
 Semi-structured Data Management in the Enterprise: A Nimble, High-
Throughput, and Scalable Approach

David Maluf, David Bell, Naveen Ashish, Chris Knight and Peter Tran
NASA Ames Research Center, Moffett Field, CA 94035, USA

David.A.Maluf@nasa.gov

Abstract

In this paper we describe an approach and system
for managing enterprise semi-structured data that is
high-throughput, nimble, and scalable. We present the
NETMARK system, which provides for a “schema-
less” way of managing semi-structured documents. We
describe in particular detail the unique underlying
data storage approach and efficient query processing
mechanisms given this storage system. We present an
extensive benchmark evaluation of the NETMARK
system and also compare it with related XML
management systems. At the heart of the approach is
the philosophy of a focus on most common data
management requirements in the enterprise, and not
burdening users and application developers with
unnecessary complexity and formal schemas.

1. Introduction

Searching, extracting, and integrating information
from documents, in a simple yet precise manner, is a
key requirement in many enterprise-wide information
systems applications. The term ‘documents’ here
includes textual documents such as reports and other
documents in formats such as MSWord, PDF or others,
spreadsheets, presentations in formats such as MS
Powerpoint etc.1 Such information is typically “semi-
structured” in that there is some structure in the
documents but not exactly a formal structure such as
that imposed by a database schema or an XML
DTD[20]. While there are indeed systems available for
managing semi-structured or unstructured data, such as
DocuShare[6] from Xerox, products from companies
like Verity2 and Autonomy3 and research systems for
semi-structured or XML data management[9,11,15],
we have designed a system that is significantly more

1 Indeed, 80% of the enterprise data is stored in such

unstructured or semi-structured documents, instead of in
databases, according to research firm Gartner

2 www.verity.com
3 www.autonomy.com

flexible and simple from a user perspective and
scalable from an application development perspective.
We describe the NETMARK system[13] that the
NASA Ames Research Center4 has developed and that
has been used for several NASA5 enterprise data and
project management applications. The focus of this
paper will particularly be on the data storage and query
processing aspects of NETMARK

A key distinguishing feature of the NETMARK
approach (vis-à-vis other semi-structured data or XML
data management systems) is that it does not require
users (or administrators) to have to formally define the
semantics of the data (schemas) in the documents or
collections of documents. Structure and semantics
information implicit in the document is exploited
instead. This leads to a system where sophisticated
data integration and composition applications can be
built without high schema management overheads, in a
highly scalable manner.

This paper is organized as follows. In section 2, the
basic document query and search paradigm around
which the NETMARK approach is centered is
described. Section 3 contains the technical details of
the approach, focusing first on document storage issues
where a unique node structure representation for
document storage is presented. This is followed by a
description of query processing details. Section 4
provides extensive benchmarking results evaluating
the performance of the NETMARK system followed
by a comparison of NETMARK with related semi-
structured and XML data management systems in
Section 5 and a conclusion.

2. Document Querying

The data querying capabilities in NETMARK are
centered around the notions of context and content in
documents. Context and Content are notions that

4 http://www.nasa.gov/centers/ames/home/index.html
5 http://www.nasa.gov/home/index.html

facilitate perceiving and querying a document by
various components (sections and sub-sections) as
opposed to treating a document as a single unit. A
document typically has an inherent structure, i.e., it can
be perceived to be comprised of various distinct
sections and sub-sections based on that structure. For
instance consider one of the monthly project reports
shown in Fig 1. It comprises of various sections such
as Report Month, Report Year and Performance Status,
and sub-sections such as Technical Status, Schedule
Status etc. A context is essentially a section or sub-
section within a document. So for instance for the
monthly project report document as described above,
the Report Year, Org, Performance Status, Tech Mgmt
Comment, would all be contexts. The information (for
instance the text) within a context is referred to as
content.

Fig 1. Monthly Report Documents

For instance any text (and figures or tables) in the
Schedule Status context (sub-section) is the content
associated with the Schedule Status context. Context
and content thus are associated in pairs, the content
being associated with a context. As another example,
the contexts for this paper as an example of a
document, are sections such as the Abstract,
Introduction, Document Querying, etc. The query
capabilities in Netmark, built around the notions of
context and content, have been developed based on our
knowledge of the most common and important queries
to documents and semi-structured data in typical

enterprise data applications. A key capability is that of
context search. A context search query, such as
“Context=Budget Comment”6 will return the content
portion in the ‘Budget Comment’ sections (the text in
the Budget Comment section) in all the documents in a
document collection, as illustrated in Fig 2. A context
query thus extracts the specified context (section) from
all documents and returns it to the user.

Fig 2. Context Query Results

Fig 3. Content Query Results

6 This is not the precise query syntax and we do not think it

essential to use the formal and precise Netmark query
syntax here

Fig 4. Context+Content Query Results

Users can also specifying content searches, which are
essentially keyword searches that return all documents
containing the specified search terms. For instance, a
content query such as “Content=Ames” will return all
documents that contain the term ‘Ames’ anywhere in
the document as shown in Fig 3. One can also.
combine context and content searches, for instance a
query such as “Context=Budget
Comment&Content=Ames” returns the “Budget
Comment” contexts (sections) of all documents where
the term ‘Ames’ occurs within the Budget Comment
context (section) as shown in Fig 4.

Thus, as opposed to conventional keyword search
systems which treat a complete document as a single
unit, NETMARK facilitates searching with respect to
specified contexts in the documents. The NETMARK
query language is a language called XDB Query. XDB
Query allows for posing the context and content kinds
of queries over XML documents, as illustrated above.
We will not go into the query syntax details here but
the key features are that context and content search
specifications are appended to a URL that is sent to
NETMARK. An example of a formal XDB query is:

http://larry.aen.nasa.gov:32080/xdbquery/cont
ext=BudgetComment&content=Ames

In this URL we may also specify an XSLT stylesheet
which specifies how the results are to be formatted and
composed into a new document. Fig 5. provides an
illustration of using XDB Query to query the data in
NETMARK and then using XSLT to format the
results. XSLT transformation is done using the Xalan
XSLT processor [19].

The basic query syntax for XDB queries is:
https://<server_address>/xslt/xdbquer
y/{[context=<context_keys>]|[&content
=<content_keys>]}|[&scope=<relative_u
rl_to_folder>]|[&syntax={html, xml,
ascii}]|[&sxslt=<relative_url_to_xslt
_file>]

Fig 5. Formatting Results

Context and content based queries provide powerful

primitives for querying and integrating data from semi-
structured data documents. Also the notions of context
and content extend to documents such as presentations
(in say Powerpoint) or Excel spreadsheets as well. For
instance one might require the ‘Budget’ sections out of
each presentation in a collection of powerpoint
presentations and a context query for ‘Budget’ on that
collection would facilitate that. There are other
parameters that can be specified in context or content
queries such as controlling the maximum number of
documents returned, the “depth” of the result items and
others but we will not go into those details here.
Indeed such query and formatting capabilities have
proved to be quite powerful and adequate for quickly
developing several large scale applications (entailing
significant enterprise data extraction and integration)
in the NASA domain. How NETMARK provides
simple yet powerful document querying capabilities is
described in the following section

+

3. Technical Details

In this section the technical details of NETMARK are
described, in particular the storage and query
processing aspects. Note that NETMARK serves as a
semi-structured data management system and also
provides (integrated) access to legacy data sources in
enterprises[13]. The NETMARK system architecture is
first presented. Then a unique approach to storing
semi-structured data documents is presented followed
by a description of the query processing approach.

3.1 Integrated Legacy Data and XML Data
Access
The NETMARK system architecture is outlined in Fig
6. below. We will not delve into the complete
architectural details in this paper and refer the reader
to[13] for those.

Fig 6. Netmark System Architecture

What is to be noted for this paper is that the underlying
data store in NETMARK is a relational database
system. The other components shown are those that
insert new documents into the NETMARK data store
(i.e., the NETMARK DAEMON and the SGML
PARSER described in a later sub-section) and the
NETMARK APIs for end user clients.

3.2 Data Storage in NETMARK
In the section we describe how semi-structured
documents are stored internally in NETMARK. The
approach has been to keep the underlying
representation simple, yet expressive enough to store
hierarchical relationships in documents.

3.2.1 Node Structure Representation
In related systems, for instance XML data management
systems that have been built on top of relational
database systems [17], we have specified mechanisms
for mapping XML DTDs to relational schemas and
thus storing XML data in corresponding relational
tables. Different XML DTDs are mapped to different
sets of relational tables. NETMARK uses a simpler
and more flexible approach where the same (two)
relational tables are used to represent and store the data
in any semi-structured document. The approach is
based on a searchable node structure which is the
eventual representation for documents that are stored
in the system. ‘Raw’ documents (initially in any format
such as Word, PDF etc.) are first converted7 into XML,
which describes the document as decomposed into
various sections and sub-sections. The XML
representation essentially captures the various contexts
and content associated with each context in a
document. For instance the XML representation of this
paper would be as shown in Fig 7.

Fig 7. Context and Content Segmentation

We begin by assigning a node to each section or sub-
section in a document. A node is basically the
‘container’ for a context or content in the document.
Each node has an assembly of labels or attributes for
the node. The attributes for each node include the
following:
DOCID: A unique number assigned to the document.
NODEID: A unique identifier for each node.
NODENAME: A descriptive name for the node

7 The NETMARK system includes converters which

automatically convert documents in Word, PDF, Excel and
other formats to XML. The converters have been built on
top of frameworks such as Apache Jakarta POI
(http://jakarta.apache.org/poi/) and JPedal for PDF
(http://www.jpedal.org/)

…..

<Context>Abstract</Context>

<Content> This paper describes an … </Content>

<Context>Introduction</Context>

 <Content> Searching, Querying and Integrating ...
</Content>

<Context> Document Querying </Context>

 <Content> A document typically has an inherent …
</Content>

….…
NETMARK
XML Store

Relational
Database

NETMARK
WEB INTERFACE NETMARK

DAEMON

SGML
PARSER

CLIENTS

NETMARK
EXTENSIBLE APIs

NODETYPE: Identifies the node type, which is one of
a small list of mutually exclusive node types.
NODEDATA: The actual content of the node.
PARENTROWID: Contains the ROWID of a parent of
the node (if any).
SIBLINGID: Contains the ROWID of a sibling of the
node (if any).

Essentially a document gets divided into blocks of
context and associated content. A node serves to hold
each individual context and content block in a
document. For instance, for this paper, for the
Introduction context we would have a CONTEXT type
node (i.e., where NODETYPE=CONTEXT) for that
context. The NODEDATA for this node would be the
name of the context i.e., the string “Introduction”. We
would have another node of the type TEXT where the
NODEDATA would be all the text and figures in the
Introduction section. This content node would also be
a child of its associated context node.

Fig 8. Relational Tables for Node and File
Information

Fig 9. Node Representation and Relationships for
this Paper as an Example Document

The tree in Fig 9. shows some of the nodes and their
relationships corresponding to the node structure
representation of this paper. The arrows denote parent-
child relationships between the nodes. We see
CONTEXT nodes such as ‘Abstract’ and
‘Introduction’. TEXT nodes capturing content for any
context are placed as children of their corresponding
context nodes. For instance, the left child of the
Abstract context node is the content node (containing
the text for the abstract section) for that context, etc.
Also, each context node is a child of the context
immediately preceding it in the document. The
PARENTROWID and SIBLINGID elements in each
node are basically pointers that capture the parent child
relationships between the various nodes.

To summarize the above, a raw semi-structured data
document is first converted to XML where the various
contexts and contents in the document are segregated.
Each context or content is stored in a node structure
and parent child relationships (including context-
content association) are captured through pointers
between nodes. For each document inserted into
NETMARK, document information is stored in the
DOC table and various nodes are stored in the XML
table, shown in Fig 8. Both the DOC and XML tables
shown in Fig 8. are relational tables in the NETMARK
underlying relational data store.

3.2.2 ROWIDs for Node Access and Traversal
Each node contains pointers to its parent and sibling
nodes. Query processing (described shortly) requires
us to retrieve nodes related to a node (such as
retrieving the parent or sibling of a node) in a very fast
manner. For this NETMARK exploits the features of
ROWIDs, a data type in Oracle 9i[1], which is the
relational data store over which NETMARK is built.
ROWID is an Oracle data type that stores either
physical or logical addresses (row identifiers) to every
row within the Oracle database. Physical ROWIDs
store the addresses of ordinary table records (excluding
indexed-organized tables), clustered tables, indexes,
table partitions and sub-partitions, index partitions and
sub-partitions, while logical ROWIDs store the row
addresses within indexed-organized tables for building
secondary indexes. Each Oracle table has an implicit
pseudo-column called ROWID, which can be retrieved
by a simple SELECT query on the particular table.
Physical ROWIDs provide the fastest access to any
record within an Oracle table with a single read block
access, while logical ROWIDs provide fast access for

Abstract

1

Introduction

2

Document Querying

highly volatile tables. A ROWID is guaranteed to not
change unless the rows it references is deleted from the
database.
The physical ROWIDs have two different formats,
namely the legacy restricted and the new extended
ROWID formats. The restricted ROWID format is for
backward compatibility to legacy Oracle databases,
such as Oracle 7 and/or earlier releases. For example,
the following displays a subset of the extended
ROWIDs from a NETMARK generated schema. It is a
generalized 18-character format with 64 possibilities
each:
AAAAAA | BBB | CCCCCC | DDD

The extended ROWIDs could be used to show how an
Oracle table is organized and structured; but more
importantly, extended ROWIDs make very efficient
and stable unique keys for information retrieval, which
will be addressed in the sub-section below on query
processing

3.2.3 Mapping from Hierarchical to Relational
Also, object-relational mapping from XML to
relational database schema models the data within the
XML documents as a tree of objects that are specific to
the data in the document [14]. In this model, element
type with attributes, content, or complex element types
are generally modeled as classes. Element types with
parsed character data (PCDATA) and attributes are
modeled as scalar types. This model is then mapped to
the relational database using traditional object-
relational mapping techniques or via SQL3 object
views. Therefore, classes are mapped to tables, scalar
types are mapped to columns, and object-valued
properties are mapped to key pairs (both primary and
foreign). This mapping model is limited since the
object tree structure is different for each set of XML
documents. On the other hand, the NETMARK SGML
parser models the document itself (similar to the
DOM), and its object tree structure is the same for all
XML documents. Thus, NETMARK is designed to be
independent of any particular XML document schemas
and is termed to be “schema-less”.

3.3 Query Processing
The NETMARK keyword-based context and content
search is performed by first querying text index for the
search key. Each node returned from the index search
is then processed based on its designated unique
ROWID. The processing of the node involves
traversing up the tree structure via its parent or sibling
node until the first context is found. The context is
identified via its corresponding NODETYPE. The

context refers to here as a heading for a subsection
within a HTML or XML document, similar to the
<H1> and <H2> header tags commonly found within
HTML pages. Thus, the context and content search
returns a subsection of the document where the
keyword being searched for occurs. Once a particular
CONTEXT is found, traversing back down the tree
structure via the sibling node retrieves the
corresponding content text. The search result is then
rendered and displayed appropriately.
Query processing in NETMARK differs from related
XML data management systems that have been built
over relational database systems. The prime reason is
that the way XML data is stored (in a relational
database) in NETMARK is fundamentally different
from the manner it is stored in other XML over
relational systems. One of the earlier efforts such as
[16] describe techniques
such as basic inlining and shared inlining, which are
schemes for mapping (simplified) XML DTDs to
relational schemas without loss of information. A
concern from a query processing perspective is that of
the cost of processing XML queries with (possibly
lengthy) path expressions as such queries lead to
multiple joins being performed across the underlying
relational tables, which is expensive. The query
processing performance under various alternative
mapping schemes is evaluated in [16]. In a related
system called XTABLES[11], which is also an XML
over relational system, a query processing scheme
based on an intermediate query representation is
described. The XTABLES query processor attempts to
maximally harness the power of its underlying
relational engine by pushing down most memory and
data-intensive computation to the underlying relational
engine. A user query, in XQuery, is first converted into
an intermediate XML Query Graph Model
representation (XQGM). Rewrite optimizations are
performed on the XQGM and the data and memory
intensive part is pushed down to the relational engine
as a single SQL query. A ‘tagger run-time module’
constructs the XQuery result from the results of the
SQL query and returns it to the user.
In NETMARK, we are using ROWIDs (physical
address) to traverse between nodes. A ROWID
provides the fastest access to a record or corresponding
node within a relational table, with a single block read
access. Accessing a record based on its physical
address ROWID provides an efficient, constant access
time C (machine dependent; normally in the
millisecond range) that is independent of the number
of records or nodes in the database and regardless of
maximum node depth within a node structure. The
time to respond to a context or content query is thus

approximately proportional to log(N) (first search
time) plus a sum of the Cs for each successive search
where N is the number of records or nodes.
4. Benchmarking

The NETMARK system is intended for managing
large documents and/or large collections of documents.
The question arises, as with any other data
management system, regarding the performance of
NETMARK. In fact performance of a couple of
different aspects is of interest. We are certainly
interested in query processing performance for various
kinds of queries. We are also interested in the
performance of the NETMARK pipeline i.e., how
efficiently can NETMARK load in documents input
into the system. For evaluating query processing,
database systems have had a long standing tradition of
benchmarking the databases against various standard
benchmarks. Benchmarks have also been proposed for
XML data management systems[2]. In NETMARK our
prime focus has been on queries centered around
context and content, although NETMARK does
support full fledged Xpath queries over documents as
well. For evaluating query processing, we thus focused
on evaluating the context and content kinds of queries
in NETMARK. We have also compared NETMARK
with another XML data management system –
Berkeley XML8. Also, we have evaluated the
performance of the NETMARK pipeline. All the
evaluation results are presented below.

4.1 Benchmarking Query Processing
We present below results of benchmarking the
performance of NETMARK, including a comparison
with Berkeley XML, another industry XML data
management system. We tested a variety of queries
centered around context and content. The benchmarks
were conducted on a Dell Poweredge 1650 server with
2 Intel Pentium III 1.2 GHz processors, with 1.3G of
RAM and running RedHat Enterprise LINUX AS
Release 3.

4.1.1 Benchmarking Document
A generated XML document with the DTD shown in
Fig 10. was used. We have evaluated the query
processing performance of both NETMARK and
Berkeley XML for various document sizes, namely
100 MB, 50 MB, 25 MB, and 10 MB. A variety of
context and content oriented queries for the test
document(s) were tested. For context and
context+content queries we were able to express

8 http://www.sleepycat.com/products/xml.shtml

equivalent queries (in XQuery) in Berkeley XML. For
content queries, even with the XQuery “contains”
operator, we cannot pose queries in Berkeley XML
with semantics equivalent to the NETMARK/XDB
content query.

<?xml version="1.0"?>
<!DOCTYPE products [
 <!ELEMENT products (product)+
productU (productZ)+>
 <!ELEMENT product (item, category,
vendor, vendor_2, vendor_3)>
 <!ELEMENT productU (itemU, category,
vendor, vendor_2, vendor_3)>
 <!ELEMENT productZ (itemZ, category,
vendor, vendor_2, vendor_3)>
 <!ELEMENT item (#PCDATA)>
 <!ELEMENT itemU (#PCDATA)>
 <!ELEMENT itemZ (#PCDATA)>
 <!ELEMENT category (#PCDATA)>
 <!ELEMENT vendor (#PCDATA)>
 <!ELEMENT vendor_2 (#PCDATA)>
 <!ELEMENT vendor_3 (#PCDATA)>
]>

Fig 10. DTD of Benchmarking Data
Document

4.1.2 Results
Benchmarking with single XML document
 Test document size = 100 MB

Queries
NET
MARK

Berkeley
XML

Result
Size

Context Query
context=itemZ

6990 † 4,000 *
[441362]

Context Query
context=productZ

7126 4,000
[9715210]

Context Query
context=productU

234 1
[1561]

Context Query
context=itemU

81 1
[540]

Context+Content
Query
context=item&cont
ent=Lemon Grass

749 1
[482]

Context+Content
Query
context=category
&
content=Fruits

720 1
[399]

Content Query 1 685000 [65557376]

Content Query 2 2420 [672]

* Number on first line denotes size in number of XML
elements. Number in [] denotes size in characters.
† All times are in milliseconds (ms)

 Test document size = 50 MB

Queries
NET
MARK

Berkeley
XML

Result
Size

Context Query
context=itemZ

3340 54,000 2,000
[220680]

Context Query
context=productZ

3680 56,000 2,000
4857604

Context Query
context=productU

218 48,001 1
[1561]

Context Query
context=itemU

84 49,005 1
[540]

Context+Content
Query
context=item&cont
ent=Lemon Grass

707 540007 1
[482]

Context+Content
Query
context=category
&
content=Fruits

742 540085 1
[399]

Content Query 1 497000 ‡ [32778688]
Content Query 2 2190 [674]

 Test document size = 25 MB

Queries
NET
MARK

Berkeley
XML

Result
Size

Context Query
context=itemZ

2100 23,806 1,000
[110340]

Context Query
context=productZ

2200 21,141 1,000
[2428802]

Context Query
context=productU

210 18,400 1
[1561]

Context Query
context=itemU

79 19,995 1
[540]

Context+Content
Query
context=item&cont
ent=Lemon Grass

698 99,000 1
[482]

Context+Content
Query
context=category
&
content=Fruits

692 114,239 1
[399]

Content Query 1 307000
‡

[1638934
4]

Content Query 2 1950 [675]

 Test document size = 10 MB

Queries
NET
MARK

Berkeley
XML

Result
Size

Context Query
context=itemZ

1600 15998 400
[44134]

Context Query
context=productZ

1660 14346 400
[971518]

Context Query
context=productU

152 14024 1
[1561]

Context Query
context=itemU

66 13,885 1
[540]

Context+Content
Query
context=item&cont
ent=Lemon Grass

512 21,000 1
[482]

Context+Content
Query
context=category
&content=Fruits

417 33,000 1
[399]

Content Query 1 222000
‡

[8189340]

Content Query 2 1500 [617]

 ‡ Cannot express such a query in Berkeley XML

Benchmarking with multiple XML documents

 50 documents of 1 MB each

Queries
NET
MARK

Berkeley
XML

Result
Size

Context Query
context=itemZ

2500 2,000
[220684]

Context Query
context=productZ

2610 2,000
[4857608]

Context Query
context=productU

415 1
[1561]

Context Query
context=itemU

599 1
[540]

Context+Content
Query
context=item&cont
ent=Lemon Grass

602 1
[482]

Context+Content
Query
context=category
&content=Fruits

643

Cannot
query
multiple
documents

1
[399]

100 documents of 1 MB each

Queries
NET
MARK

Berkeley
XML

Result
Size

Context Query
context=itemZ

5620 4,000
[441366]

Context Query
context=productZ

5630 4,000
[9715214]

Context Query
context=productU

415 1
[1561]

Context Query
context=itemU

599 1
[540]

Context+Content
Query
context=item&cont
ent=Lemon Grass

602 1
[482]

Context+Content
Query
context=category
&content=Fruits

643

Cannot
query
multiple
documents

1
[399]

4.1.3 Discussion on Query Processing
Benchmarking Results
The primary purpose of the above benchmarking
exercise was to provide an estimate of query
processing times in NETMARK per se. Additionally
we also compared it with the Berkeley XML system.
The above results show that NETMARK can very
efficiently process queries for documents of large
sizes, and also large numbers of documents
simultaneously. The query processing time also seems
to increase with the size of the result set returned.
Context and Content queries where the result set size is
not large are processed very efficiently, often in the
milliseconds range. For smaller result sets,
NETMARK significantly outperforms Berkeley XML
with most queries being processed 20-40 times faster.

4.2 Netmark Pipeline Benchmarking
We also evaluated the throughput of data insertion into
NETMARK. New documents input into the
NETMARK system are first converted into XML by
the NETMARK converters and then XML documents
are loaded into NETMARK node structures in
relational tables.
We measured the throughput rate of document
conversion into XML. We used two datasets for this
benchmark, a set of 50 PDF files (of each
approximately the same size) with a total size of 17
MB, and another set of 85 MS Word documents (again

of each approximately the same size) with a total size
of 6.5 MB. The document converter was run on a
DELL Latitude machine with 1 Intel Pentium 4 CPU
of 1.6 GHz and 512 MB of RAM, running Windows
XP. The time taken to convert the PDF document set
was 84 seconds, thus giving a throughput rate of 1.68
sec per PDF document or 4.94 sec per MB. Conversion
of the MS Word document set took a total of 8 seconds
thus giving a throughput rate of 0.09 sec per document
or 1.23 sec per MB.

5. Related Work

NETMARK is related to several other systems and
research efforts in the XML systems area which has
seen a flurry of activity in recent years. There is work
on XML data management systems[9,11], XML
publishing systems[4,5,7], XML query processing
aspects[8,10,17,18], integration of XML with
Information Retrieval (IR) systems[3], etc.
In this paper we have focused mostly on a new
approach in NETMARK to store semi-structured
(XML) data in a relational database and the query
processing and performance given this storage
approach. We should then compare with other
approaches to storage and query processing in other
XML data management systems. One approach has
been to use relational database systems for storing and
querying XML data, which is also what NETMARK
does, albeit differently in a schema-less way. Such
systems essentially work by storing XML documents
in underlying relational structures that encode the
XML structure through relationships between the
tables. XML documents to be stored are “shredded”
into rows in these tables. XML queries are converted
to SQL queries over the underlying tables, also results
(essentially relational tuples) may be converted back to
XML before presenting to the user[11,14,16,17]. We
have discussed how query processing in NETMARK
differs from such systems in the above query
processing sub-section and will stress again that the
focus in NETMARK is not that of supporting
complicated XML queries with path expressions but
rather on supporting context and content oriented and
hierarchical queries common in enterprise applications.
An alternate direction in XML data management is
around building native XML stores, i.e., building an
XML data management system from scratch. A
number of systems such as TIMBER[9], Natix[12] and
Tamino[15] fall in this category. The key arguments
in favor of native XML systems are that in the
approach of translating XML schemas to underlying
relational tables, we often end up with a very large

number of relational tables in order to effectively
capture the rich XML information. Thus even simple
XML queries often get translated into expensive
sequences of joins over the underlying relational data.
Efforts like TIMBER are aimed at developing an
efficient direct implementation of XML. While we
have compared NETMARK with at least one XML
over relational system (Berkeley XML), it will be
interesting to compare NETMARK with a native XML
system from a performance perspective.

6. Conclusions

We have presented NETMARK, a high-throughput
and scalable system for managing semi-structured
enterprise data. A key distinguishing feature is that of
allowing queries on the hierarchical document
structure without requiring the imposition of any
formal schemas. The schema-less approach and
efficient query processing provide a high-throughput
system for large real-world applications. We finally
demonstrated the efficacy of the NETMARK system
and approach through extensive benchmarking results.
NETMARK has been and is being used as a building
block for several NASA enterprise applications.

7. References

[1] Oracle 9i Database Release 9.0.1 Developer

Guide.
[2] A.R.Schmidt, Waas, F., M.L.Ketersen,

D.Florescu, Manolescu, I., M.J.Carey and
R.Busse, The XML Benchmark Project. CWI,
2001.

[3] Bremer, J. and Gertz, M., XQuery/IR:
Integrating XML Document and Data
Retrieval.

[4] Carey, M., Xperanto: Middleware for
publishing object-relational data as XML
documents. Proceedings of Very Large
Databases, Cairo, Egypt, 2000.

[5] Deutsch, A. and Tannen, V., MARS: A
System for Publishing XML from Mixed and
Redundant Storage. 20th VLDB Conference,
Berlin, Germany, 2003.

[6] Docushare, http://docushare.xerox.com/ds/.
[7] Fernandez, M., Kadiyska, Y., Suciu, D.,

Morishima, A. and Tan, W., SilkRoute: A
Framework for Publishing Relational Data in
XML, ACM Transactions on Database
Systems, 27 (2002) 438-493.

[8] Guha, S., H.V.Jagadish, N.Koudas,
Srivastava, D. and Yu, T., Approximate XML
Joins. ACM SIGMOD, Madison, WI, 2002.

[9] H.V.Jagadish, Khalifa, S., Chapman, A.,
Lakshmanan, L., Nierman, A., Paparizos, S.,
Patel, J., Srivastava, D., Wiwatwattanna, N.,
Wu, Y. and Yu, C., TIMBER: A Native XML
Database, VLDB Journal, 11 (2002) 274-291.

[10] Ives, Z., Halevy, A. and Weld, D., An XML
query engine for network-bound data, VLDB
Journal, 11 (2002) 380-402.

[11] J.E.Funderbunk, Kiernan, G.,
Shanmugasundaram, J., Shekita, E. and Wei,
C., XTABLES: Bridging relational
technology and XML, IBM Systems Journal,
41 (2002) 616-641.

[12] Kanne, C. and Moerkotte, G., Efficient
Storage of XML Data (Poster Abstract).
ICDE, San Diego, CA, 2000, pp. 198.

[13] Maluf, D. and Tran, P., NETMARK: A
Schema-Less Extension for Relational
Databases for Managing Semi-structured Data
Dynamically. ISMIS, 2003, pp. 231-241.

[14] Schmidt, A., Efficient Relational Storage and
Retrieval of XML Documents. Workshop on

Web and Databases (WebDB), Dallas, TX,
2000.

[15] Schoning, H., Tamino: A DBMS designed for
XML. ICDE, 2001, pp. 149-154.

[16] Shanmugasundaram, J., Relational Databases
for Querying XML Documents: Limitations
and Opportunities. VLDB Conference,
Edinburgh, Scotland, 1999.

[17] Shanmugasundaram, J., Shekita, E., Kiernan,
J., Krishnamurthy, R., Viglas, S., Naughton,
J. and Tatarinov, I., A General Technique for
Querying XML Documents using a Relational
Database System, SIGMOD Record, 30
(2001) 20-26.

[18] Vagena, Z., Moro, M. and Tsotras, V., Twing
Query Processing over Graph Structured
XML Data. Workshop on Web and Databases
WebDB2004, Paris, France, 2004.

[19] Xalan, http://xml.apache.org/xalan-j/.
[20] XML, http://www.w3.org/XML/.

