
PNNL-17237

Provenance Store Evaluation

P Paulson
T Gibson
K Schuchardt
E Stephan

March 2008

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor Battelle Memorial Institute, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America
Available to DOE and DOE contractors from the

Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;

ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov
Available to the public from the National Technical Information Service,

U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

PNNL-17237

Provenance Store Evaluation

P Paulson
T Gibson
K Schuchardt
E Stephan

March 2008

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

Summary

Requirements for the provenance store and access API are developed. Existing RDF stores and
APIs are evaluated against the requirements and performance benchmarks.
The team’s conclusion is to use MySQL as a database backend, with a possible move to Oracle
in the near-term future. Both Jena and Sesame’s APIs will be supported, but new code will use
the Jena API.

iii

Contents

 Summary...iii
1.0 Functional and Performance Requirements .. 8

1.1 Provenance creation, recording, and querying .. 8
1.2 Provenance management ... 8

1.2.1 Data security, Reliability, Availability, and Fault-toleranance 8
1.2.2 Capacity, Scalability, and Extensibility ... 8
1.2.3 Access and Integrity ... 8

1.3 Speed and Latency Requirements ... 9
2.0 Evaluation of RDF Stores for Provenance Recording .. 9
3.0 Overview of Candidate RDF Stores ... 12

3.1 APIs ... 12
3.1.1 Jena .. 12
3.1.2 Sesame ... 12
3.1.3 Mulgara/Kowari ... 12
3.1.4 3Store ... 13
3.1.5 RDF Gateway ... 13
3.1.6 BigOWLIM .. 13
3.1.7 Garlik ... 13
3.1.8 OpenLink Virtuoso .. 14
3.1.9 AllegroGraph ... 14

3.2 Storage Engines ... 14
3.2.1 Full feature SQL-based Relational systems ... 14
3.2.2 Proprietary RDF stores .. 14

4.0 Previous evaluations of RDF Stores .. 14
5.0 Comparison Matrices .. 15

5.1 Storage Engine features ... 15
5.2 Server/API Software features .. 16
5.3 API/Backend Compatibility .. 16
5.4 Query Language Comparison .. 17
5.5 Performance Benchmarks ... 17

5.5.1 Data loading & Provenance insertion .. 17
5.5.2 Loading and querying LUBM data .. 18

iv

6.0 Conclusions ... 19
6.1 Backend Selection ... 19
6.2 API Selection ... 19

7.0 References ... 20

v

Figures

Figure 5.1. Data loading and Capacity...17

vi

Tables

Table 2.1. Criteria applied to multiple system components...10
Table 2.2. Additional criteria for storage component.. 11
Table 5.3. Comparison of Storage Engine Features.. 15
Table 5.4. Server and API feature comparison.. 16
Table 5.5. Compatability between backends and APIs..16
Table 5.6. Query Language Comparison... 17
Table 5.7. Load times for LUBM data...18
Table 5.8. Results for queries.. 19

vii

1.0 Functional and Performance Requirements

We want to support the provenance steps described by , specify 4 phases in the provenance
lifecycle: creation, recording, querying, and managing. The RDF based Provenance store should
support each of the phases.

1.1 Provenance creation, recording, and querying

The provenance store should provide APIs or web services to allow users to specify new
provenance information; it must also support the storage of a large amount of provenance
information. In addition, the store must support queries for all provenance related to some data
instance. This may require substantial time to transitively find all information related to a data
item.

1.2 Provenance management

The system needs to provide tools to support standard data-management tasks. These tasks may
include backups and restore, journaling and crash-recovery, purging, data-reorganization, and
storage optimization.

1.2.1 Data security, Reliability, Availability, and Fault-toleranance

Because the projected customers require global access, the system should be capable of 24X7
operations, which requires online data backup and recovery. Failure of the provenance store
should not prevent the execution of client processes; ideally, local provenance stores can provide
temporary storage in case of network or server failure. Fail-over processing should be provided.

1.2.2 Capacity, Scalability, and Extensibility

Provenance assertions will be generated for every intermediate result generated by the system.
We’re assuming that the result sets will have high granularity—that is, there will not be
provenance associated with each item in a dataset, but the data set as a whole. Historical
provenance records will be kept for a window, but a purge process can be created to remove
records which are unused.

We’re assuming this implies that the capacity must be at least on the order of millions of data-
items. Potentially, the system should be able to scale to the order or trillions of data-items.

1.2.3 Access and Integrity

It is assumed that access to actual data-items will be controlled by client systems. Although not
envisioned for prototype systems, user-level access control should be supported for provenance
records.

The system should support ACID Transaction support and journaling. Once a client receives
confirmation of a commit, all p-assertions submitted as a transaction are guaranteed to persist in

8

the store; if confirmation of a commit is not sent, the persisted store will not reflect any of the
processing steps taken as part of the transaction.

1.3 Speed and Latency Requirements

For provenance creation, recording, and querying, the system should not cause significant delays
to client programs; as much as possible, any additional processing time should be deterministic.

2.0 Evaluation of RDF Stores for Provenance Recording

Using the requirements as a guideline, we can come up with a set of dimensions that can be used
in evaluation of potential RDF Storage systems. The RDF stores under consideration are
composed of several components, some of which are interoperable between systems. A
preliminary decomposition identifies 3 system components—the storage engine (such as MySQL
tables or proprietary file system), API (such as Jena or OpenRdf), and the server software (Joseki
is one example). Many of the dimensions described below apply to only 1 component. In
addition, some capabilities apply only to the query languages the system’s API and server
software support. Table 2.1 outlines criteria to evaluate system components. Table 2.2 gives
criteria that are only applicable to the server component.

9

Table 2.1. Criteria applied to multiple system components
Criterium Requirement

s
Components Description

Web
Interface

1.1 Server, API Ability to support provenance creation, recording, and querying through web services

Query
languages

1.1 Server, API The query language supported, the expressiveness of the query language, and the
acceptance/support of the query language.

Transitivity 1.1
(querying)

Server, API Some queries will involve all items that form the provenance of a particular item. Since existing
query languages such as SPARQL do not support transitivity, this will require walking back
through provenance chains. How this should be implemented – batch processing, interactive
processing, or a built-in reasoner—is an open problem.

Reification 1.2 Storage,API From the user’s point of view, the RDF store will contain statements, or triples. For data-
management purposes, it may be useful to store metadata about those statements. A pure RDF
solution would create reified statements in a separate RDF store—properties, such as last access
time, required access privileges, and other house-keeping details, about the target statements could
then be stored. Some RDF stores, however, might supply low level access to the statements inside
the store, supporting this functionality. This functionally will help support data backups, increase
capacity and scalability through support of purge operations, and support data access by storing
access information with triples.

Community
Support

all… all… Ongoing commercial acceptance and community support will ensure development of new
management tools and integration with new technologies.

Speed and
Latency

1.3 Storage,
Server

Benchmarks should be developed to evaluate stores in terms of the performance of insertion of
new provenance records using a web interface. Insertion should be measured into an existing store
a large number of triples in it (say 15M?) and the performance of queries accessing provenance
information using a web interface. In addition, a combined benchmark should be designed to
perform queries and insertions simultaneously to evaluate potential locking problems.

Capacity 1.2.2 Storage,
Server

A high-capacity benchmark should be created to evaluate volume capacity of RDF stores

10

Table 2.2. Additional criteria for storage component
Criterium Requirement

s
Description

Capacity 1.2.2 Ability to store a large number of triples
Multi-volume 1.2.2 Systems that support multi-volume RDF Stores will simplify high capacity data-storage and scale-

ability.
Data Management
Tools

1.2 Data management tools to support maintenance of the RDF Store.

Online Backups 1.2.1 To support Requirement 1.2.1, the RDF store should ideally support online backups, although this
could probably be handled procedurally with most the systems being evaluated.

Shadowing/Replication 1.2.1 In order to provide robustness and fail-safe operations, systems that support database shadowing with
automatic replication are desirable. This will allow automatic fail-over to be implemented so that
updates can be made on any one of several servers, with all servers kept in sync by the data
management system when they come back online.

Access control, Store
level

1.2.3 Does the RDF store enforce user-level access control on the RDF Store? This would allow different
levels of provenance to be stored in different RDF stores, controlling access to provenance information
(design of this would still be difficult – which statements go into which store?). Supports requirement
1.2.3.

Access Control, View
level

1.2.3 An RDF Store that supports access control on views within the underlying RDBMS could offer
flexibility on access control. (But probably not much – still have to decide which view to use….)

Transaction Support 1.2.1, 1.2.3 Does the RDF Store support transactions with commit and rollback and journaling to protect against
hardware failures?

11

3.0 Overview of Candidate RDF Stores

3.1 APIs

3.1.1 Jena

Jena (http://jena.sourceforge.net/) provides
1. An API for manipulating RDF graphs
2. Support for multiple reasoning engines – OWL-DL (through Pellet), OWL-Lite, and RDF

Schema
3. Support for multiple back-end storage systems, including

a. native support for in-memory graphs
b. RDBMS table storage, implemented for Oracle, SQL Server, MySQL, and

Postgres
4. Support for the SPARQL query language
5. Server software (Joseki) that supports the SPARQL query language

Web sources (http://esw.w3.org/topic/LargeTripleStores) indicate installations handling 200M
triples using Postgres as the storage engine.

3.1.2 Sesame

Sesame provides
1. An API for manipulating RDF graphs
2. Server software that supports the SeRQL query language
3. Support for a proprietary, file-based storage system
4. Reasoning over RDF Schema

Version 1.0 of Sesame also supported RDBMS table-based storage, but this has not yet been
implemented for version 2.0. I was unable to decipher the documentation for version 1.0 support.
Web sources indicate fair performance with systems of up to 70M triples.

3.1.3 Mulgara/Kowari

Mulgara is an open-source fork of Kowari. The marketing literature indicates that the design is
meant to be scaleable to extremely large graphs. The system uses memory-mapped files and is
tailored to 64-bit systems. Web sources indicates good performance with stores of 160M triples
(http://esw.w3.org/topic/LargeTripleStores)

Mulgara provides:
1. A server supporting the Itql query/update language
2. A proprietary storage backend

12

http://esw.w3.org/topic/LargeTripleStores
http://esw.w3.org/topic/LargeTripleStores
http://jena.sourceforge.net/

3.1.4 3Store

Web sources (http://esw.w3.org/topic/LargeTripleStores) indicate successful applications
handling 100M triples. This product provides a C language library. Untested since compiling on
cygwin didn’t go very smoothly – probably best on a Unix or Macintosh, but we’re currently
benchmarking on a windows machine. Uses MySql as backend.

Provides
1. Sparql Support
2. Store-level access control
3. Uses MySQL

3.1.5 RDF Gateway

Web sources(http://esw.w3.org/topic/LargeTripleStores) indicate installations handling 262M
triples.

1. Commercial, free for evaluation.
2. RDF Gateway is a complete application and web server that manages a built-in RDF

Store.
3. A server supporting the proprietary RDFQL query language. It looks like SPARQL is

also supported
4. A proprietary storage backend
5. Access control using NT user and groups
6. Transaction Support
7. ‘context’ for statement could possibly support statement reification
8. content-level access control

We were unable to determine if on-line backups are supported.

Documentation for this product was too incomplete to allow me to easily code benchmarks for it,
although it appears feasible.

3.1.6 BigOWLIM

One source claimed that this system handled 1.06B statements – adding more statements through
OWL inferencing, with a load time was approximately 70 hrs.
(http://esw.w3.org/topic/LargeTripleStores).

BigOWLIM is a reasoning and persistence implementation for the Sesame framework. It uses a
proprietary disk storage system and implements RDFS and limited OWL entailment (does not
support OWL-Lite).

BigOWLIM is not open source—it was not tested due to licensing limitations.

3.1.7 Garlik

Handles 1.7B triples, according to http://esw.w3.org/topic/LargeTripleStores. www.garlik.com
describes a data-privacy monitoring company, very little information is given about their

13

http://www.garlik.com/
http://esw.w3.org/topic/LargeTripleStores
http://esw.w3.org/topic/LargeTripleStores
http://esw.w3.org/topic/LargeTripleStores
http://esw.w3.org/topic/LargeTripleStores

technology. The RDF Store is apparently named JXT, but I found no more information about it
using Google.

3.1.8 OpenLink Virtuoso

http://esw.w3.org/topic/LargeTripleStores indicates this store handles over 1B triples. This looks
like a nice commercial product. Evaluation kits are available for 15 days—not evaluated because
we have no license. Supports Sparql.

3.1.9 AllegroGraph

Web sources and company information indicate AllegroGraph can handle billions of triples
(http://esw.w3.org/topic/LargeTripleStores).

AllegroGraph Allegro graph is single threaded server based rdf store. Multi-volume support

AllegroGraph stores a triple store within a single directory
(http://www.franz.com/products/allegrograph/doc/lisp/reference-guide.html).

3.2 Storage Engines

3.2.1 Full feature SQL-based Relational systems

These systems provide scaleability, multi-volumen support, transaction support, and data
management tools. The systems include MySQL, Postgress, Oracle, and SQL server.

3.2.2 Proprietary RDF stores

Most of these systems offer little documentation that details the support given for data-
management tasks, multi-volume support, and transaction support. Proprietary stores include
AllegroGraph, the Sesame Native Store, and Mulgara.

4.0 Previous evaluations of RDF Stores

 reviews several triple stores, including Jena, Kowari, 3Store, and Sesame. The triple stores were
tested in their performance for three specific application tasks—‘configure’, ‘display’, and
‘browse’. In all 3 tasks, when accessing a 21M triple dataset over a network connection, Sesame
performed significantly better than the other contenders.

 examined several RDF stores and chose Jena using Postgres for several reasons, including the
existence of proven data-management tools. They found that neither Mulgara nor Sesame was as
reliable and scaleable as Jena. They found that while Jena’s RDF store was scaleable, its reasoner
was not, and that further design decisions were needed to determine how to best support certain
types of reasoning. It was also found that Joseki queries required reformulating for optimal results
– logically equivelant queries could have a tremendous difference in response times. (Note that

14

http://www.franz.com/products/allegrograph/doc/lisp/reference-guide.html
http://esw.w3.org/topic/LargeTripleStores
http://esw.w3.org/topic/LargeTripleStores

this is also true of SQL queries against an RDBMS store, though more kinks have probably been
worked out over the years)

TripCom provides a good overview of the available RDF stores and their characteristics, but
does not report any peformance results.

5.0 Comparison Matrices

5.1 Storage Engine features

Table 5.3. Comparison of Storage Engine Features
Engine Multi-

Volume
Mgnmt
Tools

Cmmty,
Cmmrcl
Support

Online
Backups

Shadowin
g

Store
Access

View
Access

ACID

MySQL
/MyISAM

? Yes Yes Yes Yes Yes ? No

MySQL
/InnoDB

Yes Yes Yes Yes Yes Yes ? Yes

PostGres Yes Yes Yes Yes Yes ? Yes
AllegroGraph No Few Small No(?) No No No Yes
Sesame No Some Yes No (?) No No No Yes

(?)
Mulgara No No Small No(?) No (?) No No Yes

(?)
RDF Gateway ? Some Small ? No(?) Yes (?) Yes (?) Yes

(?)
BigOWLIM No Some Yes No (?) No No No Yes
OpenLink
Virtuoso

? Yes ? Yes Yes Yes ? Yes

Note that Oracle and SQL Server are not included in Table 5.3. It is assumed that, at the least,
support at least the features supported by MySQL and Postgres.

15

5.2 Server/API Software features

Table 5.4. Server and API feature comparison
System Creation Query

support
Transitivity Reification Community

Support
Reasoning

Joseki (Jena) Yes Sparql No Yes
(through
Jena)

Yes OWL-DL

Sesame Yes SerQL No ? Yes RDFS
Mulgara Yes Itql No ? Small Owl-Lite
3Store ? Sparql ? ? Small ?
RDF Gateway Yes Proprietary RDFS

Reasoning
? Small RDFS

(Some
OWL)

OpenLink
Virtuoso

Yes Sparql,
Proprietary

No Yes Commercial RDFS

AllegroGraph Yes Sparql,
Prolog

Yes
(Prolog)

Yes Small Useful
subset of
OWL

5.3 API/Backend Compatibility

Table does not include rows for systems that are the only users of their RDF store (i.e.,
AllegroGraph).

Table 5.5. Compatability between backends and APIs
System/Backend MySql Postgres Oracle Sql

Server
Sesame Mugara

Joseki (Jena) Y Y Y Y Y Y
Sesame N(1) N N N Y N
Mulgara N N N N N Y
3Store Y N N N N N

Notes

1) Was compatible in version 1, but not yet in version 2

16

5.4 Query Language Comparison

Table 5.6. Query Language Comparison
Language Updates? Community

Support?
Standards
Compliant?

Transitivity?

Sparql No Yes Yes No
SerQL (Sesame) No Yes No No
Itql Yes Small No No(?)
Prolog No No No Yes

5.5 Performance Benchmarks

5.5.1 Data loading & Provenance insertion

Data loading and provenance insertion are evaluated by loading small RDF files, each
representing a provenance record consisting of 5 triples, into the knowledge base. The amount of
time it takes to load 1000 such records is compared against the current size of the knowledge base
as an indication of system scalability. The results are graphed in Figure 5.1,

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

Inserted Records

El
ap

se
d

tim
e

(s
ec

on
ds

)

Jena/MySQL
Mulgara
Sesame2
PostgreSQL

Figure 5.1. Data loading and Capacity

5.5.1.1 Notes

Jena with PostreSQL exhibits the best performance. Jena with MySQL exhibits scaleable
insertion behavior. SesameV2’s behavior is also scaleable.

17

The Mulgara benchmark application initially aborted with an out-of-memory error after inserting
20000 records. Increasing memory for the server allowed more insertions to be made, but it still
aborted after 174000 records.

AllegroGraph’s documentation is very spotty on issues like backups and database parameters. I
had problems setting a parameter called ‘chunk size’. Setting it too small causes one kind of
error, too big another kind. How to select a size is not specified, but it depends, I guess, on how
many triples you plan to store. I was unable to determine a value that worked for the rdf file
addition task – the server aborted if the number was too large, and created too many files if it was
too small.

5.5.2 Loading and querying LUBM data

Different conclusions are drawn when the size of the rdf dataset is increased. Tests using the
Lehigh University Benchmark (LUBM) . The LUBM

…is developed to facilitate the evaluation of Semantic Web
repositories in a standard and systematic way. The benchmark is
intended to evaluate the performance of those repositories with
respect to extensional queries over a large data set that commits
to a single realistic ontology. It consists of a university domain
ontology, customizable and repeatable synthetic data, a set of
test queries, and several performance metrics..

Table 5.7. Load times for LUBM data
Datase
t

Sesame2 Load time
(Seconds)

Jena Load Time
(seconds)

1 22,484 37,220
2 27,269 47,077
3 26,098 56,934

A second benchmark used LUBM datasets to compare Jena and Sesame2 in load times and query
performance. Three different LUBM datasets, each with approximately 6 million triples, were
loaded into Jena and Sesame2 backends. The Jena system used MySql as a backend, Sesame used
it’s native file store. The results, shown in Table 5.7, indicate that while Jena is slower than
Sesame2, the difference is not appreciably different for the size of datasets considered. The
average time for Sesame to add 6 triples to a dataset was 13 microseconds, the average time for
Jena was 31 microseconds.

The query results, summarized in Table 5.8, however, indicate that there are serious problems
with Jena’s query engine in some cases.

18

Table 5.8. Results for queries
Query Sesame 2 (ms) Jena (ms)

1 ?subj <named predicate> ?obj 235 395761
2 <named subject> $pred $obj 204 812
3 $sub $pred <named object> 188 860
4 $sub <named predicate> <named object>.

$sub $pred $obj
203 750

5 $sub $pred $obj FILTER($obj='Literal') 187 error: Out-of-
memory

6 $sub $pred 'Literal' 188 593
error: no results

7 $sub $pred $obj FILTER regex($obj,
'Literal.')

187 error: Out-of-
memory

6.0 Conclusions

6.1 Backend Selection

In the near future, we are still working with prototypes and data, and data integrity is not a serious
issue. The large scale LUBM benchmarks show that the Sesame2 native store’s performance is
orders of magnitude better than the current database backends in query performance, so it will be
used. Perhaps Sesame2 will support a different backend by the time we need it.

In the long term, a backend that uses a standard industry database, such as MySQL, Postgres, or
Oracle is desired. Systems using native backends do not have the history that gives our team
confidence in they’re ability to provide database management tools, access control, 24X7 access,
online backups, etc. Jena has recently provided an additional backend which can use commercial
backends and is optimized for use on SPARQL Queries which may fit the bill . In the long term,
using Oracle as the backend is desired, since it is forseen that many customers will have
experience with supporting Oracle. MySQL will be considered because its open source, it is
installed, and the team is familiar with it.

6.2 API Selection

Two APIs have strong community support and meet the requirements of the team: Jena and
Sesame1. Both can use MySql as a backend and both have similar strengths in supporting queries
and in manipulating RDF graphs. The other APIs seem are either only available commercially,
have limited community support, or are tied to proprietary backends.

Jena’s strengths are its support for a wide variety of backends, strong community support, and
support for complete OWL-DL reasoning. Drawbacks include a perception of over-complexity of
the API and weaknesses in the query optimizer (logically equivalent queries can result in
different execution times).

19

Sesame’s strengths include strong community support, reported faster access speed, and previous
usage at PNL. Its main drawback is lack of support for an RDBMS backend for the current
release—this makes direct performance comparisons difficult.

Given these difficulties and the functional similarity between the two APIs, both APIs will be
supported for the nonce.

7.0 References

20

	1.0Functional and Performance Requirements
	1.1Provenance creation, recording, and querying
	1.2Provenance management
	1.2.1Data security, Reliability, Availability, and Fault-toleranance
	1.2.2Capacity, Scalability, and Extensibility
	1.2.3Access and Integrity

	1.3Speed and Latency Requirements

	2.0Evaluation of RDF Stores for Provenance Recording
	3.0Overview of Candidate RDF Stores
	3.1APIs
	3.1.1Jena
	3.1.2Sesame
	3.1.3Mulgara/Kowari
	3.1.43Store
	3.1.5RDF Gateway
	3.1.6BigOWLIM
	3.1.7Garlik
	3.1.8OpenLink Virtuoso
	3.1.9AllegroGraph

	3.2Storage Engines
	3.2.1Full feature SQL-based Relational systems
	3.2.2Proprietary RDF stores

	4.0Previous evaluations of RDF Stores
	5.0Comparison Matrices
	5.1Storage Engine features
	5.2Server/API Software features
	5.3API/Backend Compatibility
	5.4Query Language Comparison
	5.5Performance Benchmarks
	5.5.1Data loading & Provenance insertion
	5.5.1.1Notes

	5.5.2Loading and querying LUBM data

	6.0Conclusions
	6.1Backend Selection
	6.2API Selection

	7.0References
	17237.pdf
	Prepared for the U.S. Department of Energy

