
Gold User’s Guide

Scott Jackson
Pacific Northwest National Laboratory

Gold User’s Guide
by Scott Jackson

Copyright © 2004, 2005 by Pacific Northwest National Laboratory, Battelle Memorial Institute.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of the Battelle nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents
Notice ..9
1. Overview ..11

Background ...11
Features..11
Interfaces..12

Command Line Clients ..13
Interactive Control Program ...13
Web-based Graphical User Interface ...13
Perl API ..14
Java API..14
SSSRMAP Wire Protocol..14

2. Installation ...17
Preparation..17
Install Prerequisites..17

Perl 5.6.1 or higher (with suidperl) [REQUIRED]..17
libxml2 2.4.25 or higher [REQUIRED]...18
PostgreSQL database 7.2 or higher [REQUIRED]..18
Gnu readline 2.0 or higher [OPTIONAL]..19
Java 2 SDK 1.4 or higher [OPTIONAL] ...19
Apache Tomcat Server 4 or higher [OPTIONAL] ..19

Configuration..20
Compilation ..21
Perl Module Dependencies...21
Installation...22
General Setup..22
Database Setup ...23
Web Server Setup ...23
Bootstrap..24
Startup..24
Initialization ..24

3. Getting Started ..25
Define Users ..25
Define Machines ...25
Define Projects ..26
Add Users to the Projects ..26
Make Deposits ..27
Check The Balance ...27
Integrate Gold with your Resource Management System28
Obtain A Job Quote..28
Make A Job Reservation..29
Charge for a Job ..29
Refund a Job..30
List Transactions ...31
Examine Account Statement...32
Examine Project Usage ..32

4. Getting More Advanced ..35
Define Projects ..35
Define Accounts ...35
Make Deposits ..36
Check The Balance ...38
Define Charge Rates...38
Obtain A Guaranteed Job Quote..39
Make A Quoted Job Reservation..40

5

Charge for a Quoted Job..41
Partially Refund a Job..42
Examine Account Statement...42

5. Managing Users ..45
Creating Users ..45
Querying Users...45
Modifying Users...46
Deleting Users...46

6. Managing Machines...49
Creating Machines ...49
Querying Machines..49
Modifying Machines..49
Deleting Machines..50

7. Managing Projects ..51
Creating Projects...51
Querying Projects ...51
Modifying Projects ...52
Deleting Projects...53
Project Usage Summary ..53

8. Managing Accounts..55
Creating Accounts..55
Querying Accounts ..56
Modifying Accounts ..57
Making Deposits...57
Querying The Balance ...58
Personal Balance...58
Making Withdrawals ...59
Making Transfers..59
Obtaining an Account Statement...60
Deleting Accounts ..61

9. Managing Allocations..63
Creating Allocations ..63
Querying Allocations...63
Modifying Allocations...63
Deleting Allocations...64

10. Managing Reservations ...65
Creating Reservations..65
Querying Reservations ..65
Modifying Reservations ..65
Deleting Reservations..66

11. Managing Quotations ..67
Creating Quotations...67
Querying Quotations ...67
Modifying Quotations ...67
Deleting Quotations...67

12. Managing Jobs...69
Creating Jobs ...69
Querying Jobs ...69
Modifying Jobs ...69
Deleting Jobs ...70
Obtaining Job Quotes ..70
Making Job Reservations...71
Charging Jobs..72

6

Issuing Job Refunds ...72
13. Managing Charge Rates...73

Creating ChargeRates ..73
Querying ChargeRates ..73
Modifying Charge Rates ...74
Deleting Charge Rates ...74

14. Managing Transactions..77
Querying Transactions...77

15. Managing Roles ..79
Querying Roles ...79
Querying Role Users..79
Querying Role Actions ..79
Creating Roles...80
Associating an Action with a Role...80
Adding a Role to a User ..81
Removing an Action from a Role...81
Removing a Role from a User...82
Deleting Roles ...82

16. Managing Passwords ...85
Creating Passwords ...85
Querying Passwords..85
Modifying Passwords..85
Deleting Passwords..86

17. Using the Gold Shell (goldsh)..87
Usage..87
Command Syntax...87

171 ...88
172 ...88

Valid Objects ...89
Valid Actions for an Object ...90
Valid Predicates for an Object and Action..90
Common Options...91

173 ...91
Common Actions Available for most Objects ..91

Query Action...91
Create Action...93
Modify Action ...93
Delete Action...94
Undelete Action ..95

Multi-Object Queries ...96
18. Integration with the Resource Management System...97

Dynamic versus Delayed Accounting...97
Delayed Accounting...97
Dynamic Accounting ...97

Interaction Points ...97
Job Quotation @ Job Submission Time [Optional — Recommended]97
Job Reservation @ Job Start Time [Optional — Highly Recommended] ..97
Job Charge @ Job End Time [Required]...98

Methods of interacting with Gold ...98
Configuring an application that already has hooks for Gold98
Using the appropriate command-line client...99
Using the Gold control program ..99
Use the Perl API..100
Use the Java API ...100

7

Communicating via the SSSRMAP Protocol ..100
19. Configuration Files ...103

Server Configuration ...103
Client Configuration ..105

8

Notice

Important: This is the second beta release of the User’s Guide. Other information may be
found by browsing the FAQ (<http://sss.scl.ameslab.gov/cgi-bin/faq?file=3&keywords=file>)
posting to the gold users list (<gold-users@lyris.pnl.gov>) submitting bug reports or
change requests (<gold-support@sss.scl.ameslab.gov>) or contacting the author (<Scott.Jackson@pnl.gov>).

9

Notice

10

Chapter 1. Overview

Gold is an open source accounting system that tracks and manages resource usage
on High Performance Computers. It acts much like a bank in which resource credits
are deposited into accounts with access controls designating which users, projects
and machines may access the account. As jobs complete or as resources are utilized,
accounts are charged and resource usage recorded. Gold supports familiar operations
such as deposits, withdrawals, transfers and refunds. It provides balance and usage
feedback to users, managers, and system administrators.

Since accounting needs vary widely from organization to organization, Gold has
been designed to be extremely flexible, featuring customizable accounting and sup-
porting a variety of accounting models. Attention has been given to scalability, se-
curity, and fault tolerance. Gold facilitates the sharing of resources between organi-
zations or within a Grid by providing distributed accounting while preserving local
site autonomy.

Background
Gold is being developed at Pacific Northwest National Laboratory (PNNL) as open
source software under the Scalable Systems Software (SSS) SciDAC project. Gold is
currently in alpha release and is beginning alpha testing at a number of DOE and
university sites.

Gold was designed to meet the accounting needs of computing centers that share
resources in multi-project environments. In order for an organization to use its high
performance computers most effectively, it must be able to allocate resources to the
users and projects that need them in a manner that is fair and according to mission
objectives. Tracking the historical resource usage allows for insightful capacity plan-
ning and in making decisions on how to best mete out these resources. It allows the
funding sources that have invested heavily in a supercomputing resource a means to
show that it is being utilized efficiently.

Gold was also designed to facilitate the sharing of resources between organizations
or within a Grid to take advantage of the tremendous utilization gains afforded by
meta-scheduling.

Features

• Dynamic Charging — Rather than post-processing resource usage records on a peri-
odic basis to rectify project balances, acounts are updated immediately at job com-
pletion.

• Reservations — A hold is placed against the account for the estimated number of
resource credits before the job runs, followed by an appropriate charge at the mo-
ment the job completes, thereby preventing projects from using more resources
than were allocated to them.

• Flexible Accounts — A uniquely flexible account design allows resource credits to
be allocated to specific projects, users and machines.

• Expiring Allocations — Resource credits may be restricted for use within a desig-
nated time period allowing sites to implement a use-it-or-lose-it policy to prevent
year-end resource exhaustion and establishing a project cycle.

11

Chapter 1. Overview

• Flexible Charging — The system can track and charge for composite resource usage
(memory, disk, CPU, etc) and custom charge multipliers can be applied (Quality of
Service, Node Type, Time of Day, etc).

• Guaranteed Quotes — Users and resource brokers can determine ahead of time the
cost of using resources.

• Credit and Debit Accounts — Accounts feature an optional credit limit allowing sup-
port for both debit and credit models. This feature can also be used to enable over-
draft protection for specific accounts.

• Nested Accounts — A hierarchical relationship may be created between accounts.
This allows for the delegation of management responsibilities, the establishment
of automatic rules for the distribution of downstream resource credits, and the
option of making higher level credits available to lower level accounts.

• Powerful Querying — Gold supports a powerful querying and update mechanism
that facilitates flexible reporting and streamlines administrative tasks.

• Transparency — Gold allows the establishment of default projects, machines and
users. Additionally Gold can allow user, machines and projects to be automatically
created the first time they are seen by the resource management system. These
features allow job submitters to use the system without even knowing it.

• Security — Gold supports multiple security mechanisms for strong authentication
and encryption.

• Role Based Authorization — Gold provides fine-grained (instance-level) Role Based
Access Control for all operations.

• Dynamic Customization — Sites can create or modify record types on the fly en-
abling them to meet their custom accounting needs. Dynamic object creation al-
lows sites to customize the types of accounting data they collect without modifying
the code. This capability turns this system into a generalized information service.
This capability is extremely powerful and can be used to manage all varieties of
custom configuration data, to provide meta-scheduling resource mapping, or to
function as a persistence interface for other components.

• Multi-Site Exchange — A traceback mechanism will allows all parties of a transac-
tion (resource requestor and provider) to have a first-hand record of the resource
utilization and to have a say as to whether or not the job should be permitted to
run, based on their independent policies and priorities. A job will only run if all
parties are agreeable to the idea that the target resources can be used in the man-
ner and amount requested. Support for traceback debits will facilitate the estab-
lishment of trust and exchange relationships between administrative domains.

• Web Interface — Gold will implement a powerful dynamic web-based GUI for easy
remote access for users, managers and administrators.

• Journaling — Gold implements a journaling mechanism that preserves the indef-
inite historical state of all objects and records. This powerful mechanism allows
historical bank statements to be generated, provides an undo/redo capability and
allows commands to be run as if it were any arbitrary time in the past.

• Open Source — Being open source allows for site self-sufficiency, customizability
and promotes community development and interoperability.

12

Chapter 1. Overview

Interfaces
Gold provides a variety of means of interaction, including command-line interfaces,
graphical user interfaces, application programming interfaces and communication
protocols.

Command Line Clients
The command-line clients provided feature rich argument sets and built-in documen-
tation. These commands allow scripting and are the preferred way to interact with
Gold for basic usage and administration. Use the –help option for usage information
or the –man option for a manual page on any command.

Example 1-1. Listing Users

glsuser

Interactive Control Program
The goldsh command uses a control language to issue object-oriented requests to the
server and display the results. The commands may be included directly as command-
line arguments or read from stdin. Use the "ShowUsage:=True" option after a valid
Object Action combination for usage information on the command.

Example 1-2. Listing Users

goldsh User Query

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Do not use this command unless you
understand the syntax and the potential for unintended results.

Web-based Graphical User Interface
A powerful and easy-to-use web-based GUI is being developed for use by users,
managers and administrators. It sports two interface types:

• Management Interface — The management interface supports an interface that makes
administration and interaction very safe and easy. It approaches things from a
functional standpoint, aggregating results and protecting against accidental modi-
fications.

• Object Interface — The object interface exposes you to the full power of the actions
the server can perform on the objects. This interface allows actions to be performed
on many objects in a single command and can impose arbitrary field conditions,
field updates and field selections to the query.

13

Chapter 1. Overview

Example 1-3. Listing Users

Click on "Manage Users" -> "List Users"

Note: The gold web gui is still in an early development phase and although it is included,
it is not yet ready for general use.

Perl API
You can access the full Gold functionality via the Perl API. Use perldoc to obtain
usage information for the Perl Gold modules.

Example 1-4. Listing Users

use Gold;

my $request = new Gold::Request(object => "User", action => "Query");
my $response = $request->getResponse();
foreach my $datum ($response->getData())
{

print $datum->toString(), "\n";
}

Java API
You can also access Gold operations via a Java API. This is used by the web GUI
which uses Java Server Pages. The javadoc command can be run on the src/gold
directory to generate documentation for the gold java classes.

Example 1-5. Listing Users

import java.util.*;
import gold.*;

public class Test
{

public static void main(String [] args) throws Exception
{

Gold.initialize();
Request request = new Request("User", "Query");
Response response = request.getResponse();
Iterator dataItr = response.getData().iterator();
while (dataItr.hasNext())
{

System.out.println(((Datum)dataItr.next()).toString());
}

}
}

14

Chapter 1. Overview

SSSRMAP Wire Protocol
It is also possible to interact with Gold by directly using the SSSRMAP Wire Protocol
and Message Format over the network. Documentation for these protocols can be
found at SSS Resource Management and Accounting Documentation1.

Example 1-6. Listing Users

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body actor="scottmo" chunking="True">
<Request action="Query" object="User"></Request>
</Body>
<Signature>
<DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>
<SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
<SecurityToken type="Symmetric" name="scottmo"></SecurityToken>
</Signature>
</Envelope>
0

Notes
1. http://sss.scl.ameslab.gov/docs.shtml

15

Chapter 1. Overview

16

Chapter 2. Installation

Gold uses the standard configure, make and make install steps that we all know and
love. However, there are a number of preparation, prerequisite, setup and customiza-
tion steps that need to be performed. This document provides general installation
guidance and provides a number of sample steps referenced to a particular instal-
lation on a Linux platform using the bash shell. These steps indicate the userid in
brackets performing the step. The exact commands to be performed and the user
that issues them will vary based on the platform, shell, installation preferences, etc.

Preparation
To build and install Gold, you first need to unpack the archive and change directory
into the top directory of the distribution. For security reasons, it is recommended that
you install and run Gold under its own non-root userid.

[root]# useradd gold

[root]# passwd gold

[gold]$ mkdir ~/src

[gold]$ cd ~/src

[gold]$ gzip -cd gold-2.b2.7.0.tar.gz | tar xvf -

[gold]$ cd gold-2.b2.7.0

Install Prerequisites
You will first need to build, test and install the following prerequisites:

Perl 5.6.1 or higher (with suidperl) [REQUIRED]
The gold server and clients are written in Perl. Perl 5.6.1 or higher is required. The
perl installation must include suidperl for proper client authentication. Use ’perl -v’
to see what level of Perl is installed and ’suidperl -v’ to see if suidperl is installed.
Perl is available at: <http://www.perl.com/>

[root]# cd /usr/local/src

[root]# wget http://www.cpan.org/src/stable.tar.gz

[root]# gzip -cd stable.tar.gz | tar xvf -

[root]# cd perl-5.8.5

[root]# sh Configure -Dd_dosuid -de

[root]# make

[root]# make test

[root]# make install

[root]# (cd /usr/include && /usr/local/bin/h2ph *.h sys/*.h)

Or if you are using rpms, you will need the perl and the perl-suidperl rpms appro-
priate for your architecture and operating system:

[root]# wget ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/perl-
5.8.0-88.3.i386.rpm

17

Chapter 2. Installation

[root]# wget ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/perl-
suidperl-5.8.0-88.3.i386.rpm

[root]# rpm -Uvh perl-5.8.0-88.3.i386.rpm perl-suidperl-5.8.0-
88.3.i386.rpm

libxml2 2.4.25 or higher [REQUIRED]
LibXML2 is needed by the XML::LibXML perl module to communicate via the SSS-
RMAP message format. LibXML2 is available at: <http://www.xmlsoft.org/>

[root]# cd /usr/local/src

[root]# wget --passive-ftp ftp://xmlsoft.org/libxml2-2.6.17.tar.gz

[root]# gzip -cd libxml2-2.6.17.tar.gz | tar xvf -

[root]# cd libxml2-2.6.17

[root]# ./configure

[root]# make

[root]# make install

PostgreSQL database 7.2 or higher [REQUIRED]
Gold makes use of a database for transactions and data persistence. Two databases
have been tested for use with Gold thus far: PostgreSQL and SQLite. Postgres is
an external database that must be separately installed configured and started, while
SQLite is an embedded database bundled with the Gold source code. If you intend
to use the PostgreSQL database, you will need to install it. PostgreSQL is available
at: <http://www.postgresql.org/>

[root]# cd /usr/local/src

[root]# wget ftp://ftp3.us.postgresql.org/pub/postgresql/source/v7.4.5/postgresql-
7.4.5.tar.gz

[root]# gzip -cd postgresql-7.4.5.tar.gz | tar xvf -

[root]# cd postgresql-7.4.5

[root]# ./configure

[root]# make

[root]# make install

[root]# adduser postgres

[root]# mkdir /usr/local/pgsql/data

[root]# chown postgres /usr/local/pgsql/data

[root]# touch /var/log/pgsql

[root]# chown postgres /var/log/pgsql

Or if you are using rpms, you will need the postgresql, postgresql-libs, postgresql-
server, and postgresql-devel rpms appropriate for your architecture and operating
system:

[root]# wget ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-
7.3.2-3.i386.rpm

18

Chapter 2. Installation

[root]# wget ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-
libs-7.3.2-3.i386.rpm

[root]# wget ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-
server-7.3.2-3.i386.rpm

[root]# wget ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-
devel-7.3.2-3.i386.rpm

[root]# rpm -Uvh postgresql-7.3.2-3.i386.rpm postgresql-libs-7.3.2-
3.i386.rpm postgresql-server-7.3.2-3.i386.rpm postgresql-devel-
7.3.2-3.i386.rpm

Gnu readline 2.0 or higher [OPTIONAL]
The interactive control program (goldsh) can support command-line-editing capa-
bilities if readline support is enabled. Most recent linux distributions come with the
appropriate readline support. Gnu readline is available at:<http://www.gnu.org/>

[root]# cd /usr/local/src

[root]# wget http://ftp.gnu.org/gnu/readline/readline-5.0.tar.gz

[root]# gzip -cd readline-5.0.tar.gz | tar xvf -

[root]# cd readline-5.0

[root]# ./configure

[root]# make

[root]# make install

Java 2 SDK 1.4 or higher [OPTIONAL]
Gold provides a web based gui so that managers, users and administrators can in-
teract with the accounting and allocation system. This alpha gui is still under active
development and has not been widely tested, however, it is made available at this
stage in the hopes that it may be useful to you as is, and so that we can receive feed-
back, improvements, etc. The web interface utilizes Java Server Pages and needs to
have a servlet container installed. A low-level java client also exists but most clients
are written in Perl. Java 2 SDK is available at: <http://java.sun.com/j2se>

[root]# cd /usr/local/src

Download j2sdk-1_4_2_01-linux-i586.bin (or j2sdk-1_4_2_01-linux-i586-rpm.bin) from
http://java.sun.com/j2se/1.4/download.html

[root]# chmod +x j2sdk-1_4_2_01-linux-i586.bin

[root]# cd /usr/local

[root]# src/j2sdk-1_4_2_01-linux-i586.bin

Apache Tomcat Server 4 or higher [OPTIONAL]
Gold provides a web based gui so that managers, users and administrators can in-
teract with the accounting and allocation system. The web interface utilizes Java
Server Pages and needs to have a servlet container installed. Tomcat is available at:
<http://jakarta.apache.org/tomcat/>

19

Chapter 2. Installation

[root]# cd /usr/local/src

wget ftp://ftp.tux.org/pub/net/apache/dist/jakarta/tomcat-4/v4.1.29/bin/jakarta-
tomcat-4.1.29.tar.gz

[root]# cd /usr/local

[root]# gzip -cd src/jakarta-tomcat-4.1.29.tar.gz | tar xvf -

Configuration
To configure Gold, run the "configure" script provided with the distribution.

To see the list of options:

-h, —help display the list of options

Use prefix to tell it where Gold should be installed (defaults to /usr/local):

—prefix=PREFIX install architecture-independent files in PREFIX

Use with-db to specify the database you intend to use with Gold. Currently only PostgreSQL (Pg) and SQLite have been tested for use with Gold. Post-
gres is an external database which runs in a distinct (possibly remote) process and com-
municates over sockets while SQLite is an embedded database bundled with Gold with SQL queries be-
ing performed within the goldd process itself through library calls. Initial testing has shown SQLite to be at least as fast as Post-
greSQL for small installations. The default is to use PostgreSQL.

—with-db=DATABASE database to be used { Pg, SQLite } [Pg]

Use without-readline if you do not want to use the gnu readline library

—without-readline Don’t use readline in interactive control program

Use with-user to specify the userid that gold will run under (defaults to the
user running the configure command).

—with-user=USER user id under which the gold server will run

Use with-log-dir to specify the directory to which logs will be written
(defaults to PREFIX/log).

—with-log-dir=PATH directory for log files [PREFIX/log]

Use with-perl-libs to indicate whether you want to install the required perl modules in a lo-
cal gold directory (PREFIX/lib) or in the default system site-perl directory (triggered by run-
ning make deps).

—with-perl-libs=local|site install policy for prerequisite perl libs [local]

Use with-gold-libs to indicate whether you want to install the Gold modules in a local gold di-
rectory (PREFIX/lib) or in the default system site-perl directory (defaults to local).

—with-gold-libs=local|site install policy for Gold perl libs [local]

The PERL environment variable helps the install process find the desired (5.6) perl inter-
preter if it is not in your path or not found first in a path search.

20

Chapter 2. Installation

PERL full pathname of the Perl interpreter

The JAVA_HOME environment variable helps the install process locate the java, javac and jar ex-
ecutables. JAVA_HOME can be calculated by configure if the desired java executable is found in a path search.

JAVA_HOME Java 2 SDK home directory (contains bin, lib, jre, ...)

The CATALINA_HOME environment variable helps the install process locate the Tom-
cat home directory. This variable must be set if you want to use the web GUI.

CATALINA_HOME
Tomcat home directory (contains common, conf, logs, webapps
...)

Some other influential environment variables are:
CC C compiler command
CFLAGS C compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>
CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you have

headers in a nonstandard directory <include dir>

So, as an example you might use something like:

[gold]$ cd gold-2.b2.7.0

[gold]$./configure --prefix=/usr/local/gold CATALINA_HOME=/usr/local/jakarta-
tomcat-4.1.29

Compilation
To compile the program, type make:

[gold]$ make

If you would like to try out the alpha web-gui, type make gui:

[gold]$ make gui

Perl Module Dependencies
Gold requires the use of a number of Perl modules. These modules are included in
tarball form in the Gold distribution and they can be installed by typing ’make deps’:

[root]# make deps

This will install the following Perl modules as necessary. By default, these will be
installed under gold’s lib/perl5 directory. To install these in the system site-perl di-
rectory, use the configure parameter with-perl-libs as described in the configuration
section.

Compress::Zlib
Crypt::CBC
Crypt::DES
Crypt::DES_EDE3
Data::Properties

21

Chapter 2. Installation

Date::Manip
DBI
DBD::Pg or DBD::SQLite
Digest
Digest::HMAC
Digest::MD5
Digest::SHA1
Error
Log::Dispatch
Log::Dispatch::FileRotate
Log::Log4perl
MIME::Base64
Module::Build
Params::Validate
Term::ReadLine::Gnu
Time::HiRes
XML::SAX
XML::LibXML::Common
XML::LibXML
XML::NamespaceSupport

If you would prefer to do so, you could install these modules via other sources, such
as from rpm, or from CPAN using ’perl -MCPAN -e shell’.

Installation
Use ‘make install’ to install Gold. You may need to do this as root if any of the in-
stallation or log directories do not already have write permission as the gold admin
user.

[root]# make install

If you would like to try out the alpha web-gui, type make install-gui.

[root]# make install-gui

The standard installation process will copy the binaries and perl scripts to /usr/local/bin,
install the server in /usr/local/sbin, put the libs in /usr/local/lib, the config files in
/usr/local/etc and the man pages in /usr/local/man. You can customize the direc-
tories either through the configuration process or by making the necessary changes
in the Makefile.

To delete the files created by the Gold installation, you can use ’make uninstall’.

You will also need to generate a secret key which enables secure communication
between clients and server. This key is a pass-phrase consisting of up to 80 characters
and can include spaces and the regular visible ASCII characters. Note that if you are
using Gold with the Maui Scheduler, they will need both need to use a shared secret
key.

[root]# make auth_key

Enter your secret key (up to 80 characters and can include spaces): sss

22

Chapter 2. Installation

General Setup
Edit the Gold configuration files.

[gold]$ vi /usr/local/gold/etc/goldd.conf

[gold]$ vi /usr/local/gold/etc/gold.conf

Database Setup
If you have chosen to use PostgreSQL, you will need to configure the database to
support Gold connections and schema. No setup is needed if you are using SQLite.

Initialize the database (if you installed from tarball).

[postgres]$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

Add the IP ADDRESS of the host where the Gold server will run (even if it is the
same host as the database server).

[postgres]$ echo "host all all 192.168.1.1 255.255.255.255 trust"
»/usr/local/pgsql/data/pg_hba.conf

Startup postgres with the -i option to allow internet domain sockets

[postgres]$ /usr/local/pgsql/bin/postmaster -i -D /usr/local/pgsql/data
>/var/log/pgsql 2>&1 &

Add the "gold" user as a database administrator

[postgres]$ /usr/local/pgsql/bin/createuser gold

Shall the new user be allowed to create databases? y
Shall the new user be allowed to create more new users? n

Create the gold database

[gold]$ /usr/local/pgsql/bin/createdb gold

Edit the Gold configuration files.

[gold]$ vi /usr/local/gold/etc/goldd.conf

[gold]$ vi /usr/local/gold/etc/gold.conf

Web Server Setup
If you want to use the Gold web GUI, you will need to make some modifications to
the tomcat configuration to support the use of SSL connections.

Configure your environment with the following environment variables:

[root]# export CATALINA_HOME=/usr/local/jakarta-tomcat-4.1.29

[root]# export JAVA_HOME=/usr/local/j2sdk1.4.2_01

Edit the server.xml file under $CATALINA_HOME/conf:

[root]# vi $CATALINA_HOME/conf/server.xml

Uncomment the SSL connector. This will allow secure connections. You can specify
the port, timeout, etc. according to your preferences. It might look something like
this:

23

Chapter 2. Installation

<Connector className="org.apache.catalina.connector.http.HttpConnector" port="8443" min-
Processors="5" maxProcessors="75" enableLookups="true" redirectPort="8443" ac-
ceptCount="10" debug="0" scheme="https" secure="true" connectionTimeout="60000" >

<Factory className="org.apache.catalina.net.SSLServerSocketFactory" clien-
tAuth="false" protocol="TLS"/ >
</Connector >

Create a certificate keystore by executing the following command and specify a pass-
word value of "changeit". For more help, see<http://jakarta.apache.org/tomcat/tomcat-
4.1-doc/ssl-howto.html>.

[root]# $JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

Startup Tomcat. The make gui-install step should have copied the gold.war file into
the $CATALINA_HOME/webapps directory. When tomcat is started up, it should
unpack the jar into a gold directory here after a few seconds.

[root]# $CATALINA_HOME/bin/startup.sh

Edit the servlet container’s gold.conf file

[root]# vi $CATALINA_HOME/webapps/gold/etc/gold.conf # At a min-
imum you will want to specify the server.host and log4j.appender.Log.File

Restart Tomcat

[root]# $CATALINA_HOME/bin/shutdown.sh

[root]# $CATALINA_HOME/bin/startup.sh

Bootstrap
You will need to populate the gold database with an sql dump that defines the ob-
jects, actions and attributes necessary to function as an Accounting and Allocation
Manager.

[gold]$ /usr/local/pgsql/bin/psql gold <bank.sql

Startup
Start the gold server daemon. It is located in the PREFIX/sbin directory.

[gold]$ /usr/local/gold/sbin/goldd

Alternatively, if you are on linux system that supports init.d scripts, you can add
an add gold as a system startup service by copying etc/gold.d to /etc/init.d/gold,
giving it execute permission, and then start gold by issuing:

[root]# service gold start

Initialization
You are now ready to define users, projects, machines, accounts etc. as necessary for
your site. The next chapter (Getting Started) provides a useful primer for this phase
of the Gold setup.

24

Chapter 3. Getting Started

In order to prepare Gold for use as an allocation and accounting manager, you will
need to perform some initial steps to define users, machines and projects, make de-
posits, etc. This chapter proceeds by offering a number of examples in performing
these steps. These steps may be used as a guide, substituting values and options ap-
propriate for your system.

It is assumed that you have already installed and bootstrapped Gold as an allocation
and accounting manager and started the gold server before performing the steps
suggested in this section.

Important: You will need to be a Gold System Adminstrator to perform the tasks in this
chapter!

Define Users
First, you will need to define the users that will use, manage or administer the re-
sources (see Creating Users).

Example 3-1. Let’s add the users amy, bob and dave.

$ gmkuser -n "Wilkes, Amy" -E "amy@western.edu" amy

Successfully created 1 User

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" bob

Successfully created 1 User

$ gmkuser -n "Miller, David" -E "dave@western.edu" dave

Successfully created 1 User

$ glsuser

Name Active CommonName PhoneNumber EmailAddress DefaultPro-
ject Description
---- ------ ---------------- ----------- ---------------- ------------
-- -----------
gold True Gold Admin
amy True Wilkes, Amy amy@western.edu
bob True Smith, Robert F. bob@western.edu
dave True Miller, David dave@western.edu

Define Machines
You will also need to add the names of the machines that provide resources (see
Creating Machines).

25

Chapter 3. Getting Started

Example 3-2. Let’s define machines called colony and blue.

$ gmkmachine -d "Linux Cluster" colony

Successfully created 1 Machine

$ gmkmachine -d "IBM SP2" blue

Successfully created 1 Machine

$ glsmachine

Name Active Architecture OperatingSystem Description
------ ------ ------------ --------------- -------------
colony True Linux Cluster
blue True IBM SP2

Define Projects
Next you should create the projects that will use the resources (see Creating Projects).

Note: In these examples we assume that the account.autogen configuration parameter is
set to automatically create a default account for each project (see Server Configuration).

Example 3-3. We will define the projects biology and chemistry.

$ gmkproject -d "Biology Department" biology

Successfully created 1 Project
Auto-generated Account 1

$ gmkproject -d "Chemistry Department" chemistry

Successfully created 1 Project
Auto-generated Account 2

$ glsproject

Name Active Users Machines Description
--------- ------ ----- -------- --------------------
biology True Biology Department
chemistry True Chemistry Department

Add Users to the Projects
Although this could have been done at the project creation step, you can now assign
users to be members of your projects (see Modifying Projects).

26

Chapter 3. Getting Started

Example 3-4. Adding users to our projects.

$ gchproject --addUsers amy,bob biology

Successfully created 1 ProjectUser
Successfully created 1 ProjectUser

$ gchproject --addUsers amy,bob,dave chemistry

Successfully created 1 ProjectUser
Successfully created 1 ProjectUser
Successfully created 1 ProjectUser

$ glsproject

Name Active Users Machines Description
--------- ------ ------------ -------- --------------------
biology True amy,bob Biology Department
chemistry True amy,dave,bob Chemistry Department

Make Deposits
Now you can make some deposits (see Making Deposits).

Example 3-5. Let’s add 360000000 credits to each project. We will cause them both
to be valid just for the fiscal year 2005.

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 360000000 -p biology

Successfully deposited 3600000 credits into account 1

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 360000000 -p chemistry

Successfully deposited 3600000 credits into account 2

Let’s examine the allocations we just created

$ glsalloc

Id Account StartTime EndTime Amount CreditLimit Deposited Descrip-
tion
-- ------- ---------- ---------- --------- ----------- --------- ----

1 1 2005-01-01 2006-01-01 360000000 0 360000000
2 2 2005-01-01 2006-01-01 360000000 0 360000000

Check The Balance
You can verify the resulting balance (see Querying The Balance).

27

Chapter 3. Getting Started

Example 3-6. Let’s look at amy’s balance

$ gbalance -u amy

Id Name Amount Reserved Balance CreditLimit Available
-- --------- --------- -------- --------- ----------- ---------
1 biology 360000000 0 360000000 0 360000000
2 chemistry 360000000 0 360000000 0 360000000

Example 3-7. You may just want the total balance for a certain project and machine

$ gbalance -u amy -p chemistry -m colony --total

Balance

360000000
The account balance is 360000000 credits

Integrate Gold with your Resource Management System
Now you are ready to run some jobs. Before doing so you will need to integrate
Gold with your Resource Management System (see Integrating with the Resource
Management System).

Although the quotation, reservation and charge steps will most likely be invoked
automatically by your resource management system, it is useful to understand their
effects by invoking them manually.

Let’s simulate the lifecycle of a job.

Example 3-8. We’ll assume our job has the following characteristics:

Job Id: PBS.1234.0
Job Name: heavywater
User Name: amy
Project Name: chemistry
Machine Name: colony
Requested Processors: 16
Estimated WallClock: 3600 seconds
Actual WallClock: 1234 seconds

Obtain A Job Quote
When a job is submitted, it is useful to check that the user’s account has enough funds
to run the job. This will be verified when the job starts, but by that point the job may
have waited some time in the queue only to find out it never could have run in the
first place. The job quotation step (see Obtaining Job Quotes) can fill this function.
Additionally, the quote can be used to determine the cheapest place to run, and to
guarantee the current rates will be used when the job is charged.

28

Chapter 3. Getting Started

Example 3-9. Let’s see how much it will cost to run our job.

$ gquote -p chemistry -u amy -m colony -P 16 -t 3600

Successfully quoted 57600 credits

Make A Job Reservation
When a job starts, the resource management system creates a reservation (or pending
charge) against the appropriate allocations based on the estimated wallclock limit
specified for the job (see Making a Job Reservation).

Example 3-10. Make a reservation for our job.

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 16 -
t 3600

Successfully reserved 57600 credits for job PBS.1234.0

$ glsres

Id Account Amount Name Job User Project Machine EndTime Type De-
scription
-- ------- ------ ---------- --- ---- --------- ------- --------------
-------- ------- -----------
1 2 57600 PBS.1234.0 1 amy chemistry colony 2005-08-03 15:29:30-
07 Normal

This reservation will decrease our balance by the amount reserved.

$ gbalance -p chemistry --total --quiet

359942400

Although our allocation has not changed.

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount CreditLimit Deposited Descrip-
tion
-- ------- ---------- ---------- --------- ----------- --------- ----

2 2 2005-01-01 2006-01-01 360000000 0 360000000

This is best illustrated by the detailed balance listing:

$ gbalance -p chemistry

Id Name Amount Reserved Balance CreditLimit Available
-- --------- --------- -------- --------- ----------- ---------
2 chemistry 360000000 57600 359942400 0 359942400

29

Chapter 3. Getting Started

Charge for a Job
After a job completes, any associated reservations are removed and a charge is issued
against the appropriate allocations based on the actual wallclock time used by the job
(see Charging Jobs).

Example 3-11. Issue the charge for our job.

$ gcharge -J PBS.1234.0 -u amy -p chemistry -m colony -P 16 -t
1234

Successfully charged job PBS.1234.0 for 19744 credits
1 reservations were removed

Your allocation will now have gone down by the amount of the charge.

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount CreditLimit Deposited Descrip-
tion
-- ------- ---------- ---------- --------- ----------- --------- ----

2 2 2005-01-01 2006-01-01 359980256 0 360000000

However, your balance actually goes up (because the reservation that was removed
was larger than the actual charge).

$ gbalance -p chemistry --total

Balance

359980256
The account balance is 359980256 credits

A job record was created for the job as a side-effect of the charge (see Querying Jobs).

$ glsjob

Id JobId User Project Machine Charge Class Type Stage Qual-
ityOfService Nodes Processors Executable Application StartTime EndTime Wall-
Duration QuoteId Description
-- ---------- ---- --------- ------- ------ ----- ------ ------ ------
---------- ----- ---------- ---------- ----------- --------- ------- --
---------- ------- -----------
1 PBS.1234.0 amy chemistry colony 19744 Normal Charge 16 1234 1

Refund a Job
Now, since this was an imaginary job, you had better refund the user’s account (see
Issuing Job Refunds).

Example 3-12. Let’s isse a refund for our job.

$ grefund -J PBS.1234.0

Successfully refunded 19744 credits for job PBS.1234.0

Our balance is back as it was before the job ran.

30

Chapter 3. Getting Started

$ gbalance -p chemistry --total

Balance

360000000
The account balance is 360000000 credits

The allocation, of course, is likewise restored.

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount CreditLimit Deposited Descrip-
tion
-- ------- ---------- ---------- --------- ----------- --------- ----

2 2 2005-01-01 2006-01-01 360000000 0 360000000

Notice that the job charge is now zero because the job has been fully refunded.

$ glsjob

Id JobId User Project Machine Charge Class Type Stage Qual-
ityOfService Nodes Processors Executable Application StartTime EndTime Wall-
Duration QuoteId Description
-- ---------- ---- --------- ------- ------ ----- ------ ------ ------
---------- ----- ---------- ---------- ----------- --------- ------- --
---------- ------- -----------
1 PBS.1234.0 amy chemistry colony 0 Normal Charge 16 1234 1

List Transactions
You can now check the resulting transaction records (see Querying Transactions).

Example 3-13. Let’s list all the job transactions

$ glstxn -O Job --show="RequestId,TransactionId,Object,Action,JobId,Project,User,Machine,Amount"

RequestId TransactionId Object Action JobId Project User Machine Amount
--------- ------------- ------ ------- ---------- --------- ---- ----
--- ------
298 299 Job Create
298 303 Job Quote chemistry amy colony 57600
299 304 Job Modify
299 307 Job Reserve PBS.1234.0 chemistry amy colony 57600
300 311 Job Charge PBS.1234.0 chemistry amy colony 19744
300 312 Job Modify
301 314 Job Refund PBS.1234.0
301 315 Job Modify

Example 3-14. It may also be illustrative to examine what transactions actually
composed our charge request...

$ glstxn -R 655 --show="Id,Object,Action,Name,JobId,Amount,Account,Delta"

Id Object Action Name JobId Amount Account Delta
--- ----------- ------ ---------- ---------- ------ ------- ------

31

Chapter 3. Getting Started

308 Usage Create
309 Reservation Delete PBS.1234.0
310 Allocation Modify 2
311 Job Charge 1 PBS.1234.0 19744 2 -19744
312 Job Modify 1

Examine Account Statement
Finally, you can examine the account statement for our activities (see Obtaining an
Account Statement).

Example 3-15. We can request an itemized account statement over all time for the
chemistry project (account 2)

$ gstatement -p chemistry

##
#
Statement for account 2 (chemistry) generated on Tue Aug 3 16:06:15 2005.
#
Reporting account activity from -infinity to now.
#
##

Beginning Balance: 0
------------------ --------------------
Total Credits: 360019744
Total Debits: -19744
------------------ --------------------
Ending Balance: 360000000

############################### Credit Detail ##################################

Object Action JobId Amount Time
------- ------- ---------- --------- ----------------------
Account Deposit 360000000 2005-08-03 16:01:15-07
Job Refund PBS.1234.0 19744 2005-08-03 16:04:02-07

############################### Debit Detail ###################################

Object Action JobId Project User Machine Amount Time
---------- ---------- ---------- --------- ---- ------- ------ ------

Job Charge PBS.1234.0 chemistry amy colony -19744 2005-08-
03 16:03:39-07

############################### End of Report ##################################

Examine Project Usage
An additional report examines the charge totals for each user that completed jobs
(see Project Usage Summary).

32

Chapter 3. Getting Started

Example 3-16. Display usage by user for the chemistry project

$ gusage -p chemistry

##
#
Usage Summary for project chemistry
Generated on Tue Feb 8 11:05:06 2005.
Reporting user charges from 2006-07-01 to 2006-10-01
#
##
User Amount
---- ------
amy 19744

33

Chapter 3. Getting Started

34

Chapter 4. Getting More Advanced

In the previous chapter, a view of the system was presented that largely ignored the
presence of accounts and other advanced features in Gold. This chapter will touch on
the additional versatility derived from explicit use of accounts and other advanced
features.

Important: You will need to be a Gold System Adminstrator to perform the tasks in this
chapter!

Define Projects
Let’s assume that we have created users and machines as before in the Getting Started
chapter (see Define Users and Define Machines). Again we will create some projects.

Note: In these examples we assume that the account.autogen configuration parameter is
NOT set to automatically create a default account for each project (see Server Configura-
tion).

Example 4-1. Now we will define the projects. This time we will define the project
members at the same time.

For the biology project we will define a set of users and a default set of machines for
the project. The specified default machine will be honored within accounts associated
with this project that specify MEMBERS in the machine list.

$ gmkproject -d "Biology Department" -u amy,bob -m blue biology

Successfully created 1 Project

For the chemistry projects we will just define a set of member users.

$ gmkproject -d "Chemistry Department" -u amy,bob,dave chemistry

Successfully created 1 Project

Let’s see what we’ve got so far in terms of projects.

$ glsproject

Name Active Users Machines Description
--------- ------ ------------ -------- --------------------
biology True amy,bob blue Biology Department
chemistry True amy,dave,bob Chemistry Department

Note: Note that accounts were not auto-generated this time because the account.autogen
feature is set to false.

35

Chapter 4. Getting More Advanced

Define Accounts
Next, you can create your accounts (see Creating Accounts). Think of your accounts
as bank accounts to which you can associate the users, projects and machines that
can use them.

Example 4-2. We will create some accounts for use by the biology and chemistry
projects.

$ gmkaccount -p biology -u MEMBERS -m MEMBERS -n "biology"

Successfully created Account 1

$ gmkaccount -p chemistry -u MEMBERS -m colony -n "chemistry on
colony"

Successfully created Account 2

$ gmkaccount -p chemistry -u amy -n "chemistry for amy"

Successfully created Account 3

$ gmkaccount -p chemistry -u MEMBERS,-amy -n "chemistry not amy"

Successfully created Account 4

$ glsaccount

Id Name Amount Projects Users Machines Descrip-
tion
-- ------------------- ------ --------- ------------ -------- --------

1 biology biology MEMBERS MEMBERS
2 chemistry on colony chemistry MEMBERS colony
3 chemistry for amy chemistry amy ANY
4 chemistry not amy chemistry MEMBERS,-amy ANY

So what we have here is: 1) a single account for biology available to all of its defined
members and able to be used only on the blue machine (since blue is its only member
machine) 2) an account usable toward the chemistry project on the colony machine
only 3) an account usable anywhere for chemistry by amy only 4) an account usable
anywhere for chemistry by any member except for amy

Make Deposits
Now you can make some deposits (see Making Deposits).

Example 4-3. Let’s deposit 100 million credits for use by the biology project. We are
going to establish a use-it-or-lose-it policy here in which one fourth of the credits
expire each quarter. Since there is only one account for the biology project, we can
specify the project name in the deposit.

$ gdeposit -s 2005-01-01 -e 2005-04-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

36

Chapter 4. Getting More Advanced

$ gdeposit -s 2005-04-01 -e 2005-07-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-07-01 -e 2005-10-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-10-01 -e 2006-01-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

Example 4-4. Next we will make some deposits valid toward the chemistry project
for the entire year. Since there are multiple accounts for the chemistry project, we
must specify the appropriate account id in the deposit.

First, we’ll dedicate 50 million credits for use on colony.

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 50000000 -a 2

Successfully deposited 50000000 credits into account 2

Then we’ll give amy special access to 10 million credits that she can use anywhere —
with 9 million credits prepaid, and a million credits of overdraft.

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 9000000 -L 1000000 -
a 3

Successfully deposited 9000000 credits into account 3

Finally, we’ll give all the other members except amy access to the remaining 40 mil-
lion credits.

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 40000000 -a 4

Successfully deposited 40000000 credits into account 4

Example 4-5. We can now take a closer look at the accounts and the allocations that
we have created.

$ glsaccount

Id Name Amount Projects Users Machines Descrip-
tion
-- ------------------- -------- --------- ------------ -------- ------

1 biology 25000000 biology MEMBERS MEMBERS
2 chemistry on colony 50000000 chemistry MEMBERS colony
3 chemistry for amy 9000000 chemistry amy ANY
4 chemistry not amy 40000000 chemistry MEMBERS,-amy ANY

Let’s examine the allocations we just created with the time period information.

$ glsalloc

Id Account StartTime EndTime Amount CreditLimit Deposited Descrip-
tion

37

Chapter 4. Getting More Advanced

-- ------- ---------- ---------- -------- ----------- --------- ------

1 1 2005-01-01 2005-04-01 25000000 0 25000000
2 1 2005-04-01 2005-07-01 25000000 0 25000000
3 1 2005-07-01 2005-10-01 25000000 0 25000000
4 1 2005-10-01 2006-01-01 25000000 0 25000000
5 2 2005-01-01 2006-01-01 50000000 0 50000000
6 3 2005-01-01 2006-01-01 9000000 1000000 9000000
7 4 2005-01-01 2006-01-01 40000000 0 40000000

Check The Balance
You can examine the resulting balance (see Querying The Balance).

Example 4-6. Let’s look at amy’s balance

$ gbalance -u amy

Id Name Amount Reserved Balance CreditLimit Available
-- ------------------- -------- -------- -------- ----------- --------
-
1 biology 25000000 0 25000000 0 25000000
2 chemistry on colony 50000000 0 50000000 0 50000000
3 chemistry for amy 9000000 0 9000000 1000000 10000000

We see that amy’s total balance is composed of some 25000000 credits useable to-
ward the biology project, 50000000 for chemistry on colony and another 10000000
which can be used for chemistry on any machine. Notice that the 10000000 credits
available for use in account 3 is composed of a 9000000 balance plus an overdraft
limit of 1000000 (meaning your account can go negative by that amount).

Example 4-7. Let’s just get amy’s balance for chemistry on colony.

$ gbalance -u amy -p chemistry -m colony --total

Balance

59000000
The account balance is 60000000 credits

Example 4-8. Now let’s just get the total that can be used by amy for chemistry on
colony. This includes amy’s available credit.

$ gbalance -u amy -p chemistry -m colony --total --available

Balance

60000000
The account balance is 60000000 credits

38

Chapter 4. Getting More Advanced

Define Charge Rates
Gold allows you to define how much you will charge for your resources (see Creating
Charge Rates).

In the Getting Started chapter, we relied on the fact that the default Gold installation
predefines a Processors charge rate for you. This means that the total charge for a
job will be calculated by taking the number of processors used in the job multiplied
by the Processors charge rate which is then multiplied by the wallclock limit. For
example: ((16 [Processors] * 1 [ChargeRate{Resource}{Processors}])) * 1234 [Wall-
Duration] = 19744.

Example 4-9. Let’s examine the predefined charge rates.

$ goldsh ChargeRate Query

Type Name Rate Description
-------- ---------- ---- -----------
Resource Processors 1

Now let’s create a few of our own.

Example 4-10. Let’s say we want to charge for memory used

$ goldsh ChargeRate Create Type=Resource Name=Memory Rate=0.001

Successfully created 1 ChargeRate

Example 4-11. We also want a quality of service multiplier

$ goldsh ChargeRate Create Type=QualityOfService Name=BottomFeeder
Rate=0.5

Successfully created 1 ChargeRate

Example 4-12. Creating another quality-based charge multiplier

$ goldsh ChargeRate Create Type=QualityOfService Name=Premium Rate=2

Successfully created 1 ChargeRate

Example 4-13. Let’s take a look at the current charge rates.

$ goldsh ChargeRate Query

Type Name Rate Description
---------------- ------------ ----- -----------
Resource Processors 1
Resource Memory 0.001
QualityOfService BottomFeeder 0.5
QualityOfService Premium 2

39

Chapter 4. Getting More Advanced

Obtain A Guaranteed Job Quote
This time, we will use the job quote to guarantee our charge rates (this may be useful
in the case of fluxuating rates like market based rates).

Example 4-14. Let’s request a guaranteed charge quote that reflects the memory and
quality of service we expect to use.

$ gquote -p chemistry -u amy -m colony -P 16 -M 2048 -t 3600 -
Q Premium -guarantee

Successfully quoted 129946 credits with quote id 1

This time it actually created a persistent quote ...

$ glsquote 1

Id Amount Job Project User Machine StartTime EndTime Wall-
Duration CallType Used ChargeRates De-
scription
-- ------ --- --------- ---- ------- ------------------- ------------
------- ------------ -------- ---- ----------------------------------
------------------------------------ -----------
1 129946 1 chemistry amy colony 2005-02-16 12:06:25 2005-02-23 13:06:25 3600 Nor-
mal 0 QualityOfService:Premium:2,Resource:Processors:1,Resource:Memory:0.001

... and created a job entry.

$ glsjob -j 1

Id JobId User Project Machine Queue QualityOfService Stage Charge Pro-
cessors Nodes WallDuration StartTime EndTime Description
-- ----- ---- --------- ------- ----- ---------------- ----- ------ --
-------- ----- ------------ --------- ------- -----------
1 amy chemistry colony Premium Quote 16 3600

Make A Quoted Job Reservation
If the quote id is specified when we make the reservation, the reservation will use
the quoted amounts in calculating the amount to reserve and it will connect to the
existing job entry.

Example 4-15. Make a reservation for our job that reflects our resource and quality
preferences while specifying the quote id.

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 16 -
M 2048 -t 3600 -Q Premium -q 1

Successfully reserved 129946 credits for job PBS.1234.0

$ glsres

Id Name Amount StartTime EndTime Job User Project Ma-
chine Accounts Description
-- ---------- ------ ------------------- ------------------- --- ----
--------- ------- -------- -----------
1 PBS.1234.0 129946 2005-02-16 12:35:13 2005-02-16 13:35:13 3 amy chem-
istry colony 3

40

Chapter 4. Getting More Advanced

The reservation modifies the job entry to take on the new JobId and to change its
stage from Quote to Reserve.

$ glsjob -j 1

Id JobId User Project Machine Queue QualityOfService Stage Charge Pro-
cessors Nodes WallDuration StartTime EndTime Description
-- ---------- ---- --------- ------- ----- ---------------- ------- --
---- ---------- ----- ------------ --------- ------- -----------
1 PBS.1234.0 amy chemistry colony Premium Reserve 16 3600

As before, the reservation will decrease our balance by the amount reserved.

$ gbalance -u amy -p chemistry -m colony

Id Name Amount Reserved Balance CreditLimit Available
-- ------------------- -------- -------- -------- ----------- --------
-
2 chemistry on colony 50000000 0 50000000 0 50000000
3 chemistry for amy 8960512 129946 8830566 1000000 9830566

Gold has two accounts to choose from. Gold will debit allocations in the order of
earliest expiring and most specific first. Specifically, precedence is considered in the
following order of highest to lowest: hierarchical relation, expiration time, generality
of the project, generality of the user, and generality of the machine. Here we see
that Gold considers the account that is exclusively for amy to be more specific (and
of hence of higher precedence) than the account that is exclusively for the colony
machine. This ordering will ensure that allocations that will expire the soonest will
be used up first and that accounts with more specific access restrictions will be used
in favor of accounts that have more general access (for example - amy will use up an
account just for amy before the she begins using a shared account).

Charge for a Quoted Job
Even if the charge rates change between submission and completion of a job, a job
tied to a quote will use the quoted charge rates in a prorated manner.

Example 4-16. Let’s change a charge rate and issue the charge for our job. We will
request that the quote be honored.

$ goldsh ChargeRate Modify Type==Resource Name==Memory Rate=.002

Successfully modified 1 ChargeRate

$ gcharge -J PBS.1234.0 -u amy -p chemistry -m colony -P 16 -M
2048 -t 1234 -Q Premium -q 1

Successfully charged job PBS.1234.0 for 44542 credits
1 reservations were removed

The charge modifies the job entry with the actual usage, charges and wallduration
while changint its stage from Reserve to Charge.

$ glsjob -j 1

41

Chapter 4. Getting More Advanced

Id JobId User Project Machine Queue QualityOfService Stage Charge Pro-
cessors Nodes WallDuration StartTime EndTime Description
-- ---------- ---- --------- ------- ----- ---------------- ------ --
---- ---------- ----- ------------ --------- ------- -----------
3 PBS.1234.0 amy chemistry colony Premium Charge 44542 16 1234

The detail charge information for the job can be extracted from the transaction log.

$ glstxn -A Charge -J PBS.1234.0 -show Details

Details
--
--
--
--

WallDuration=1234,QuoteId=1,QualityOfService=Premium,Processors=16,ItemizedCharges:=((16 [Pro-
cessors] * 1 [ChargeRate{Resource}{Processors}]) + (2048 [Memory] * 0.001 [Charg-
eRate{Resource}{Memory}])) * 1234 [WallDuration] * 2 [ChargeRate{QualityOfService}{Premium}] = 44542.464

Notice from the Itemized Charges above that the quoted memory charge rate of .001
was used instead of the current rate of .002. Notice also that the amounts have been
prorated according to actual resources used and actual wallclock duration.

Partially Refund a Job

Example 4-17. Suppose you want to issue a partial refund.

$ grefund -j 1 -z 10000

Successfully refunded 10000 credits for job PBS.1234.0

Notice that the Job Charge is now 10000 credits lower as a result. Gold will not let
your refunds total more than the total charge for the job.

$ glsjob 1

Id JobId User Project Machine Queue QualityOfService Stage Charge Pro-
cessors Nodes WallDuration StartTime EndTime Description
-- ---------- ---- --------- ------- ----- ---------------- ------ --
---- ---------- ----- ------------ --------- ------- -----------
3 PBS.1234.0 amy chemistry colony Premium Charge 34542 16 1234

Examine Account Statement
You can get request account statement for our activites as they apply to a particular
account.

Example 4-18. We can request an itemized account statement over all time for ac-
count 3 (chemistry for amy)

$ gstatement -a 3

42

Chapter 4. Getting More Advanced

##
#
Statement for account 3 (chemistry for amy)
Generated on Wed Feb 16 15:16:04 2005.
Reporting account activity from -infinity to now.
#
##

Beginning Balance: 0
------------------ --------------------
Total Credits: 9010000
Total Debits: -44542
------------------ --------------------
Ending Balance: 8965458

############################### Credit Detail ##################################

Object Action JobId Amount Time
------- ------- ----- ------- -------------------
Account Deposit 9000000 2005-02-16 15:10:44
Job Refund 10000 2005-02-16 15:15:36

############################### Debit Detail ###################################

Object Action JobId Project User Machine Amount Time
------ ------ ---------- --------- ---- ------- ------ --------------

Job Charge PBS.1234.0 chemistry amy colony -44542 2005-02-16 15:14:39

############################### End of Report ##################################

43

Chapter 4. Getting More Advanced

44

Chapter 5. Managing Users

A user is a person authorized to submit jobs to run on a high performance computing
resource. User properties include the common name, phone number, email, organi-
zation, and default project for that person. A user can be created, queried, modified
and deleted.

Creating Users
To create a new user, use the command gmkuser:

gmkuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-p
default_project] [-d description] [—debug] [-? | —help] [–man] [—quiet] [-
v | —verbose] {[-u] user_name }

Note: It is possible to have users be created automatically when first encountered in a job
function (charge, reserve or quote) by setting the user.autogen configuration parameter to
true (see Server Configuration). However, bear in mind that users must be defined in order
to assign them as members of a project. It is also possible to establish a system default
user to be used in job functions (charge, reserve, quote) when the user is unspecified
(user.default parameter).

Example 5-1. Creating a user

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" -F "(509)
555-1234" bob

Successfully created 1 User

Querying Users
To display user information, use the command glsuser:

glsuser [-A | -I] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—showSpecial] [-l | —long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-
u] user_pattern]

Example 5-2. Listing all info about active users

$ glsuser -A

Name Active CommonName PhoneNumber EmailAddress Default-
Project Description
---- ------ ---------------- -------------- ---------------- --------
------ -----------
amy True Wilkes, Amy (509) 555-8765 amy@western.edu
bob True Smith, Robert F. (509) 555-1234 bob@western.edu

45

Chapter 5. Managing Users

Example 5-3. Displaying bob’s phone number

$ glsuser --show PhoneNumber bob --quiet

(509) 555-1234

Example 5-4. Listing all user names without the header

$ glsuser --show Name --quiet

amy
bob

Example 5-5. Listing a user’s projects

$ glsuser --show Projects amy -l

Projects

chemistry
biology

Modifying Users
To modify a user, use the command gchuser:

gchuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-p
default_project] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-u] user_name }

Example 5-6. Activating a user

$ gchuser -A bob

Successfully modified 1 User

Example 5-7. Changing a user’s email address

$ gchuser -E "rsmith@cs.univ.edu" bob

Successfully modified 1 User

Deleting Users
To delete a user, use the command grmuser:

grmuser [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-u] user_name }

46

Chapter 5. Managing Users

Example 5-8. Deleting a user

$ grmuser bob

Successfully deleted 1 User

47

Chapter 5. Managing Users

48

Chapter 6. Managing Machines

A machine is a resource that can run jobs such as a cluster or an SMP box. Machine
properties include the description and whether it is active. A machine can be created,
queried, modified and deleted.

Creating Machines
To create a new machine, use the command gmkmachine:

gmkmachine [-A | -I] [—arch architecture] [—opsys operating_system] [-
d description] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m]
machine_name }

Note: It is possible to have machines be created automatically when first encountered
in a job function (charge, reserve or quote) by setting the machine.autogen configuration
parameter to true (see Server Configuration). However, bear in mind that machines must
be defined in order to assign them as members of a project. It is also possible to establish
a system default machine to be used in job functions (charge reserve, quote) when the
machine is unspecified (machine.default parameter).

Example 6-1. Creating a machine

$ gmkmachine -d "Linux Cluster" colony

Successfully created 1 Machine

Querying Machines
To display machine information, use the command glsmachine:

glsmachine [-A | -I] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—showSpecial] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-m] ma-
chine_pattern]

Example 6-2. Listing all inactive machine names and descriptions

$ glsmachine -I --show Name,Description

Name Description
----- ------------------------
inert This machine is unusable

Modifying Machines
To modify a machine, use the command gchmachine:

49

Chapter 6. Managing Machines

gchmachine [-A | -I] [—arch architecture] [—opsys operating_system] [-d
description] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m] ma-
chine_name }

Example 6-3. Deactivating a machine

$ gchmachine -I colony

Successfully modified 1 Machine

Deleting Machines
To delete a machine, use the command grmmachine:

grmmachine [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m] ma-
chine_name }

Example 6-4. Deleting a machine

$ grmmachine colony

Successfully deleted 1 Machine

50

Chapter 7. Managing Projects

A project is a research interest or activity requiring the use of computational resources
for a common purpose. Users may be designated as members of a project and allowed
to share its allocations. The project user list will be honored within accounts including
the project that specify MEMBERS in the user list. Machines may also be designated
as members of a project as a default resource pool. The project machine list will be
honored within accounts including the project that specify MEMBERS in the machine
list.

Creating Projects
To create a new project, use the command gmkproject:

gmkproject [-A | -I] [-u [+ | -]user_name [, [+ | -]user_name ...]] [-m [+ | -
]machine_name [, [+ | -]machine_name ...]] [-d description] [—createAccount=True|False] [—de-
bug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p] project_name }

Note: If the account.autogen configuration parameter is set to true (see Server Config-
uration), an account will be automatically created for the project (unless overridden with
the —createAccount option). The auto-generated account will be associated with the new
project, the user MEMBERS of the project and ANY machine.

Note: It is possible to have projects be created automatically when first encountered
in a job function (charge, reserve or quote) by setting the project.autogen configuration
parameter to true (see Server Configuration). It is also possible to establish a system
default project (project.default) to be used in job functions (charge, reserve, quote) when
the project is unspecified and the user does not have a default project.

Example 7-1. Creating a project

$ gmkproject -d "Chemistry Department" chemistry

Successfully created 1 Project

Example 7-2. Creating a project and specifying user members at the same time

$ gmkproject -d "Chemistry Department" -u amy,bob,dave chemistry

Successfully created 1 Project

Querying Projects
To display project information, use the command glsproject:

51

Chapter 7. Managing Projects

glsproject [-A | -I] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—showSpecial] [-l | —long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-
p] project_pattern]

Example 7-3. Listing all info about all projects

$ glsproject

Name Active Users Machines Description
--------- ------ ------------ -------- --------------------
biology True amy,bob colony Biology Department
chemistry True amy,dave,bob Chemistry Department

Example 7-4. Displaying the name and user members of a project in long format

$ glsproject --show Name,Users -l chemistry

Name Users
--------- -----
chemistry bob

dave
amy

Example 7-5. Listing all project names

$ glsproject --show Name --quiet

biology
chemistry

Modifying Projects
To modify a project, use the command gchproject:

gchproject [-A | -I] [-d description] [—addUser(s) [+ | -]user_name [, [+ | -
]user_name ...]] [—addMachines(s) [+ | -]machine_name [, [+ | -]machine_name ...]] [—delUser(s)
user_name [,user_name ...]] [—delMachines(s) machine_name [,machine_name ...]] [—ac-
tUser(s) user_name [,user_name ...]] [—actMachines(s) machine_name [,machine_name ...]] [—de-
actUser(s) user_name [,user_name ...]] [—deactMachines(s) machine_name [,machine_name ...]] [—de-
bug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p] project_name }

Example 7-6. Deactivating a project

$ gchproject -I chemistry

Successfully modified 1 Project

52

Chapter 7. Managing Projects

Example 7-7. Adding users as members of a project

$ gchproject --addUsers jsmith,barney chemistry

Successfully created 2 ProjectUsers

Example 7-8. Adding machines as members of a project

$ gchproject --addMachines colony chemistry

Successfully created 1 ProjectMachines

Deleting Projects
To delete a project, use the command grmproject:

grmproject [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p] project_name }

Example 7-9. Deleting a project

$ grmproject chemistry

Successfully deleted 1 Project

Project Usage Summary
To generate a project usage summary broken down by user, use the command gusage.
This report lists the total charges by each of the active users during the specified time
frame.

gusage [-s start_time] [-e end_time] [-h | —hours] [—debug] [-? | —help] [—man] {[-
p] project_name }

Example 7-10. Displaying a usage summary for the chemistry project during the
third quarter of 2006

$ gusage -p chemistry -s 2006-07-01 -e 2006-10-01

##
#
Usage for project chemistry
Generated on Tue Feb 8 11:05:06 2005.
Reporting user charges from 2006-07-01 to 2006-10-01
#
##

User Amount
---- ------
amy 19744
bob 36078

53

Chapter 7. Managing Projects

54

Chapter 8. Managing Accounts

An account is a container for time-bounded resource credits valid toward a specific
set of projects, users and machines. Much like with a bank, an account is a repository
for resource credits. Each account has a set of access control lists designating which
users, projects, and machines may access the account. An account may restrict the
projects that can charge to it. Normally an account will be tied to a single project but
it may be tied to an arbitrary set of projects or ANY project. An account may restrict
the users that can charge to it. It will frequently be tied to the the user MEMBERS
of the associated project(s) but it may be tied to an arbitrary set of users or ANY
user. An account may restrict the machines that can charge to it. It may be tied to an
arbitrary set of machines, just the machine MEMBERS of the associated project(s) or
ANY machine.

When resource credits are deposited into an account, they are associated with a time
period within which they are valid. These time-bounded pools of credits are known
as allocations. (An allocation is a pool of resource credits associated with an account
for use during a particular time period.) By using multiple allocations that expire in
regular intervals it is possible to implement a use-it-or-lose-it policy and establish a
project cycle.

Accounts may be nested. Hierarchically nested accounts may be useful for the dele-
gation of management roles and responsibilities. Deposit shares may be established
that assist to automate a trickle-down effect for funds deposited at higher level ac-
counts. Additionally, an optional overflow feature allows charges against lower level
accounts to trickle up the hierarchy.

Operations include creating, querying, modifying and deleting accounts as well as
making deposits, withdrawals, transfers and balance queries.

Creating Accounts
gmkaccount is used to create a new account. A new id is automatically generated for
the account.

gmkaccount [-n account_name] [-p [+ | -]project_name [, [+ | -]project_name ...]] [-
u [+ | -]user_name [, [+ | -]user_name ...]] [-m [+ | -]machine_name [, [+ |
-]machine_name ...]] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose]

Important: When creating an account, it is important to specify at least one user, machine
and project designation. If omitted, these will default to ANY.

Note: It is possible to have accounts be created automatically when projects are cre-
ated by setting the account.autogen configuration parameter to true (see Server Config-
uration). The auto-generated account will be associated with the new project, the user
MEMBERS of the project and ANY machine.

Example 8-1. Creating an account

$ gmkaccount -p chemistry -u MEMBERS -m ANY -n "Chemistry"

Successfully created 1 Account

55

Chapter 8. Managing Accounts

Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

Example 8-2. Creating a wide-open account

$ gmkaccount -p ANY -u ANY -m ANY -n "Cornucopia"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

Example 8-3. Creating an account valid toward all biology project members except
for dave and all machines except for blue

$ gmkaccount -p biology -u MEMBERS,-dave -m ANY,-blue -n "Not Dave"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountUser
Successfully created 1 AccountMachine
Successfully created 1 AccountMachine

Querying Accounts
To display account information, use the command glsaccount:

glsaccount [-A | -I] [-n account_name] [-p project_name] [-u user_name] [-
m machine_name] [-s start_time] [-e end_time] [—exact-match] [—show at-
tribute_name [,attribute_name ...]...] [—showHidden] [-l | —long] [-w | —wide] [—raw] [-
h | —hours] [—debug] [-? | —help] [—man] [—quiet] [[-a] account_id]

Example 8-4. Listing all info about all accounts with multi-valued fields displayed
in a multi-line format

$ glsaccount --long

Id Name Amount Projects Users Machines Description
-- ---------- --------- --------- ------- -------- -----------
1 Biology 360000000 biology MEMBERS blue
2 Chemistry 360000000 chemistry MEMBERS ANY
3 Cornucopia 0 ANY ANY ANY
4 Not Dave 250000 biology -dave -blue

56

Chapter 8. Managing Accounts

Example 8-5. Listing all info about all accounts useable by dave

$ glsaccount -u dave --long

Id Name Amount Projects Users Machines Description
-- ---------- --------- --------- ------- -------- -----------
2 Chemistry 360000000 chemistry MEMBERS ANY
3 Cornucopia 0 ANY ANY ANY

Modifying Accounts
To modify an account, use the command gchaccount:

gchaccount [-n account_name] [-d description] [—addProject(s) [+ | -]project_name [, [+ |
-]project_name ...]] [—addUser(s) [+ | -]user_name [, [+ | -]user_name ...]] [—ad-
dMachine(s) [+ | -]machine_name [, [+ | -]machine_name ...]] [—delProject(s) project_name [,project_name ...]] [—delUser(s)
user_name [,user_name ...]] [—delMachine(s) machine_name [,machine_name ...]] [—de-
bug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-a] account_id }

Example 8-6. Adding a user to the list of users that share the account

$ gchaccount --addUser dave 1

Successfully created 1 AccountUser

Making Deposits
gdeposit is used to deposit time-bounded resource credits into accounts resulting
in the creation or enlargement of an allocation. (See Allocations for managing al-
locations). The start time will default to -infinity and the end time will default to
infinity if not specified. Accounts must first be created using gmkaccount (unless
auto-generated).

gdeposit {-a account_id | -p project_name } [-i allocation_id] [-s start_time] [-
e end_time] [[-z] amount] [-L credit_limit] [-d description] [-h | —hours] [—de-
bug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 8-7. Making a deposit

$ gdeposit -s 2003-10-01 -e 2004-10-01 -z 360000000 -a 1

Successfully deposited 360000000 credits into account 1

Example 8-8. Making a deposit "into" a project

If a project has a single account then a deposit can be made against the project.

$ gdeposit -s 2003-10-01 -e 2004-10-01 -z 360000000 -p chemistry

Successfully deposited 360000000 credits into account 2

57

Chapter 8. Managing Accounts

Example 8-9. Creating a credit allocation

$ gdeposit -L 10000000000 -a 3

Successfully deposited 0 credits into account 3

Querying The Balance
To display balance information, use the command gbalance:

gbalance [-p project_name] [-u user_name] [-m machine_name] [—total] [—avail-
able] [—raw] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet]

Example 8-10. Querying the project balance detail broken down by account

$ gbalance -p chemistry

Id Name Amount Reserved Balance CreditLimit Available
-- ---------- --------- -------- --------- ------------- ------------
-
1 Chemistry 360000000 0 360000000 0 360000000
2 Cornucopia 0 0 0 1000000000000 1000000000000

Example 8-11. Querying the total balance for a particular user in a particular project
on a particular machine

$ gbalance -u bob -m colony -p chemistry --total

Balance

360000000
The account balance is 360000000 credits

Example 8-12. List the projects and available balance amy can charge to

$ gbalance -u amy --show Project,Balance

Project Balance
--------- ---------
biology 360000000
chemistry 360000000

Personal Balance
The mybalance has been provided as a wrapper script to show users their personal
balance. It provides a list of balances for the projects that they can charge to:

58

Chapter 8. Managing Accounts

gbalance [-h | —hours] [-? | —help] [—man]

Example 8-13. List my (project) balances

$ mybalance

Project Balance
--------- -------------
biology 324817276
chemistry 9999979350400

Example 8-14. List my balance in (Processor) hours

$ mybalance -h

Project Balance
--------- -------------
biology 90227.02
chemistry 2777772041.77

Making Withdrawals
To issue a withdrawal, use the command gwithdraw:

gwithdraw {-a account_id | -p project_name } [-i allocation_id] {[-z] amount } [-
d description] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [-v |
—verbose]

Example 8-15. Making a withdrawal

$ gwithdraw -z 12800 -a 1 -d "Grid Tax"

Successfully withdrew 12800 credits from account 1

Example 8-16. Making a withdrawal "from" a project

If a project has a single account then a withdrawal can be made against the project.

$ gwithdraw -z 12800 -p chemistry

Successfully withdrew 12800 credits from account 2

Making Transfers
To issue a transfer between accounts, use the command gtransfer. If the allocation id
is specified, then only credits associated with the specified allocation will be trans-
ferred, otherwise, only active credits will be transferred. Account transfers preserve
the allocation time periods associated with the resource credits from the source to

59

Chapter 8. Managing Accounts

the destination accounts. If a one-to-one mapping exists between project and ac-
count, then the fromProject/toProject options may be used in place of the fromAc-
count/toAccount options.

gtransfer {—fromAccount source_account_id | —fromProject source_project_name |
-i allocation_id } {—toAccount destination_account_id | —toProject des-
tination_project_name } [-d description] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-z] amount }

Example 8-17. Transferring credits between two accounts

$ gtransfer -fromAccount 1 -toAccount 2 10000

Successfully transferred 10000 credits from account 1 to account 2

Example 8-18. Transferring credits between two single-account projects

$ gtransfer -fromProject biology -toProject chemistry 10000

Successfully transferred 10000 credits from account 1 to account 2

Obtaining an Account Statement
To generate an account statement, use the command gstatement. For a specified time
frame it displays the beginning and ending balances as well as the total credits and
debits to the account over that period. This is followed by an itemized report of the
debits and credits. Summaries of the debits and credits will be displayed instead of
the itemized report if the —summarize option is specified. If a project, user or ma-
chine is specified instead of an account, then the statement will consist of information
merged from all accounts valid toward the specified entities.

gstatement [[-a] account_id] [-p project_name] [-u user_name] [-m machine_name] [-
s start_time] [-e end_time] [—summarize] [-h | —hours] [—debug] [-? | —help] [—man]

Example 8-19. Generating an account statement for the third quarter of 2006

$ gstatement -a 2 -s 2006-07-01 -e 2006-10-01

##
#
Statement for account 2 (chemistry) generated on Tue Aug 3 16:06:15 2005.
#
Reporting account activity from -infinity to now.
#
##

Beginning Balance: 0
------------------ --------------------
Total Credits: 360019744
Total Debits: -19744
------------------ --------------------
Ending Balance: 360000000

60

Chapter 8. Managing Accounts

############################### Credit Detail ##################################

Object Action JobId Amount Time
------- ------- ---------- --------- ----------------------
Account Deposit 360000000 2005-08-03 16:01:15-07
Job Refund PBS.1234.0 19744 2005-08-03 16:04:02-07

############################### Debit Detail ###################################

Object Action JobId Project User Machine Amount Time
---------- ---------- ---------- --------- ---- ------- ------ ------

Job Charge PBS.1234.0 chemistry amy colony -19744 2005-08-
03 16:03:39-07

############################### End of Report ##################################

Deleting Accounts
To delete an account, use the command grmaccount:

grmaccount [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-a] ac-
count_id }

Example 8-20. Deleting an account

$ grmaccount 2

Successfully deleted 1 Account

61

Chapter 8. Managing Accounts

62

Chapter 9. Managing Allocations

An allocation is a time-bounded pool of resource credits associated with an account.
An account may have multiple allocations, each for use during a different time pe-
riod. An allocation may also have a credit limit representing the amount by which it
can go negative.

Operations include querying, modifying and deleting allocations.

Creating Allocations
Allocations are created by making account deposits via the gdeposit command (See
Making Deposits).

Querying Allocations
To display allocation information, use the command glsalloc:

glsalloc [-A | -I] [-a account_id] [-p project_name] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—raw] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [[-i] alloca-
tion_id]

Example 9-1. Listing allocations for account 4

$ glsalloc -a 4

Id Account StartTime EndTime Amount CreditLimit Deposited Active De-
scription
-- ------- ---------- ---------- ------ ----------- --------- ------ --

4 4 2005-01-01 2005-04-01 250000 0 250000 False
5 4 2005-04-01 2005-07-01 250000 0 250000 False
6 4 2005-07-01 2005-10-01 250000 0 250000 True
7 4 2005-10-01 2006-01-01 250000 0 250000 False

Modifying Allocations
To modify an allocation, use the command gchalloc:

gchalloc [-s start_time] [-e end_time] [-L credit_limit] [-d description] [-
h | —hours] [—debug] [-? | —help] [–man] [—quiet] [-v | —verbose] {[-i] alloca-
tion_id }

Example 9-2. Changing the end time for an allocation

$ gchalloc -e "2005-01-01" 4

Successfully modified 1 Allocation

63

Chapter 9. Managing Allocations

Example 9-3. Changing the credit limit for an allocation

$ gchalloc -L 500000000000 -i 2

Successfully modified 1 Allocation

Deleting Allocations
To delete an allocation, use the command grmalloc:

grmalloc [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {-I | [-i] allo-
cation_id }

Example 9-4. Deleting an allocation

$ grmalloc 4

Successfully deleted 1 Allocation

Example 9-5. Purging inactive allocations

$ grmalloc -I

Successfully deleted 2 Allocations

64

Chapter 10. Managing Reservations

A reservation is a hold placed against an account. Before a job runs, a reservation
(or hold) is made against one or more of the requesting user’s applicable account(s).
Subsequent jobs will also post reservations while the available balance (active alloca-
tions minus reservations) allows. When a job completes, the reservation is removed
and the actual charge is made to the account(s). This procedure ensures that jobs will
only run so long as they have sufficient reserves.

Associated with a reservation is the name of the reservation (often the job id requiring
the reservation), the user, project, and machine as applicable, an expiration time, and
an amount. Operations include creating, querying, modifying and deleting reserva-
tions.

Creating Reservations
Reservations are created by the resource management system with the greserve com-
mand (See Making Job Reservations).

Querying Reservations
To display reservation information, use the command glsres:

glsres [-A | -I] [-n reservation_name | job_id_pattern] [-p project_name] [-
u user_name] [-m machine_name] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [-l | —long] [-w | —wide] [—raw] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [[-
r] reservation_id]

Example 10-1. Listing all info about all reservations for bob

$ glsres -u bob

Id Name Amount StartTime EndTime Job User Project Ma-
chine Accounts Description
-- ------------------ ------ ------------------- ------------------- --
- ---- --------- ------- -------- -----------
1 Interactive.789654 3600 2005-01-13 16:48:15 2005-01-13 17:48:15 1 bob chem-
istry blue 1

Example 10-2. Listing all info about all reservations that impinge against amy’s
balance

$ glsres -u amy --option name=UseRules value=True

Id Name Amount StartTime EndTime Job User Project Ma-
chine Accounts Description
-- ------------------ ------ ------------------- ------------------- --
- ---- --------- ------- -------- -----------
1 Interactive.789654 3600 2005-01-13 16:48:15 2005-01-13 17:48:15 1 bob chem-
istry blue 1
2 PBS.1234.0 7200 2005-01-13 17:59:09 2005-01-14 02:28:41 2 amy chem-
istry colony 2

65

Chapter 10. Managing Reservations

Modifying Reservations
To modify a reservation, use the command gchres:

gchres [-s start_time] [-e end_time] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-r] reservation_id }

Example 10-3. Changing the expiration time of a reservation

$ gchres -e "2004-08-07 14:43:02" 1

Successfully modified 1 Reservation

Deleting Reservations
To delete a reservation, use the command grmres:

grmres [—debug] [-? | —help] [—man] [-q | —quiet] [-v | —verbose] {-I | -n reser-
vation_name | job_id | [-r] reservation_id }

Example 10-4. Deleting a reservation by name (JobId)

$ grmres -n PBS.1234.0

Successfully deleted 1 Reservation

Example 10-5. Deleting a reservation by ReservationId

$ grmres 1

Successfully deleted 1 Reservation

Example 10-6. Purging stale reservations

$ grmres -I

Successfully deleted 2 Reservations

66

Chapter 11. Managing Quotations

A quotation provides a way to determine beforehand how much would be charged
for a job. When a quotation is requested, the charge rates applicable to the job request-
ing the quote are saved and a quote id is returned. When the job makes a reservation
and the final charge, the quote can be referenced to ensure that the saved chargerates
are used instead of current values. A quotation has an expiration time after which it
cannot be used. A quotation may also be used to verify that the given job has suffi-
cient funds and meets the policies necessary for the charge to succeed.

Operations include querying, modifying and deleting quotations.

Creating Quotations
Quotations are normally created by the resource management system with the gquote
command (See Making Job Quotations).

Querying Quotations
To display quotation information, use the command glsquote:

glsquote [-A | -I] [-p project_name] [-u user_name] [-m machine_name] [—show
attribute_name [,attribute_name ...]...] [—showHidden] [-l | —long] [-w | —wide] [—raw] [-
h | —hours] [—debug] [-? | —help] [—man] [—quiet] [[-q] quote_id]

Example 11-1. Listing all info about all quotes for user amy on machine colony

$ glsquote -u amy -m colony

Id Amount Job Project User Machine StartTime EndTime Wall-
Duration Type Used ChargeRates Description
-- ------ --- --------- ---- ------- ------------------- ------------
------- ------------ ------ ---- --------------------- -----------
1 57600 1 chemistry amy colony 2005-01-14 10:09:58 2005-09-10 15:27:07 3600 Nor-
mal 0 Resource:Processors:1

Modifying Quotations
To modify a quotation, use the command gchquote:

gchquote [-s start_time] [-e expiration_time] [-d description] [—debug] [-
? | —help] [–man] [—quiet] [-v | —verbose] {[-q] quote_id }

Example 11-2. Changing the expiration time of a quotation

$ gchquote -e "2005-03-01" 1

Successfully modified 1 Quotation

67

Chapter 11. Managing Quotations

Deleting Quotations
To delete a quotation, use the command grmquote:

grmquote [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {-I | [-q] quote_id }

Example 11-3. Deleting a quotation

$ grmquote 1

Successfully deleted 1 Quotation

Example 11-4. Purging stale quotations

$ grmquote -I

Successfully deleted 2 Quotations

68

Chapter 12. Managing Jobs

Gold can track the jobs that run on your system, recording the charges and resources
used for each job. Typically, a job record is created when the resource manager charges
for a job. Job quotes, reservations, charges and refunds can be issued.

Creating Jobs
In most cases, jobs will be created by the resource management system with the
gcharge command (See Charging Jobs).

However, it is also possible to create job records by hand using the command gold
Job Create:

goldsh Job Create JobId=<Job Id > [User=<User Name>] [Project=<Project
Name>] [Machine=<Machine Name>] [Charge=<Charge >] [Queue=<Class or
Queue>] [Type=<Job Type > (Normal)] [Stage=<Last Job Stage >] [QOS=<Quality
Of Service >] [Nodes=<Number Of Nodes >] [Processors=<Number Of Processors >] [State=<Job
State >] [Executable=<Executable >] [Application=<Application >] [StartTime=<Start
Time>] [EndTime=<End Time>] [WallDuration=<Wallclock Time in seconds >] [QuoteId=<Quote
Id >] [Description=<Description >] [ShowUsage:=true]

Example 12-1. Creating a job record

$ goldsh Job Create JobId=PBS.1234.0 User=jsmith Project=chem Ma-
chine=cluster Charge=2468 Processors=2 WallDuration=1234

Successfully created 1 Job

Querying Jobs
To display job information, use the command glsjob:

glsjob [[-J] job_id_pattern] [-p project_name] [-u user_name] [-m machine_name] [-
C queue] [-T type] [—stage stage] [-s start_time] [-e end_time] [—show at-
tribute_name [,attribute_name ...]...] [—showHidden] [—raw] [—debug] [-? |
—help] [—man] [—quiet] [[-j] gold_job_id]

Example 12-2. Show specific info about jobs run by amy

$ glsjob --show=JobId,Project,Machine,Charge -u amy

JobId Project Machine Charge
---------- --------- ------- ------
PBS.1234.0 chemistry colony 0

Modifying Jobs
It is possible to modify a job by using the command goldsh Job Modify:

69

Chapter 12. Managing Jobs

goldsh Job Modify [JobId==<Job Id > | Id==<Gold Job Id >] [User=<User
Name>] [Project=<Project Name >] [Machine=<Machine Name>] [Charge=<Charge >] [Queue=<Class
or Queue >] [Type=<Job Type >] [Stage=<Last Job Stage >] [QOS=<Quality
Of Service >] [Nodes=<Number Of Nodes >] [Processors=<Number Of Processors >] [State=<Job
State >] [Executable=<Executable >] [Application=<Application >] [StartTime=<StartTime >] [End-
Time=<EndTime>] [WallDuration=<Wallclock Time in seconds >] [QuoteId=<Quote
Id >] [Description=<Description >] [ShowUsage:=true]

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant modification of all jobs.

Example 12-3. Changing a job

$ goldsh Job Modify JobId==PBS.1234.0 Charge=1234 Description="Benchmark"

Successfully modified 1 Job

Deleting Jobs
To delete a job, use the command goldsh Job Delete:

goldsh Job Delete [JobId==<Job Id > | Id==<Id >]

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all jobs.

Example 12-4. Deleting a job

$ goldsh Job Delete JobId==PBS.1234.0

Successfully deleted 1 Job

Obtaining Job Quotes
Job quotes can be used to determine how much it will cost to run a job. This step
verifies that the submitter has sufficient funds for, and meets all the allocation policy
requirements for running the job and can be used at job submission as an early filter
to prevent jobs from getting in and waiting in the job queue just to be blocked from
running later. If a guaranteed quote is requested, a quote id is returned and can be
used in the subsequent charge to guarantee the rates that were used to form the orig-
inal quote. A guaranteed quote has the side effect of creating a quotation record and
a permanent job record.

70

Chapter 12. Managing Jobs

To request a job quote, use the command gquote:

gquote [-p project_name] [-u user_name] [-m machine_name] [-P processors] [-
M memory] [-D disk] [-Q QOS] [-t wallclock_time] [-s start_time] [-e end_time] [-
d description] [—guarantee] [—debug] [-? | —help] [—man] [—quiet] [-v | —ver-
bose]

Example 12-5. Requesting a quotation

$ gquote -p chemistry -u amy -m colony -P 2 -t 3600

Successfully quoted 7200 credits

Example 12-6. Requesting a guaranteed quote

$ gquote -p chemistry -u amy -m colony -P 16 -t 3600 -guarantee

Successfully quoted 57600 credits with quote id 1

$ glsquote

Id Amount Job Project User Machine StartTime EndTime Wall-
Duration Type Used ChargeRates Description
-- ------ --- --------- ---- ------- ------------------- ------------
------- ------------ ------- ---- --------------------- -----------
1 57600 1 chemistry amy colony 2005-01-14 10:09:58 2005-08-10 15:27:07 3600 Nor-
mal 0 Resource:Processors:1

Note: It is possible to establish a system default machine, project or user to be used in
job functions (charge, reserve or quote) when left unspecified (see Server Configuration).

Making Job Reservations
A job reservation can be used to place a hold on the user’s account before a job starts
to ensure that the credits will be there when it completes.

To create a job reservation use the command greserve:

greserve [-p project_name] [-u user_name] [-m machine_name] [-P proces-
sors] [-M memory] [-D disk] [-Q QOS] [-t wallclock_time] [-s start_time] [-e
end_time] [-q quote_id] [-d description] [—replace] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-J] job_id }

Example 12-7. Creating a reservation

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t
3600

Successfully reserved 7200 credits for job PBS.1234.0

71

Chapter 12. Managing Jobs

Note: It is possible to establish a system default machine, project or user to be used in
job functions (charge, reserve or quote) when left unspecified (see Server Configuration).

Charging Jobs
A job charge debits the appropriate allocations based on the user, project and ma-
chine associated with the job. The charge is calculated based on factors including
the resources used, the job run time, and other quality-based factors (See Managing
Charge Rates).

To charge for a job use the command gcharge:

gcharge [-p project_name] [-u user_name] [-m machine_name] [-P proces-
sors] [-N nodes] [-M memory] [-D disk] [-Q QOS] [-t wallclock_time] [-S job_state] [-
T job_type] [—application application] [—executable executable] [-C queue] [-
s start_time] [-e end_time] [-q quote_id] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-J] job_id }

Example 12-8. Issuing a job charge

$ gcharge -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 1234

Successfully charged job PBS.1234.0 for 2468 credits
1 reservations were removed

Note: It is possible to establish a system default machine, project or user to be used in
job functions (charge, reserve or quote) when left unspecified (see Server Configuration).

Issuing Job Refunds
A job can be refunded in part or in whole by issuing a job refund. This action attempts
to lookup the referenced job to ensure that the refund does not exceed the original
charge and so that the charge entry can be updated. If multiple matches are found
(such as the case when job ids are non-unique), this command will return the list of
matched jobs with unique ids so that the correct job can be specified for the refund.

To issue a refund for a job, use the command grefund:

grefund [-J job_id] [[-j] gold_job_id] [-z amount] [-a account_id] [-d de-
scription] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [-v | —ver-
bose]

Example 12-9. Issuing a job refund

$ grefund -J PBS.1234.0

Successfully refunded 19744 credits for job PBS.1234.0

72

Chapter 13. Managing Charge Rates

Charge Rates establish how much it costs to use your resources. There are two main
categories of charge rates, consumable resources and quality-based charge rates. Re-
source charge rates define how much it costs per unit of time to use a consumable
resource like processors, memory, telescope time, etc. Quality-based charge rates ap-
ply a multiplicative charge factor related to the quality or class of service obtained
such as QOS, nodetype, backlog, primetime, etc.

By default, charges are calculated according to the following formula: For each con-
sumable resource used, a resource charge is calculated by multiplying the amount of
the resource used by the amount of time it was used, multiplied by the charge rate
for that resource. These resource charges are added together. Then, for each quality-
based charge rate, a charge factor is looked-up based on the type and name of the
charge rate. The sum of the resource charges is multiplied by each of the applicable
charge factors.

Creating ChargeRates
To create a new charge rate, use the command goldsh ChargeRate Create:

goldsh ChargeRate Create Type=<Charge Rate Type > Name=<Charge Rate
Name> Rate=<Floating Point Multiplier > [Description=<Description >] [ShowUsage:=True]

Example 13-1. Creating a resource charge rate

$ goldsh ChargeRate Create Type=Resource Name=Processors Rate=1

Successfully created 1 ChargeRate

Example 13-2. Creating another resource charge rate

$ goldsh ChargeRate Create Type=Resource Name=Memory Rate=0.001

Successfully created 1 ChargeRate

Example 13-3. Creating a quality-based charge rate

$ goldsh ChargeRate Create Type=QualityOfService Name=BottomFeeder
Rate=0.5

Successfully created 1 ChargeRate

Example 13-4. Creating another quality-based charge rate

$ goldsh ChargeRate Create Type=QualityOfService Name=Premium Rate=2

Successfully created 1 ChargeRate

73

Chapter 13. Managing Charge Rates

Querying ChargeRates
To display charge rate information, use the command goldsh ChargeRate Query:

goldsh ChargeRate Query [Show:=<"Field1,Field2,..." >] [Type==<Charge
Rate Type >] [Name==<Charge Rate Name >] [Rate==<Floating Point Multiplier >] [De-
scription==<Description >] [ShowUsage:=True]

Example 13-5. Listing all charge rates

$ goldsh ChargeRate Query

Type Name Rate Description
---------------- ------------ ----- -----------
Resource Processors 1
QualityOfService BottomFeeder 0.5
QualityOfService Normal 1
QualityOfService Premium 2
Resource Memory 0.001

Modifying Charge Rates
To modify a charge rate, use the command goldsh ChargeRate Modify:

goldsh ChargeRate Modify [Rate=<Floating Point Multiplier >] [Descrip-
tion=<Description >] [Type==<Charge Rate Type >] [Name==<Charge Rate
Name>] [Rate==<Floating Point Multiplier >] [ShowUsage:=True]

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant modification of all charge rates.

Example 13-6. Changing a charge rate

$ goldsh ChargeRate Modify Type==Resource Name==Memory Rate=0.05

Successfully modified 1 ChargeRate

Deleting Charge Rates
To delete a charge rate, use the command goldsh ChargeRate Delete:

goldsh ChargeRate Delete [Name==<Charge Rate Name >] [Rate==<Floating
Point Multiplier >]

74

Chapter 13. Managing Charge Rates

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all charge rates.

Example 13-7. Deleting a charge rate

$ goldsh ChargeRate Delete Type==Resource Name==Memory

Successfully deleted 1 ChargeRate

75

Chapter 13. Managing Charge Rates

76

Chapter 14. Managing Transactions

Gold logs all modifying transactions in a detailed transaction journal (queries are not
recorded). Previous transactions can be queried but not modified or deleted.

Querying Transactions
To display transaction information, use the command glstxn:

glstxn [-O object] [-A action] [-n name_or_id] [-U actor] [-a account_id] [-
i allocation_id] [-u user_name] [-p project_name] [-m machine_name] [-J
job_id] [-s start_time] [-e end_time] [-T transaction_id] [-R request_id] [—show
attribute_name [,attribute_name ...]...] [—showHidden] [—raw] [—debug] [-
? | —help] [—man] [—quiet]

Example 14-1. List all deposits made in 2004

$ glstxn -A Deposit -s 2004-01-01 -e 2005-01-01

Example 14-2. List everything done by amy since the beginning of 2004

$ glstxn -U amy -s 2004-01-01

Example 14-3. List all transactions affecting Job Id PBS.1234.0

$ glstxn -J PBS.1234.0

Example 14-4. List all transactions affecting charge rates

$ glstxn -O ChargeRate

77

Chapter 14. Managing Transactions

78

Chapter 15. Managing Roles

Gold uses instance-level role based access controls to determine what users can per-
form what functions. Named roles are created, privileges are associated with the
roles, and users are assigned to these roles.

Querying Roles
To display the currently defined roles, use the command goldsh Role Query:

goldsh Role Query [Show:=<"Field1,Field2,..." >] [Name==<Role Name>] [De-
scription==<Description >] [ShowUsage:=True]

Example 15-1. Listing all roles

$ goldsh Role Query

Name Description
------------ ---
SystemAdmin Can update or view any object
Anonymous Things that can be done by anybody
OVERRIDE A custom authorization method will be invoked
ProjectAdmin Can update or view a project they are admin for
UserServices User Services
Scheduler Scheduler relevant Transactions

Querying Role Users
To list what users can perform what roles, use the command goldsh RoleUser Query:

goldsh RoleUser Query [Show:=<"Field1,Field2,..." >] [Role==<Role Name>] [Name==<User
Name>] [ShowUsage:=True]

Example 15-2. Listing all role users

$ goldsh RoleUser Query

Role Name
------------ ----
SystemAdmin gold
Anonymous ANY
OVERRIDE ANY
Scheduler maui
SystemAdmin root
UserServices amy

79

Chapter 15. Managing Roles

Querying Role Actions
To list what actions can be performed by what roles, use the command goldsh Role-
Action Query:

goldsh RoleAction Query [Show:=<"Field1,Field2,..." >] [Role==<Role Name>] [Ob-
ject==<Object Name >] [Name==<Action Name >] [Instance==<Instance Name >] [ShowUsage:=True]

Example 15-3. Listing all role actions

$ goldsh RoleAction Query

Role Object Name Instance
------------ -------------- ------- --------
Anonymous ANY Query ANY
Anonymous Account Balance ANY
Anonymous Password ANY SELF
OVERRIDE Account Balance ANY
ProjectAdmin Project ANY ADMIN
Scheduler Job Charge ANY
Scheduler Job Quote ANY
Scheduler Job Reserve ANY
SystemAdmin ANY ANY ANY
UserServices Job Refund ANY
UserServices Machine ANY ANY
UserServices Project ANY ANY
UserServices ProjectMachine ANY ANY
UserServices ProjectUser ANY ANY
UserServices User ANY ANY

Creating Roles
To create a new role, use the command goldsh Role Create:

goldsh Role Create Name=<Role Name> [Description=<Description >] [ShowUsage:=True]

Example 15-4. Creating a Manager role

$ goldsh Role Create Name=Manager Description="Manages Roles and
Responsibilities"

Name Description
------- ----------------------------------
Manager Manages Roles and Responsibilities
Successfully created 1 Role

Associating an Action with a Role
To add an action to a role, use the command goldsh RoleAction Create:

goldsh RoleAction Create Role=<Role Name> Object=<Object Name > Name=<Action
Name> [Instance=<Instance Name >] [ShowUsage:=True]

80

Chapter 15. Managing Roles

The Instance indicates which specific instances of the object the action(s) can be performed on. In-
stances are interpreted as the value of the solitary primary key for an object. Unless oth-
erwise specified, the instance will default to a value of ANY.

Valid values for Instance include:

ANY Any or all of the object instances
NONE No object instances
SELF Only objects identified with myself (like my own username)
ADMIN Only object instances that I am an admin for
<specific> A specific named instance

For example, the Role Action:

Role Object Name Instance
-------------- -------------- ------- ---------
ChemistryAdmin Project Modify Chemistry

allows users having the ChemistryAdmin role to modify the Chemistry Project.

Example 15-5. Allow the Manager to change role responsibilities

$ goldsh RoleAction Create Role=Manager Object=RoleAction Name=ANY

Role Object Name Instance
------- ---------- ---- --------
Manager RoleAction ANY ANY
Successfully created 1 RoleAction

Adding a Role to a User
To associate a user with a role, use the command goldsh RoleUser Create:

goldsh RoleUser Create Role=<Role Name> Name=<User Name> [ShowUsage:=True]

Example 15-6. Adding a user to the Manager role

$ goldsh RoleUser Create Role=Manager Name=dave

Role Name
------- ----
Manager dave
Successfully created 1 RoleUser

81

Chapter 15. Managing Roles

Removing an Action from a Role
To disassociate an action from a role, use the command goldsh RoleAction Delete:

goldsh RoleAction Delete [Role==<Role Name>] [Object==<Object Name >] [Name==<Action
Name>] [Instance==<Instance Name >] [ShowUsage:=True]

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all role actions.

Example 15-7. Don’t let UserServices Create or Update Projects

$ goldsh RoleAction Delete Role==UserServices Object==Project Name==ANY

Role Object Name Instance
------------ ------- ---- --------
UserServices Project ANY ANY
Successfully deleted 1 RoleActions

Removing a Role from a User
To disassociate a user and a role, use the command goldsh RoleUser Delete:

goldsh RoleUser Delete [Role==<Role Name>] [Name==<User Name>] [ShowUsage:=True]

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all role users.

Example 15-8. Removing dave as a Manager

$ goldsh RoleUser Delete Role==Manager Name==dave

Role Name
------- ----
Manager dave
Successfully deleted 1 RoleUser

Deleting Roles
To delete a role, use the command goldsh Role Delete:

goldsh Role Delete [Name==<Role Name>] [Description==<Description >] [ShowUsage:=True]

82

Chapter 15. Managing Roles

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant modification of all roles.

Example 15-9. Deleting the Manager role

$ goldsh Role Delete Name==Manager

Name Description
------- ----------------------------------
Manager Manages Roles and Responsibilities
Successfully deleted 1 Roles and 3 associations

83

Chapter 15. Managing Roles

84

Chapter 16. Managing Passwords

Passwords must be established for each user who wishes to use the web-based GUI.
Passwords must be at least eight characters and are stored in encrypted form. Valid
operations on passwords include creating, modifying and deleting passwords.

Creating Passwords
To create a new password, use the command goldsh Password Create:

goldsh Password Create User=<User Name> Password=<Encrypted Password >
[ShowUsage:=True]

Example 16-1. Creating a password

$ goldsh Password Create User=amy Password=mysecret

User Password
---- --------------------------------
amy Nn0NaSpwELQ+FKa36og9l6EczO+kUEoN
Successfully created 1 Password

Querying Passwords
To display password information, use the command goldsh Password Query:

goldsh Password Query [Show:=<"Field1,Field2,..." >] [User==<User Name>] [ShowUsage:=True]

Example 16-2. List the users who have set passwords

$ goldsh Password Query Show:=User

User

amy
gold

Modifying Passwords
To change a password, use the command goldsh Password Modify:

goldsh Password Modify [Password=<Encrypted Password >] [Name==<User
Name>] [ShowUsage:=True]

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant modification of all passwords.

85

Chapter 16. Managing Passwords

Example 16-3. Changing amy’s password

$ goldsh Password Modify User==amy Password=changeme

User Password
---- --------------------------------
amy HZYzwD20o1XIE/gxRYyFKP2sumkCluHm
Successfully modified 1 Passwords

Deleting Passwords
To delete a password, use the command goldsh Password Delete:

goldsh Password Delete [Name==<User Name>]

Caution
The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all passwords.

Example 16-4. Deleting a password

$ goldsh Password Delete User==amy

User Password
---- --------------------------------
amy HZYzwD20o1XIE/gxRYyFKP2sumkCluHm
Successfully deleted 1 Passwords

86

Chapter 17. Using the Gold Shell (goldsh)

goldsh is an interactive control program that can access all of the advanced function-
ality in Gold.

Caution
The goldsh control program allows you to make powerful and sweep-
ing modifications to many objects with a single command. Inadvertant
mistakes could result in potentially irreversible modifications.

Usage
Gold commands can be invoked directly from the command line as arguments, or
read from stdin (interactively or redirected from a file).

goldsh [—debug] [-? | —help] [–man] [—raw] [—quiet] [-v | —verbose] [<Command>]

Example 17-1. Specifying the command as direct arguments

$ goldsh System Query

Name Version Organization Description
---- -------- ------------ ------------
Gold 2.0.b1.0 Beta Release

Example 17-2. Using the interactive prompt

$ goldsh

gold > System Query
Name Version Organization Description
---- -------- ------------ ------------
Gold 2.0.b1.0 Beta Release

gold > quit

Example 17-3. Reading commands from a file

$ cat >commands.gold <<EOF

System Query
quit
EOF

$ goldsh <commands.gold

Name Version Organization Description
---- -------- ------------ ------------
Gold 2.0.b1.0 Beta Release

87

Chapter 17. Using the Gold Shell (goldsh)

Command Syntax
Gold commands are of the form:

<Object > [,<Object >...] <Action > [[<Conjunction >] [<Open_Parenthesis >...]
[<Object >.]<Name> <Operator > [<Object >.]<Value > [<Close_Parenthesis >...]

...]

The basic form of a command is<Object><Action> [<Name><Operator><Value>]*.
When an action is performed on more than one object, such as in a multi-object query,
the objects are specified in a comma-separated list. Commands may accept zero or
more predicates which may function as fields to return, conditions, update values,
processing options, etc. Predicates, in their simplest form, are expressed as Name,
Operator, Value tuples. Predicates may be combined via conjunctions with grouping
specified with parentheses. When performing multi-object queries, names and values
may need to be associated with their respective objects.

Valid conjunctions include:

&&

and

||

or

&!

and not

|!

or not

Open parentheses may be any number of literal open parentheses ’(’.

Name is the name of the condition, assignment, or option. When performing a multi-
object query, a name may need to be prepended by its associated object separated by
a period.

Valid operators include:

==

equals

<

less than

>

greater than

<=

less than or equal to

>=

greater than or equal to

88

Chapter 17. Using the Gold Shell (goldsh)

!=

not equal to

~

matches

=

is assigned

+=

is incremented by

-=

is decremented by

:=

option

:!

not option

Value is the value of the selection list, condition, assignment, or option. When per-
forming a multi-object query, a value may need to be prepended by its associated
object (called the subject) separated by a period.

Close parentheses may be any number of literal closing parentheses ’)’.

Valid Objects
To list the objects available for use in Gold commands, issue the gold command:
Object Query

Example 17-4. Listing all objects

gold > Object Query Show:="sort(Name)"

Name

ANY
Account
AccountAccount
AccountMachine
AccountOrganization
AccountProject
AccountUser
Action
Allocation
Attribute
ChargeRate
Job
Machine
NONE
Object
Organization
Password
Project

89

Chapter 17. Using the Gold Shell (goldsh)

ProjectMachine
ProjectUser
Quotation
QuotationChargeRate
Reservation
Role
RoleAction
RoleUser
System
Transaction
Usage
User

Valid Actions for an Object
To list the actions that can be performed on an object, use the gold command: Action
Query

Example 17-5. Listing all actions associated with the Account object

gold > Action Query Object==Account Show:=sort(Name)

Name

Balance
Create
Delete
Deposit
Modify
Query
Transfer
Undelete
Withdraw

Valid Predicates for an Object and Action
By appending the option "ShowUsage:=True" to a command, the syntax of the com-
mand is returned, expressed in SSSRMAP XML Message Format.

Example 17-6. Show the usage for Allocation Query

gold > Allocation Query ShowUsage:=True

<Request action="Query" >
<Object >Allocation <Object >
[<Get name="Id" [op="sort|tros|count|groupby|max|min"] ></Get >]
[<Get name="Account" [op="sort|tros|count|groupby|max|min"] ></Get >]
[<Get name="StartTime" [op="sort|tros|count|groupby|max|min"] ></Get >]
[<Get name="EndTime" [op="sort|tros|count|groupby|max|min"] ></Get >]
[<Get name="Amount" [op="sort|tros|count|groupby|max|min|sum|average"] ></Get >]
[<Get name="Deposited" [op="sort|tros|count|groupby|max|min|sum|average"] ></Get >]
[<Get name="Active" [op="sort|tros|count|groupby"] ></Get >]
[<Get name="Description" [op="sort|tros|count|groupby|max|min"] ></Get >]
[<Where name="Id" [op="eq|ne|gt|ge|lt|le (eq)"] [conj="and|or (and)"] [group=" <Integer Number >Integer Number} </Where >]
[<Where name="Account" [op="eq|ne|gt|ge|lt|le|match (eq)"] [conj="and|or (and)"] [group=" <Integer Number >Account Name} </Where >]

90

Chapter 17. Using the Gold Shell (goldsh)

[<Where name="StartTime" [op="eq|ne|gt|ge|lt|le (eq)"] [conj="and|or (and)"] [group=" <Integer Number >YYYY-
MM-DD [hh:mm:ss]|-infinity|infinity|now </Where >]

[<Where name="EndTime" [op="eq|ne|gt|ge|lt|le (eq)"] [conj="and|or (and)"] [group=" <Integer Number >YYYY-
MM-DD [hh:mm:ss]|-infinity|infinity|now </Where >]

[<Where name="Amount" [op="eq|ne|gt|ge|lt|le (eq)"] [conj="and|or (and)"] [group=" <Integer Number >Decimal Number} </Where >]
[<Where name="Deposited" [op="eq|ne|gt|ge|lt|le (eq)"] [conj="and|or (and)"] [group=" <Integer Number >Decimal Number} </Where >]
[<Where name="Active" [op="eq|ne (eq)"] [conj="and|or (and)"] [group=" <Integer Number >True|False </Where >]
[<Where name="Description" [op="eq|ne|gt|ge|lt|le|match (eq)"] [conj="and|or (and)"] [group=" <Integer Number >Description} </Where >]
[<Option name="ShowHidden" >True|False (False) </Option >]
[<Option name="ShowUsage" >True|False (False) </Option >]
[<Option name="Time" >YYYY-MM-DD [hh:mm:ss] </Option >]
[<Option name="Unique" >True|False (False) </Option >]
[<Option name="Limit" >Integer Number} </Option >]

<Request >

Common Options
There are a number of options that may be specified for all commands. These options
include: ShowUsage

ShowUsage

This option may be included with any command to cause the command to return
a usage message in SSSRMAP XML Message Format.

Common Actions Available for most Objects
There are a number of actions that are available for most objects. These actions in-
clude Query, Create, Modify, Delete and Undelete. Commands involving these ac-
tions inherit some common structure unique to the action type.

Query Action
The Query action is used to query objects. It accept predicates that describe the at-
tributes (fields) to return (including aggregation operations on those attributes), con-
ditions that select which objects to return the attributes for, and other options unique
to queries.

Selections

Selections use the Show option to specify a list of the attributes to return for the se-
lected object. If selections are not specified, a default set of attributes (those not marked as hid-
den) will be returned.

Name = Show
Op = :=
Value = "attribute1,attribute2,attribute3,..."

Aggregation operators may be applied to attributes by enclosing the target attribute in paren-
thesis and prepending the name of the desired operator. The aggregation operators that can be ap-
plied depend on the datatype of the attribute.

Valid selection operators include:

91

Chapter 17. Using the Gold Shell (goldsh)

sort Ascending sort
tros Descending sort
count Count
max Maximum value
min Minimum value
average Average value
sum Sum
groupby Group other aggregations by this attribute

For example: Allocation Query Show:="sum(Amount),groupby(Account)"

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a man-
ner similar to file globbing. * matches zero or more unspecified characters and ? matches ex-
actly one unspecified character. For example mscf* matches objects having the spec-
ified attributes whose values start with the letters mscf, while mscf? matches objects hav-
ing the specified attributes whose values start with mscf and have a total of exactly five characters.

Options

Options indicate processing options that affect the result.

Name = Name of the option
Op = :=
Value = Value of the option

Valid options for query actions include:

ShowHidden:=True|False (False) Includes hidden attributes in the result
Time:="YYYY-MM-DD [hh:mm:ss]" Run the command as if it were the specified time
Unique:=True|False (False) Display only unique results (like DISTINCT in SQL)
Limit:={Integer Number} Limit the results to the number of objects specified

92

Chapter 17. Using the Gold Shell (goldsh)

Example 17-7. Return the number of inactive reservations

gold > Reservation Query EndTime <now Show:="count(Id)"

Id
--
8

Create Action
The Create action is used to create a new object. It accepts predicates that describe
the values of the attributes to be set.

Assignments

Assignments specify values to be assigned to attributes in the new object.

Name = Name of the attribute being assigned a value
Op = = (is assigned)
Value = The new value being assigned to the attribute

Example 17-8. Add a new project member

gold > ProjectUser Create Project=chemistry Name=scottmo

Project Name Active Admin
--------- ------- ------ -----
chemistry scottmo True False
Successfully created 1 ProjectUser

Modify Action
The Modify action is used to modify existing objects. It accepts predicates that se-
lect which objects will be modified and predicates that describe the values of the
attributes to be set.

Assignments

Assignments specify values to be assigned to attributes in the selected objects.

Name = Name of the attribute being assigned a value
Op = assignment operators {=, +=, -=}
Value = The value being assigned to the attribute

Valid assignment operators include:

= is assigned
+= is incremented by
-= is decremented by

93

Chapter 17. Using the Gold Shell (goldsh)

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a man-
ner similar to file globbing. * matches zero or more unspecified characters and ? matches ex-
actly one unspecified character. For example mscf* matches objects having the spec-
ified attributes whose values start with the letters mscf, while mscf? matches objects hav-
ing the specified attributes whose values start with mscf and have a total of exactly five characters.

Example 17-9. Change/set scottmo phone number and email address

gold > User Modify Name==scottmo PhoneNumber="(509) 376-2204" EmailAd-
dress="Scott.Jackson@pnl.gov"

Name Active CommonName PhoneNumber EmailAddress De-
faultProject Description
------- ------ ----------------- -------------- ---------------------
-------------- -----------
scottmo True Jackson, Scott M. (509) 376-2204 Scott.Jackson@pnl.gov

Successfully modified 1 Users

Example 17-10. Extend all reservations against project chemistry by 10 days

gold > Reservation Modify EndTime+="10 days" Project==chemistry

Id Account Amount Name Job User Project Machine EndTime De-
scription
-- ------- ------ ---------- --- ---- --------- ------- --------------
----- -----------
1 2 57600 PBS.1234.0 1 amy chemistry colony 2004-11-06 10:47:30
Successfully modified 1 Reservations

Delete Action
The Delete action is used to delete objects. It accepts predicates that select which
objects are to be deleted.

94

Chapter 17. Using the Gold Shell (goldsh)

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a man-
ner similar to file globbing. * matches zero or more unspecified characters and ? matches ex-
actly one unspecified character. For example mscf* matches objects having the spec-
ified attributes whose values start with the letters mscf, while mscf? matches objects hav-
ing the specified attributes whose values start with mscf and have a total of exactly five characters.

Example 17-11. Get rid of the pesky Jacksons

gold > User Delete CommonName~"Jackson*"

Name Active CommonName PhoneNumber EmailAddress De-
faultProject Description
------- ------ ----------------- -------------- ---------------------
-------------- -----------
scottmo True Jackson, Scott M. (509) 376-2204 Scott.Jackson@pnl.gov

Successfully deleted 1 Users and 1 associations

Undelete Action
The Delete action is used to restore deleted objects. It accepts predicates that select
which objects are to be undeleted.

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than

95

Chapter 17. Using the Gold Shell (goldsh)

<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a man-
ner similar to file globbing. * matches zero or more unspecified characters and ? matches ex-
actly one unspecified character. For example mscf* matches objects having the spec-
ified attributes whose values start with the letters mscf, while mscf? matches objects hav-
ing the specified attributes whose values start with mscf and have a total of exactly five characters.

Example 17-12. Let’s resurrect the deleted users that were active

gold > User Undelete Active==True

Name Active CommonName PhoneNumber EmailAddress De-
faultProject Description
------- ------ ----------------- -------------- ---------------------
-------------- -----------
scottmo True Jackson, Scott M. (509) 376-2204 Scott.Jackson@pnl.gov

Successfully undeleted 1 Users and 1 associations

Multi-Object Queries
Gold supports multi-object queries (table joins). Multiple objects are specified via a
comma-separated list and attributes need to be prefixed by the associated object.

Example 17-13. Print the current and total allocation summed by project

gold > Allocation,AccountProject Query Show:="groupby(AccountProject.Name),sum(Allocation.Amount),sum(Allocation.Deposited)"
Allocation.Account==AccountProject.Account Allocation.Active==True

Name Amount Deposited
--------- --------- ---------
biology 193651124 360000000
chemistry 296167659 360000000

Example 17-14. Show all active projects for amy or bob

gold > Project,ProjectUser Query Show:="Project.Name" (ProjectUser.Name==bob
|| ProjectUser.Name==amy) && Project.Name==ProjectUser.Project
&& Project.Active==True Unique:=True

Name

biology
chemistry

96

Chapter 18. Integration with the Resource Management
System

Dynamic versus Delayed Accounting

Delayed Accounting
In the absence of a dynamic system, some sites enforce allocations by periodically
(weekly or nightly) parsing resource manager job logs and then applying debits
against the appropriate project accounts. Although Gold can easily support this type
of system by the use of the qcharge command in post-processing scripts, this ap-
proach will allow a user or project to use resources significantly beyond their desig-
nated allocation and generally suffers from stale accounting information.

Dynamic Accounting
Gold’s design allows it to interact dynamically with your resource management sys-
tem. Charges for resource utilization can be made immediately when the job finishes
(or even incrementally throughout the job). Additionally, reservations can be issued
at the start of a job to place a hold against the user’s account, thereby ensuring that
a job will only start if it has sufficient reserves to complete. The remainder of this
document will describe the interactions for dynamic accounting.

Interaction Points

Job Quotation @ Job Submission Time [Optional — Recommended]
When a job is submitted to a grid scheduler or resource broker, it may be useful to
determine how much it will cost to run on a particular resource by requesting a job
quote. If the quote succeeds, it will return a quote id along with the quoted amount
for the job. This quote id may be used later to guarantee that the same charge rates
used to form the quote will also be used in the final job charge calculation.

Even when a job is exclusively scheduled locally, it is useful to obtain a quote at the
time of submission to the local resource manager to ensure the user has sufficient
funds to run the job and that it meets the access policies necessary for the charge to
succeed. A warning can be issued if funds are low or the job might be rejected with
an informative message in the case of insufficient funds or any other problems with
the account. Without this interaction, the job might wait in the queue for days only
to fail when it tries to start.

To make a job quotation with Gold at this phase requires that:

• the grid scheduler has built-in Gold allocation manager support {Silver}, or

• the resource manager supports a submit filter {LoadLeveler(SUBMIT_FILTER), LSF(esub)},
or

• a wrapper could be created for the submit command {PBS(qsub)}.

97

Chapter 18. Integration with the Resource Management System

Job Reservation @ Job Start Time [Optional — Highly Recommended]
Just before a job starts, a hold (reservation) is made against the appropriate account(s),
temporarily reducing the user’s available balance by an amount based on the re-
sources requested and the estimated wallclock limit. If this step is ommitted, it would
be possible for users to start more jobs than they have funds to support.

If the reservation succeeds, it will return a message indicating the amount reserved
for the job. In the case where there are insufficient resources to run the job or some
other problem with the reservation, the command will fail with an informative mes-
sage. Depending on site policy, this may or may not prevent the job from starting.

To make a job reservation with Gold at this phase requires that:

• the scheduler or resource manager has built-in Gold allocation manager support
{Maui(AMCFG)}, or

• the resource manager is able to run a script at job start time {LoadLeveler(prolog),
PBS(prologue), LSF(pre_exec)}.

Job Charge @ Job End Time [Required]
When a job ends, a charge is made to the user’s account(s). Any associated reserva-
tions are automatically removed as a side-effect. Depending on site policy, a charge
can be elicited only in the case of a successful completion, or for all or specific fail-
ure cases as well. Ideally, this step will occur immediately after the job completes
(dynamic accounting). This has the added benefit that job run times can often be re-
constructed from Gold job reservation and charge timestamps in case the resource
management job accounting data becomes corrupt.

If the charge succeeds, it will return a message indicating the amount charged for the
job.

To make a job charge with Gold at this phase requires that:

• the scheduler or resource manager has built-in Gold allocation manager support
{Maui(AMCFG)}, or

• the resource manager is able to run a script at job start time {LoadLeveler(epilog),
PBS(epilogue), LSF(post_exec)}, or

• the resource manament system supports some kind of feedback or notification
machanism occurring at the end of a job (an email can be parsed by a mail filter).

Methods of interacting with Gold
There are essentially six ways of programatically interacting with Gold. Let’s con-
sider a simple job charge in each of the different ways.

Configuring an application that already has hooks for Gold
The easiest way to use Gold is to use a resource management system with built-in
support for Gold. For example, the Maui Scheduler and Silver Grid Scheduler can

98

Chapter 18. Integration with the Resource Management System

be configured to directly interact with Gold to perform the quotes, reservations and
charges by setting the appropriate parameters in their config files.

Example 18-1. Configuring Maui to use Gold

Add an appropriate AMCFG line into maui.cfg to tell Maui how to talk to Gold

$ vi /usr/local/maui/maui.cfg

AMCFG[bank] TYPE=GOLD HOST=control_node1 PORT=7112 SOCKETPROTOCOL=HTTP WIRE-
PROTOCOL=XML CHARGEPOLICY=DEBITALLWC JOBFAILUREACTION=NONE TIMEOUT=15

Add a CLIENTCFG line into maui-private.cfg to specify the shared secret key. This
secret key will be the same secret key specified in the "make auth_key" step.

$ vi /usr/local/maui/maui-private.cfg

CLIENTCFG[AM:bank] CSKEY=sss CSALGO=HMAC

Gold will need to allow the the user id that maui runs under to perform scheduler
related commands (Job Charge, Reserve, Quote, etc).

$ gmkuser -d "Maui Scheduler" maui

Successfully created 1 User

$ goldsh RoleUser Create Role=Scheduler Name=maui

Role Name
---------- ----
Scheduler maui
Successfully created 1 RoleUser

Using the appropriate command-line client
From inside a script, or by invoking a system command, you can use a command line
client (one of the "g" commands in gold’s bin directory).

Example 18-2. To issue a charge at the completion of a job, you would use gcharge:

gcharge -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 1234

Using the Gold control program
The Gold control program, goldsh, will issue a charge for a job expressed in xml (SSS
Job Object).

Example 18-3. To issue a charge you must invoke the Charge action on the Job
object:

goldsh Data:=" <Job><JobId >PBS.1234.0 </JobId ><ProjectId >chemistry </ProjectId >
<UserId >amy</UserId ><MachineName>colony </MachineName >
<Processors >2</Processors ><WallDuration >1234</WallDuration >"

99

Chapter 18. Integration with the Resource Management System

Use the Perl API
If your resource management system is written in Perl or if it can invoke a Perl script,
you can access the full Gold functionality via the Perl API.

Example 18-4. To make a charge via this interface you might do something like:

use Gold;

my $request = new Gold::Request(object => "Job", action => "Charge");
my $job = new Gold::Datum("Job");
$job->setValue("JobId", "PBS.1234.0");
$job->setValue("ProjectId", "chemistry");
$job->setValue("UserId", "amy");
$job->setValue("MachineName", "colony");
$job->setValue("Processors", "2");
$job->setValue("WallDuration", "1234");
$request->setDatum($job);
my $response = $request->getResponse();
print $response->getStatus(), ": ", $response->getMessage(), "\n";

Use the Java API
If your resource management system is written in Java or if it can invoke a Java
executable, you can access the full Gold functionality via the Java API.

Example 18-5. To make a charge via this interface you might do something like:

import java.util.*;
import gold.*;

public class Test
{

public static void main(String [] args) throws Exception
{

Gold.initialize();
Request request = new Request("Job", "Charge");
Datum job = new Datum("Job");
job.setValue("JobId", "PBS.1234.0");
job.setValue("ProjectId", "chemistry");
job.setValue("UserId", "amy");
job.setValue("MachineName", "colony");
job.setValue("Processors", "2");
job.setValue("WallDuration", "1234");
request.setDatum(job);
Response response = request.getResponse();
System.out.println(response.getStatus() + ": " + response.getMessage() + "\n");

}
}

100

Chapter 18. Integration with the Resource Management System

Communicating via the SSSRMAP Protocol
Finally, it is possible to interact with Gold by directly using the SSSRMAP Wire Proto-
col and Message Format over the network (see SSS Resource Management and Account-
ing Documentation1). This will entail building the request body in XML, appending an
XML digital signature, combining these in an XML envelope framed in an HTTP
POST, sending it to the server, and parsing the similarly formed response. The Maui
Scheduler communicates with Gold via this method.

Example 18-6. The message might look something like:

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body actor="scottmo" chunking="True">
<Request action="Charge" object="Job">
<Data>
<Job>
<JobId>PBS.1234.0</JobId>
<ProjectId>chemistry</ProjectId>
<UserId>amyh</UserId>
<MachineName>colony</MachineName>
<Processors>2</Processors>
<WallDuration>1234</WallDuration>
</Job>
</Data>
</Request>
<//Body>
<Signature>
<DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>
<SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
<SecurityToken type="Symmetric"></SecurityToken>
</Signature>
</Envelope>
0

Notes
1. http://sss.scl.ameslab.gov/docs.shtml

101

Chapter 18. Integration with the Resource Management System

102

Chapter 19. Configuration Files

Gold uses two configuration files: one for the server (goldd.conf) and one for the
clients (gold.conf). For configuration parameters that have hard-coded defaults, the
default value is specified within brackets.

Server Configuration
The following configuration parameters may be set in the server configuration file
(goldd.conf).

• account.autogen [true] — If set to true, when a new project is created Gold will
automatically create an associated default account.

• database.datasource [DBI:Pg:dbname=gold;host=localhost] — The Perl DBI data source
name for the database you wish to connect to.

• database.password — The password to be used for the database connection (if any).

• database.user — The username to be used for the database connection (if any).

• response.chunksize [0] — Indicates the line length in the data response that will trig-
ger message segmentation (or truncation). A value of 0 (zero) means unlimited, i.e.
that the server will not truncate or segment large responses unless overriden by a
chunksize specification in a client request. The response chunksize will be taken to
be the smaller of the client and server chunksize settings.

• currency.precision [0] — Indicates the number of decimal places in the resource
credit currency. For example, if you are will be dealing with processor-seconds
of an integer resource unit, use 0 (which is the default). If you will be charging
dollars and cents, then use 2. This parameter should be the same in the goldd.conf
and gold.conf files.

• log4perl.appender.Log.filename — Used by log4perl to set the base name of the log
file.

• log4perl.appender.Log.max — Used by log4perl to set the number of rolling backup
logs.

103

Chapter 19. Configuration Files

• log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to
before it is rotated.

• log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written
to the log. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

• log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written
to the screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

• machine.autogen [false] — If set to true, Gold will automatically create new ma-
chines when they are first encountered in a job function (charge, reserve, or quote).

• machine.default [NONE] — If not set to NONE, Gold will use the specified default
for the machine in a job function (charge, reserve, or quote) in which a machine
was not specified.

• project.autogen [false] — If set to true, Gold will automatically create new projects
when they are first encountered in a job function (charge, reserve, or quote).

• project.default [NONE] — If not set to NONE, Gold will use the specified default
for the project in a job function (charge, reserve, or quote) in which a project was
not specified and no default project can be found for the user.

• security.authentication [true] — Indicates whether incoming message authentication
is required.

• security.encryption [false] — Indicates whether incoming message encryption is re-
quired.

• server.host [localhost] — The hostname on which the gold server runs.

104

Chapter 19. Configuration Files

• server.port [7112] — The port the gold server listens on.

• super.user [root] — The primary gold system admin which by default can perform
all actions on all objects. The super user is sometimes used as the actor in cases
where an action is invoked from within another action.

• user.autogen [false] — If set to true, Gold will automatically create new users when
they are first encountered in a job function (charge, reserve, or quote).

• user.default [NONE] — If not set to NONE, Gold will use the specified default for
the user in a job function (charge, reserve, or quote) in which a user was not speci-
fied.

Client Configuration
The following configuration parameters may be set in the client configuration file
(gold.conf).

• log4perl.appender.Log.filename — Used by log4perl to set the base name of the log
file.

• log4perl.appender.Log.max — Used by log4perl to set the number of rolling backup
logs.

• log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to
before it is rotated.

• log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written
to the log. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

• log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written
to the screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

105

Chapter 19. Configuration Files

• response.chunking [true] — Indicates whether large responses should be chunked
(segmented). If set to false, large responses will be truncated.

• response.chunksize [0] — Indicates the line length in the data response that will trig-
ger message segmentation (or truncation). A value of 0 (zero) means unlimited, i.e.
that the client will accept the chunksize set by the server. The response chunksize
will be taken to be the smaller of the client and server chunksize settings.

• currency.precision [0] — Indicates the number of decimal places in the resource
credit currency. For example, if you are will be dealing with processor-seconds
of an integer resource unit, use 0 (which is the default). If you will be charging
dollars and cents, then use 2. This parameter should be the same in the goldd.conf
and gold.conf files.

• security.authentication [true] — Indicates whether outgoing message are signed.

• security.encryption [false] — Indicates whether outgoing messages are encrypted.

• security.token.type [Symmetric] — Indicates the default security token type to be
used in both authentication and encryption.

• server.host [localhost] — The hostname on which the gold server runs.

• server.port [7112] — The port the gold server listens on.

106

	Table of Contents
	Notice
	Chapter 1. Overview
	Background
	Features
	Interfaces
	Command Line Clients
	Interactive Control Program
	Web-based Graphical User Interface
	Perl API
	Java API
	SSSRMAP Wire Protocol

	Chapter 2. Installation
	Preparation
	Install Prerequisites
	Perl 5.6.1 or higher (with suidperl) [REQUIRED]
	libxml2 2.4.25 or higher [REQUIRED]
	PostgreSQL database 7.2 or higher [REQUIRED]
	Gnu readline 2.0 or higher [OPTIONAL]
	Java 2 SDK 1.4 or higher [OPTIONAL]
	Apache Tomcat Server 4 or higher [OPTIONAL]

	Configuration
	Compilation
	Perl Module Dependencies
	Installation
	General Setup
	Database Setup
	Web Server Setup
	Bootstrap
	Startup
	Initialization

	Chapter 3. Getting Started
	Define Users
	Define Machines
	Define Projects
	Add Users to the Projects
	Make Deposits
	Check The Balance
	Integrate Gold with your Resource Management System
	Obtain A Job Quote
	Make A Job Reservation
	Charge for a Job
	Refund a Job
	List Transactions
	Examine Account Statement
	Examine Project Usage

	Chapter 4. Getting More Advanced
	Define Projects
	Define Accounts
	Make Deposits
	Check The Balance
	Define Charge Rates
	Obtain A Guaranteed Job Quote
	Make A Quoted Job Reservation
	Charge for a Quoted Job
	Partially Refund a Job
	Examine Account Statement

	Chapter 5. Managing Users
	Creating Users
	Querying Users
	Modifying Users
	Deleting Users

	Chapter 6. Managing Machines
	Creating Machines
	Querying Machines
	Modifying Machines
	Deleting Machines

	Chapter 7. Managing Projects
	Creating Projects
	Querying Projects
	Modifying Projects
	Deleting Projects
	Project Usage Summary

	Chapter 8. Managing Accounts
	Creating Accounts
	Querying Accounts
	Modifying Accounts
	Making Deposits
	Querying The Balance
	Personal Balance
	Making Withdrawals
	Making Transfers
	Obtaining an Account Statement
	Deleting Accounts

	Chapter 9. Managing Allocations
	Creating Allocations
	Querying Allocations
	Modifying Allocations
	Deleting Allocations

	Chapter 10. Managing Reservations
	Creating Reservations
	Querying Reservations
	Modifying Reservations
	Deleting Reservations

	Chapter 11. Managing Quotations
	Creating Quotations
	Querying Quotations
	Modifying Quotations
	Deleting Quotations

	Chapter 12. Managing Jobs
	Creating Jobs
	Querying Jobs
	Modifying Jobs
	Deleting Jobs
	Obtaining Job Quotes
	Making Job Reservations
	Charging Jobs
	Issuing Job Refunds

	Chapter 13. Managing Charge Rates
	Creating ChargeRates
	Querying ChargeRates
	Modifying Charge Rates
	Deleting Charge Rates

	Chapter 14. Managing Transactions
	Querying Transactions

	Chapter 15. Managing Roles
	Querying Roles
	Querying Role Users
	Querying Role Actions
	Creating Roles
	Associating an Action with a Role
	Adding a Role to a User
	Removing an Action from a Role
	Removing a Role from a User
	Deleting Roles

	Chapter 16. Managing Passwords
	Creating Passwords
	Querying Passwords
	Modifying Passwords
	Deleting Passwords

	Chapter 17. Using the Gold Shell (goldsh)
	Usage
	Command Syntax
	Valid Objects
	Valid Actions for an Object
	Valid Predicates for an Object and Action
	Common Options
	Common Actions Available for most Objects
	Query Action
	Create Action
	Modify Action
	Delete Action
	Undelete Action

	Multi-Object Queries

	Chapter 18. Integration with the Resource Management System
	Dynamic versus Delayed Accounting
	Delayed Accounting
	Dynamic Accounting

	Interaction Points
	Job Quotation @ Job Submission Time [Optional Recommended]
	Job Reservation @ Job Start Time [Optional Highly Recommended]
	Job Charge @ Job End Time [Required]

	Methods of interacting with Gold
	Configuring an application that already has hooks for Gold
	Using the appropriate command-line client
	Using the Gold control program
	Use the Perl API
	Use the Java API
	Communicating via the SSSRMAP Protocol

	Chapter 19. Configuration Files
	Server Configuration
	Client Configuration

