NASA Reference Publication 1128

November 1984

NASA

Low-Frequency Sound Absorption Measurements in Air

Allan J. Zuckerwar and Roger W. Meredith

NASA Reference Publication 1128

1984

Low-Frequency Sound Absorption Measurements in Air

Allan J. Zuckerwar Langley Research Center Hampton, Virginia

Roger W. Meredith Old Dominion University Norfolk, Virginia

Scientific and Technical Information Branch

Historical Background

The accurate evaluation of noise from man-made sources, such as aircraft, requires a reliable procedure for computing standard sound absorption values in air as a function of meteorological conditions, namely temperature, pressure, and humidity. The first widely used standard, issued by the Society of Automotive Engineers as ARP 866 in 1964 and reissued as ARP 866A in 1975 (ref. 1), fulfilled this requirement for many years, despite the fact that it suffers from numerous deficiencies. The standard is based on a single set of laboratory measurements-the 1963 data of Harris (ref. 2)and employs a crude approach to the theory of molecular absorption in oxygen. Even after "modification" of the theory, the recommended formulas yield poor agreement with experiment at the upper and lower ends of the audible frequency spectrum.

The accuracy of sound absorption values was vastly improved with the appearance of a new standard, ANSI S1.26-1978, published by the American Institute of Physics for the Acoustical Society of America and approved by the American National Standards Institute in 1978 (ref. 3). The discrepancies found in the older standard were resolved by the introduction of two new physical concepts into the kinetic model of air: first. the molecular absorption of sound by nitrogen, which plays a dominant role at low frequencies; second, the vibrational-vibrational exchange of energy between water vapor and oxygen molecules, which is needed to explain the trend of the data at high frequencies. Although the data base was expanded to include the measurements from a great number of investigations, many of which appeared subsequent to ARP 866A, the data were still confined to a frequency interval between 1 and 20 kHz except for one data set below 1 kHz (ref. 4). The latter was not included in the formulation of the new standard because of the lack of confirmation by a second independent source. Furthermore, these data have remained an unexplained anomaly for many years because they yield oxygen relaxation frequencies far below those predicted by the new standard.

The sound absorption measurements in air presented here consist of over 2000 data points in the frequency interval from 10 to 2500 Hz, where prior data are scanty, and accordingly serve a twofold purpose. The first purpose is to provide a substantial data base for an improved evaluation of the relaxation frequency of nitrogen. The data base used to establish this important parameter in the ANSI standard is beset with three fundamental difficulties. First, a significant portion of the data—that of Harris and coworkers (refs. 2 and 4) contains only a few discrete frequencies below 1000 Hz, for example, only five frequencies in reference 4. For many meteorological conditions a greater number and range of experimental frequencies are needed for accurate determination of the relaxation frequency. Second, some of the studies were conducted in binary N₂-H₂O mixtures, where the relaxation frequency of nitrogen may differ from that of nitrogen in air (ref. 5). Third, other studies were conducted outdoors in the free atmosphere, where the effects of nonstationarity, nonhomogeneity, spreading, and the ground lead to questionable evaluation of the data. Thus a comprehensive set of lowfrequency laboratory measurements is sorely needed to establish accurately the relaxation frequency of nitrogen in air. The second purpose of this study is to provide independent sound absorption measurements overlapping those of reference 4 in dry air, with the goal of closing the gap between oxygen relaxation theory and experiment.

This publication is intended primarily to document the measurements of sound absorption versus frequency for given meteorological conditions and therewith to provide the background information needed to explain the experimental results. The following sections describe sound absorption mechanisms in free air and in a resonant tube, the sound absorption measurement program, the method used to evaluate the data, the format for presenting the data, and the procedure for determining the relaxation frequencies of nitrogen and oxygen.

Symbols

- c speed of sound, m-s⁻¹
- C_P specific heat at constant pressure, J-kg⁻¹-K⁻¹
- f experimental frequency, Hz
- f_{vn} vibrational relaxation frequency of nitrogen, Hz
- $f_{\rm vo}$ vibrational relaxation frequency of oxygen, Hz
- h humidity, mole percent
- L length of resonant tube, m
- p acoustic pressure, Pa
- p_o reference acoustic pressure, Pa
- P static gas pressure, atm
- P_o reference static gas pressure, 1 atm (or 0.1013 MPa)
- R radius of resonant tube, m
- t time, sec
- T gas temperature, K or °C
- T_o reference gas temperature, 293.15 K
- x propagation distance, m

- α sound absorption coefficient, Np-m⁻¹ or dBm⁻¹, (1 Np = 8.686 dB)
- γ specific heat ratio
- η viscosity coefficient, kg-m-s⁻¹
- κ thermal conductivity, J-m⁻¹-s⁻¹-K⁻¹
- μ sound absorption coefficient per unit wavelength, Np per wavelength
- ρ density, kg-m⁻³

Subscripts:

- air air
- bg background gas
- cr classical-rotational

meas measured

- str structural
- vn vibrational relaxation in nitrogen
- vo vibrational relaxation in oxygen

wall wall

Abbreviations:

- ppm parts per million
- RH relative humidity
- WL wavelength

Sound Absorption Measurements in Free Air

Absorption Per Unit Length

An acoustic plane wave, attenuated as it propagates through a free (unbounded) medium, is represented by the expression

$$p = p_o \exp(-\alpha x) \exp\left[i2\pi f(x/c - t)\right] \tag{1}$$

The absorption coefficient in free air consists of three fundamental components— α_{cr} the classical-rotational absorption, α_{vn} the vibrational absorption in N₂, and α_{vo} the vibrational absorption in O₂:

$$\alpha_{\rm air} = \alpha_{\rm cr} + \alpha_{\rm vn} + \alpha_{\rm vo} \tag{2}$$

These are given as functions of meteorological parameters in reference 3:

$$\alpha_{\rm cr} = 1.84 \times 10^{-11} \left(\frac{P_o}{P}\right) \left(\frac{T}{T_o}\right)^{1/2} f^2 \qquad (3)$$

$$\begin{aligned} \alpha_{\rm vn} &= 0.1068 \left(\frac{T_o}{T}\right)^{5/2} \exp\left(\frac{-3352}{T}\right) \left(\frac{f^2 f_{\rm vn}}{f^2 + f_{\rm vn}^2}\right) \end{aligned} (4) \\ \alpha_{\rm vo} &= 0.01278 \left(\frac{T_o}{T}\right)^{5/2} \exp\left(\frac{-2239.1}{T}\right) \left(\frac{f^2 f_{\rm vo}}{f^2 + f_{\rm vo}^2}\right) \end{aligned} (5)$$

with

$$f_{\rm vn} = \left(\frac{P}{P_o}\right) \left(\frac{T_o}{T}\right)^{1/2} \times \left(9 + 350h \exp\left\{-6.142\left[\left(\frac{T_o}{T}\right)^{1/3} - 1\right]\right\}\right) (6)$$

$$f_{\rm vo} = \left(\frac{P}{P_o}\right) \left(24 + 4.41 \times 10^4 h \frac{0.05 + h}{0.391 + h}\right) \quad (7)$$

Figure 1 shows the frequency dependence of the total absorption and of each component process for the example $T = T_o = 293.15$ K, $P = P_o = 1$ atm, and h = 1.614 mole percent (relative humidity of 70 percent). For each component process the sound absorption rises as f^2 below the relaxation frequency and then approaches a constant value asymptotically. For the classical and rotational components, however, the relaxation frequencies lie beyond the range of the figure. With increasing humidity the vibrational relaxation frequencies both shift to higher values.

Absorption Per Unit Wavelength

Although the sound absorption coefficient α is of interest when the sound pressure at a specified distance from the source is desired, another measure of sound absorption, the absorption per unit wavelength μ , is preferred in many studies because it is more directly related to the physical properties of the medium. The relationship between μ and α is the following:

$$\mu = \frac{\alpha c}{f} \tag{8}$$

where the sound speed in air has the value

$$c = 343.23 \left(\frac{T}{T_o}\right)^{1/2} \tag{9}$$

As before, the absorption per unit wavelength in air consists of classical-rotational and vibrational components in N_2 and O_2 :

$$\mu_{\rm air} = \mu_{\rm cr} + \mu_{\rm vn} + \mu_{\rm vo} \tag{10}$$

Equations (3) to (5), (8), and (9) yield the following expressions for these components:

$$\mu_{\rm cr} = 6.315 \times 10^{-9} \left(\frac{P_o}{P}\right) \left(\frac{T}{T_o}\right) f \qquad (11)$$

$$\mu_{\rm vn} = 36.66 \left(\frac{T_o}{T}\right)^2 \exp\left(\frac{-3352}{T}\right) \left(\frac{ff_{\rm vn}}{f^2 + f_{\rm vn}^2}\right)$$
(12)
$$\mu_{\rm vo} = 4.386 \left(\frac{T_o}{T}\right)^2 \exp\left(\frac{-2239.1}{T}\right) \left(\frac{ff_{\rm vo}}{f^2 + f_{\rm vo}^2}\right)$$
(13)

Figure 2 shows a plot of the absorption per unit wavelength similar to the example of figure 1. In this case, however, each component process is associated with a well-defined relaxation peak, having a crest located at the relaxation frequency. Again, with increasing humidity both vibrational relaxation peaks shift to higher values, and the relaxation frequencies for the classical and rotational processes are so high that the peak crests lie beyond the range of the figure.

In sufficiently dry air, for which the O_2 relaxation peak stands out prominently above the background, the absorption per unit wavelength μ is chosen to represent the sound absorption. In more humid air, for which relaxation in N_2 occurs within the range of experimental frequencies, the scatter in the data generally precludes good definition of the much smaller N_2 relaxation peak. In these cases the sound absorption is more appropriately represented by the absorption per unit length α .

Evaluation of Relaxation Frequencies

Equations (3) to (5) (or eqs. (11) to (13)) are derived rigorously from fundamental thermodynamic principles and from first-order kinetic theory. The numerical constants are obtained from precisely known gas properties and molecular parameters. The inaccuracy in these expressions lies almost exclusively in the formulas for the relaxation frequencies f_{vn} and f_{vo} , as given by equations (6) and (7). Because current relaxation theory offers only an order-of-magnitude estimate at best, the relaxation frequencies are determined in practice through empirical fits of the available data to equations containing gas-kinetic model parameters.

Each constituent of the atmosphere influences the relaxation frequencies of both N₂ and O₂ to a varying extent, ranging from negligible (argon) to extreme (water vapor). To illustrate the effect of the latter, the relaxation frequency of O₂ (eq. (7)) at 20°C and 1 atm varies from 24 Hz in dry air to 89 kHz at 100-percent relative humidity. Similarly, the relaxation frequency of N₂ (eq. (6)) varies from 9 to 816 Hz. The relaxation frequencies are also sensitive to the presence of CO₂, but to a lesser extent because the CO₂ content is small (330 ppm); its effect is included in the *h*-independent terms in equations (6) and (7). Because most of the data sets in the past were confined to a limited range of frequency, traversing only one relaxation peak, a simultaneous fit of $f_{\rm vn}$ and $f_{\rm vo}$ to the composite data does not

necessarily yield the best values of the numerical constants in equations (6) and (7). Rather, the complex task of determining these values from the data can be facilitated immensely through a simplified procedure.

First, it is noted that the N_2 and O_2 relaxation peaks are widely separated at all values of humidity. In figure 2, for example, the N₂ absorption is down 55 dB from the crest of the O₂ peak at the O₂ relaxation frequency, and the O_2 absorption is down 26 dB from the crest of N_2 peak at the N_2 relaxation frequency. Thus the high-frequency data can be used to fit f_{vo} alone, with classical-rotational absorption taken into account but with N_2 absorption neglected. Once f_{vo} is established, then the low-frequency data can be used to fit $f_{\rm vn}$ with both classical-rotational and O₂ absorption as background. Actually, since N₂ dominates the absorption spectrum over the frequency interval from 10 to 2500 Hz except in very dry air, evaluation of f_{yn} is relatively insensitive to the O_2 absorption. For the present data the values for O₂ absorption from the current standard are used in the background for the N_2 absorption. Subsequent adjustment of the O₂ absorption values will affect the evaluation of f_{vn} very little.

Sound Absorption Measurements in a Resonant Tube

Experimental Method

The sound absorption measurements in the present study were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore radius of 0.0762 m. An acoustical standing wave was excited in the test gas in the tube, the excitation removed, and the sound absorption evaluated from the free decay envelope. The tube and operating procedure are described in reference 6. Over 250 tube modes could be excited, from the fundamental near 10 Hz to a cutoff frequency somewhat above 2500 Hz. The free decay curves were evaluated in real time on an 8-bit microcomputer-based digital data acquisition system (ref. 7).

Additional Sound Absorption Processes in a Tube

In a resonant tube, sound absorption is subject to two additional processes not found in free-field propagation, namely thermoviscous absorption at the tube walls and absorption due to excitation of the structural modes of the tube by the internal test gas. The wall absorption is accurately given by the Kirchhoff formula

$$\alpha_{\text{wall}} = \left(\frac{\pi \eta f}{\rho c^2}\right)^{1/2} \left[\frac{1}{R} + (\gamma - 1)\left(\frac{1}{R} + \frac{2}{L}\right) \left(\frac{\kappa}{\eta C_{\text{P}}}\right)^{1/2}\right]$$
(14)

but the structural absorption cannot be described by a simple formula, since it is related to the structural

Figure 1. Sound absorption in air versus frequency for $T = 20^{\circ}$ C, P = 1 atm, and h = 1.614 mole percent (70-percent RH). The vibrational relaxation frequencies as specified by the ANSI standard (ref. 3), $f_{vn} = 574$ Hz and $f_{vo} = 59117$ Hz, are indicated on the frequency axis.

Figure 2. Sound absorption per unit wavelength in air versus frequency for $T = 20^{\circ}$ C, P = 1 atm, and h = 1.614 mole percent (70-percent RH). The vibrational relaxation frequencies as specified by the ANSI standard (ref. 3), $f_{\rm vn} = 574$ Hz and $f_{\rm vo} = 59117$ Hz, are indicated on the frequency axis.

properties of the tube. Nevertheless, the latter process becomes significant when the test gas frequencies lie near the natural frequencies of the tube structure (ref. 8). Such frequencies were generally avoided in the present study, in particular those in the vicinity of 93, 290, and 550 Hz, where excitation of the tube structure was found to be strong.

Evaluation of Constituent Absorption

The sound absorption measurement problem is compounded by the fact that the *constituent* absorption in air α_{air} , consisting of the classical-rotational and vibrational components given by equations (3) to (5), is only 1 to 5 percent of the wall absorption α_{wall} , depending on the frequency and humidity. In order to reduce the error inherent in the attempt to extract such a small effect from a large background, a differential technique was employed using a background gas with (1) negligible constituent absorption and (2) the same sound velocity as air in an effort to match acoustical coupling to the tube structure. Then measurements in the background gas yielded the wall and structural components of the absorption in the tube. A gas mixture consisting of 89.5 percent Ar and 10.5 percent N_2 fulfills both the above requirements, since the N_2 relaxation frequency lies far below any measured frequency. For each sound absorption measurement in air, a corresponding measurement was made in the background gas at the same frequency, pressure, and temperature. The measured absorption contains the following components in air and in the background gas:

$$\alpha_{\text{meas-air}} = \alpha_{\text{air}} + \alpha_{\text{wall-air}} + \alpha_{\text{str-air}}$$
(15)

$$\alpha_{\rm meas-bg} = \alpha_{\rm wall-bg} + \alpha_{\rm str-bg} \tag{16}$$

For each pair of measurements the constituent absorption can be found:

$$\begin{aligned} \alpha_{\rm air} &= \alpha_{\rm meas-air} - \alpha_{\rm meas-bg} \\ &- (\alpha_{\rm wall-air} - \alpha_{\rm wall-bg}) \\ &- (\alpha_{\rm str-air} - \alpha_{\rm str-bg}) \end{aligned} \tag{17}$$

It is apparent from equation (17) that successful evaluation of the sound absorption in air is contingent upon the following conditions:

1. The measurements must be of high precision both in air and in the background gas. This is achieved with the aid of a digital data acquisition system using a 12bit analog-to-digital converter (ref. 7).

2. The wall losses of both gases must be computed accurately. In other words, the parameters in equation (14) must be known accurately as a function of pressure, temperature, and in the case of air, humidity. The effect of adsorped H_2O on the wall losses was estimated from the analytical results of reference 9 and found to be negligible.

3. The composition of the background gas must be carefully adjusted to match the frequencies found in air in order to match the coupling to the structural modes of the tube. This ensures that the final term in equation (17) vanishes:

$$\alpha_{\rm str-air} - \alpha_{\rm str-bg} = 0 \tag{18}$$

and consequently

$$\alpha_{\text{air}} = \alpha_{\text{meas-air}} - \alpha_{\text{meas-bg}} - (\alpha_{\text{wall-air}} - \alpha_{\text{wall-bg}})$$
(19)

Sound Absorption Measurement Program

Measurement of Gas Composition and Meteorological Parameters

Gas composition. The test air was premixed from constituents by a commercial vendor and delivered in two 210-ft³ cylinders at 2000 psi. The requested and actual compositions, per certified analysis, are listed in table I(a). The constituents for the background gas, for which the composition is listed in table I(b), were mixed in the resonant tube proper. The mixture was adjusted until the fundamental frequency for air at the prevailing ambient temperature matched the theoretical value, computed from the sound velocity as given in equation (9).

Pressure. The pressure was maintained at nominally 1 atm for all gas compositions, as measured on a strain gauge pressure transducer.

Temperature. A coarse measurement of temperature was provided by four iron-constantan thermocouples located along the axis of the tube. These were also used as sensors for automatic temperature control. A fine measurement was derived from the measured acoustic frequency and its known relation to temperature.

Humidity. Humidity was measured with either of two dew-point hygrometers, the first for dew points in the range from -20° C to 60° C and the second for those below -20° C. The dew-point readings were taken just prior to the acoustical measurements.

Selection of Meteorological Parameters

The acoustical measurements were conducted within the temperature interval from 10° C to 50° C in 10° C steps. Originally it was intended, at each fixed temperature, to vary the relative humidity from 0 to 100 percent in 10-percent steps. At 10°C, however, because the N₂ absorption was found to be too small to be resolved, the measurements were confined to sufficiently dry air that the properties of the O₂ absorption could be investigated. Because of difficulty in attaining saturated H₂O vapor pressures in the tube above 25°C, acoustical measurements were confined to air samples having dew points below or slightly in excess of that temperature. The corresponding maximum relative humidities were 66, 48, and 29 percent at tube temperatures of 30°C, 40°C, and 50°C, respectively.

Meteorological parameters for each of the 30 sets of acoustical data are summarized in table II. For each data set the sound absorption was measured at a number of frequencies from 54 to 92.

Presentation of Data

Constituent Absorption in Air

Figures A1 to A30 (appendix) show the sound absorption in air versus frequency for given values of temperature and absolute humidity, along with the tabulated data. Absorption values for which $\alpha_{\rm air} < 10^{-4}$ Np/m are not included in the tabulation, as this value represents the limit of the experimental technique. For all but the driest air samples, the sound absorption is evaluated from equation (19). In these cases the O₂ relaxation frequency lies so high that relaxation in N₂ is the dominant process over the range of experimental frequencies. The O₂ relaxation frequency $f_{\rm vo}$ is assumed to be given by the current ANSI standard (eq. (7)) and the N₂ frequency $f_{\rm vn}$ is best-fitted to the data. Thus $f_{\rm vn}$ is varied until the sum

$$S = \sum \left(\alpha_{\rm air} - \alpha_{\rm cr} - \alpha_{\rm vn} - \alpha_{\rm vo} \right)^2 \qquad (20)$$

reaches a minimum. In equation (20), α_{air} is taken from equation (19); α_{cr} , α_{vn} , and α_{vo} are computed from equations (3) to (5). The summation index (over all the points in a data set) is omitted to simplify notation. A small error in f_{vo} has a negligible effect on the evaluation of f_{vn} if the humidity exceeds 0.5 mole percent (about 20-percent RH at 20°C), but at lower humidities the effect of the error is more severe. Nevertheless, this is of little consequence in the present study because only two data sets are affected (figs. A5 and A6), and in the worst case a 10-percent error in f_{vo} results in a 22-percent error in f_{vn} .

In the driest air samples (figs. A1 to A4, A14, A21, and A27), f_{vo} shifts into the range of experimental frequencies, and relaxation in O₂ becomes the overwhelmingly dominant process. The N₂ relaxation frequency shifts to such low values as to make no detectable contribution to the sound absorption. In these figures the absorption per unit wavelength μ_{air} , evaluated from equations (8) and (19), is plotted to emphasize the O₂ relaxation peak. The data are used to best-fit f_{vo} by varying f_{vo} until the sum

$$S = \sum \left(\mu_{\rm air} - \mu_{\rm cr} - \mu_{\rm vn} - \mu_{\rm vo} \right)^2 \qquad (21)$$

reaches a minimum. As in the above procedure, μ_{cr} , μ_{vn} , and μ_{vo} are given by equations (11) to (13), and f_{vn} by equation (6), even though the choice of f_{vn} is inconsequential.

The best-fitted N_2 and O_2 relaxation frequencies are summarized in tables III and IV.

Relaxation Frequency of N₂

Figure 3 shows the N₂ relaxation frequency $f_{\rm vn}$ plotted against absolute humidity at temperatures T of 20°C, 30°C, 40°C, and 50°C. The symbols are the results of the present measurements. The straight lines represent relationships of the form

$$f_{\rm vn} = a_0 + a_1 h \tag{22}$$

for the ANSI standard (eq. (6)), the best fit to the data (using f_{vo} of the ANSI standard), and the results of Zuckerwar and Meredith for binary N₂-H₂O mixtures (ref. 10). It is apparent from these figures that the measured relaxation frequencies lie between the ANSI and binary values at all temperatures. The 95-percent confidence intervals of the slope a_1 , taken to be plus or minus two standard deviations, are ± 29 Hz/mole percent or ± 12 percent per mole percent. The bestfitted slopes are summarized in table V.

Relaxation Frequency of O₂

Figure 4 shows the O_2 relaxation frequencies f_{vo} versus humidity for the dry air samples. The circles represent data from the present measurements in the temperature interval from 10°C to 50°C, as listed in table IV. For comparison the squares represent data from Harris and Tempest (ref. 4) at temperatures of -40°C, -20°C, 0°C, and 20°C. The solid line is a plot of the ANSI relationship (eq. (7)). The measured relaxation frequencies in this range of humidity remain remarkably independent of temperature. Both the data presented here and those of reference 4 reveal a significant trend away from the ANSI standard at low values of humidity. The ANSI relationship can be made to pass through the low-humidity data points by suitable adjustment of one or more numerical constants in equation (7).

Summary

Thirty sets of sound absorption measurements in air at 1 atmosphere are presented at temperatures from 10° C to 50° C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The data are used to evaluate the relaxation frequencies of N₂ and O₂ for each of 30 sets of meteorological parameters. The experimentally determined relaxation frequencies reveal significant differences from those specified by the current ANSI standard, S1.26-1978.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 August 23, 1984

Figure 3. Relaxation frequency f_{vn} of N₂ versus humidity. Circles are experimental data points. The straight lines represent the relationships specified by the ANSI standard (eq. (6)), the best fit to the data, and reference 10 for binary N₂-H₂O mixtures.

Figure 3. Concluded.

Figure 4. Relaxation frequency f_{vo} of O₂ versus humidity at low humidities.

TABLE I. COMPOSITION OF GAS SAMPLES $^{\prime}$

r an inter inter <u>inter</u> inter	Composition			
Constituent	Requested	Actual		
O ₂	$20.9\pm0.1\%$	21.0%		
Ar	$0.9\pm0.1\%$	0.893%		
CO_2	$330\pm30~\mathrm{ppm}$	348 ppm		
H ₂ O	${ m <5.3~ppm}\ ({ m dew~point,~-65^{\circ}C})$	$20.6~{ m ppm}$ (dew point, $-55^{ m o}{ m C}$)		
N ₂	Balance	Balance		

(a) Molar composition of test air

(b) Molar composition of background gas

Constituent	Actual composition	
N ₂	89.5%	
Ar	10.5%	
CO ₂	<1 ppm	
H ₂ O	<2.5 ppm (dew point, -70°C)	

TABLE II. SUMMARY OF METEOROLOGICAL PARAMETERS IN AIR-WATER-VAPOR MIXTURES AT 1 ATMOSPHERE

Relative humidity, percent, at temperatures of-						
10°C	20°C	30°C	40°C	50°C		
1.1	0.60	0.45	0.36	0.28		
2.9	7.1	13.7	9.4	6.2		
9.7	7.9	24.2	16.5	17.4		
	20.4	38.3	25.7	28.8		
	28.3	46.0	32.9	· · · ·		
-	35.5	52.1	47.9			
	45.8	65.5				
	65.3					
-	73.5					
	91.2					

	Absolute	Relative	N_2 relaxation
Temperature,	humidity,	humidity,	frequency,
°C	mole percent	percent	Hz
20	0.165	7.1	43
	.180	7.9	30
	.508	20.4	207
	.689	28.3	201
	.933	35.5	255
l	1.20	45.8	295
	1.49	65.3	432
	1.82	73.5	425
	2.22	91.2	476
30	.579	13.7	282
	.976	24.2	228
	1.62	38.3	504
	1.97	46.0	597
	2.21	52.1	588
	2.88	65.5	687
40	.672	9.4	297
	1.20	16.5	385
	1.79	25.7	566
	2.43	32.9	692
	3.42	47.9	800
50	.776	6.2	304
	2.12	17.4	589
	3.39	28.8	931

TABLE III. SUMMARY OF EXPERIMENTALLY DETERMINED RELAXATION FREQUENCIES OF $\rm N_2$ IN AIR AT 1 ATMOSPHERE

·····	Absolute	Relative	O_2 relaxation
Temperature,	humidity,	humidity,	frequency,
°C	mole percent	percent	Hz
10	0.0146	1.11	29.7
	.0395	2.94	425
	.1304	9.74	1110
20	.0147	.60	22
30	.0195	.45	29
40	.0256	.36	84
50	.0333	.28	131

TABLE IV. SUMMARY OF EXPERIMENTALLY DETERMINED RELAXATION FREQUENCIES OF O2 IN AIR AT 1 ATMOSPHERE

TABLE V. BEST-FITTED SLOPE a_1 IN THE HUMIDITY DEPENDENCE OF THE RELAXATION FREQUENCY OF N₂ AT 1 ATMOSPHERE^a

Temperature,	Best-fitted slope, a_1 , Hz/mole percent			
°C	ANSI (eq. $(6))^b$	Binary N ₂ -H ₂ O ^c	This work	
20	350	191	239	
30	368	199	265	
40	387	208	264	
50	406	216	277	

^aSee equation (22). ^bReference 3.

^cReference 10.

Appendix

Sound Absorption Versus Frequency: Plots and Tabulated Data

The sound absorption is plotted and tabulated for each of the 30 data sets listed in table II.

The sound absorption is plotted as μ , absorption per unit wavelength, in figures A1, A2, A4, A14, A21, and A27, where the air is sufficiently dry that the O₂ relaxation peak stands out prominently above the background. In the remaining figures, α , absorption per unit length, is plotted. The symbols indicate the measured points listed in the tables.

The dashed lines represent the sound absorption as specified by the current ANSI standard (ref. 3).

The solid lines represent the best fit to the data by the method of least squares. For the data sets in which α is plotted, the total absorption is fitted to the data with f_{vo} given by equation (7) and with f_{vn} as the adjustable parameter. For the remaining data sets, the total absorption is fitted with f_{vo} as the adjustable parameter and with N₂ relaxation assumed to be negligibly small.

م

D

> م ا 0

NI

0.0146 mole percent

1.1 percent

1.0097 atm

11.1°C

	MEASURED SOUND		MEASURED SOUND
FREQUENCY	ABSORPTION	FREQUENCY	ABSORPTION
(Hz)	(NP/1000WL)	(Hz)	(NP/1000WL)
45.798	.436	634.079	.969
54.998	.433	680.079	.983
64.199	E02.	689.5	.581
64.199	. 664	698.629	262
73.421	.502	008	875
100.875	.773	809.099	.736
110.109	.71	818.4	.86
119.209	.809	827.7	.751
128.399	.76	5.109	.852
137.569	. 942	910.599	.773
146.777	.671	920	.83
165.1	. 655	1011.9	662.
174.28	. 832	1021.299	.733
183.578	.634	1030.599	.746
192.6	662.	1104.3	.77
201.78	.854	1113.5	. 659
210.969	.733	1122.8	.735
220.28	.723	1205.8	. 62
229.399	.849	1215	. 743
330.399	.787	1298.199	. 686
339.5	1.031	1399.5	.574
348.789	.88	1408.9	. 498
357.98	.986	1501	.528
367.169	.761	1510.4	. 629
403.889	1.045	1455.3	. 781
413.1	. 977	1556.699	. 421
422.299	.964	1602.8	.54
468.299	- 996	1612.199	. 557
477.5	.962	1704.5	634
504.799	1.097	1713.8	532
514.299	. 95	1954.5	.426
523.5	. 859	1963.699	. 28
606.4	.962	2019	. 453
606.403	. 508	2295.1	.408
615.5	1.044	2507.1	.465
624.799	.809	2516.399	- 483
RELAXAT I ON	FREQUENCY OF OXYGEN	(ANSI)= 392 Hz (BEST FIT)= 425 Hz	
RELAXATION I	FREQUENCY OF NITROGEN	(ANSI)= 22.6 H (DEE 10)= 14.4 H	N 1
			4

16

18

35

37

38

	MEASURED SOUND		MEASURED SOUND
FREQUENCY	ABSORPT I ON	FREQUENCY	ABSORPTION
(Hz)	(NP/1000ML)	(Hz)	(NP/1000ML)
29.576	1.128	680.5	499
29.576	1.095	690.299	. 645
39.377	.956	200.099	.736
59.1	1.295	205.98	.501
68.976	1.838	828.48	.873
78.784	1.888	838.299	.09
88.664	1.945	848.2	.532
98.578	2.006	858.099	. 449
178.801	1.863	707.4	. 410
118.18	1.707	77°17	000
150.002	1 - 040	767.577	120
14/.80		71/54	2001
03 L7	1 / 70	570.4 C 2001	100
101.17	1.007	210112	000
187, 219		10.01	
197.189	1.536	1095.199	579
206.989	1.635	1105.099	.335
216.8	1.457	1115.099	.213
226.699	1.444	1115.101	-411
236.58	1.338	1194.199	.591
246.378	1.507	1204.099	.509
315.301	1.124	1214	. 679
325.2	1.288	1303.099	. 629
325.2	1.229	1313.099	. 315
335.101	1.228	1392.3	. 453
344.99	1.042	1412.4	399
394.399	1.095	1491.5	.506
404.089	E41.1	4. IUCI	2/1.
413.877	1 050	1047.7	47.
123.187	074	0.000	207 207
492.879	623°	1719.3	2
502.779	1.103	1729.4	.315
512.5	1.08	1808.599	.215
522.299	1.016	1818.5	.363
532.099	. 933	2006.699	.095
601.4	.758	2016.5	.142
611.379	.975	2204.399	015
660.599	.856	2214.5	.27
670.599	.814		
RELAXATION	FREQUENCY OF OXYGEN		
	*		
RELAXATION F	-REQUENCY OF NITROGEN	(ANSI)= 22.4 H (REF 10)= 14.6 H	N N

References

- Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity. ARP 866A, Soc. Automot. Eng., Mar. 15, 1975.
- Harris, Cyril M.: Absorption of Sound in Air in the Audio-Frequency Range. J. Acoust. Soc. America, vol. 35, no. 1, Jan. 1963, pp. 11-17.
- Method for the Calculation of the Absorption of Sound by the Atmosphere. ANSI S1.26-1978. (ASA 23-1978), American Nat. Stand. Inst., Inc., June 23, 1978.
- Harris, Cyril M.; and Tempest, W.: Absorption of Sound in Air Below 1000 cps. J. Acoust. Soc. America, vol. 36, no. 12, Dec. 1964, pp. 2390-2394.
- 5. Sutherland, Louis C.: Review of Experimental Data in Support of a Proposed New Method for Computing Atmospheric Absorption Losses. DOT-TST-75-87, U.S. Dep. Transp., May 1975.

- Zuckerwar, Allan J.; and Griffin, William A.: Resonant Tube for Measurement of Sound Absorption in Gases at Low Frequency/Pressure Ratios. J. Acoust. Soc. America, vol. 68, no. 1, July 1980, pp. 218-226.
- Meredith, Roger W.; and Zuckerwar, Allan J.: Digital Data-Acquisition System for Measuring the Free Decay of Acoustical Standing Waves in a Resonant Tube. *Rev. Sci. Instrum.*, vol. 55, no. 1, Jan. 1984, pp. 116-118.
- Zuckerwar, Allan J.; and Meredith, Roger W.: Radiation Losses in Resonant Tubes. J. Acoust. Soc. America, vol. 70, no. 3, Sept. 1981, pp. 879–885.
- Krizan, Peter; and Kuscer, Ivan: Influence of Adsorption Upon Sound Attenuation in a Tube. Z. Naturforsch, vol. 36a, no. 7, July 1981, pp. 713-717.
- Zuckerwar, Allan J.; and Meredith, Roger W.: Acoustical Measurements of Vibrational Relaxation in Moist N₂ at Elevated Temperatures. J. Acoust. Soc. America, vol. 71, no. 1, Jan. 1982, pp. 67-73.

1. Report No. NASA RP-1128	2. Governme	ent Accession No.	3. Recipient's Cat	alog No.
4. Title and Subtitle LOW-FREQUENCY SOUND ABSORPTION MEASUREMENTS IN AIR		REMENTS	 5. Report Date November 1984 6. Performing Organization Code 505-31-53-09 	
7. Author(s) Allan J. Zuckerwar and Roger W. Meredith			505-31-53-09 8. Performing Or L-15831	ganization Report No.
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 22665	annya sa'i talanika		10. Work Unit No).
			11. Contract or G	rant No.
12. Sponsoring Agency Name and Address			Defenence Du	hlipption
Washington, DC 20546	tion		14. Sponsoring Agency Code	
15. Supplementary Notes Allan J. Zuckerwar: Langley Research Cente Roger W. Meredith: Old Dominion Univ., N	r. orfolk. VA.	لېږي. د د د به به به به به به به به ا		
16. Abstract Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at tempera from 10°C to 50°C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N ₂ and 10.5 percen a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube ' separated from the "constituent" absorption, consisting of classical-rotational and vibrational absorption, i air samples. The data were used to evaluate the vibrational relaxation frequencies of N ₂ and/or O ₂ for ea the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequenci. N ₂ in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N ₂ : mixtures. The measured relaxation frequencies of O ₂ , which could be determined only at very low valu humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation				ted at temperatures to 2500 Hz. The gth of 18.261 m and and 10.5 percent Ar, es of the tube to be al absorption, in the ad/or O_2 for each of tation frequencies of er in binary N ₂ -H ₂ O to very low values of r investigation.
17. Key Words (Suggested by Authors(s)) Sound absorption in air Resonant tube Vibrational relaxation		18. Distribution Statement Unclassified—Unlimited Subject Category 71		
19. Security Classif.(of this report)	20. Security	Classif.(of this page)	21. No. of Pages	22. Price
Unclassified	Unclassif	ied	46	A03

For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

The second second second second

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return