071	0.458	0.459	0.471	0.472	0.460	0.464	0.452	0.203	0.222
				Minin	num Velocit	y			
332	0.213	0.145	0.176	0.172	0.236	0.188	0.284		
642	0.188	0.210	0.189	0.203	0.194	0.197	0.180		
998							0.071		
999							0.105		
1000	0.236	0.213	0.206	0.196	0.249	0.220	0.192		
1001	-0.043	-0.019	-0.056	-0.059	-0.033	-0.042	0.036		
040	0.249	0.223	0.199	0.223	0.252	0.229	0.238		
071	0.251	0.251	0.272	0.269	0.318	0.261	0.232		
	<u> </u>	<u>.</u>	Physic	al Model Dr	awdown, m	, for Replic	ate	<u> </u>	<u> </u>
	Α	в	с	D	E	AVG		Prototype D)rawdown, m
	0.066	0.067	0.066	0.070	0.063	0.067		0.072	

	Physical B 0.198 0.185 0.185									Prototype Return Velocity.
	Physical B 0.198 0.193 0.185						m/sec	m/sec	m/sec ¹	
<u> </u>	B 0.198 0.193 0.185	Physical Model Velocity, m/sec, for Replicate	ty, m/sec, for	Replicate		Physical				
	0.198 0.193 0.185	J	٩	Е	AVG	Model Return Velocity m/sec ¹	Olmstead	Jack D. Wofford	Olmstead	Jack D. Wofford
	0.198 0.193 0.185			Ambie	Ambient Velocity, m/sec	Vsec				
	0.193	0.221	0.246	0.238	0.224	0.327	0.166	0.140	0.340	0.364
	0.185	0.198	0.247	0.214	0.214	0.320		I		·
-	0.185					-	0.070	0.063	0.202	0.214
999 0.187		0.190	0.185	0.187	0.187	0.328	0.126	0.117	0.353	0.342
1000						-	0.019	-	0.066	
1001 0.071	0.062	0.064	0.059	0.074	0.066	0.205	0.053	0.038	0.303	0.326
				Maxim	Maximum Velocity, m/sec	n/sec				
332 0.554	0.523	0.529	0.570	0.578	0.551		0.506	0.504		
642 0.542	0.488	0.513	0.566	0.561	0.534			-		
998							0.272	0.277		
999 0.523	0.484	0.504	0.541	0.518	0.514		0.479	0.459		
1000							0.085	ı		
1001 0.284	0.265	0.241	0.404	0.295	0.271		0.356	0.364		
				D	Drawdown², m					
0.128		0.124	0.129	0.127						

								Return Ve	elocity, m/sec
	Physical	Model Velo	city, m/sec	, for Replica	ite		Prototype		
Probe Number	А	в	с	D	Е	AVG	Velocity m/sec	Physical Model	Prototype
				Amb	ient Velocit	y	-		
332	0.452	0.428	0.445	0.423	0.426	0.438	0.529	0.208	0.201
642	0.436	0.434	0.440	0.435	0.435	0.435	0.436	0.213	0.199
998							0.290	-	0.124
999							0.388	-	0.178
1000	0.470	0.476	0.469	0.478	0.500	0.473	0.480	0.203	0.198
1001	0.081	0.068	0.077	0.075	0.070	0.074	0.227	0.087	0.146
040	0.454	0.471	0.465	0.471	0.471	0.470	0.451	0.192	0.154
071	0.479	0.462	0.479	0.467	0.454	0.468	-	0.150	-
Minimum V	elocity								
332	0.231	0.211	0.259	0.237	0.214	0.230	0.328		
642	0.235	0.245	0.203	0.219	0.206	0.222	0.237		
998							0.166		
999							0.210		
1000	0.287	0.262	0.301	0.270	0.228	0.270	0.282		
1001	-0.006	-0.011	-0.009	-0.018	-0.020	-0.013	0.081		
040	0.275	0.308	0.287	0.276	0.244	0.278	0.297		
071	0.285	0.308	0.321	0.338	0.340	0.318	-		
			Physic	al Model Dr	awdown, m	, for Replic	ate		
	Α	В	С	D	E	AVG		Prototype [Drawdown, m
	0.049	0.051	0.045	0.047	0.048	0.048		0.045	

								Return Ve	elocity, m/sec
Probe	Physical	Model Velo	city, m/sec	, for Replica	ite		Prototype	Physical	
Number	Α	в	с	D	Е	AVG	Velocity m/sec	Model	Prototype
				Amb	ient Velocit	у			
332	0.513	0.467	0.443	0.468	0.456	0.459	0.534	0.296	0.328
642	0.406	0.452	0.438	0.406	0.397	0.420	0.443	0.351	0.298
998							0.304	-	0.221
999							0.394	-	0.297
1000	0.461	0.469	0.473	0.461	0.416 ¹	0.466	0.485	0.304	0.304
1001	0.120	0.137	0.100	0.120	0.109	0.117	0.215	0.167	0.203
040	0.475	0.489	0.477	0.475	0.465	0.476	0.436	0.258	0.335
071	0.469	0.482	0.503	0.437	0.463	0.471	0.467	0.224	0.219
				Maxir	num Veloci	ty			
332	0.718	0.740	0.772	0.280	0.762	0.754	0.862		
642	0.759	0.724	0.768	0.280	0.777	0.771	0.741		
998							0.525		
999							0.691		
1000	0.780	0.767	0.766	0.723	0.812	0.770	0.789		
1001	0.403	0.297	0.269	0.227	0.225	0.284	0.418		
040	0.727	0.742	0.741	0.705	0.755	0.734	0.771		
071	0.686	0.714	0.692	0.681	0.702	0.695	0.686		
		<u>.</u>	Physic	al Model Dr	awdown, m	, for Replic	ate	·	<u> </u>
	Α	В	с	D	E	AVG		Prototype [Drawdown, m
	-	0.057	0.058	0.061	0.061	0.059		0.070	

								Return Ve	elocity, m/sec
Probe	Physical	Model Velo	city, m/sec,	for Replica	ite		Prototype	Physical	_
Number	А	в	с	D	Е	AVG	Velocity m/sec	Model	Prototype
				Ambi	ient Velocit	y			
332	0.461	0.428	0.447	0.474	0.436	0.449	0.529	0.341	0.320
642	0.441	0.411	0.434	0.473	0.434	0.439	0.481	0.352	0.337
998							0.371	-	0.322
999							0.432	-	0.341
1000	0.496	0.417	0.483	0.501	0.463	0.472	0.378	0.344	0.186
1001	0.134	0.134	0.191	0.187	0.206	0.171	0.225	0.276	0.225
040	0.489	0.513	0.512	0.485	0.510	0.501	-	0.279	-
071	0.500	0.481	0.508	0.481	0.483	0.491	-	0.271	-
				Minim	num Velocit	у			
332	0.136	0.099	0.095	0.156	0.053	0.108	0.209		
642	0.098	0.089	0.072	0.097	0.078	0.087	0.144		
998							0.049		
999							0.091		
1000	0.151	0.124	0.132	0.146	0.090	0.128	0.192		
1001	-0.105	-0.105	-0.140 ¹	-0.110	-0.103	-0.106	0.000		
040	0.229	0.251	0.228	0.197	0.207	0.222	-		
071	0.243	0.202	0.208	0.194	0.254	0.220	-		
			Physic	al Model Dr	awdown, m	, for Replic	ate		
	А	в	С	D	E	AVG		Prototype D	Drawdown, m
	-	0.133	0.129	0.125	0.125	0.128		0.183 ¹	

Table 13 Draft Correction Computations	Computatio	suc										
				Kinemati	Kinematic Viscosity							
	Lenath.	Temperatur	ature, EC			Speed Through	Return					D_c
Tow	Prototype m	Model	Prototype	Model 10 [°] m²/sec	Prototype 10 [*] m²/sec	Water m/sec	Velocity m/sec	ے م	d_{lm}	d_p	$d_{im} - d_{ip}$	$d_{Im} - d_{Ip}$
William C. Norman	237.8	24	16	0.92	1.12	2.40	0.22	0.46	0.51	0.26	0.25	1.84
Olmstead	297.3	25	22.2	0.90	0.96	2.50	0.29	0.46	0.60	0.31	0.29	1.59
Jack D. Wofford	297.3	25	22.2	0.90	0.96	2.50	0.29	0.46	0.60	0.31	0.29	1.59
Rambler	237.8	26	15.5	0.89	1.13	1.93	0.16	0.46	0.52	0.27	0.25	1.84
Charles Lehman	237.8	24	16	0.92	1.12	2.40	0.22	0.46	0.51	0.26	0.25	1.84
Mr. Lawrence	297.3	24	16	0.92	1.12	2.56	0.24	0.46	0.60	0.31	0.29	1.59
$d_m = model displacement thickness *25.0 d_p = prototype displacement thickness$	it thickness *25.(nent thickness	C										

Table 14

Luke Burton Kampsville Trip 1, Pool El 422.0, LB1U59, Experiments Run November 23, 1994

		Γ	Re	plicate			Return Velocity
Meter	Α	В	С	D	E	AVG	m/sec
S4/071	0.4805	0.4817	0.4774	0.4959	0.4924	0.4856	
S4/040	0.4605	0.4969	0.4893	0.4880	0.4766	0.4823	
MMB527/332	0.4724	0.4553	0.5005	0.4688	0.4603	0.4715	
MMB527/642	0.4021	0.4580	0.4754	0.4463	0.4401	0.4444	
MMB511/999	0.4257	0.4235	0.4263	0.4302	0.4262	0.4264	
MMB511/1001	0.1547	0.1458	0.1765	0.1755	0.1641	0.1633	
			Impact Vel	ocity, m/sec			
S4/071	0.6177	0.5737	0.6496	0.6386	0.6097	0.6179	0.1323
S4/040	0.5814	0.3876	0.6352	0.6675	0.6240	0.5791	0.0968
MMB527/332	0.6321	0.6128	0.6132	0.6543	0.6269	0.6279	0.1564
MMB527/642	0.6149	0.5774	0.5124	0.5710	0.5738	0.5699	0.1255
MMB511/999	0.5630	0.5542	0.5756	0.5766	0.5706	0.5680	0.1416
MMB511/1001	0.3126	0.2166	0.3134	0.2946	0.2675	0.2809	0.1176
			Drawdo	own, cm			
Distance							
from Thalweg m	Α	В	с	D	E	AVG	
112 Right	5.028	5.037	4.854	5.486	5.375	5.156	
170 Left	4.896	4.976	4.864	5.055	4.721	4.94775	

Table 15 *Dixie Express*, Kampsville Trip 2, Pool El 420.0, DEU516, Experiments Run December 2, 1994

			_				
			Re	plicate			Return Velocity
Meter	Α	В	С	D	E	AVG	m/sec
			Ambient Ve	locity, m/sec			
MMB527/332	0.2755	0.2656	0.2701	0.2795	0.2639	0.2709	
MMB527/642	0.2678	0.2724	0.2834	0.2558	0.2660	0.2691	
MMB511/999		0.1747	0.2084	0.2096	0.2072	0.2000	
MMB511/1001	0.0857	0.0648	0.0857	0.1063	0.1065	0.0898	
			Impact Velo	ocity, m/sec			
MMB527/332	0.4037	0.3779	0.3815	0.3746	0.3929	0.3861	0.1152
MMB527/642	0.3650	0.3646	0.3813	0.3815	0.3892	0.3763	0.1072
MMB511/999		0.3165	0.3368	0.3384	0.3262	0.3295	0.1295
MMB511/1001	0.1430	0.1354	0.1430	0.1595	0.1733	0.1508	0.06
			Drawdo	own, cm			
Distance from Thalweg							
m	А	В	С	D	E	AVG	
112 Right	2.263	2.495	2.341	2.452	2.43	2.3962	
170 Left	5.526	5.587	4.696	5.339	5.33	5.287	

Table 16 Kampsvi	lle Po	ol El 41	8.0 Exper	iment C	onditions				
Experiment No.	Up or Down	Tow Speed ¹ m/sec	Position ²	Temp •C	Actual Draft m	Effective Draft m ³	Barge W X L	Propeller Thrust 1,000 lb	Schijf Velocity cm/sec⁴
LU38Q2	U	1.90	126.5	15.0	2.29	2.73	3X4	79	41.2
LD58Q2	D	2.90	126.5	15.0	2.29	2.75	3X4	79	31.0

Note: Water-surface width 306.2 m, area 900.0 sq m, discharge 625 cu m/sec; water-surface el 418.0, average ambient velocity 69.4 cm/sec, Schijf limit speed 3.36 m/sec for 2.74-m draft.

¹ Relative to ground.

² Meters from right bank.

³ Actual draft + draft correction.

⁴ Schijf equation using effective draft and vessel speed relative to water.

			Re	plicate			Return
Probe	А	В	с	D	E	AVG	Velocity m/sec
			Ambient V	/elocity, m/sec			
1	0.3840	0.3646	0.3687	0.3752	0.3514	0.3688	
2	0.6783	0.6894	0.6985	0.7097	0.6937	0.6939	
3	0.7110	0.6959	0.7066	0.7042	0.6678	0.6971	
4	0.7796	0.7883	0.7780	0.7930	0.7718	0.7821	
5	0.7357	0.7417	0.7208	0.7435	0.7424	0.7368	
6	0.7440	0.6934	0.7365	0.7679	0.7178	0.7319	
7	0.6725	0.6783	0.6793	0.6690	0.6660	0.6730	
8			0.2802	0.2759	0.2500	0.2687	
			Impact V	elocity, m/sec			
1	0.7731	0.7884	0.8045	0.8223	0.7885	0.7954	0.4266
2	1.0951	1.0995	1.1003	1.0641	1.1309	1.0980	0.4041
3	1.1012	1.1404	1.1420	1.0994	1.0627	1.1091	0.4120
4	1.2941	1.2844	1.2285	1.2792	1.1946	1.2562	0.4741
5	1.2476	1.2376	1.2361	1.2365	1.2277	1.2371	0.5003
6	1.1630	1.1920	1.2190	1.1701	1.2426	1.1973	0.4654
7	1.1289	1.1395	1.1443	1.0993	1.1458	1.1316	0.4586
8			0.6227	0.6291	0.5623	0.6047	0.3360
			Draw	down, cm			
Distance							
from Thalweg, m	Α	В	с	D	E	AVG	
70 right	14.002	14.325	14.112	14.093	14.000	14.1064	
100 left	11.754	12.367	12.558	12.482	12.293	12.2908	

Table 18 Experim		2, Pool El	418.0, Rur	n Novembe	er 22, 1994		
	Replicate						Return
Probe	А	В	с	D	Е	AVG	Velocity m/sec
			Ambient V	/elocity, m/sec			
1	0.3806	0.3708	0.3682	0.3716	0.3748	0.3732	
2	0.6901	0.6982	0.6909	0.6902	0.6990	0.6937	
3	0.7268	0.7204	0.6688	0.7027	0.7022	0.7042	
4	0.7689	0.7932	0.7710	0.7713	0.7863	0.7781	
5	0.7377	0.7402	0.7554	0.7543	0.7454	0.7466	
6	0.7408	0.7179	0.7476	0.7426	0.7218	0.7341	
7	0.6799	0.6761	0.6585	0.6711	0.6503	0.6672	
8	0.3059	0.3266	0.3007	0.2769	0.2673	0.2955	
			Impact Ve	elocity, m/sec		- 1	
1	0.1212	0.0470	0.0992	0.1190	0.0768	0.0926	0.2806
2	0.3919	0.4317	0.4090	0.4096	0.3900	0.4064	0.2873
3	0.3468	0.4331	0.3493	0.3414	0.3621	0.3665	0.3377
4	0.3816	0.3624	0.3727	0.2958	0.3753	0.3576	0.4205
5	0.3502	0.3150	0.3528	0.3475	0.3001	0.3331	0.4135
6	0.3225	0.3618	0.3998	0.3772	0.3197	0.3562	0.3779
7	0.3794	0.3941	0.3626	0.3296	0.3109	0.3553	0.3119
8	0.0453	0.0623	0.0228	0.0588	0.0305	0.0439	0.2516
	·		Draw	down, cm			
Distance from Thalweg m	A	в	c	D	E	AVG	
70 right	8.3680	8.7730	9.1100	9.1320	9.3670	8.95	
100 left	7.0560	7.5160	7.3350	7.3720	7.5580	7.3674	

Table 19 Kampsvi	lle Po	ol 419.4	Experim	ent Con	ditions				
Experiment No.	Up or Down	Tow Speed ¹ m/sec	Position ²	Temp ℃	Actual Draft m	Effective Draft m ³	Barge W X L	Prop Thrust 1,000 lb	Schijf Velocity cm/sec⁴
KLU335	U	1.67	129	20.0	2.29	2.85	3X5	42	20.7
KLU488	U	2.43	129	20.5	2.29	2.81	3X5	79	34.5
KLU640	U	3.18	129	21.5	2.29	2.78	3X5	105	63.0
KLD354	D	1.79	129	23.5	2.29	2.86	3X5	42	17.5
KLD506	D	2.50	129	23.5	2.29	2.82	3X5	79	28.5
KLD659	D	3.32	129	21.0	2.29	2.79	3X5	105	51.7
KLRU49	U	2.43	89	20.0	2.29	2.81	3X5	79	34.5
KLRD49	D	2.43	89	20.0	2.29	2.83	3X5	79	27.3
KLLU49	U	2.45	204	17.0	2.29	2.82	3X5	79	35.1
KLLD51	D	2.52	204	17.5	2.29	2.83	3X5	79	29.0
KL1U46	U	2.28	129	17.0	2.29	2.65	1X3	79	8.7
KL1U61	U	3.03	129	17.2	2.29	2.63	1X3	79	13.8
KL1U76	U	3.81	129	19.3	2.29	2.61	1X3	79	24.9
KLEU49	U	2.43	129	19.5	0.61	1.14	3X5	79	12.5
KLEU67	U	3.34	129	19.1	0.61	1.14	3X5	105	22.2

I

Note: Water-surface width 315 m, area 1,032.5 sq m, discharge 180 cu m/sec, water-surface elevation 419.4, average ambient velocity 17.5 cm/sec.

¹ Relative to ground.
 ² Meters distance from right bank.
 ³ Actual draft + draft correction.

Schijf equation using effective draft and vessel speed relative to water.

Table 20 Kampsv		El 419.4, Kl	LU335, Rur	Septemb	er 27, 1994		
			Re	plicate			Return
Probe	А	В	с	D	E	AVG	Velocity m/sec
			Ambient V	elocity, m/sec	:		
1	0.1073	0.1393	0.1244	0.1153	0.1236	0.1220	
2	0.1852	0.1862	0.1880	0.1809	0.1980	0.1877	
3	0.2036	0.1782	0.1994	0.1825	0.1952	0.1918	
4	0.1784	0.1801	0.1703	0.1826	0.1699	0.1763	
5	0.2021	0.1907	0.1925	0.1968	0.1951	0.1954	
6	0.1816	0.2048	0.1795	0.1869	0.2001	0.1906	
7	0.1728	0.1749	0.1735	0.1534	0.1951	0.1739	
8	0.0309	0.0651	0.0691	0.0287	0.0828	0.0553	
		- 1	Impact Ve	locity, m/sec		- 1	
1	0.3766	0.3873	0.3310	0.3810	0.3425	0.3637	0.2417
2	0.3950	0.3865	0.4118	0.4193	0.4158	0.4057	0.2180
3	0.4070	0.3865	0.4133	0.3781	0.4293	0.4028	0.2110
4	0.4839	0.4840	0.4713	0.4303	0.4941	0.4727	0.2964
5	0.4844	0.4675	0.4826	0.4696	0.4681	0.4744	0.2790
6	0.4576	0.4497	0.4546	0.4339	0.4494	0.4490	0.2584
7	0.3850	0.3812	0.3766	0.3542	0.3720	0.3738	0.1999
8	0.3040	0.3445	0.2370	0.4025	0.2042	0.2984	0.2431
		- 1	Drawo	down, cm		- 1	
Distance from Thalweg m	А	в	с	D	E	AVG	
70 right	6.798	6.963	6.416	6.283		6.615	
100 left	6.898	7.056	6.742	6.742		6.8595	

Table 21 Kampsv		El 419.4, Kl	-U488, Run	Septembe	r 28, 1994		
	Replicate						Return
Probe	Α	В	С	D	E	AVG	Velocity m/sec
			Ambient Ve	elocity, m/sec			
1	0.0925	0.1040	0.1252	0.1269	0.1321	0.1161	
2	0.1803	0.1773	0.1956	0.1807	0.1844	0.1837	
3	0.2049	0.2061	0.2024	0.2387	0.2097	0.2124	
4	0.1744	0.1872	0.1977	0.1660	0.2029	0.1856	
5	0.1925	0.2185	0.1922	0.1940	0.1766	0.1948	
6	0.1852	0.2008	0.1928	0.1905	0.1859	0.1910	
7	0.1697	0.1604	0.1635	0.1635	0.1582	0.1631	
8	0.0955	0.0538	0.0717	0.0292	0.1026	0.0706	
	_		Impact Ve	locity, m/sec		•	
1	0.5057	0.4372	0.5148	0.4876	0.5452	0.4981	0.3820
2	0.5370	0.5195	0.5329	0.5215	0.5309	0.5284	0.3447
3	0.5033	0.4697	0.4774	0.4552	0.5241	0.4859	0.2735
4	0.4951	0.6222	0.6353	0.6363	0.6387	0.6055	0.4199
5	0.6136	0.6607	0.6318	0.6496	0.6269	0.6365	0.4417
6	0.5785	0.5854	0.5962	0.5928	0.6116	0.5929	0.4019
7	0.5074	0.4808	0.5169	0.5169	0.5185	0.5081	0.3450
8	0.5277	0.5045	0.5082	0.3359	0.5658	0.4884	0.4178
		•	Drawd	own, cm	•	•	
Distance from Thalweg m	A	в	с	D	E	AVG	
70 right	12.33	12.543	12.69	12.531	12.618	12.5424	
100 left	13.364	13.126	13.384	13.155	13.269	13.2573	

Table 22 Kampsv		El 419.4, Kl	-U640, Run	October 3	8, 1994		
Probe	Replicate						
	Α	в	с	D	E	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.1320	0.1410	0.1123	0.1310	0.1241	0.1281	
2	0.1786	0.1819	0.2130	0.1843	0.1817	0.1879	
3	0.1966	0.1957	0.1960	0.1977	0.2093	0.1991	
4	0.2023	0.1631	0.1726	0.1107	0.1973	0.1692	
5	0.1968	0.1868	0.1817	0.2013	0.2081	0.1949	
6	0.1996	0.1755	0.1896	0.1995	0.2028	0.1934	
7	0.1629	0.1435	0.1710	0.1628	0.1745	0.1629	
8	0.0248	0.0797	0.0600	0.1268	0.1007	0.0784	
			Impact Ve	locity, m/sec			
1	0.9534	0.9706	0.9518	0.9718	0.9383	0.9572	0.8291
2	0.8943	0.8816	0.8857	0.8795	0.8635	0.8809	0.6930
3	0.9400	0.7565	0.9226	0.9185	0.8910	0.8857	0.6866
4	1.1730	0.9391	1.0330	1.0279	1.0106	1.0367	0.8675
5	1.0550	1.0252	1.0240	1.0324	1.0329	1.0339	0.8390
6	0.9925	0.9259	0.9184	0.9800	0.9967	0.9627	0.7693
7	0.8449	0.7404	0.7962	0.8609	0.8475	0.8180	0.6551
8	0.4172	0.5655	0.6542	0.9097	0.8897	0.6873	0.6089
	•		Drawo	lown, cm	а	•	•
Distance from Thalweg m	A	в	с	D	E	AVG	
70 right	29.691	29.461	29.30	30.135	30.038	29.275	
100 left	30.181	30.681	30.146	30.255	30.243	30.3158	

Table 23 Kampsv		El 419.4, Kl	-D354, Run	Septembe	r 16, 1994		
Probe	Replicate						
	Α	в	с	D	Е	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.1116	0.1239	0.1311	0.1443	0.1173	0.1256	
2	0.1572	0.1614	0.2185	0.2465	0.1563	0.1880	
3	0.2276	0.1746	0.2000	0.1441	0.1925	0.1878	
4	0.1975	0.2032	0.1768	0.1626	0.1900	0.1860	
5	0.2252	0.2069	0.1793	0.2384	0.2087	0.2117	
6	0.2170	0.2000	0.1865	0.2197	0.1954	0.2037	
7							
8	0.0887	0.0548	0.1053	0.0937	0.1000	0.0885	
			Impact Ve	locity, m/sec	I		
1	-0.0542	-0.0554	-0.0558	-0.0669	-0.0417	-0.0548	0.1804
2	-0.0327	0.0128	0.0245	0.0160	0.0219	0.0085	0.1795
3	0.0102	0.0011	0.0437	0.0211	0.0388	0.0230	0.1648
4	0.0214	-0.0384	0.0173	-0.0073	0.0162	0.0018	0.1842
5	-0.0103	-0.0273	-0.0056	-0.0057	-0.0200	-0.0138	0.1979
6	0.0285	0.0132	-0.0116	-0.0096	0.0339	0.0109	0.2198
7							
8	-0.1049	-0.0580	-0.0515	-0.0808	-0.0840	-0.0758	0.1643
	1		Drawo	lown, cm	<u>. </u>	ı	
Distance from Thalweg m	A	в	c	D	E	AVG	
70 right	5.0890	4.3990	4.5620	4.5750	4.0070	4.5264	
100 left	4.8750	4.4410	4.4210	4.3210	4.0170	4.5145	

Table 24 Kampsv		El 419.4, KL	.D506, Run	Septembe	r 26, 1994		
	Replicate						
Probe	Α	В	с	D	E	AVG	Velocity m/sec
		_	Ambient Ve	elocity, m/sec	_		
1	0.0953	0.1328	0.1319	0.1021	0.1116	0.1147	
2	0.1686	0.1865	0.1814	0.1671	0.1872	0.1782	
3	0.2261	0.2536	0.2024	0.1876	0.2317	0.2203	
4	0.2066	0.2092	0.2375	0.1962	0.2391	0.2177	
5	0.2052	0.1543	0.1479	0.2129	0.0524	0.1545	
6	0.2026	0.1794	0.1431	0.1875	0.1714	0.1768	
7							
8	0.0964		0.1190	0.0923	0.0983	0.1015	
			Impact Ve	locity, m/sec			
1	-0.2141	-0.1971	-0.2128	-0.2150	-0.2163	-0.2111	0.3258
2	-0.1070	-0.0981	-0.1073	-0.1008	-0.0929	-0.1012	0.2794
3	-0.0440	-0.0473	-0.0234	-0.0629	-0.0202	-0.0396	0.2599
4	-0.1481	-0.1422	-0.1278	-0.1208	-0.1004	-0.1279	0.3456
5	-0.1900	-0.1710	-0.2012	-0.1802	-0.1054	-0.1696	0.3241
6	-0.1300	-0.1353	-0.1800	-0.1631	-0.1506	-0.1518	0.3286
7							
8	-0.2250		-0.2307	-0.2078	-0.2204	-0.2210	0.3225
	_		Drawd	own, cm			1
Distance from Thalweg m	A	В	с	D	E	AVG	
70 right	11.486	11.743	11.600	11.562	12.484	11.775	
100 left	12.455	12.668	12.167	12.094	12.775	12.346	

Table 25 Kampsv		il 419.4, KL	.D659, Run	October 4,	, 1994		
Probe	Replicate						
	А	в	с	D	E	AVG	Velocity m/sec
			Ambient Ve	elocity, m/sec			
1	0.11	0.13	0.12	0.12	0.13	0.1227	
2	0.18	0.19	0.20	0.15	0.21	0.1871	
3	0.20	0.19	0.21	0.22	0.22	0.2069	
4	0.15	0.21	0.18	0.19	0.21	0.1890	
5	0.21	0.20	0.16	0.21	0.16	0.1887	
6	0.19	0.20	0.17	0.21	0.14	0.1817	
7	0.15	0.14	0.18	0.15	0.14	0.1508	
8	0.12	0.15	0.16	0.12	0.15	0.1417	
	-	_	Impact Ve	ocity, m/sec		1	
1	-0.5229	-0.5101	-0.4681	-0.4801	-0.5029	-0.4968	0.6195
2	-0.3218	-0.3610	-0.3013	-0.3648	-0.3022	-0.3302	0.5173
3	-0.3225	-0.0332	-0.2782	-0.2602	-0.3405	-0.2469	0.4538
4	-0.4234	-0.3035	-0.3960	-0.3821	-0.4374	-0.3885	0.5775
5	-0.5010	-0.4905	-0.4870	-0.4499	-0.4908	-0.4838	0.6725
6	-0.4372	-0.4212	-0.4046	-0.3908	-0.4186	-0.4145	0.5962
7	-0.3704	-0.3474	-0.3405	-0.3357	-0.3216	-0.3431	0.4939
8	-0.4573	-0.5004	-0.4434	-0.4675	-0.4816	-0.4700	0.6117
	•	• 	Drawd	own, cm	•		•
Distance from Thalweg m	A	в	с	D	E	AVG	
70 right	21.005	20.672	20.692	20.769	20.500	20.7276	
100 left	23.091	22.341	22.307	22.095	22.390	22.4585	

Table 26 Kampsv		El 419.4, KL	.RU49, Run	October 6	, 1994		
- .	Replicate						
Probe	Α	в	с	D	E	AVG	Velocity m/sec
			Ambient Ve	locity, m/sec			
1	0.10	0.12	0.11	0.13	0.14	0.1181	
2	0.20	0.18	0.20	0.17	0.22	0.1937	
3	0.21	0.23	0.24	0.20	0.19	0.2131	
4	0.19	0.19	0.22	0.17	0.08	0.1700	
5	0.20	0.21	0.15	0.20	0.19	0.1883	
6	0.15	0.19	0.18	0.18	0.17	0.1742	
7	0.16	0.17	0.19	0.16	0.13	0.1628	
8	0.08	0.13	0.15	0.13	0.08	0.1139	
	-1	_1	Impact Vel	ocity, m/sec		•	
1	0.4618	0.4740	0.4591	0.5036	0.4835	0.4764	0.3583
2	0.5082	0.3610	0.2770	0.5324	0.5551	0.4467	0.2530
3	0.5680	0.3060	0.3690	0.5616	0.5417	0.4693	0.2562
4	0.5803	0.1500	0.9470	0.5852	0.5436	0.5612	0.3912
5	0.7130	0.6838	0.7531	0.7545	0.7260	0.7261	0.5378
6	0.6771	0.6430	0.6958	0.7070	0.6650	0.6776	0.5034
7	0.5625	0.5495	0.5683	0.6000	0.5703	0.5701	0.4073
8	0.4848	0.6048	0.6353	0.6825	0.5318	0.5878	0.4739
			Drawd	own, cm			
Distance from Thalweg m	A	в	с	D	E	AVG	
70 right	16.509	16.339	17.047	17.257	16.900	16.8104	
106 left	19.624	17.026	18.112	18.296	17.950	18.2645	

Table 27 Kampsv		El 419.4, Kl	_RD49, Rur	n October 7	7, 1994		
	Replicate						
Probe	А	в	с	D	Е	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.1100	0.0959	0.1252	0.1308	0.1274	0.1179	
2	0.2240	0.2191	0.1689	0.1948	0.1988	0.2011	
3	0.1850	0.2092	0.2093	0.2355	0.2119	0.2102	
4	0.2126	0.2211	0.1089	0.1921	0.1799	0.1829	
5	0.1948	0.1576	0.1905	0.1779	0.1610	0.1764	
6	0.2016	0.1453	0.1842	0.1630	0.1759	0.1740	
7	0.1456	0.1466	0.1547	0.1361	0.1730	0.1512	
8	0.0957	0.0640	0.1138	0.1207	0.1143	0.1017	
	-1		Impact Ve	locity, m/sec	_	_1	
1	-0.1306	-0.1764	-0.1989	-0.1573	-0.1220	-0.1570	0.2749
2	-0.0435	-0.0359	-0.1168	-0.0437	-0.0659	-0.0612	0.2623
3	-0.0749	-0.0123	-0.0265	-0.0255	-0.0541	-0.0387	0.2489
4	-0.0765	-0.0948	-0.2651	-0.1104	-0.1066	-0.1307	0.3136
5	-0.1713	-0.2835	-0.2472	-0.2431	-0.2280	-0.2346	0.4110
6	-0.1413	-0.2068	-0.2308	-0.2244	-0.2257	-0.2058	0.3798
7	-0.1227	-0.1975	-0.2093	-0.1884	-0.1771	-0.1790	0.3302
8	-0.1454	-0.2093	-0.2897	-0.2500	-0.2456	-0.2280	0.3297
		-	Drawo	lown, cm			-
Distance from Thalweg m	A	В	с	D	E	AVG	
70 right	8.1860	12.480	13.926	13.422	12.916	12.186	
106 left	9.8340	13.539	14.724	13.963	13.597	13.015	

Table 28 Kampsv		El 419.4, Kl	LLU49, Rur	n October 1	12, 1994		
Probe	Replicate						
	А	в	с	D	Е	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.1061	0.1005	0.1050	0.1123	0.1632	0.1174	
2	0.1777	0.1751	0.1605	0.1937	0.2599	0.1934	
3	0.2093	0.1956	0.1953	0.1849	0.2117	0.1994	
4	0.2166	0.2177	0.1704	0.1254	0.1995	0.1859	
5	0.1922	0.1728	0.2025	0.1949	0.1693	0.1863	
6	0.2047	0.1818	0.2112	0.2010	0.1701	0.1938	
7	0.1722	0.1896	0.1801	0.1944	0.2001	0.1873	
8	0.0503	0.0881	0.1015	0.0888	0.1857	0.1029	
			Impact Ve	elocity, m/sec			
1	0.6216	0.5971	0.6291	0.6040	0.6507	0.6205	0.5031
2	0.6649	0.6667	0.6782	0.6052	0.6552	0.6540	0.4606
3	0.6849	0.6844	0.5470	0.5755	0.5183	0.6020	0.4026
4	0.5591	0.6153	0.5626	0.5569	0.5795	0.5747	0.3888
5	0.5259	0.5245	0.5344	0.5350	0.4709	0.5181	0.3318
6	0.5139	0.5003	0.5256	0.5147	0.4563	0.5022	0.3084
7	0.4548	0.4418	0.4458	0.4467	0.4473	0.4473	0.2600
8	0.4473	0.3980	0.4036	0.3480	0.5001	0.4194	0.3165
		1	Drawe	down, cm	1		
Distance from Thalweg m	A	в	с	D	E	AVG	
38 right	8.7100	8.8890	8.8570	8.5880	9.3220	8.8732	
81 right	8.6190	9.4420	9.6880	9.1720	9.7690	9.23025	

Table 29 Kampsv		El 419.4, Kl	LD51, Rur	October 1	1, 1994		
	Replicate						Return
Probe	А	В	с	D	E	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.1154	0.1074	0.1142	0.1223	0.1451	0.1209	
2	0.1916	0.1715	0.1661	0.1792	0.1653	0.1747	
3	0.2064	0.1954	0.2425	0.1984	0.1639	0.2013	
4	0.2229	0.2152	0.2084	0.2258	0.1761	0.2097	
5	0.2096	0.1791	0.1943	0.1998	0.2181	0.2002	
6	0.1971	0.1842	0.2035	0.2011	0.2063	0.1984	
7	0.1602	0.1746	0.1891	0.1730	0.1680	0.1730	
8	0.0364	0.0600	0.0334	0.0967		0.0566	
	- 1		Impact Ve	locity, m/sec	-		-1
1	-0.2760	-0.2769	-0.2814	-0.3124	-0.3011	-0.2896	0.4105
2	-0.1916	-0.1920	-0.1950	-0.2176	-0.2391	-0.2071	0.3818
3	-0.1627	-0.1725	-0.1929	-0.1363	-0.1758	-0.1680	0.3693
4	-0.1861	-0.1944	-0.2403	-0.2182	-0.2664	-0.2211	0.4308
5	-0.1006	-0.1093	-0.1070	-0.1248	-0.1783	-0.1240	0.3242
6	-0.1021	-0.0991	-0.0976	-0.1465	-0.1189	-0.1128	0.3112
7	-0.0762	-0.1080	-0.0882	-0.0883	-0.0788	-0.0879	0.2609
8	-0.0932	-0.1667	-0.1818	-0.1783		-0.1550	0.2116
	_1		Drawe	down, cm	-	_	-1
Distance from Thalweg m	A	В	с	D	E	AVG	
38 right	8.1290	9.2300	8.9690	9.3210	9.1640	8.9626	
81 right	8.7550	9.8890	10.190	10.003	10.322	9.70925	

Table 30 Kampsv		El 419.4, Kl	_1U46, Run	October 1	3, 1994		
	Replicate						Return
Probe	А	в	с	D	E	AVG	Velocity m/sec
			Ambient Ve	elocity, m/sec			
1	0.1082	0.1178	0.1104	0.1022	0.1151	0.1107	
2	0.1447	0.2382	0.1949	0.1779	0.2008	0.1913	
3	0.1982	0.1762	0.1939	0.2087	0.1824	0.1919	
4	0.2047	0.2025	0.2011	0.2120	0.1920	0.2025	
5	0.2107	0.2201	0.2070	0.1997	0.1937	0.2062	
6	0.1916	0.1786	0.2025	0.2127	0.2102	0.1991	
7	0.1695	0.1695	0.1654	0.1706	0.1683	0.1687	
8	0.0635	0.0622	0.0962	0.0892	0.0872	0.0797	
	-1		Impact Ve	locity, m/sec	_	_1	
1	0.2211	0.2197	0.2214	0.2136	0.2166	0.2185	0.1078
2	0.2953	0.2793	0.3055	0.2980	0.2912	0.2938	0.1025
3	0.3242	0.3192	0.3068	0.3167	0.3330	0.3200	0.1281
4	0.3690	0.3981	0.4017	0.3845	0.3740	0.3855	0.1830
5	0.3051	0.3219	0.3179	0.3247	0.3384	0.3216	0.1154
6	0.2972	0.3021	0.1385	0.2988	0.2844	0.2642	0.0651
7	0.2298	0.2298	0.2339	0.2422	0.2420	0.2355	0.0668
8	0.1086	0.1463	0.2033	0.2394	0.1545	0.1704	0.0907
	-1		Drawd	lown, cm		_1	
Distance from Thalweg m	A	в	с	D	E	AVG	
38 right	2.8250	2.7660	2.6680	2.4920	2.2490	2.6	
81 right	3.4130	3.5190	3.5450	3.5710	3.5020	3.512	

Table 31 Kampsv		El 419.4, K	L1U61, Rur	n October	14, 1994		
Desta	Replicate						Return
Probe	А	В	с	D	Е	AVG	Velocity m/sec
			Ambient V	elocity, m/sec	:		
1	0.1051	0.1125	0.1196	0.1084	0.1119	0.1115	
2	0.1895	0.1873	0.1943	0.2384	0.1761	0.1971	
3	0.1941	0.1938	0.1997	0.2556	0.1988	0.2084	
4	0.1865	0.2006	0.2089	0.2048	0.2030	0.2008	
5	0.2090	0.1971	0.2105	0.1578	0.2001	0.1949	
6	0.1970	0.2071	0.1979	0.1589	0.1903	0.1902	
7	0.1517	0.1616	0.1781	0.1224	0.1585	0.1545	
8	0.0933	0.0723	0.0693	0.0561	0.0802	0.0742	
			Impact Ve	elocity, m/sec			
1	0.3247	0.3391	0.3263	0.3172	0.3371	0.3289	0.2174
2	0.4092	0.3681	0.3980	0.4535	0.3761	0.4010	0.2039
3	0.4396	0.4325	0.4381	0.5006	0.4282	0.4478	0.2394
4	0.4974	0.5206	0.4960	0.5108	0.4840	0.5018	0.3010
5	0.4091	0.4392	0.4001	0.3739	0.4182	0.4081	0.2132
6	0.3905	0.3912	0.3642	0.3500	0.3748	0.3741	0.1839
7	0.3090	0.3121	0.3333	0.2870	0.3084	0.3099	0.1554
8	0.2893	0.2211	0.2221	0.1705	0.2501	0.2306	0.1564
		-	Drawo	down, cm		-	
Distance from Thalweg m	A	в	с	D	E	AVG	
38 right	7.6530	8.7010	8.1750	8.2850	8.3740	8.2376	
81 right	6.1800	7.8060	6.9570	7.5820	6.9900	7.13125	

Table 32 Kampsv		El 419.4, Kl	_1U76, Run	October 1	9, 1994		
	Replicate						Return
Probe	А	В	с	D	E	AVG	Velocity m/sec
			Ambient Ve	elocity, m/sec			
1	0.1080	0.1095	0.1099	0.1255	0.1103	0.1126	
2	0.1217	0.1630	0.1395	0.1759	0.1649	0.1530	
3	0.1883	0.1931	0.1921	0.1975	0.1901	0.1922	
4	0.2219	0.2005	0.1975	0.2012	0.1931	0.2028	
5	0.2095	0.2052	0.1828	0.2106	0.1911	0.1998	
6	0.2054	0.2056	0.1938	0.1873	0.1988	0.1982	
7	0.1442	0.1541	0.1833	0.1555	0.1603	0.1595	
8	0.0426	0.0563	0.0489	0.0725	0.0370	0.0515	
			Impact Ve	locity, m/sec	1	1	-
1	0.4802	0.5638	0.5512	0.5742	0.5550	0.5449	0.4323
2	0.5035	0.5601	0.5147	0.5207	0.5437	0.5285	0.3755
3	0.5542	0.5863	0.5945	0.5988	0.5781	0.5824	0.3902
4	0.6142	0.6516	0.6762	0.6486	0.6593	0.6500	0.4472
5	0.5075	0.5795	0.5763	0.5947	0.5764	0.5669	0.3671
6	0.4971	0.5424	0.5551	0.5384	0.5546	0.5375	0.3393
7	0.4132	0.4575	0.4473	0.4602	0.4500	0.4456	0.2861
8	0.1257	0.2048	0.1690	0.3160	0.1992	0.2029	0.1514
		•	Drawd	lown, cm	1	1	
Distance from Thalweg m	A	в	с	D	E	AVG	
38 right	11.326	15.525	15.554	15.159	15.453	14.6034	
81 right	11.996	16.862	17.195	17.035	16.902	15.772	

Table 33 Kampsv		El 419.4, Kl	LEU49, Rui	n October	24, 1994		
			Re	plicate			Return
Probe	А	В	С	D	E	AVG	Velocity m/sec
			Ambient V	/elocity, m/sec	;		
1	0.1134	0.1262	0.1170	0.1198	0.1167	0.1186	
2	0.1526	0.1287	0.1366	0.1575	0.1738	0.1498	
3	0.2005	0.1915	0.1952	0.1941	0.1916	0.1946	
4	0.2080	0.1949	0.2048	0.2034	0.2044	0.2031	
5	0.1990	0.1965	0.1915	0.1821	0.2004	0.1939	
6	0.1969	0.1865	0.1990	0.2026	0.1843	0.1939	
7	0.1475	0.1733	0.1563	0.1432	0.1452	0.1531	
8	0.0197	0.0271		0.0278	0.0129	0.0219	
			Impact Ve	elocity, m/sec		1	
1	0.2458	0.2594	0.2607	0.2594	0.2537	0.2558	0.1372
2	0.3104	0.0670	0.9650	0.2678	0.9300	0.5080	0.3582
3	0.3734	0.5070	0.3693	0.6370	0.4910	0.4755	0.2809
4	0.4120	0.2020	0.3871	0.4005	0.3996	0.3602	0.1571
5	0.3519	0.3447	0.3418	0.3420	0.3503	0.3461	0.1522
6	0.3312	0.3359	0.3191	0.3440	0.3281	0.3317	0.1378
7	0.2605	0.2658	0.2625	0.2639	0.2628	0.2631	0.1100
8	0.1106	0.1082		0.0952	0.0987	0.1032	0.0813
			Draw	down, cm			
Distance from Thalweg m	A	в	с	D	E	AVG	
38 right	3.6870	4.0220	3.8970	3.8340	3.5970	3.8074	
81 right	5.1250	4.8420	4.9510	5.0180	4.9750	4.984	

Table 34 Kampsv		El 419.4, KL	.EU67, Run	October 2	5, 1994		
	Replicate						Return
Probe	Α	в	с	D	E	AVG	Velocity m/sec
			Ambient Ve	locity, m/sec		_	
1	0.1038	0.1258	0.1253	0.1216	0.1101	0.1173	
2	0.1614	0.1251	0.1421	0.1501	0.1812	0.1520	
3	0.1970	0.2002	0.2076	0.2020	0.2011	0.2016	
4	0.2016	0.1932	0.2343	0.2012	0.2148	0.2090	
5	0.2082	0.2022	0.2059	0.1960	0.2009	0.2026	
6	0.2101	0.2054	0.1987	0.1998	0.1990	0.2026	
7	0.2183	0.1506	0.1358	0.1551	0.1437	0.1607	
8	0.0624	0.0596	0.0534	0.0568	0.0631	0.0591	
			Impact Vel	ocity, m/sec			
1	0.3906	0.4103	0.3866	0.4132	0.4183	0.4038	0.2865
2	0.4182	0.4401	0.4248	0.4486	0.4448	0.4353	0.2833
3	0.4913	0.4972	0.4818	0.4899	0.4973	0.4915	0.2899
4	0.5665	0.5729	0.5762	0.5851	0.5833	0.5768	0.3678
5	0.4842	0.4797	0.4833	0.4887	0.4963	0.4864	0.2838
6	0.4748	0.4607	0.4675	0.4651	0.4705	0.4677	0.2651
7	0.3634	0.3523	0.3653	0.3681	0.3742	0.3647	0.2040
8	0.1451	0.1577	0.1611	0.1641	0.2283	0.1713	0.1122
			Drawd	own, cm			•
Distance from Thalweg m	A	В	c	D	E	AVG	
38 right	9.4330	9.1070	9.2730	9.8910	9.7660	9.494	
81 right	11.321	11.414	11.232	11.331	11.254	11.3245	

Probe Position ¹ Experiment No.	Probe Number										
	1	2	3	4	5	6	7	8			
PP1 (KLU335C, KLU488C, KLD354G, KLD506A, KLD506C, KLD506D, KLD659A, KL1U46E, KL1U61E, KL1U61E, KL1U76E, KLEU49B, KLEU67D)	168.8 Left	125.0 Left	81.3 Left	37.5 Left	37.5 Right	62.5 Right	87.5 Right	112.5 Right			
PP2 (KLRU49C, KLRD49E)	168.8 Left	118.8 Left	68.8 Left	18.8 Left	62.5 Right	80.0 Right	97.5 Right	112.5 Right			
PP3 (KLLU49C, KLLD51C)	168.8 Left	150.0 Left	125.0 Left	100.0 Left	25.0 Left	25.0 Right	75.0 Right	112.5 Right			

Table 36 Kampsvill	Table 36 Kampsville Pool El 427.0 Experiment Conditions											
Experiment No.	Up or Down	Tow Speed¹ m/sec	Position ²	Temp ℃	Actual Draft m	Effective Draft m ³	Barge W X L	Propeller Thrust I,000 Ib	Schijf Velocity cm/sec⁴			
KHEU38	U	1.91	152.5	17.5	0.61	1.15	3X5	79	6.40			
KHEU56	U	2.82	152.5	16.0	0.61	1.12	3X5	105	9.70			
KH0U38	U	1.91	152.5	15.0	2.29	2.83	3X5	79	16.4			
KH0U53	U	2.67	152.5	18.0	2.29	2.79	3X5	105	24.3			
KH0D50	D	2.52	152.5	16.5	2.29	2.87	3X5	79	10.3			
KH0D66	D	3.28	152.5	16.5	2.29	2.83	3X5	105	16.0			
KHRU38	U	1.91	102.5	17.5	2.29	2.82	3X5	79	16.4			
KHRD66	D	3.28	102.5	18.0	2.29	2.82	3X5	105	16.0			
KHLU38	U	1.91	242.5	18.0	2.29	2.82	3X5	79	16.4			
KHLD66	D	3.28	242.5	18.0	2.29	2.82	3X5	105	16.0			
KH0U27⁵	U	1.37	152.5	18.0	2.29	2.83	3X5	105	15.5			
KH0D64⁵	D	3.20	152.5	16.5	2.29	2.86	3X5	105	12.1			

Note: Water-surface width 362.35 m, area 1,817 sq m, discharge 1,281 cu m/sec, water-surface el 427.0, average ambient velocity 0.71 m/sec.

ſ

Relative to ground. Meters distance from right bank. 2

Actual draft + draft correction.

Schijf equation using effective draft and vessel speed relative to water.

Water-surface width 362.35 m, area 1,817 sq m, discharge 2,093.75 cu m/sec, water-surface el 427.0, average ambient velocity 1.152 m/sec.

Table 37 Kampsv		El 427.0, Kl	HEU38, Rur	n October 3	31, 1994		
Darka	Replicate						Return
Probe	А	в	с	D	E	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.3405	0.3372	0.3183	0.3470	0.3401	0.3366	
2	0.0711	0.7811	0.7705	0.7383	0.7391	0.6200	
3	0.7604	0.8484	0.7724	0.7649	0.7871	0.7866	
4	0.7944	0.8244	0.7345	0.7731	0.7855	0.7824	
5	0.7459	0.7121	0.7578	0.7478	0.7555	0.7438	
6	0.7389	0.6830	0.7387	0.7210	0.7412	0.7246	
7	0.6115	0.5344	0.5955	0.6001	0.6081	0.5899	
8	0.3978	0.4086	0.4172	0.4194	0.4165	0.4119	
	- 1		Impact Ve	locity, m/sec	-1		I
1	0.4499	0.4323	0.4518	0.4305	0.4553	0.4440	0.1074
2	0.8095	0.8998	0.8921	0.8440	0.8400	0.8571	0.2371
3	0.8500	0.9525	0.9498	0.8688	0.9149	0.9072	0.1206
4	0.8850	0.8750	0.9236	0.9024	0.8498	0.8872	0.1048
5	0.9170	0.8743	0.8650	0.9212	0.9420	0.9039	0.1601
6	0.9004	0.9034	0.8000	0.9033	0.8605	0.8735	0.1489
7	0.6975	0.6883	0.6676	0.6550	0.7166	0.6850	0.0951
8	0.5188	0.5337	0.5403	0.5125	0.5266	0.5264	0.1145
		I	Drawd	lown, cm	_	-	- 1
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	2.1330	2.1990	1.9490	2.0580	1.7520	2.0182	
171 left	1.9590	2.2070	2.0330	2.1330	2.0390	2.083	

Table 38 Kampsv		El 427.0, Kl	HEU56, Rui	n Novembo	er 1, 1994		
	Replicate						Return
Probe	Α	в	с	D	E	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.2633	0.3422	0.3429	0.3306	0.3362	0.3230	
2	0.7642	0.8173	0.7386	0.7066	0.7324	0.7518	
3	0.7928	0.8371	0.7912	0.7459	0.7176	0.7769	
4	0.7804	0.8036	0.7972	0.7873	0.7562	0.7849	
5	0.7417	0.7042	0.7547	0.7301	0.8129	0.7487	
6	0.7061	0.7067	0.7188	0.7340	0.7857	0.7303	
7	0.5608	0.5663	0.5912	0.6080	0.6238	0.5900	
8	0.4227	0.4447	0.4253	0.4159	0.4135	0.4244	
			Impact Ve	locity, m/sec			
1	0.4416	0.4617	0.4937	0.4796	0.4800	0.4713	0.1483
2	0.8990	0.8140	0.9222	0.8401	0.8568	0.8664	0.1146
3	0.8928	1.0115	0.9271	0.9347	0.9839	0.9500	0.1731
4	0.9367	0.9432	0.9324	0.9844	0.9613	0.9516	0.1667
5	0.9559	0.8622	0.9196	0.9950	0.9154	0.9296	0.1809
6	0.9041	0.8424	0.8926	0.8697	0.8919	0.8801	0.1498
7	0.6873	0.6471	0.7553	0.6967	0.6862	0.6945	0.1045
8	0.5573	0.5305	0.5327	0.5546	0.5197	0.5390	0.1146
			Drawo	down, cm			
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	4.1050	4.6060	4.6700	3.6160	4.9770	4.3948	
171 left	4.7590	4.9040	5.3310	4.6080	4.3840	4.9005	

Table 39 Kampsv		El 427.0, Kl	HOU38, Ru	n Novemb	er 2, 1994		
	Replicate						Return
Probe	А	В	с	D	Е	AVG	Velocity m/sec
			Ambient V	elocity, m/sec	:		
1	0.3400	0.3490	0.3386	0.3349	0.3148	0.3355	
2	0.7554	0.7233	0.7613	0.6612	0.6860	0.7174	
3	0.8217	0.8287	0.8357	0.7187	0.8191	0.8048	
4	0.7685	0.7848	0.8085	0.7449	0.8589	0.7931	
5	0.7540	0.8043	0.7660	0.8312	0.7389	0.7789	
6	0.7077	0.7692	0.7506	0.8142	0.6834	0.7450	
7	0.5663	0.5993	0.5667	0.6001	0.5839	0.5833	
8	0.4213	0.4385	0.4164	0.4381	0.4216	0.4272	
			Impact Ve	locity, m/sec	1		
1	0.5244	0.5419	0.5527	0.5473	0.5501	0.5433	0.2078
2	0.9457	0.9381	0.9536	0.9447	0.8818	0.9328	0.2154
3	1.0110	1.0222	0.9672	0.9987	0.9697	0.9938	0.1890
4	1.0455	1.0180	1.0086	1.0156	1.0100	1.0195	0.2264
5	1.0037	1.0206	1.0752	1.0544	1.0237	1.0355	0.2566
6	1.0600	1.0046	1.0020	1.0298	0.9644	1.0122	0.2672
7	0.7529	0.8780	0.7727	0.7474	0.7862	0.7874	0.2041
8	0.6100	0.6655	0.6186	0.6352	0.6435	0.6346	0.2074
			Drawo	down, cm	- 1		-
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	6.2680	5.5450	6.1670	5.3140	7.6790	6.1946	
171 left	4.9230	5.8130	5.4350	5.4980	5.7020	5.41725	

Table 40 Kampsv		El 427.0, K	HOU53, Ru	n Novemb	er 4, 1994		
Desta	Replicate						Return
Probe	А	В	С	D	E	AVG	Velocity m/sec
			Ambient V	/elocity, m/sec	;		
1	0.3388	0.3357	0.3515	0.3394	0.3319	0.3395	
2	0.8119	0.7269	0.7579	0.7627	0.6922	0.7503	
3	0.7732	0.7565	0.8172	0.7260	0.7376	0.7621	
4	0.8219	0.7547	0.7625	0.7608	0.8018	0.7803	
5	0.7091	0.7361	0.7577	0.7553	0.7304	0.7377	
6	0.6964	0.7375	0.7268	0.7457	0.7512	0.7315	
7	0.5701	0.6166	0.5666	0.5900	0.6382	0.5963	
8		0.4136	0.4200	0.4288	0.4226	0.4213	
	-1		Impact Ve	elocity, m/sec	I	- 1	
1	0.6115	0.6119	0.6392	0.5991	0.6160	0.6155	0.2760
2	1.0219	1.0457	1.0846	0.9934	0.9031	1.0097	0.2594
3	1.0076	1.0659	1.0101	0.9372	0.9797	1.0001	0.2389
4	1.0768	1.1930	1.0952	1.1275	1.0488	1.1083	0.3280
5	1.0984	1.0598	1.0775	1.1343	1.0940	1.0928	0.3551
6	1.0289	1.0055	0.9955	1.1274	1.0960	1.0507	0.3192
7	0.8297	0.7988	0.8243	0.9281	0.9266	0.8615	0.2652
8		0.7020	0.7019	0.6903	0.6915	0.6964	0.2751
	-1		Draw	down, cm	I		
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	11.506	11.015	11.149	11.480	12.178	11.4656	
171 left	10.728	10.575	10.819	11.460	10.390	10.8955	

Table 41 Kampsv		l 427.0, KH	OD50, Run	Novembe	r 7, 1994		
	Replicate						Return
Probe	Α	В	с	D	E	AVG	Velocity m/sec
			Ambient Ve	locity, m/sec			
1	0.3492	0.3500	0.3393	0.3214	0.3319	0.3384	
2	0.6949	0.7334	0.6724	0.7260	0.7070	0.7067	
3	0.7616	0.7788	0.7192	0.7566	0.7539	0.7540	
4	0.7762	0.7175	0.7971	0.7464	0.7551	0.7585	
5	0.7575	0.7175	0.7709	0.7779	0.7218	0.7491	
6	0.6906	0.7055	0.7455	0.7353	0.7125	0.7179	
7	0.6568	0.6775	0.6836	0.6874	0.6918	0.6794	
8	0.4227	0.4164	0.4218	0.4320	0.4141	0.4214	
		1	Impact Vel	ocity, m/sec		1	
1	0.2547	0.2452	0.2621	0.2440	0.2717	0.2555	0.0829
2	0.5880	0.6182	0.5690	0.5387	0.5689	0.5766	0.1301
3	0.6240	0.6206	0.6564	0.5963	0.6083	0.6211	0.1329
4	0.6053	0.5583	0.5527	0.6134	0.5864	0.5832	0.1753
5	0.5922	0.5583	0.5917	0.5750	0.6252	0.5885	0.1606
6	0.5778	0.5061	0.5709	0.5672	0.6030	0.5650	0.1529
7	0.5127	0.5461	0.5311	0.5256	0.5775	0.5386	0.1408
8	0.3419	0.3023	0.2970	0.2937	0.2625	0.2995	0.1219
		а	Drawdo	own, cm			
Distance from Thalweg m	А	В	c	D	E	AVG	
112 right	1.6130	3.3480	3.2640	3.1880	3.0345	2.8895	
171 left	2.9290	3.2760	2.5180	3.1450	3.0690	2.967	

Table 42 Kampsv		El 427.0, K	HOD66, Ru	n Novemb	er 7, 1994					
	Replicate	Replicate								
Probe	А	в	с	D	E	AVG	Velocity m/sec			
			Ambient V	elocity, m/sec	:					
1	0.3459	0.3429	0.3420	0.3473	0.3426	0.3441				
2	0.6933	0.7665	0.7251	0.7836	0.7177	0.7372				
3	0.7561	0.7865	0.7252	0.7687	0.7635	0.7600				
4	0.7442	0.7107	0.7433	0.7657	0.7292	0.7386				
5	0.7408	0.7558	0.7683	0.6942	0.7437	0.7406				
6	0.7295	0.7100	0.7612	0.6304	0.7139	0.7090				
7	0.6343	0.6504	0.6785	0.5924	0.6671	0.6445				
8	0.4049	0.4072	0.4175	0.4111	0.4152	0.4112				
			Impact Ve	elocity, m/sec	-	-				
1	0.1979	0.1988	0.2167	0.2178	0.2002	0.2063	0.1378			
2	0.5882	0.5864	0.6034	0.5221	0.5546	0.5709	0.1663			
3	0.5683	0.5521	0.4848	0.5259	0.5254	0.5313	0.2287			
4	0.5671	0.5319	0.5598	0.5205	0.5286	0.5416	0.1970			
5	0.4509	0.4689	0.4941	0.4956	0.4775	0.4774	0.2632			
6	0.5203	0.5365	0.5112	0.5900	0.4762	0.5268	0.1822			
7	0.5253	0.5613	0.5370	0.5322	0.5420	0.5396	0.1049			
8	0.2396	0.2476	0.2332		0.2585	0.2447	0.1665			
			Drawe	down, cm		1				
Distance from Thalweg m	A	в	с	D	E	AVG				
112 right	7.4210	6.8910	7.0440	6.8830	7.3420	7.1162				
171 left	6.4520	6.1950	6.2150	6.0280	6.3450	6.2225				

Table 42 Kampsv		El 427.0, Kl	HOD66, Rui	n Novembe	er 7, 1994					
	Replicate	Replicate								
Probe	А	в	С	D	E	AVG	Velocity m/sec			
			Ambient V	elocity, m/sec						
1	0.3459	0.3429	0.3420	0.3473	0.3426	0.3441				
2	0.6933	0.7665	0.7251	0.7836	0.7177	0.7372				
3	0.7561	0.7865	0.7252	0.7687	0.7635	0.7600				
4	0.7442	0.7107	0.7433	0.7657	0.7292	0.7386				
5	0.7408	0.7558	0.7683	0.6942	0.7437	0.7406				
6	0.7295	0.7100	0.7612	0.6304	0.7139	0.7090				
7	0.6343	0.6504	0.6785	0.5924	0.6671	0.6445				
8	0.4049	0.4072	0.4175	0.4111	0.4152	0.4112				
			Impact Ve	locity, m/sec			-			
1	0.1979	0.1988	0.2167	0.2178	0.2002	0.2063	0.1378			
2	0.5882	0.5864	0.6034	0.5221	0.5546	0.5709	0.1663			
3	0.5683	0.5521	0.4848	0.5259	0.5254	0.5313	0.2287			
4	0.5671	0.5319	0.5598	0.5205	0.5286	0.5416	0.1970			
5	0.4509	0.4689	0.4941	0.4956	0.4775	0.4774	0.2632			
6	0.5203	0.5365	0.5112	0.5900	0.4762	0.5268	0.1822			
7	0.5253	0.5613	0.5370	0.5322	0.5420	0.5396	0.1049			
8	0.2396	0.2476	0.2332		0.2585	0.2447	0.1665			
	-		Drawd	lown, cm	-	-	_			
Distance from Thalweg m	А	В	с	D	E	AVG				
112 right	7.4210	6.8910	7.0440	6.8830	7.3420	7.1162				
171 left	6.4520	6.1950	6.2150	6.0280	6.3450	6.2225				

Table 43 Kampsvi		El 427.0, KH	IRU38, Run	Novembe	r 14, 1994		
	Replicate						Return
Probe	А	В	с	D	E	AVG	Velocity m/sec
	-		Ambient Ve	locity, m/sec			-
1	0.4136	0.4168	0.4580	0.4285	0.4078	0.4249	
2	0.7309	0.7877	0.7181	0.7607	0.7381	0.7471	
3	0.7779	0.7671	0.7261	0.7224	0.8064	0.7600	
4	0.7146	0.7786	0.7927	0.7464	0.7300	0.7525	
5	0.7239	0.7014	0.7597	0.7855	0.7369	0.7415	
6	0.6726	0.6464	0.7396	0.7038	0.6516	0.6828	
7	0.6339	0.6630	0.6693	0.6511	0.6301	0.6495	
8	0.4134	0.4284	0.4203	0.4219	0.4119	0.4192	
	•	•	Impact Vel	ocity, m/sec	-		•
1	0.6447	0.6312	0.6126	0.5992	0.6399	0.6255	0.2006
2	0.8878	0.9570	0.9084	0.9711	0.9878	0.9424	0.1953
3	0.9695	0.9888	0.9670	1.0018	0.9879	0.9830	0.2230
4	1.1187	1.0375	1.0451	0.9967	1.0365	1.0469	0.2944
5	1.1439	1.0019	1.0295	1.0385	1.0078	1.0443	0.3028
6	1.0500	0.9237	0.9826	0.9675	0.9047	0.9657	0.2829
7	0.9205	0.8950	0.9330	0.9367	0.8856	0.9142	0.2647
8	0.6630	0.6861	0.6991	0.6832	0.6957	0.6854	0.2662
	•		Drawd	own, cm	•		
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	7.0550	6.8840	7.2510	4.9460	6.8810	6.6034	
171 left	5.7190	5.9560	5.8380	5.9230	5.4280	5.859	

Table 44 Kampsv		El 427.0, Kl	HRD66, Rui	n Novembe	er 15, 1994		
	Replicate						Return
Probe	А	в	с	D	Е	AVG	Velocity m/sec
			Ambient V	elocity, m/sec			
1	0.420	0.4362	0.4179	0.4348	0.4292	0.4282	
2	0.7784	0.8109	0.7230	0.7589	0.6978	0.7538	
3	0.7776	0.7762	0.7948	0.7927	0.7591	0.7801	
4	0.6959	0.6920	0.7176	0.6907	0.7848	0.7162	
5	0.7058	0.7120	0.7219	0.7222	0.7950	0.7314	
6	0.6367	0.6812	0.6704	0.7454	0.7718	0.7011	
7	0.6200	0.6445	0.6310	0.6353	0.6998	0.6461	
8	0.4061	0.4279	0.4123	0.4219	0.4171	0.4171	
	1		Impact Ve	locity, m/sec			1
1	0.2563	0.2810	0.2843	0.2574	0.2827	0.2723	0.1559
2	0.5693	0.5523	0.6111	0.5785	0.5901	0.5803	0.1735
3	0.5547	0.5116	0.6692	0.5507	0.5933	0.5759	0.2042
4	0.4698	0.4257	0.4632	0.4464	0.4156	0.4441	0.2721
5	0.5244	0.4010	0.4680	0.4687	0.4156	0.4555	0.2759
6	0.4595	0.3814	0.4067	0.3608	0.4787	0.4174	0.2837
7	0.3754	0.3841	0.3653	0.4065	0.3904	0.3843	0.2618
8	0.1786	0.1896	0.1948	0.1307	0.4858	0.2359	0.1812
			Drawo	lown, cm	-	-	-
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	9.2850	9.1960	8.6310	8.9500	8.9580	9.004	
171 left	5.8010	5.9370	6.3970	5.8290	6.1100	5.991	

Table 45 Kampsv		El 427.0, Kl	HLU38, Rur	n Novembe	er 16, 1994					
	Replicate	Replicate								
Probe	А	В	с	D	Е	AVG	Velocity m/sec			
			Ambient V	elocity, m/sec	:					
1	0.4142	0.4301	0.4166	0.4230	0.4077	0.4183				
2	0.6807	0.6175	0.6500	0.6634	0.6878	0.6599				
3	0.6889	0.7344	0.7340	0.7568	0.7383	0.7305				
4	0.7004	0.7369	0.7013	0.7326	0.7688	0.7280				
5	0.7696	0.7888	0.7894	0.7831	0.7671	0.7796				
6	0.7313	0.7294	0.7579	0.7789	0.7330	0.7461				
7	0.7994	0.6994	0.7099	0.7193	0.7382	0.7332				
8	0.4184	0.4249	0.4144	0.4236	0.4135	0.4190				
	1		Impact Ve	locity, m/sec						
1	0.7075	0.7376	0.7171	0.6975	0.7148	0.7149	0.2966			
2	0.9355	0.8266	0.8524	0.8829	0.9871	0.8969	0.2370			
3	0.9610	0.9516	0.9337	0.9507	1.0069	0.9608	0.2303			
4	1.0231	1.0184	1.0248	0.0248	1.1293	0.8441	0.1161			
5	1.0273	0.9536	1.0195	0.9525	1.0106	0.9927	0.2131			
6	1.0267	1.0632	1.0440	1.0069	0.9496	1.0181	0.2720			
7	0.9588	0.9403	1.0154	0.9928		0.9768	0.2436			
8	0.6060	0.6051	0.5939	0.6171	0.6212	0.6087	0.1897			
	.		Drawo	lown, cm	- I.	а	и 			
Distance from Thalweg m	A	в	с	D	E	AVG				
112 right	5.3100	4.8240	4.6860	4.5240	4.6520	4.7992				
171 left	7.6280	7.9020	7.1980	7.4720	7.2570	7.55				

Table 46 Kampsv		El 427.0, Kl	HLD66, Rur	n Novembe	er 16, 1994		
Darka	Replicate						Return
Probe	Α	в	с	D	Е	AVG	Velocity m/sec
			Ambient V	elocity, m/sec	:		
1	0.4323	0.4427	0.4334	0.4227	0.4383	0.4339	
2	0.6701	0.6949	0.6792	0.6379	0.6324	0.6629	
3	0.7141	0.7458	0.7033	0.6718	0.6820	0.7034	
4	0.7336	0.8048	0.7388	0.6975	0.7521	0.7454	
5	0.7776	0.7842	0.7399	0.7981	0.7954	0.7790	
6	0.7329	0.7553	0.7461	0.7657	0.7979	0.7596	
7	0.5809	0.7155	0.7559	0.8092	0.7225	0.7168	
8	0.4084	0.4141	0.4188	0.4235	0.4329	0.4195	
			Impact Ve	locity, m/sec			I
1	0.2208	0.2473	0.2119	0.1952	0.1894	0.2129	0.2210
2	0.3758	0.3152	0.4093	0.4645	0.4679	0.4065	0.2564
3	0.4822	0.4296	0.4359	0.5081	0.5054	0.4722	0.2312
4	0.4237	0.4441	0.4407	0.4251	0.3338	0.4135	0.3319
5	0.5450	0.4711	0.5784	0.5907	0.5302	0.5431	0.2359
6	0.5863	0.5510	0.5614	0.6380	0.5930	0.5859	0.1737
7	0.5809	0.5724	0.6263	0.5367	0.6340	0.5901	0.1267
8	0.2871	0.2569	0.2816	0.2732	0.2920	0.2782	0.1413
			Drawo	lown, cm			I
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	5.8930	5.5820	5.8880	5.8270	5.8860	5.8152	
171 left	8.8950	8.2460	8.5890	8.3640	8.1250	8.5235	

Table 47 Kampsv		il 427.0, KH	OU27, Rur	n Novembe	r 9, 1994		
	Replicate						Return
Probe	А	в	с	D	E	AVG	Velocity m/sec
			Ambient Ve	locity, m/sec		_	
1	0.5722		0.6130	0.5737	0.5784	0.5843	
2	1.1702		1.3280	1.3034	1.1820	1.2459	
3	1.2670		1.2000	1.3170	1.1990	1.2458	
4	1.2250		1.1840	1.2270	1.1860	1.2055	
5	1.2150		1.3130	1.2010	1.2790	1.2520	
6	1.2290		1.1710	1.2600	1.1820	1.2105	
7	1.1880		1.1240	1.1090	1.1420	1.1408	
8	0.6663		0.7050	0.7154	0.7061	0.6982	
	-		Impact Vel	ocity, m/sec			1
1	0.8411		0.8181	0.8060	0.7682	0.8084	0.2241
2	1.4875		1.5210	1.5270	1.4090	1.4861	0.2402
3	1.5310		1.5550	1.5660	1.4510	1.5258	0.2800
4	1.4660		1.5050	1.4850	1.5240	1.4950	0.2895
5	1.5850		1.5860	1.5870	1.5820	1.5850	0.3330
6	1.5300		1.5240	1.5100	1.4090	1.4933	0.2828
7	1.5030		1.3420	1.4150	1.4830	1.4358	0.2950
8	0.9858		1.0300	0.9783	1.0212	1.0038	0.3056
	•	•	Drawd	own, cm	•		а
Distance from Thalweg m	A	в	с	D	E	AVG	
112 right	2.8180	2.6620	4.1790	3.1730	3.3410	3.2346	
171 left	3.5670	3.6380	2.7610	3.7500	2.8700	3.429	

Table 48 Kampsv		El 427.0, Kl	HOD64, Ru	n Novemb	er 8, 1994					
	Replicate	Replicate								
Probe	А	В	с	D	E	AVG	Velocity m/sec			
			Ambient V	elocity, m/sec						
1	0.5765	0.5893	0.5723	0.5644	0.5766	0.5758				
2	1.1859	1.2460	1.2050	1.2303	1.1850	1.2104				
3	1.2010	1.2563	1.3340	1.2594	1.2248	1.2551				
4	1.1610	1.2130	1.1738	1.2141	1.2520	1.2028				
5		1.2077	1.2349	1.2391	1.2047	1.2216				
6		1.2510	1.1556	1.1968	1.0244	1.1570				
7		1.1265	1.6510	1.2271	1.1267	1.2828				
8		0.7554	0.7422	0.7036	0.7128	0.7285				
	-1		Impact Ve	elocity, m/sec						
1	0.4572	0.4888	0.4655	0.4793	0.4517	0.4685	0.1073			
2	1.1026	0.9573	0.9765	1.0531	1.0630	1.0305	0.1799			
3	1.0700	1.0538	1.0460	1.0509	1.1000	1.0641	0.1910			
4	0.9790	0.9315	0.9789	0.9815	0.9074	0.9557	0.2471			
5		1.0457	1.0301	1.0280	1.0108	1.0287	0.1929			
6		1.1309	1.0820	1.0701	0.9432	1.0566	0.1004			
7		1.0048	0.8906	0.9619	0.9754	0.9582	0.3246			
8		0.5862	0.4762	0.5545	0.6108	0.5569	0.1716			
	-		Draw	down, cm						
Distance from Thalweg m	A	в	с	D	E	AVG				
112 right	5.7040	5.4090	6.7070	5.6410	6.4200	5.9762				
171 left	5.0900	5.9850	5.0760	5.2260	4.7370	5.34425				

Probe		Probe Number											
Position ¹ (Experiment No.)	1	2	3	4	5	6	7	8					
PP1 (KHEU38B, KHEU56E, KHOU38D, KHOU53C, KHOD50D, KHOD66E, KHOU27D, KHOD64D)	187.5 Left	137.5 Left	87.5 Left	37.5 Left	37.5 Right	67.75 Right	100.0 Right	131.3 Right					
PP2 (KHRU38B, KHRD66B)	187.5 Left	118.8 Left	43.75 Left	25.0 Right	72.5 Right	92.5 Right	112.5 Right	131.3 Right					
PP3 (KHLU38D, KHLD66C)	187.5 Left	162.5 Left	137.5 Left	112.5 Left	42.5 Left	0.00	65.0 Right	131.3 Right					

Table 50William C. Norman, Kampsville Trip 1, Pool El 421.8, ND58VD, ExperimentsConducted November 21, 1994, Vertical Distribution

Depth off	Replicate										
Bottom, %	А	В	с	D	Е	AVG	Velocity m/sec				
Ambient Velocity, m/sec											
25	0.4671	0.4888	0.4948	0.4700	0.4915	0.4824					
5	0.1363		0.1504	0.1457	0.1296	0.1405					
50	0.5306	0.5182	0.5256	0.5195	0.5224	0.5233					
			Impact Ve	elocity, m/sec							
25	0.2354	0.2680	0.2458	0.2702	0.2457	0.2530	0.2294				
5	0.0354	0.0975	0.0900	0.0677	0.0527	0.0687	0.0718				
50	0.3176	0.3026	0.3174	0.3365	0.3396	0.3227	0.2006				

Note: Discharge 625 cu m/sec; water-surface el 421.8; area 1,269 sq m; water-surface width 330 m; average channel velocity 0.49 m/sec.

Table 51Kampsville Low Flow, Pool El 419.4, KLU488, Experiments ConductedOctober 5, 1994, Vertical Distribution

Depth off	Replicate										
Bottom, %	А	В	с	D	E	AVG	Velocity m/sec				
Ambient Velocity, m/sec											
80	0.2101	0.2257	0.2025	0.2208	0.2279	0.2174					
25	0.1172	0.1676	0.1165	0.1541	0.1505	0.1412					
50	0.0691	0.1899	0.3503	0.1923	0.1603	0.1924					
			Impact Velo	ocity, m/sec							
80	0.5802	0.6157	0.5939	0.6061	0.6164	0.6025	0.3851				
25	0.4405	0.5391	0.4239	0.5410	0.4602	0.4809	0.3397				
50	0.6334	0.4598	0.6319	0.4259	0.5429	0.5388	0.3464				

Table 52 Kampsville High Flow, Pool El 427.0, KHVU38, Experiments Conducted November 10, 1994, Vertical Distribution							
Depth off		Replicate					
Bottom, %	Α	В	С	D	E	AVG	Velocity m/sec
			Ambient \	/elocity, m/sec	:		
25	0.6794	0.6769	0.7024	0.7037	0.7101	0.6945	
75	0.7928	0.7953	0.8208	0.7950	0.8049	0.8018	
50	0.7579	0.7588	0.8001	0.7750	0.7872	0.7758	
			Impact V	elocity, m/sec			
25	1.0039	0.9112	0.9337	1.0312	0.8857	0.9531	0.2577
75	1.0880	1.0665	1.0456	1.0769	0.9950	1.0544	0.2526
50	1.0564	1.0075	1.0462	1.0790	0.9772	1.0333	0.2575

Table 53William C. Norman, Kampsville Trip 1, Pool El 421.8, WCNSP, ExperimentsConducted December 6, 1994, Stationary Vessel Experiments

	Velocity, m/sec, for Probe								
Station	1	2	3	4	5	6	7	8	
52	0.00	0.000	0.000	0.000	0.000	-0.05	-0.04	0.004	
54					-0.01	-0.06	-0.06	-0.01	
56	0.006	0.005	-0.02	0.015	-0.02	-0.01	-0.03	0.005	
58	0.014	0.013	-0.04	0.00	-0.01	-0.06	-0.01	0.010	
60	0.004	0.031	-0.04	-0.05	-0.02	-0.04	0.002	0.055	
62	0.104	0.054	0.040	0.018	0.042	-0.05	0.046	0.101	
64	0.151	0.113	0.110	0.179	0.157	0.091	0.101	0.207	
66	0.209	0.163	0.143	0.199	0.181	0.119	0.175	0.258	
68	0.233	0.202	0.143	0.216	0.221	0.088	0.202	0.287	
70	0.239	0.208	0.181	0.269	0.263	0.102	0.230	0.262	
72	0.159	0.175	0.158	0.244	0.215	0.132	0.166	0.223	
74	0.103	0.133	0.088	0.145	0.115	0.004	0.122	0.132	
76	0.063	0.129	0.092	0.115	0.106	-0.06	0.109	0.052	
78	0.021	0.115	0.052	0.081	0.094	-0.05	0.098	0.053	
80	0.00	0.095	0.077	0.109	0.107	-0.08	0.101	0.022	
Max	0.239	0.208	0.181	0.269	0.263	0.132	0.230	0.287	

William C. Norman, Kampsville Trip 1, Physical Model Data	ואוסתבו המר										
					Repl	Replicate					Return
Probe	A	В	С	D	Е	F	Ð	Н	-	AVG	Velocity m/sec
					Ambient Velocity, m/sec	ocity, m/sec					
-	0.3689	0.3338	0.3691	0.3714	0.3729	0.3830	0.3715	0.3775	0.3589	0.3674	
2	0.5204	0.5086	0.4990	0.5202	0.5244	0.5239	0.5052	0.5017	0.5346	0.5153	
З	0.5076	0.5327	0.4960	0.5139	0.5196	0.5224	0.5170	0.5188	0.5165	0.5161	
4	0.5549	0.5533	0.5268	0.5361	0.5491	0.5458	0.5354	0.5240	0.5671	0.5436	
5	0.5187	0.5422	0.5256	0.5381	0.5507	0.5052	0.5233	0.5404	0.5467	0.5323	
9	0.5038	0.5098	0.5086	0.4712	0.4750	0.4477	0.4594	0.4654	0.5260	0.4852	
7	0.5172	0.4913	0.5024	0.5298	0.5202	0.5001	0.5005	0.5085	0.5104	0.5089	
œ	0.3844	0.3859	0.3763	0.3865	0.3793	0.3712	0.3668	0.3822	0.3746	0.3786	
					Impact Velc	Impact Velocity, m/sec					
-	0.1748	0.1401	0.1498	0.1442	0.1654	0.1382	0.1757	0.1467	0.1877	0.1581	0.2093
2	0.3325	0.3155	0.3049	0.3313	0.2903	0.2817	0.3235	0.3005	0.3177	0.3109	0.2044
ю	0.2301	0.2965	0.3220	0.3188	0.3467	0.3388	0.3431	0.3283	0.3318	0.3173	0.1988
4	0.2993	0.2793	0.2754	0.2704	0.2622	0.2625	0.2340	0.3047	0.2447	0.2703	0.2733
ъ С	0.3025	0.2692	0.2365	0.2699	0.2623	0.3014	0.2775	0.3278	0.2817	0.2810	0.2513
9	0.3003	0.2851	0.2689	0.2610	0.1764	0.2294	0.2261	0.2415	0.2687	0.2508	0.2344
7	0.3071	0.3263	0.2784	0.3037	0.2683	0.2721	0.2639	0.2766	0.2811	0.2864	0.2225
8	0.1402	0.1499	0.1719	0.1825	0.1441	0.1557	0.1426	0.1836	0.1546	0.1583	0.2203

Table 55William C. Norman, Kampsville Trip 1, Pool El 421.8, ExperimentsConducted on November 18, 1994, Drawdown Distribution

Distance from	Drawdown, cm						
Thalweg, m	А	в	с	Avg			
106 right	6.8	6.9	6.6	6.8			
163 left	5.2	5.8	5.3	5.4			
34 right	7.6	7.7	7.7	7.7			
41 left	6.7	6.9	6.8	6.8			
70 right	7.0	6.7	6.5	6.8			
100 left	5.4	5.4	5.6	5.5			

Experiment	Meter Distance Above Bed, m	Max V,/Max V, (Upper)
	Downbound	
ND58VD-Phys Model	0.22	0.39
Meter 998-(5) ¹	0.31	0.81
ND58VD-Phys Model	1.1	1.14
Meter 999-(5) ¹	1.22	1.08
ND58VD-Phys Model	2.2 ²	1.0
Meter 1000-(5) ¹	2.44 ³	1.0
	Upbound	-
Meter 998-(9) ¹	0.31	0.91
Meter 999-(9) ¹	1.2	1.02
KHVU38-Phys Model	1.5	0.97
Meter 1000-(9) ¹	2.44 ³	1.0
KHVU38-Phys Model	3.0	0.99
KHVU38-Phys Model	4.5 ²	1.0

¹ Number of prototype experiments used to determine average value of *Max V/Max V*, upper. ² Maximum V for this motor used to permelize physical model data

^{2} Maximum V, for this meter used to normalize physical model data.

 $^{\scriptscriptstyle 3}$ Maximum V, for this meter used to normalize prototype data.

REPORT D	OCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of informa and maintaining the data needed, and completing information, including suggestions for reducing th Suite 1204, Arlington, VA 22202-4302, and to th	g and reviewing the collection of information. Se is burden, to Washington Headquarters Services	end comments regarding this burden es s, Directorate for Information Operations	timate or any other aspect of this collection of and Reports, 1215 Jefferson Davis Highway,
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 1997	3. REPORT TYPE AND DAT Interim report	TES COVERED
 TITLE AND SUBTITLE Physical Forces Study, Kamps 	ville, Illinois Waterway	5	. FUNDING NUMBERS
 AUTHOR(S) Stephen T. Maynord Sandra K. Martin 			
 PERFORMING ORGANIZATION NAM U.S. Army Engineer Waterway 3909 Halls Ferry Road, Vicksl 	ys Experiment Station	8	. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENC See reverse.	Y NAME(S) AND ADDRESS(ES)	1	0. SPONSORING/MONITORING AGENCY REPORT NUMBER
			ENV Report 3
 SUPPLEMENTARY NOTES Copies of this report are avail VA 22161. 	lable from National Technical In	formation Service, 5285 P	ort Royal Road, Springfield,
12a. DISTRIBUTION/AVAILABILITY STA		1	2b. DISTRIBUTION CODE
Approved for public release;	distribution is unlimited.		
velocity and drawdown. The m and prototype data from the K elevations, tow positions, vesso	Illinois Waterway near Kamps nodel was adjusted to account for Kampsville reach. Return veloc el speeds, drafts, and direction re ept near the bed. Physical mod	scale effects based on a con ity and drawdown were d elative to flow. The vertic	mparison of physical model etermined for various pool al profile of return velocity
14. SUBJECT TERMS Drawdown Re	turn velocity		15. NUMBER OF PAGES
	ale effects		171 16. price code
-	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICAT OF ABSTRACT	ION 20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89)

IF

9. (Concluded).

- U.S. Army Engineer District, Rock Island, Clock Tower Building, P.O. Box 2004, Rock Island, IL 61204-2004 U.S. Army Engineer District, St. Louis, 1222 Spruce Street, St. Louis, MO 63103-2833
- U.S. Army Engineer District, St. Paul, Army Corps of Engineers Centre, 190 5th Street East, St. Paul,
- MN 55101-1638