
Accelerating Network Traffic Analytics Using Query-Driven Visualization

E. Wes Bethel∗

Computational Research Division

Scott Campbell

National Energy Research Scientific Computing Center Division

Eli Dart

Energy Sciences Network

Kurt Stockinger

Computational Research Division

Kesheng Wu

Computational Research Division

Lawrence Berkeley National Laboratory
University of California

Berkeley, CA 94720

Abstract
Realizing operational analytics solutions where large and com-

plex data must be analyzed in a time-critical fashion entails inte-
grating many different types of technology. This paper focuses on
an interdisciplinary combination of scientific data management and
visualization/analysis technologies targeted at reducing the time re-
quired for data filtering, querying, hypothesis testing and knowl-
edge discovery in the domain of network connection data analysis.
We show that use of compressed bitmap indexing can quickly an-
swer queries in an interactive visual data analysis application, and
compare its performance with two alternatives for serial and paral-
lel filtering/querying on 2.5 billion records’ worth of network con-
nection data collected over a period of 42 weeks. Our approach
to visual network connection data exploration centers on two pri-
mary factors: interactive ad-hoc and multiresolution query formu-
lation and execution over n dimensions and visual display of the
n−dimensional histogram results. This combination is applied in a
case study to detect a distributed network scan and to then identify
the set of remote hosts participating in the attack. Our approach
is sufficiently general to be applied to a diverse set of data under-
standing problems as well as used in conjunction with a diverse set
of analysis and visualization tools.

CR Categories: H.2.8.h [Interactive data exploration and discov-
ery];I.6.9.d [Multivariate visualization]; K.6.M.b [Security]; J.8.o
[Traffic Analysis]

Keywords: query-driven visualization, network security, data
mining, visual analytics

1 Introduction
Visual Analytics is defined in [40] as “the science of analytical

reasoning facilitated by active visual interfaces.” It is motivated by
the need to gain understanding of features, trends and anomalies
present in large and complex data collections. While a thorough
discussion of the immense scope of all possible technical challenge
areas and motivations is well beyond the scope of this paper, inter-
ested readers are directed to [40], which is a broad survey of the
current state of research and development challenges in the field.
From that broad set of challenges, one in particular is the focus of
this paper: how to quickly find “interesting data” in large, multidi-
mensional collections of information. We explore this topic within
the context of a cybersecurity application, namely network traffic
analysis.

The challenges in network traffic analysis are motivated by a
combination of rapid growth in the internet combined with the
time-critical nature of responding to problems that arise. Accord-

∗e-mail: ewbethel@lbl.gov, scampbell@lbl.gov, dart@es.net,

kstockinger@lbl.gov, kwu@lbl.gov

ing to Burrescia [4], traffic volume over ESnet, a production net-
work servicing the U. S. Department of Energy’s research laborato-
ries, has increased by an order of magnitude every 46 months since
1990. This trend is expected to continue into the foreseeable future.
Presently, a typical day’s worth of traffic at an ”average” govern-
ment research laboratory comprises tens of millions of connections
resulting in multiple gigabytes’ worth of connection records. A
year’s worth of such data currently requires on the order of tens of
terabytes or storage.

A broad view of the network traffic analysis problem includes
data collection, storage and management, feature detection, event
characterization, analytical discourse to understand features and
discover their relationships, and timely response to a particular in-
cident. The work we present here explores a subset of the complete
network traffic analysis problem. Namely, we focus on a multi-
disciplinary approach to feature mining and hypothesis testing by
using high performance index/query technology to accelerate dis-
covery of “interesting data.” Nearly all previous works in filter-
ing/searching network traffic analysis have complexity that is lin-
ear with respect to the size of the dataset. In contrast, the work we
present here has sublinear performance complexity. This perfor-
mance characteristic makes it possible to perform interactive anal-
ysis of very large datasets.

The complete “analytics duty cycle” includes time from several
different components that comprise a cyclic process: data access,
data mining, visualization, analyst interpretation, theory refinement
and formulation. The objective of our work is to quantifiably reduce
the time required for a subset of the complete analytics duty cycle,
namely the time for data access, data mining and visualization. The
other elements of the duty cycle – interpretation, theory refinement
and formulation – are subjective and beyond the scope of this paper.

The main contributions of this paper are: (1) objective measure-
ment of how using state-of-the-art index/query technology can re-
duce the filtering or data mining portion of the analytics duty cycle;
(2) an approach to knowledge discovery that relies on multiresolu-
tion queries and statistics from user-defined multidimensional range
queries presented as histograms to perform interactive analysis; (3)
application of this combination to a network data analysis problem
of a realistic size.

The rest of this paper is structured as follows. Section 2 presents
a survey of previous work in fields related to the topic of this pa-
per. Section 3 presents an experiment profiling the performance
of different technologies for performing queries on a realistic-sized
collection of network traffic data. The main point of this experi-
ment is to compare the vastly different performance capabilities of
different technologies. Section 4 contains a network traffic analy-
sis case study where the confluence of scientific data management
and visualization comprise a visual analytics implementation. Our
case study focuses on first identifying the presence of a network
scan through multiresolution exploration of a large network con-
nection dataset, then identifies the remote hosts participating in the
distributed scan.

2 Background and Related Work
As our presentation here represents an interdisciplinary ap-

proach to large-scale network connection data analysis, we give
an overview of previous work in several different areas: network
traffic analysis, network traffic visualization, query-driven visual-
ization and analysis, and indexing and querying.

2.1 Network Connection Record Analysis

A network connection is defined as a set of packets passing be-
tween two hosts within a given time interval that have common
characteristics. An example is a single communication session or
an interaction between two hosts on the Internet. Several standard
tools exist for capturing network connection data. For larger envi-
ronments, routers and switches can provide connection data in spe-
cialized formats such as NetFlow [39] or SFlow [31]. In this study,
we use Bro IDS [30] connection records rather than traditional flow
records. Bro’s connection records contain the same information as
traditional flow records: source and destination IP address, source
and destination port, byte and packet count by source and destina-
tion, connection start and end time, TCP state, and so forth. An-
other factor influencing their use here is the fact we have access to
multiple years’ worth of such data.

For network connection data analysis, the special purpose sys-
tems and software provided by network equipment vendors for an-
alyzing NetFlow and SFlow records are typically optimized for ag-
gregate network usage and trend analysis rather than forensic analy-
sis. Freely available tools are typically architected as a collection of
command-line utilities for collecting, concatenating, filtering, and
summarizing network connection data. Fullmer’s OSU Flow-Tools
[9] is a good example of such a collection that is best suited for
small-scale analysis. Plonka’s FlowScan suite [32] consists of a
collection of perl scripts and modules that provide stateful flow in-
spection and charting/graphing capabilities. Both these store data in
flat files in uncompressed (Flow-Tools) or compressed (FlowScan)
binary formats and use a sequential scan through data for filtering
operations. Navarro [25] uses a relational database for storing and
filtering collections of network connection records via a SQL query
interface. Gates’ SiLK Suite [10] is a collection of software util-
ities for flow data collection and analysis that uses a reduced-size
flow record in conjunction with data compression and file/directory
hierarchies to maximize filtering performance and minimize data
footprint size on disk. SiLK uses bitmaps to accelerate filtering op-
erations based upon IP address, but does not use bitmap indexing or
any other form of indexing structure, other than directory and file
hierarchy, to accelerate query operations.

Our work differs from these previous network data analysis ef-
forts in the following ways. First, our approach uses compressed
bitmap indexing to accelerate filtering operations. While Navarro
[25] uses a relational database, such an approach is known to be sig-
nificantly slower for use in large-scale data management and anal-
ysis than one using compressed bitmap indices [43]. Second, one
of the main messages of this paper is on the value of using efficient
indexing technology to accelerate queries. In contrast, many pre-
vious works are describing collections of software that comprise a
network connection analysis solution suite. The benefits of the ap-
proach we describe here would be applicable to most of these pre-
vious works as well as future projects whose concern is large-scale
network data management and analysis.

2.2 Network Traffic Visualization

Previous work in this space spans several different dimensions,
including visualization of IDS alerts, traffic volume and statistics,
traffic patterns, network topology and network connections.

In terms of visualizing network traffic levels and statistics, one
of the most widely deployed tools is MRTG [26], which relies on
RRDtool [27] for charting and graphing. These tools are in use
at nearly all sites that run production networks for the purpose of
showing traffic levels at multiple temporal resolutions. One short-

coming of RRDtool is that detail in data temporally distant from
the present is lost due to its being summarized and averaged in the
round-robin database.

More recently, [22, 24, 21] describe applications that map net-
work connection variables to axes, then present activity, or lack
thereof, at the appropriate grid location (a form of histogram). The
basic idea is to facilitate rapid visual discovery of features, patterns
or activity in network traffic or network connection data. Other ap-
plications use a linked node concept to convey the presence of traf-
fic or traffic levels between addresses mapped to a grid [24, 44, 11],
to geographic locations or some other representation of network
topology [7, 18], or to a task-oriented metaphorical representation
of internal and external networks [8, 23, 11]. Several other applica-
tions focus on visualization of IDS alerts [17, 23]. Within this con-
stellation of previous visualization research, the work we describe
here focuses on the interactive drill-down to first compute then dis-
play network connection statistics using histograms that show lev-
els of activity satisfying user-defined query conditions to implement
knowledge discovery and hypothesis testing on large collections of
network connection data.

2.3 Query-Driven Visualization and Analysis
The term “Query-Driven Visualization” refers to the process of

limiting visualization processing and subsequent visual interpreta-
tion to data that is deemed to be “interesting.” The basic premise is
to restrict computational and cognitive load either limiting or pri-
oritizing processing and interpretation to features of interest. This
approach is consistent with the needs of many scientific users who
need capabilities to help them find and focus on features hidden in
large, multidimensional data [12].

Within the context of network traffic visualization and analysis,
many previous works include some notion of “data filtering” as part
of their knowledge discovery process. The OSU Flow-Tools [9],
FlowScan [32] and SiLK [10] all have command-line interfaces to
filtering utilities that find records matching a set of criteria. Filter-
ing selection criteria include connection record variable values like
source or destination IP or port number, IP protocol, interface num-
ber, and autonomous system number. For most of these systems,
filtering is performed using a sequential scan through flat files, and
the computational complexity of such an approach is O(n) where n
is the number of connection records.

Swift-3D [18], an integrated data visualization and exploration
system, provides for query expressions using a C-style expression
that are translated into C code, compiled into shared objects and
dynamically linked into the application. This approach offers flex-
ibility similar to that of awk and sed but with the speed of com-
piled code. This particular work achieves high performance by us-
ing Direct-IO to bypass the kernel, but does not appear to use any
form of indexing to accelerate the search process. This approach is
also O(n) in computational complexity with respect to data size.

Other network analysis and visualization applications use the no-
tion of filtering to implement a form of query-driven visualization
and analysis. [24] uses interactive filter manipulation to reduce the
amount of TCP activity on a per-port basis that is processed and dis-
played. VisFlowConnect [44] provides inclusive or exclusive port
filtering, filtering based upon IP protocol, transfer rate, or packet
size. [17] applies data range filtering to IDS alert output within the
context of visual analysis. [23] employs what can be thought of as
visual filtering by using LOD-based techniques to simplify the vi-
sual display of less relevant IDS alert information. The NVisionIP
system [20] allows an analyst to use an iterative process of first vi-
sually exploring data (activity), transforming the visual pattern into
a symbolic rule, then searching the data sources for that pattern us-
ing the symbolic rule. In effect, this is the same type of approach
we use here.

The idea of query-driven visualization has had an impact in many
other areas outside of network traffic analysis. The VisDB system
combines a guided query-formulation facility with relevance-based

visualization [15]. Data items are ranked in terms of relevance to
a query, and the top quartile of most relevant results are then in-
put to a visualization and rendering pipeline. This approach results
in O(n) complexity. The TimeFinder system [13] supports interac-
tive exploration of time-varying data sets by providing the ability to
quickly construct queries, modify parameters, and visualize query
results. A query is formed by manually “drawing” a rectangular
box on a 2D plot where the x-axis represents time and the y-axis
represents the data range. Each such rectangular box is called a
“timebox” and comprises a range query. A user forms a multidi-
mensional range query through the union of several timeboxes. The
query results are presented in a fashion that implements a form of
data mining – more detailed information about the items satisfying
the query are presented in a separate window. TimeFinder reads all
data into memory and is therefore able to operate on only modest-
sized datasets and its filtering algorithms appear to be sequential in
nature – also O(n) complexity.

Our work differs from previous efforts in the following ways.
First, our application supports the formulation and execution of
queries over any number of connection record variables: a multidi-
mensional query produces a multidimensional histogram. Second,
our application uses histogram display for query output and inter-
action for query formulation. Complex compound queries may be
built up using a combination of selection boxes on histograms (sim-
ilar to TimeFinder), or via a query string for less regular query ex-
pressions. Third, queries are multiresolution in the sense that the
user specifies the granularity of the resulting histogram. This ap-
proach provides the ability to quickly generate query and visual
results at a large temporal granularity (context), then target subse-
quent queries and display at finer temporal or other resolution (fo-
cus). Fourth, previous works in network traffic analysis and visual-
ization are either silent on the size of dataset they study or indicate
a data set size that is “relatively small.” The term “relatively small”
means traffic or summary information ranging from a few minutes
to a few weeks in time. Our work shows performance and analysis
results on 42 weeks’ worth of network connection data containing
2.5 billion connection records.

The idea of applying compressed bitmap indexing to accelerate
the visualization process was previously described in [37]. The per-
formance of compressed bitmap indexing was compared to that of
search-accelerating algorithms in isocontouring. We are extending
the work of [37] in this paper by: applying indexing and query-
ing techniques to network connection data analytics; providing a
performance comparison between several different filtering, or data
mining technologies; capitalizing upon statistical information in the
data management infrastructure to create easy-to-comprehend vi-
sual displays; combining all technologies into an integrated frame-
work for rapid knowledge discovery; demonstrating the combi-
nation’s applicability on a realistic-sized network connection data
analysis problem.

2.4 Indexing and Querying
As has been discussed in previous related work, many network

traffic analysis applications provide the ability to locate records that
match a set of user-defined criteria: IP number of source or desti-
nation, packet arrival rate, etc. The sequential scan approach used
in nearly all related previous works has computational complexity
of O(n), where n is the number of connection records or packets.
Algorithms with such performance do not exhibit desirable scal-
ing performance on realistic-sized problems where query response
time is a concern. As with previous work, our approach is to im-
plement compound ad-hoc range queries of the form “StartTime >

20050501 AND 10.102.0.0 <= SourceIP <= 10.105.255.255.”

Accelerating searches through the use of an indexing structure
has been well-studied in the field of computer science [16]. One
tradeoff in this area is balancing update and query performance:
when a record is updated, the indexing structure must also be up-
dated. In our application, existing data records are never modified:

ours is an append-only operation since we never change existing
network connection records. Therefore, we look to solutions that
optimize query response to reduce search time.

Roughly speaking, algorithms for index/query can be decom-
posed into two broad classes: tree-based and non-tree-based. Most
tree-based indexing methods suffer from what is known as “the
curse of dimensionality” in which adding more dimensions (or,
more generally, variables or attributes that are indexed and search-
able) results in an exponential growth in storage and processing re-
quirements [1]. Tree-based multi-dimensional indexing structures,
like the kd-tree [2], exhibit exponential growth in complexity and
storage with increasing dimensionality. Such characteristics are not
desirable given our objective of achieving sublinear performance
for queries on large, multidimensional datasets.

Alternatives that don’t suffer from exponential complexity with
increasing dimensionality include bitmap indexing (BI) and the
projection index. BI, which is a part of many commercial database
systems, is efficient for low cardinality attributes [28] and high car-
dinality attributes through Word Aligned Hybrid coding (WAH)
[43]. In a bitmap index, one bitmap is allocated for each distinct
value of the indexed attribute, where each bitmap has as many bits
as the number of records in the indexed dataset. The size of the
index grows linearly with the attribute cardinality. Floating-point
data may be indexed and searched in BI via one of several differ-
ent types of binning strategies that place an artificial upper bound
on attribute cardinality. There are a number of strategies for reduc-
ing the size of a bitmap index, including binning [35, 36], multi-
component encoding [5], and compression [14, 42]. WAH com-
pression was proven to keep the index sizes compact as well as to
significantly reduce the query processing time compared to other
indexing schemes; its worst-case computational search complexity
is proportional to the number of items matching the search criteria,
the theoretical optimum [43].

The projection index [29] extracts the attribute values and stores
them separately so that only those attributes relevant to a query
are loaded into memory. The results of queries over individual
attributes are intersected to produce a final result that matches all
attribute conditions. The projection index forms the basis of ROOT
[3], which is a software system for the management and analysis of
large collections of high energy physics data. ROOT is in use today
at several large facilities that routinely collect and analyze terabytes
of detector event data, and is widely accepted as the “gold standard”
for data management and analysis in the high energy physics com-
munity.

Another indexing approach, called the Vector Approximation
file (VA-File) [41], is designed for similarity searches in high-
dimensional vector spaces. Each indexed attribute is approximated
by a set of feature vectors represented as a bit string of a predefined
length. Since the VA-File does not partition the vector space with a
tree-like data structure, it does not suffer from the curse of dimen-
sionality. The VA-File is particularly efficient for processing multi-
dimensional queries that cover all indexed attributes. However, for
multi-dimensional queries that cover only a subset of the indexed
attributes (partial similarity queries), there is additional overhead
involved since the entire VA-File must be read into memory. The
partial VA-File [19] overcomes this overhead by storing each set
of vectors per indexed attribute in a separate file as opposed to
storing all sets of feature vectors in a single file. Thus, the par-
tial VA-File performs better than the VA-File for partial similarity
queries. However, for multi-dimensional queries that cover all in-
dexed attributes, the VA-File outperforms the partial VA-File. In
essence, the (partial) VA-File is very similar to a certain type of
bitmap index. However, a direct comparison of the partial VA-file
with bitmap indices is still an open research problem.

For our append-only data collection, BI’s performance charac-
teristics for update and query response make it a good choice for
our application. Later in Section 3, we compare the performance of

BI with that of ROOT’s projection index implementation for locat-
ing interesting network connection records based upon user-defined
ad-hoc queries.

3 Query-Driven Network Traffic Analysis

Performance Study
In this section, we measure the performance of three different

technologies for discovering “interesting data” in a large network
connection dataset. We begin with three background sections. The
first describes the network traffic data we use in the performance
measurements as well as in Section 4’s case study. The second iden-
tifies the experiment’s computing environment. The third focuses
on each of the three competing implementations. The performance
study consists of two sets of tests – serial and parallel – for each of
the three competing technologies.

3.1 Network Traffic Data
The dataset we use in our performance experiments and case

study consists of network connection data from over a 42-week
period consisting of 2.5 billion records. The data source is a Bro
system running at the National Energy Research Scientific Com-
puting Center (NERSC). While Bro is best known for its role as
a security device, it can also produce network connection records.
Each record contains the “standard” set of network connection vari-
ables: IP addresses, ports, duration, rate, TCP state, and so forth.
We save all variables of each record in flat files using an uncom-
pressed binary format for a total size of about 281GB. To increase
query efficiency, we have split IP addresses into four octets A, B, C
and D. For instance, IPSA refers to the class A octet of the source
IP address. The bitmap indices themselves require a total of about
78.6 GB of space. We created a standalone utility that generates the
indices: it uses FastBit [34] to generate compressed bitmap indices
from the connection data. While these indices are about one-third
the size of the original data, tree-based alternatives (e.g., B-trees)
typically require about three times the space of the original data.

3.2 Computing Environment
We use a single computing platform for both the performance

experiments and the network traffic analysis case study. The plat-
form is an SGI Altix comprised of 32 IA64 1.4Ghz processors,
192GB of RAM and 40TB of fiberchannel RAID capable of de-
livering 500GB/s in sustained I/O performance. We chose this plat-
form due to its combination of vast amounts of memory and its
high-performance I/O to secondary storage. Such platforms are
well-suited to data intensive analysis and visualization tasks.

3.3 Query Implementation
For the purposes of measuring and comparing query response

time, we use three different approaches. The first is representative
of the type of technology typically used in production networks
for traffic and security analysis. The second is projection indices
from the ROOT implementation, which is in widespread use for
data management and analysis of large-scale high-energy physics
data. The third is the FastBit implementation of compressed bitmap
indexing.

The first approach is a series of scripts and shell-based tools
(awk, grep, etc.) that parse and search through an ASCII version
of the connection records. At first glance to one outside the net-
work security business, this approach may seem to be naı̈ve. In fact,
this approach is widely used in network traffic analysis to overcome
limitations caused by proprietary data formats and the frequent need
to perform different types of ad-hoc analysis. Shell scripts and tools
are easy to create and change, readily shareable, and transportable
across platforms. They are relatively slow compared to compiled
and optimized applications. This approach has has O(n) complexity
– all data records must be examined in the search for those that meet
a given set of criteria. Historically, network analysts typically work
with relatively small collections of data – hours’ or days’ worth of
traffic. For those small data sizes, script-based tools typically exe-

cute with a duty cycle on the order of 10s or 100s of seconds. Since
we are tackling a much larger problem in this paper – 42 weeks’
worth of network traffic – there is value in comparing performance
with commonly used methods.

Both the second and third query types are accelerated with in-
dexing. The second type uses ROOT’s implementation of projec-
tion indices. For the third type, we extended ROOT so that it uses
FastBit’s compressed bitmap indexing. To support this type of dual-
mode use, we created two separate versions of the network traffic
data – one organized specifically into ROOT’s projection index for-
mat, and one that uses FastBit’s native data storage format.

3.3.1 Serial Range Query Performance

To establish a performance baseline, we measure the time re-
quired to answer the following three-dimensional network traffic
analysis query (i.e., a query comprised of three variables): “select
IPSB, IPSC, IPSD where IBSB < 100 AND IPSC < 100 AND IPSD

= 128.” This query locates those network connections originating
from a given range of IP addresses, and is not geared towards any
particular network analysis scenario. We perform this query on 42
weeks’ worth of network data.

The time required to answer this query using “typical network
traffic analysis software” is approximately 51,000 seconds. 1 With
ROOT’s projection indices, the time required to answer the query is
1269 seconds. With ROOT’s FastBit implementation, the time re-
quired to answer the query is 419 seconds. This factor of three per-
formance improvement is consistent with previously published re-
sults comparing multidimensional query performance on large col-
lections of high energy physics data [38].

3.3.2 Parallel Exact Match Query Performance

Like many other endeavors in high performance computing, data
intensive operations stand to benefit from parallelism. We imple-
mented a battery of tests to measure the performance of the three
competing technologies when run in a parallel configuration. We
ran tests using 1, 2, 6, 13 and 21 processors – these levels of par-
allelism were chosen so that each processor is responsible for an
equal number of weeks’ worth of network traffic data. Since there
is variation in the amount of connection data from week to week,
a by-week domain decomposition does not ensure even load bal-
ance in terms of computation or I/O. For these tests, we used a
variant of a query that appears in Section 4: find all records where
(DP==5554) and (STATE==1) and (IPSA==220) and (IPSB==184)
and (IPSC==26). This particular query is one of several that com-
prise the analysis Case Study in Section 4.

The results are summarized in Table 1. The first column
shows the number of processing elements (PEs). The second
column shows the query response time for evaluating the 5-
dimensional query with the shell-based approach. Columns three
and four show the performance results of ROOT/Projection Index
and ROOT/FastBit. The uniprocessor ROOT/Projection Index time
is comparable here to that of Section 3.3.1 – this approach has O(n)
complexity. The ROOT/FastBit approach uses much less time to
answer this query than the one in Section 3.3.1 for two reasons:
(1) because the new query selects many fewer records, and (2) the
bitmap indices we use in these tests are better suited for equality
than range queries. The shell-based performance decreases com-
pared to that shown in Section 3.3.1 due to increased awk process-
ing logic. None of these three approaches shows optimal scalability
due to by-week load imbalance.

In earlier work, Gates [10] reports that precompiled binaries op-
erating on binary data exhibit about a three-fold speed increase
compared to shell-based scripts that rely on UNIX utilities for ma-
nipulating data. We would therefore expect about the same level of
improvement to our shell-based script performance data here if we

1Our “shell scripts” consist of a mixture of awk and grep run in a Bourne

shell script. Whether processing time would be substantially reduced by

using “perl” is an open question, but outside the scope of this paper.

were to use on of FlowScan or Flow-Tools. Even with that level
of improvement, these tools, which have no indexing capabilities,
would still be one to two orders of magnitude slower that ROOT’s
projection index implementation.

PEs Shell-based ROOT/Projection Index ROOT/FastBit

1 156381.14 1357.07 5.36
2 71835.32 600.05 3.72
6 21952.12 214.14 2.66

13 9389.96 113.88 2.58
21 2237.53 98.95 2.05

Table 1: Parallel performance evaluation of a 5-dimensional query
over 42 weeks’ worth of network connection data: Find all records
where (DP==5554) and (STATE==1) and (IPSA==220) and
(IPSB==184) and (IPSC==26). The time is reported in seconds.
These results highlight the performance gains that result when re-
ducing computational complexity from linear to sublinear with respect
to the data size. Timings for shell-based tools are extrapolated from
a battery of parallel runs on 30-day collections to the full 42 weeks.
These results indicate that use of highly efficient index and query
technology can dramatically reduce the search/filtering phase of the
analytics duty cycle.

4 Network Traffic Analysis Case Study
In this section, we present a case study illustrating how the com-

bination of fast search/query operations combined with interactive
analytics and visualization gives rise to a highly practical and effi-
cient methodology for network traffic analysis. For this case study,
we use the same 42 weeks’ worth of network data and computing
platform as in Section 3. The case study shows how an iterative
process of visual inspection and data mining leads to the discovery
of a distributed scan.

A distributed scan is a specialized form of a “port scanning” at-
tack in which multiple distributed hosts systematically probe for
vulnerabilities on a set of hosts. A specialized form of distributed
scanning involves attacking hosts that have themselves been com-
promised and conscripted for use in a distributed scan attack by a
third party. The third party acts as a “central authority” for manag-
ing the attack. This form of distributed scan is known as a “bot-net”
attack.

4.1 Visual Analytics Application Overview
To achieve the results we present here, we constructed a custom

interactive visual analytics and data mining application and used it
to discover a distributed scan. The application makes calls to Fast-
Bit [34] to perform network traffic data I/O and queries. FastBit
provides the ability to return the number of items that would satisfy
a query, and our application leverages this capability to rapidly con-
struct and display histograms. These histograms, combined with vi-
sualization and interaction, provide the basis of our visual analytics
application. The visualization and rendering portion of our appli-
cation uses OpenRM Scene Graph [6] and the GUI is built using
FLTK [33].

The application’s use pattern is as follows. First, the user loads
a FastBit metafile containing information about the number of vari-
ables and indices like data type, min/max values, number of bins
per variable, and so forth. Next, the user selects any of the vari-
ables for display. The application then asks FastBit for a histogram
indicating the number of connection records in the bitmap index
bins. The application provides the means for forming and posing
several different types of queries. The results of a query, which
consist of another histogram, then appear as a new variable in the
application’s list of variables and can then be visualized using one
of several different dimension-appropriate visualization techniques.
A query is formulated by the “cross-product” of range selections
that may span an arbitrary number of connection record variables.

This multivariate cross-product query may be further qualified with
an arbitrary conditional string.

The application provides three different mechanisms for speci-
fying query range selections. The first is an interactive selection
widget for specifying a contiguous range of histogram bins with
a selection box that is similar to Hochheiser’s “timeboxes” [13].
This mechanism may be applied to any of the network connection
variables to produce an n−dimensional query. The second mech-
anism consists of a data starting value, an ending value and a step
size. The application will automatically generate histogram bins
that are evenly spaced over the user’s range selection specified by
the typein. The third is a typein for specifying a set of individual
histogram bins. This set is simply a list of integer values – bins may
be specified in any order, including disjoint, descending, random,
etc. The application’s query engine combines parameters from each
of the three different query specification mechanisms to form an or-
dered n−dimensional query. The field resulting from such a query
is an n−dimensional dataset of V vector elements. The n axes cor-
respond to range selection from each of the n source variables. The
V vector elements are formed by V user-specified histogram bins.
Such a formulation of spatial axes and vector components was con-
venient for this particular case study.

4.2 Network Traffic Analysis
The starting point for our case study presumes an IDS alert has

indicated a large number of scanning attempts on TCP port 5554
(Sasser type worm). That alert may have come from an actual IDS
system, or a phone call or email from a colleague. Given the alert,
our objective is to examine a 42-week collection of data to deter-
mine whether this activity has been occurring and if so, to better
understand its characteristics. Since it is not practical to visually
analyze 42 weeks’ worth of data at one-second resolution, we use
an interactive, multiresolution approach to support context and fo-
cus changes. This iterative approach, which consists of an analyst
posing different filtering criteria to examine data at different tem-
poral scales and resolutions, relies on very fast filtering and query
machinery to achieve interactivity for such a large dataset.

Figure 1: This histogram shows the number of unsuccessful connec-
tion attempts over a 42-week period on ports 2000 through 65535,
with radiation excluded. One axis is destination port, the other is
time at daily resolution. These results confirm a high level of activity
on port 5554 on day 48 (the Seventh Week).

First, we will search the 42 weeks’ worth of data to identify those
ports on which there is a large number of unsuccessful connection
attempts. Figure 1 shows a histogram where one axis is destina-
tion port number and the other is time. Each “bin” in the time axis
represents one week’s worth of activity. The height of each bar rep-
resents the number of unsuccessful connection attempts during a
particular week on a particular destination port across all addresses
within the destination network. We conclude from this stage of the
analysis that there is a high degree of suspicious activity in Week
Seven on destination port (DP) number 5554. The ability to quickly
look at a weekly summary allows us to focus subsequent investiga-
tion within a narrower temporal range.

0

450392

220
450392

 (IPS_A <= 300)&& (STATE==1) && (DP==5554)

Figure 2: This image shows a histogram of unsuccessful connection
attempts during Week Seven to port 5554. The horizontal axis corre-
sponds to the A octet of the source address. The bin with the largest
number of counts is indicated as “220,” which means the source of
the suspicious activity is from a host or hosts having an IP address
where “220” is the first address octet. The bars are colorized such
that red bars lie three standard deviations or greater from the mean,
which in this case is a value close to zero.

The next step is to determine the addresses of the hosts from
which the unsuccessful connection attempts originate. We will use
an iterative approach where we first identify the A octet addresses,
followed by the B, C and D octet addresses. We pose a query asking
for the number of unsuccessful connection attempts to port 5554
during Week Seven over each address within the Class A octet. The
resulting histogram is shown in Figure 2. Each bin in the horizontal
axis is one address from the source Class A octet. The height of
each bar indicates the number of unsuccessful connection attempts
from that Class A address. The largest such spike occurs at 220,
which means that most of the suspicious activity is originating at a
host or hosts within a range of IP addresses of 220 in the A octet. In
this study, the analyst chooses to focus subsequent queries on hosts
having an A address octet of 220.

To aid in quickly and positively identifying anomalies, our ap-
plication provides a toggle on each variable’s display panel to high-
light the “top N” items in a histogram. In addition, it provides a
statistically-based transfer function so that histogram bars are color-
coded by the relationship between a bar’s variance and the standard
deviation of all histogram counts. Bars that are colored red lie about
three standard deviations above the mean histogram count.

0

36461

184
36461

 (IPS_B <= 255)&& (STATE==1) && (DP==5554) && (IPS_A==220)

Figure 3: Here we see that from within the 220 Class A octet, the
Class B address with the most suspicious traffic is 184. Several
potential class B candidates emerge – colored red – and we choose
184 for further investigation. The horizontal axis is the 254 possible
Class B addresses, and the vertical axis is the count of unsuccessful
connection attempts.

We next refine our search to identify the B address octets where
suspicious activity originates. To do so, we refine our previous
query to include only those hosts having an A octet address of 220
along with the previous query conditions. The result is the his-
togram in Figure 3. The histogram spike showing the most activity
occurs at IPSB = 184. While there are several other interesting pos-

sibilities here, like the one at about IPSB = 128, the analyst here
chooses to focus subsequent inquiry on the 184 B address octet.
Using the results from Figures 2 and 3, subsequent inquiries will
focus on connection records from hosts within the 220.184 block
of IP addresses.

0

5209

117
5209

232
5171

74
5010

31
4806

220
4346

26
4184

47
4087

 (IPS_C <= 255)&& (STATE==1) && (DP==5554) && (IPS_A==220) && (IPS_B==184)

Figure 4: This histogram shows levels of suspicious activity on port
5554 during Week Seven across C address octets from the 220.184
IP address block. We will use top seven C addresses for subsequent
inquiry – these show “similar” levels of activity.

The next step is to discover the source host address range within
the Class C octet. Figure 4 shows there are unsuccessful connection
attempts from hosts in several different addresses in the Class C
octet having similar levels of traffic. We hypothesize that hosts on
these seven Class C network segments are part of a distributed scan.

0

4184
 [where IPS_C in {26 31 47 74 117 220 232}] && (IPS_D <= 255)&& (STATE==1) && (DP==5554) && (IPS_A==220) && (IPS_B==184)

Figure 5: This histogram shows levels of suspicious activity across
D address octets to port 5554 during Week Seven from a number
of C addresses within the 220.184 IP address block. The spikes are
color-coded by their associated Class C address. The absence of
duplicate-colored spikes indicates only one D address, or host, per
C octet address is participating in this particular attack. This color-
coding scheme is also used in Figures 6 and 7.

We take this idea one step further to discover the source ad-
dresses within the D octet. Unlike previous queries, each of which
is a straightforward compound range query, we must take a slightly
different approach to find the D octet addresses. Our application
lets us specify a discrete set of variable values to include as part of
a query – in this case, these discrete values are the seven unique
Class C addresses seen in Figure 4. The next query is comprised
of seven different sub-queries – one for each of the seven unique
Class C source addresses. The result is Figure 5, which indicates
traffic from each of the Class D IP addresses corresponds to a sin-
gle Class C address. At this point, we have positively identified
the IP addresses of all the hosts from which the suspicious traffic
originates.

The next step is to look at the problem from a different direction.
Rather than focus on identifying the source host addresses – which
we have now identified – we are interested in discovering their ac-
cess patterns through destination IP addresses. Looking first at the
destination Class C octet, we see in Figure 6 that each of the seven
participating hosts is sending traffic to about 21 or 22 contiguous
class C addresses.

Extending the idea of Figure 6, we we formulate a higher-
dimensional query that produces the histogram shown in Figure 7.
That visualization uses a 3D scatterplot to confirm the expectation

0

220
 (IPR_C <= 255)&& (STATE==1) && (DP==5554) && (IPS_A==220) && (IPS_B==184)

Figure 6: This histogram shows the set of Class C destination ad-
dresses being scanned by each of the source hosts. Note the overlap
in one of the destination address ranges. There are seven different
colored plots in this image; they colored by source host IP number.
Two remote hosts are attempting to scan the same block of destina-
tion class C addresses as evidenced by the “overlay” of red and green
plots. The horizontal axis is destination C octet addresses, and the
vertical axis is the number of unsuccessful connection attempts.

Figure 7: This image shows the coverage in destination IP space by
each of the hosts participating in the distributed scan. The axes are
the destination C and D address octets. We represent an unsuc-
cessful connection attempt at each (C,D) destination address with a
transparent point, and color-code the point based upon the source
host address. Two of the remote hosts are scanning the identical
block of (C,D) addresses. This feature appears as an overlap in the
red-green group in the center of the image.

that attacking hosts are attempting to have uniform coverage in the
destination address space. As with Figure 6, Figure 7 color-codes
each point based upon the IP address of the attacking host. We use
transparent point primitives in 3D for this visualization. Looking
closely at the “red stripe,” it is possible to see the overlay of red
points over green points, confirming the behavior we saw previ-
ously in Figure 6. Figure 7 shows that each attacking host’s scan
pattern is (1) to “march through” all Class D addresses for each
Class C address, and (2) that each has been assigned a contiguous
group of Class C addresses to scan.

4.3 Discussion

Two of the authors on this paper are network security experts
whose job duties include operation of production networking facil-
ities. They both contributed to the design and engineering of this
work, and both are in a good position to evaluate its effectiveness.
Their comments, paraphrased below, are particularly insightful.

Because our visual analytics application processes and visual-
izes statistical information about network traffic data – rather than
actual network traffic data – it affords a certain amount of insulation
from sensitive information. This approach will allow more people
access to network data than otherwise might be possible due to data
sensitivity and data size.

The application’s general design principles result in a system that
is simple to use and easy to understand. The visualizations are very
straightforward and require no complex mental mapping to under-
stand. The simple yet effective user interface and interaction design

means that this type of interactive analytics very accessible since
the learning curve is very shallow and only a passing knowledge of
network traffic data is needed to interpret the results. Their analysis
decisions are, of course, based upon decades’ worth of collective
experience.

Both network experts felt this approach was a very useful method
for determining the components of a distributed scan. Both were
eager to apply the technology to other types of forensic network se-
curity projects. Both were excited by the extremely short duty cycle
in the data mining process. Neither had ever had the opportunity to
explore a single collection of network traffic data of such a large
size.

During the course of this case study, we identified several fea-
tures that would be nice to have in this particular application. One
is the ability to more easily exclude specific items (bins) from a
histogram cross-product. This feature would make it easier to elim-
inate “radiation noise” from the display (i.e., this term refers to
known scanning traffic). Another is the ability to compute and dis-
play statistical information from the data distributions. A third is
the ability to filter based upon temporally-based statistics.

5 Conclusion
In an information-dominated age, the ability to quickly and ac-

curately understand data makes the difference between success or
failure in science, business, medicine and education. The work we
have presented in this paper takes direct aim at reducing the search-
ing and filtering portion of the analytics duty cycle. Our approach
blends technologies from data management, visualization, analysis
and interactive discourse. Our network traffic analysis case study
highlights how such a combination provides new capabilities en-
abling rapid detection and analysis of a distributed network scan.

To reduce the searching and filtering portion of the analytics
duty cycle in network connection data analysis, we have lever-
aged several different concepts. First, we accelerate filtering by
using compressed bitmap indices. Second, our visualization tech-
niques are centered about the idea of generating and displaying
statistical data (histograms) that is readily available from the com-
pressed bitmap indexing infrastructure. Such an approach supports
rapid context/focus analysis, which has proven crucial in our net-
work connection data analysis case study. Third, complex mul-
tiresolution and multidimensional queries are automatically con-
structed through “histogram cross-products,” which has proven to
be a highly effective visual analytics technique for data mining. We
demonstrated these concepts on a realistic-sized dataset consisting
of about 2.5 billion records of network connection data collected
over a 42-week period.

Acknowledgement
This work was supported by the Director, Office of Science, Of-

fice of Advanced Scientific Computing Research, of the U.S. De-
partment of Energy under Contract No. DE-AC02-05CH11231.
The authors wish to acknowledge the contributions by Steven A.
Smith, Los Alamos National Laboratory; Brian Tierney and Jason
Lee, Lawrence Berkeley National Laboratory to a LBNL Technical
Report LBNL-59166, which is a predecessor of the work reported
in this paper. The authors wish to particularly thank Smith for a
suggestion that evolved into the inspiration for using FastBit’s his-
togram bins as the source of visual analytics in performing guided
query formulation.

References
[1] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton

University Press, 1961.

[2] John Bentley. Multidimensional Binary Search Trees Used for Asso-

ciative Search. Communications of the ACM, 18(9):509–516, 1975.

[3] Rene Brun and Fons Rademarkers. ROOT – An Object Oriented Data

Analysis Framework. In Proceedings of the AIHENP 1996 Workshop,

pages 81–86, 1997.

[4] Joe Burrescia and William Johnston. ESnet Status Update. Internet2

International Meeting, 2005.

[5] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation.

In Proceedings of the 1998 ACM SIGMOD: International Conference

on Management of Data, pages 355–366, New York, NY, USA, 1998.

ACM press.

[6] R3vis Corporation. OpenRM Scene Graph. http://www.openrm.org,

1999-2006.

[7] Kenneth C. Cox, Stephen G. Eick, and Taosong He. 3D Geographic

Network Displays. SIGMOD Rec., 25(4):50–54, 1996.

[8] Mike Fisk, Steven A. Smith, Paul Weber, Satyam Kothapally, and

Thomas Caudell. Immersive Network Monitoring. In Proceedings

of the 2003 Passive and Active Measurement Workshop, April 2003.

[9] Mark Fullmer and Steve Romig. The OSU Flow-tools package and

Cisco Netflow Logs. In Proceedings of the 14th Systems Administrator

Conference (LISA 2000), pages 291–303, 2000.

[10] Carrie Gates, Michael Collins, Michael Duggan, Andrew Kompanek,

and Mark Thomas. More NetFlow Tools: For Performance and Se-

curity. In Proceedings of the USENIX18th Systems Administration

Conference (LISA 2004), pages 121–131, November 2004.

[11] John Goodall, Wayne Lutters, Penny Rheingans, and Anita Kom-

lodi. Preserving the Big Picture: Visual Network Traffic Analysis

with TNV. In Proceedings of the 2005 Workshop on Visualization for

Computer Security, pages 47–54, October 2005.

[12] Bernd Hamann, E. Wes Bethel, Horst Simon, and Juan Meza. The

NERSC Visualization Greenbook: Future Visualization Needs of the

DOE Computational Science Community Hosted at NERSC. The

International Journal of High Performance Computing Applications,

17(2):97–124, 2002.

[13] Harry Hochheiser and Ben Shneiderman. Visual specification of

queries for finding patterns in time-series data. In Proceedings of Dis-

covery Science, pages 441–446, 2001.

[14] Theodore Johnson. Performance measurements of compressed bitmap

indices. In Proceedings of the 25th International Conference on Very

Large Data Bases, September 1999.

[15] Daniel Keim and Hans-Peter Kriegel. Visdb: Database exploration

using multidimensional visualization. IEEE Computer Graphics and

Applications, 14(4):40–49, 1994.

[16] Donald Knuth. The Art of Computer Programming, 2nd Ed., Volume

3. Addison-Wesley, 1998.

[17] Anita Komlodi, Penny Rheingans, Utkarsha Ayachit, John Goodall,

and Amit Joshi. A user-centered look at glyph-based security visu-

alization. In Proceedings of the 2005 Workshop on Visualization for

Computer Security, pages 21–28, October 2005.

[18] Eleftherios E. Koutsofios, Stephen C. North, Russell Truscott, and

Daniel A. Keim. Visualizing large-scale telecommunication networks

and services (case study). In VIS ’99: Proceedings of the conference

on Visualization ’99, pages 457–461, Los Alamitos, CA, USA, 1999.

IEEE Computer Society Press.

[19] Hans-Peter Kriegel, Peer Kröger, Mattias Schubert, and Ziyue Zhu.

Efficient Query Processing in Arbitrary Subspace Using Vector Ap-

proximations. In Proceedings of the International Conference on Sci-

entific and Statistical Database Management, July 2006.

[20] Kiran Lakkaraju, Ratna Bearavolu, Adam Slagell, William Yurcik,

and Stephen North. Closing-the-Loop in NVisionIP: Integrating Dis-

covery and Search in Security Visualizations. In Proceedings of

the 2005 Workshop on Visualization for Computer Security, October

2005.

[21] Kiran Lakkaraju, William Yurcik, and Adam Lee. NVisionIP: Net-

Flow Visualizations of System State for Security Situational Aware-

ness. In Internet Proceedings of the 2004 ACM Workshop on Visu-

alization and Data Mining for Computer Security (VizSEC/DMSEC-

2004), October 2004.

[22] Stephen Lau. The Spinning Cube of Potential Doom. Communications

of the ACM, 47(6):25–26, 2004.

[23] Yarden Livnat, Jim Agutter, Shaun Moon, Robert Erbacher, and Ste-

fano Foresti. A visual paradigm for network intrusion detection. In

Proceedings of the 2005 IEEE Workshop on Information Assurance

And Security, June 17–19 2005.

[24] Jonhathan McPherson, Kwan-Liu Ma, Paul Krystosek, Tony Barto-

letti, and Marvin Christensen. Portvis: A tool for port-based detection

of security events. In Proceedings of CCS Workshop on Visualization

and Data Mining for Computer Security, ACM Conference on Com-

puter and Communication Security, October 2004.

[25] John-Paul Navarro, Bill Nickless, and Linda Winkler. Combining

Cisco Netflow Exports with Relational Database Technology for Us-

age Statistics, Intrusion Detection, and Network Forensics. In Pro-

ceedings of the 14th Systems Administrator Conference (LISA 2000),

pages 285–290, 2000.

[26] Tobias Oetiker. Multi router traffic grapher. http://mrtg.hdl.com/.

[27] Tobias Oetiker. Round robin database tool.

http://oss.oetiker.ch/rrdtool/.

[28] Patrick O’Neil. Model 204 architecture and performance. In Sec-

ond International Workshop in High Performance Transaction Sys-

tems. Lecture Notes in Computer Science, vol. 359, Springer-Verlag

4059, 1987.

[29] Patrick O’Neil and D Quass. Improved query performance with vari-

ant indices. In Proceedings of ACM SIGMOD International Confer-

ence on Management of Data. ACM Press, May 1997.

[30] Vern Paxson. Bro: A system for detecting network intruders in real-

time. In Proceedings of the 7th USENIX Security Symposium, January

1998.

[31] Peter Phaal, Sonia Panchen, and Neil McKee. Inmon corporation’s

sflow: A method for monitoring traffic in switched and routed net-

works. IETF RFC 3176, http://www.app.sietf.org/rfc/rfc3176.html,

2001.

[32] Dave Plonka. FlowScan: A Network Traffic Flow Reporting and Vi-

sualization Tool. In Proceedings of the 14th Systems Administrator

Conference (LISA 2000), pages 305–317, 2000.

[33] Easy Software Products. The fast light toolkit. http://www.fltk.org,

2006.

[34] Lawrence Berkeley National Laboratory Scientific Data Manage-

ment Group. Fastbit. http://sdm.lbl.gov/fastbit, 2006.

[35] Arie Shoshani, Luis Bernardo, Henrik Nordberg, Doron Rotem, and

Alex Sim. Multidimensional indexing and query coordination for ter-

tiary storage management. In Proceedings of the 11th International

Conference on Scientific and Statistical Database Management. IEEE

Computer Society 214225, July 1999.

[36] Kurt Stockinger, Dirk Duellmann, Wolfgang Hoschek, and Erich

Schikuta. Improving the performance of high-energy physics anal-

ysis through bitmap indices. In Proceedings of the 11th International

Conference on Database and Expert Systems Applications, 2000.

[37] Kurt Stockinger, John Shalf, Kesheng Wu, and E. Wes Bethel. Query-

Driven Visualization of Large Data Sets. In Proceedings of IEEE Vi-

sualization, pages 167–174, October 2005.

[38] Kurt Stockinger, Kesheng Wu, Rene Brun, and P. Canal. Bitmap in-

dices for fast end-user physics analysis in root. In Nuclear Instruments

and Methods in Physics Research, Section A – Accelerators, Spec-

trometers, Detectors and Associated Equipment, volume 599, pages

99–102. Elsevier, 2006.

[39] Cisco Systems. Cisco netflow collection engine.

http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/, 2005.

[40] James J. Thomas and Kristin A. Cook eds. Illuminating the Path –

The Research and Development Agenda for Visual Analytics. IEEE

Computer Society Press, 2005.

[41] Roger Weber, Hans-J. Schek, and Stephen Blott. A Quantative Anal-

ysis and Performance Study for Similarity-Search Methods in High-

Dimensional Spaces. In Proceedings of the International Conference

on Very Large Data Bases, September 1998.

[42] Kesheng Wu, Ekow Otoo, and Arie Shoshani. A performance com-

parison of bitmap indices. In Proceedings of the ACM CIKM Interna-

tional Conference on Information and Knowledge Management. ACM

559561, November 2001.

[43] Kesheng Wu, Ekow Otoo, and Arie Shoshani. On the performance

of bitmap indices for high cardinality attributes. In In Proceedings of

the International Conference of Very Large Data Bases, pages 24–35,

2004.

[44] Xiaoxin Yin, William Yurcik, Michael Treaster, Yifan Li, and Kiran

Lakkaraju. VisFlowConnect: NetFlow Visualizations of Link Rela-

tions for Security Situational Awareness. In Internet Proceedings of

the 2004 ACM Workshop on Visualization and Data Mining for Com-

puter Security (VizSEC/DMSEC-2004), October 2004.

