Linking Atmospheric and Watershed Models

Lauren E. Hay

National Research Program United States Geological Survey Denver (Ihay@usgs.gov)

Martyn P. Clark

Center for Science and Technology Policy Research Cooperative Institute for Research in Environmental Sciences University of Colorado, Boulder (clark@vorticity.colorado.edu) Linking atmospheric and watershed models

Statistical DownScaling (SDS) Dynamical DownScaling (DDS)

Day 0-8 Statistical DownScaling (SDS) Ensemble Streamflow Prediction (ESP)

Day 0

Linking atmospheric and watershed models

DAY 0

Global-scale model –

National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP)

NCEP

January Air Temperature Anomalies

July Precipitation Anomalies

Linking atmospheric and watershed models

Compare SDS and DDS output by using it to drive a distributed hydrologic model

Hydrologic Model

Precipitation Runoff Modeling System (PRMS)

[distributed –parameter, physicallybased watershed model]

Implemented in:

The Modular Modeling System (MMS)

[A set of modeling tools to enable a user to selectively couple the most appropriate algorithms]

Hydrologic Model -- PRMS

- Distributed capabilities provided by partitioning watershed into Modeling Response Units

- Basin and MRU delineation, characterization and parameterization done using the GIS Weasel

- No parameter calibration performed on GIS weasel generated parameters

 Calibration focused on WB parameters affecting PET and precipitation distribution

- Other model parameters based on parameter sets from comparable basins

Hydrologic Model -- PRMS

Need to be able to distribute from a station or a grid point to each MRU

Input Data Sets:

- 1. Station Data
- 2. NCEP
- 3. SDS
- 4. DDS

≈USGS

XYZ Methodology

Distributes a single mean value from a group of stations (or a model grid node) to each modeling unit within a basin.

XYZ Methodology One predictor (Z) example for predicting daily PRCP Mean station elevation (Z) For each day solve for y-intercept 1. VS. mean station PRCP $intercept = PRCP_{sta} - slope^*Z_{sta}$ where **PRCP**_{sta} is mean station PRCP and Z_{sta} is mean station elevation intercept slope is monthly value from MLRs Slope from MLR

2. $PRCP_{mru} = slope^*Z_{mru} + intercept$ where $PRCP_{mru}$ is PRCP for your modeling response unit Z_{mru} is mean elevation of your modeling response unit

Hydrologic Model -- PRMS

Input Data Sets:

- 1. Station Data
- 2. NCEP
- 3. SDS

4. DDS

Snowmelt **Dominated**

Snowmelt Dominated

792km²

inated

922km

Rainfall **Dominated**

3626km²

Lauren E. Hay

DDS

52 km grid node spacing

DDS

Hydrologic Model -- PRMS

Station Input Data Sets:

- Stations used to calibrate PRMS (Best-Sta)
 - All Stations within RegCM2 buffered area (excluding Best-Sta)

All-Sta, DDS, and NCEP need a bias correction

≊USGS

Linking atmospheric and watershed models DAY 0-8

Use PRMS to produce 9-day forecasts of runoff using SDS and ESP

- 100 SDS ensembles

Snowmelt Dominated

Compare ESP and SDS 9-day forecasts of runoff every 5 days

Rainfall

Dominated

BASINS

Snowmelt Dominated

792km²

Snowmelt Dominated

526km²

922km²

≊USGS

Lauren E. Hay

3626km²

Monthly Mean Precipitation (measured and SDS)

Monthly Mean Maximum Temperature (measured and SDS)

≊USGS

Month

OBSERVED DISCHARGE AUTOCORRELATION

- Day+8 correlation
 - Alapaha = 0.75
 - Animas = 0.84
 - Carson = 0.78
 - Cle Elum = 0.51

Observed Discharge Autocorrelation

Compare SDS and ESP Forecasts Perfect Model Scenario

-Nash Sutcliffe Goodness of Fit

- Measure of deterministic forecast skill

-Ranked Probability Score

-Measure of probabilistic forecast skill

-Forecasts are increasingly penalized as more probability is assigned to event categories further removed from the actual outcome

-Ensemble Spread

- Range in forecasts

Nash Sutcliffe Goodness of Fit

Measure of deterministic forecast skill

Ranked Probability Score

Measure of probabilistic forecast skill

Ensemble Spread

Range in forecasts

ESP

.

 Super-ensemble approach to watershed modeling

Run hydrologic models in ensemble mode to provide probablistic forecasts of streamflow and estimates of forecast uncertainty

Super Ensemble Approach to Watershed Modeling

 Super-ensemble approach to watershed modeling

Run hydrologic models in ensemble mode to provide probablistic forecasts of streamflow and estimates of forecast uncertainty

 Physically based watershed model that needs limited calibration

