
AGENT-BASED SIMULATION OF PRODUCT INNOVATION: MODULARITY,
COMPLEXITY AND DIVERSITY

S.H. CHEN,� National Chengchi University, Taiwan
B.T. CHIE, National Chengchi University, Taiwan

ABSTRACT

The importance of modularity in product innovation is analyzed in this paper. Through
simulations with an agent-based modular economic model, we examine the significance
of the use of a modular structure in new product designs in terms of its impacts upon
customer satisfaction and firms' competitiveness. To achieve the above purpose, the
automatically defined terminal is proposed and is used to modify the simple genetic
programming.

Keywords: agent-based computational economics, genetic programming, automatic
defined terminals, modularity, hierarchy

MOTIVATION AND INTRODUCTION

This work is a continuation of [2, 3], which provide an agent-based model to simulate the
evolution of product innovation by growing it from bottom up. The earlier work is not just to
provide an agent-based approach, but to introduce a new representation of commodities,
production, and preference, via the use of genetic programming (GP). However, [2, 3] only
consider the simple genetic programming [5]. The end result is that in many of their early
simulations, only primitive desires are satisfied, and the economy can rarely advance to a mature
state where consumers’ desires can be met to a sophisticated degree. One cause of this problem
is that simple GP is not an appropriate tool to work with the idea of functional modularity (to be
detailed in Section 3). This limitation has been long realized by GP researchers, e.g., [6]. In this
paper, we remedy this problem by replacing the simple GP with automatically defined terminals
(ADTs), which are very similar in spirit to automatically defined functions (ADFs), invented by
John Koza [6]. As Koza pointed out, devices of this kind can provide some hierarchical
mechanism to exploit modularities inherent in problem environments.

With this modified version of GP, two experiments are carried out. The first experiment
examines the contribution of functional modularity to consumers’ satisfaction. The second series
of experiment then examines the importance of modularity in competition among firms. We
simulate an agent-based economy to allow the firm who design new products using modular
structure competing with the firm who do not. In a sense, this is equivalent to replicate the well-
known story regarding the competition between Hora and Tempus, two imaginary watchmakers
offered by Herbert Simon in his celebrated work on the architecture of complexity [8].

� Corresponding author address: Shu-Heng Chen, AI-Econ Research Center, Department of Economics, National
Chengchi University, 64 Zhi-Nan Road, Sec. 2., Taipei, Taiwan; e-mail: chchen@nccu.edu.tw.

295

FIGURE 1 The Agent-Based Modular Economy Market

The rest of the paper is organized as follows. Section 2 provides a brief review of the agent-
based modular economy introduced in [2, 3]. Section 3 proposes the automatically defined
terminal and motivates this idea with its connection to hierarchical modularity. The two
experiments are conducted in Sections 4 and 5. Section 6 gives the concluding remarks.

THE AGENT-BASED MODULAR ECONOMY

The economic model on which our simulation of product innovation is based is largely
the same as [2, 3], which we shall briefly review here. Chen and Chie [2, 3] considered an
economy composing of a number of firms and consumers with the usual objectives. To
maximize profits, firms have the incentive to search for the products which can satisfy
consumers to a highest degree. In the meantime, consumers allocate their limited budget to
commodities which provide them largest degree of enjoyment (measured in terms of consumer
surplus). The interaction between consumers and producers drives the evolution of a series of
new products (innovation process), as shown in Figure 1.

The commodity of this economy is represented by a parse tree as shown in the first row
of Figure 2. Each parse tree corresponds to a LISP program. The very bottom of tree, i.e., leaves,
correspond to the raw inputs (materials) X1, X2,..., whereas the root and all intermediate nodes
represent the processors, F1, F2,..., applied to these raw materials in a bottom-up order, as the
usual behavior of a LISP program. The whole parse tree can, therefore, be interpreted as a
production process associated with the commodity. The unit cost of the commodity is a positive

296

function of the number of the processors and the number of raw inputs, i.e., a positive function of
the (node) complexity of the commodity. In a simple way, we assume that the unit cost is a linear
function of the node complexity.

FIGURE 2 An Illustration of a Process of Product Innovation

In each market period, the firm has to decide how to allocate her limited working capital
(budget) to R&D (designs of new products), production of existing commodities with different

297

quantities, and reserves. R&D is the sole source of new products and is implemented by genetic
programming with or without automatically defined terminals (to be detailed in Section 3), as
shown in Figure 3.

FIGURE 3 Genetic Programming as an Engine for R&D

The preference of the consumers in the economy is also represented by a parse tree. To
make the preference tree be economically meaningful, three assumptions have been made [3],
namely, the monotone, synergy, and consistency condition. The utility from consuming a
commodity is based on the module-matching algorithm proposed in [3]. The idea is to match
each possible module (subtree) of the commodity to each possible module of the preference with
a descending order in the depth of the tree. So, the big modules matches first; if it success, we
stop, and if it fails, we move to the next biggest one. To satisfy the synergy condition and hence
the idea of added-value, [3] assumes a power utility function for the preference tree as shown in
Figure 4. As a result, the utility is increasing at a faster rate when higher and higher levels of
modular preferences are satisfied.

MODULARITY AND AUTOMATICALLY DEFINED TERMINALS

Simple genetic programming is designed to find the solution to a problem, which is
represented by a parse tree. In our case, a solution is analogous to a product, and whose
corresponding problem is the ideal product which can bring the highest enjoyment to a target
consumer (Figure 2). The parse tree, from the bottom to the top, can be read as how the solution
(product) can be constructed parallelly, incrementally and progressively. What is accomplished
at each incremental and parallel step is a minimum or marginal effort to combine what have been
established in the previous steps.

298

As an illustration, Figure 2 traces an artificial history of product innovation. Consider a
target consumer whose preference is depicted in the first row of Figure 2, which can be regarded
as the solution to the problem. Firms do not know this design, and have to figure out the best
design by themselves. The five products listed below are the designs discovered in generations 2,
10, 14, 20, and 25. These products match the consumer’s needs to a high and higher level. For
example, the product PID 2889, i.e., the 2889th new product designed by the firm, has
completely answered the target’s need to the entire first half at level four. Nonetheless, this
product does not come out all of a sudden; all it has done is to combine two commodities which
were already known before, namely, commodities ADT 18 and ADT 19, both of which were
already known to the firm before generation 25. The “marginal” effort here is to assemble them
in a right way, i.e., using processor F2.1

FIGURE 4 The Power Utility Function of a Preference Tree

The results obtained in each step then becomes the bases or the building blocks for the
subsequent steps. For example, as shown in Figure 2, ADT 18 and ADT 19 serves as building
blocks for all designs after generation 20. The entire process can then be viewed as a growing but
convergent process from leaves to small trees, then to bigger and bigger trees, and finally to the
target tree (the solution).

1 Of course, from an ex ante view, knowing what to combine and in which way is not trivial. In fact, in this example,
it took the firm five generations to learn this. In this sense, the contribution is not entirely marginal. However,
from an ex post view, it is just a combination of what we already knew.

299

The description above enables us to see how genetic programming can be related to
Simonian notion of complexity [8], i.e., hierarchy. Herbert Simon viewed hierarchy as a general
principle of complex structures. Hierarchy, he argued, emerges almost inevitably through a wide
variety of evolutionary processes, for the simple reason that hierarchical structures are stable. To
demonstrate the importance of hierarchical structure or modular structure in production, Simon
offered his well-known story about a competition between Hora and Tempus, two imaginary
watchmakers. In this story, Hora prospered because he used the modular structure in his design
of watches, whereas Tempus failed to prosper because his one is not modular. Therefore, the
story is mainly about a lesson: the advantage of using modular structure in production.

While using parse tree as the representation, simple genetic programming is not good at
using modular structure. The standard crossover and mutation can easily destroy the already
established structure, which may cause the whole discovery or learning process non-incremental
and non-progressive, and hence very inefficient. This problem is well-known in the GP literature,
and has been extensively studied with various treatments [1, 6, 7, 4]. Motivated by these earlier
studies, we propose automatically defined terminals (ADT) as a way to enhance GP to find
structured solutions.

FIGURE 5 Automatically Defined Terminals

ADT, as shown in Figure 5, is very similar to the automatically defined function (ADF)
[6]. Itself has a fixed structure, in this case, a tree with a depth of two. The root of ADT can be
any function from the primitives (function set), while its leaf can be either a terminal from
primitives (terminal set) or can be any existing ADTs. In this way, it shares the same spirit of
ADF, namely, simplification, reuse, and encapsulation. The last part is particular important
because it means whatever inside an ADT will not be further interrupted by crossover and
mutation. In this way, ADTs can be considered as the part of learning in which we have great
confidence, and leaves no room for doubt. Through ADTs we distinguish what is considered as
knowledge from what is still in a trial-and-error process. Only the former can then be taken as
the building blocks (modules), but not the latter. Without ADTs or equivalents, simple genetic
programming essentially is not designed to develop building blocks; therefore, it is not very good
at finding modular structure inherent in the problem.

300

MODULARITY AND CONSUMER SATISFACTION

Simple genetic programming can also detect modular structure, but it does it only by
chance, and hence may be very difficult to detect complex modules.2 To see this, in this section,
we simulate how well consumers are served when the firm designs new products with modular
GP (standard GP plus ADTs), and compare the result with that of standard GP.

In this simulation, there are 100 consumers in the market. Each consumer has a
preference tree with a depth of six. Viewed from the most top level (the root level), the
preference tree is composed of two modules. The one on the left, having a depth of five as shown
in the first row of Figure 2, is identical among all consumers, whereas the one on the right,
having a depth of five or less is heterogeneous, and is randomly generated by the ramped half-
and-half method, an initialization method frequently used in GP. In this way, consumers’
preferences have a common part as well as an idiosyncratic part. For the idiosyncratic part, the
complexity is also different.

FIGURE 6 Market Days and Learning Cycles

A profit-maximizing monopoly firm will try to serve the needs of this group of
consumers by producing different products with different quantities and also with different
degrees of specialization or diversification (customization). 3 The firm has to learn the
consumers’ preferences and hence, through R&D (driven by GP), design better products. The
entire market process is summarized in Figure 6. The learning cycle (GP cycle) is run with a
number of generations (in our case, 5000). Each generation is composed of a number of trading
days (in our case, five). After each learning cycle, the firm has to decide what to produce,
including some new products developed via production innovation, how many to produce, and

2 To define and measure complexity, Simon [8] advocated the use of a hierarchical measure – the number of
successive levels of hierarchical structuring in a system or, in our case, the depth of the parse tree.

3 See [3] for details.

301

how much to charge. The decision of production and R&D is based on the sales and profits
statistics collected in the previous market days. The firm then supply what have been produced,
including those new items, in the next few market days.

For further analysis, in each generation, statistics regarding consumer satisfaction are
reported. Consumer satisfaction is measure by the actual utility the consumer received from
consumption divided by the maximum potential utility the consumer can possible gain given his
preference. The ratio is then multiplied by 1,000, and the measure lies in [0, 1000]. By averaging
the consumer satisfaction over all 100 consumers, we then derive the aggregate consumer
satisfaction, which also lies in the same interval. The result is shown in Figure 7.What Figure 7
shows is not the result based on a single run, but fifty runs. Accordingly, what is shown in the
left panel of Figure 7 is the average of the 50 runs, whereas what is shown in the right panel is
the maximum of the 50 runs. It can be seen quite easily, the firm whose product design uses
modular structure can satisfy the consumers to a higher degree than the firm whose product
design uses non-modular structure.

FIGURE 7 Modularity and Consumer Satisfaction

MODULAR STRUCTURE AND COMPETITIVENESS

In the previous section, under the assumption of a monopoly firm, we have seen the
positive impact of using modular structure on consumer satisfaction. In this section, we shall
pursue further by inquiring the implication of modular structure to the competitiveness of firms.
In a sense, we attempt to re-examine the story given by Herbert Simon on the competition
between two watchmakers: one using modular structure and one not. For that purpose, we
consider a duopolistic competition in which one firm uses modular structure in her R&D (new
product designs) and the other firm does not.

The two duopolistic firms compete with other in a market composing of 100 consumers
whose preferences are partial identical and partial idiosyncratic (see Section 4). We then watch
their market share, i.e., the total sales of each firm divided by the total sales of the market, and

302

the result is displayed in Figure 8.4 The result presented here is not based on a single run, but
one hundred runs. The one shown in left panel of Figure 8 is the mean of the 100 runs, whereas
the one shown in the right panel is the median of the 100 runs. Below the separation line is the
market share owned by the non-modular firm, and above the line is the market share owned by
the modular firm. Clearly, their sum equals 100%.

FIGURE 8 Modularity and Competitiveness

Due to the existence of outliers, the time series behavior of the mean and that of the
median is not quite the same, but the eventual dominance of the modular firm is evident. In the
first few hundreds of generations, non-modular firm, however, did have some competitive
advantage over the modular firm. This is because establishing modules is costly. The idea of
encapsulation associated with ADTs implies a fixed cost and hence a less degree of mobility,
depending on the degree of encapsulation or the complexity of ADTs.5 Hence, the modular
products will generally be more expensive. Unless these products can fit the consumers’ needs to
a higher degree, these high-price products will exert adverse influence on marketing. Therefore,
there is no guarantee (a probability of one) that the modular firm will always beat the non-
modular firm. In fact, in 39 out of our 100 runs, the non-modular firm took up a higher market
share than the modular firm in the last generation (the 5000th generation).

Finally, as one may expect, competition does bring a better quality to consumers.
This is reflected in Figure 9.

CONCLUDING REMARKS

Consumers are not random and their behavior can be studied and patterns can be
extracted. On the other hand, innovation normally is not a random jump, but follows a gradually
changing process. These two together suggests that the economy can be constructed in a modular
way, or the entire economy has a modular structure. In other words, Herbert Simon’s notion of
the architecture of complexity has the potential to be applied to the whole economy. In this paper,
we study the significance of modularity in product innovation. We find that both consumers and

4 Notice that firms generally produce more than one product and can be very different between each other.
Therefore, it is meaningless to measure the market share based on a single product.

5 See footnote (2) for the measure of complexity.

303

producers can benefit from the use of modular structure in product design. However, modularity
may imply a higher cost and less mobility; therefore, its dominance is not certain. Using Simon’s
story, there is a chance that Tempus prospers and Hora fails.

FIGURE 9 Consumer Satisfaction under Competition

ACKNOWLEDGEMENT

The authors are grateful to Herbert Dawid, Christophre Georges, and Massimo Ricottilli
for their helpful discussions. NSC research grant No. 95-2415-H-004-002-MY3 is gratefully
acknowledged.

REFERENCES

1. Angeline, P. and J. Pollack, 1993, “Evolutionary Module Acquisition,” in Proceedings of the
2nd Annual Conference on Evolutionary Programming, MIT Press, pp. 154-163.

2. Chen, S.-H. and B.-T. Chie, 2004, “Agent-Based Economic Modeling of the Evolution of
Technology: The Relevance of Functional Modularity and Genetic Programming,”
International Journal of Modern Physics B, Vol. 18, No. 17-19, pp. 2376-2386.

3. Chen, S.-H. and B.-T. Chie, 2005, “A Functional Modularity Approach to Agent-based
Modeling of the Evolution of Technology,” (with B.-T. Chie), in A. Namatame, T.
Kaizouji, and Y. Aruka. (eds.), The Complex Networks of Economic Interactions: Essays

304

in Agent-Based Economics and Econophysics, Lecture Notes in Economics and
Mathematical Systems 567, Springer, pp. 165-178.

4. Hoang, T.-H., E. Daryl, R. McKay, and X. H. Nguyen, 2007, “Developmental Evaluation in
Genetic Programming: The TAG-Based Frame Work,” forthcoming in Knowledge
Engineering Review.

5. Koza, J. R., 1992, Genetic Programming: On the Programming of Computers by the Means of
Natural Selection, Cambridge, MA: The MIT Press.

6. Koza, J., 1994, Genetic programming II–Automatic Discovery of Reusable Programs,
Cambridge, MA: The MIT Press.

7. Rosca, J. and D. Ballard, 1994, “Hierarchical Self-Organization in Genetic Programming,” In
C. Rouveirol and M. Sebag (eds), Proceedings of the Eleventh International Conference on
Machine Learning, Morgan Kaufmann.

8. Simon, H. A., 1965, “The Architecture of Complexity,” General Systems, 10, pp. 63-76.

9. Simon, H. A., 1973, “The Organization of Complex Systems,” in: H. H. Pattee (ed.),
Hierarchy Theory. The Challenge of Complex Systems, New York: George Braziller, 1973,
pp. 1-27.

305

306

