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As behavioral scientists, we’re in the business of understanding

pieces of behavior. Everyone has his or her favorite types of behaviors,

oftentimes things that simply derive from personal interest—we are

fascinated by language or sport or animals and somehow contrive to

make those into experimental topics. Apart from our idiosyncratic

preferences we also bring our intellectual preferences, our

assumptions about the kinds of explanations we expect to work. And

although our theoretical positions are reasonably explicit, we also have

metatheoretical positions that are typically somewhat hidden.

Nonetheless, they sit implicitly behind what we do. Whether we are

connectionists or computationalists or direct realists, the inherent

philosophies of those positions dictate the kinds of problems we study

and the kinds of variables by which we choose to define them. Our

metatheories tell us what we think ought to be important.

But that’s not the end of how we frame problems. In designing

our studies, we still have a number of choices to make. Some of those

choices are dictated by the requirements of the analyses that we’ll

use—repeated measures or factorial designs, randomized or blocked

trials. Unlike our theoretical and metatheoretical positions, we tend to

think of analyses as objective and benign with respect to intellectual

assumptions. To be sure, all analyses assume criterial characteristics of

the data that render the analysis in question legitimate. But we tend to

think of those assumptions as mathematical. An important lesson of the

chapters in this volume, however, is that our statistical analyses buy

into intellectual assumptions as well. As you’ll see, what we analyze and

how we analyze it entails assumptions about the kinds of things that

exist and assumptions about how those things can fit together. The
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chapters show us how we might begin to change the way we

understand the very nature of those pieces of behavior that interest us.

At the very least, these chapters show that analyses that acknowledge

the dynamical nature of certain behaviors reveal a good deal of rich

structure that cannot be extracted with more familiar analyses.

Consider Figure 1.1, which illustrates a few of the many different

kinds of patterns of data that behavioral scientists encounter. Panel A

shows distributions of the kind that we assume are typical of our

experiments. Some manipulation increased the likelihood of larger

responses, although, in this case, with greater variability among the

responses. Consequently, the means of the two distributions are

numerically different but the variances are such that there is

considerable overlap between the two distributions. Conventional

analyses allow us to assess the extent to which the variability seems to

be systematic (i.e., due to the manipulation) or random (e.g., due to the

vagaries of individual differences among people) in order to determine

whether those means are different enough to be reliable.

The remaining panels show data of the kind considered in these

chapters. Whether they fit this conventional characterization is an issue.

Panel B, for example, shows two distributions that appear to be of the

same general sort as panel A. Distribution 2 is a little more variable

than Distribution 1, but in this case their peaks are in the same location.

A closer look, however, suggests a subtle difference. The mean of

Distribution 2 is larger than the mean of Distribution 1, and by the same

amount as in panel A. But this time the increase is not due to a

straightforward, overall addition. There appears to be a stretching of

the  high end of the  distribution so that more  large values get included
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Figure 1.1.  (A) Two normal distributions with different means and variances.  (B) A normal
distribution (solid line) and a distribution with a stretched “tail” (dashed line).  (C) A time
series.  (D) Two time series with identical summary means.  (E) Two time-ordered velocity ×
position profiles.  (F) Categorical responses with different orders of presentation (indicated by
the arrows).

in the calculation of the mean (Moreno, 2001). Is it appropriate to say

that the means of these two distributions differ? The central tendency is

at the same value. Eliminating values of the dependent variable that are
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larger than a certain cut-off might eliminate this tail but would that be

an accurate depiction of the consequences of this particular

experimental manipulation? Panels C-F show data for which the mean

may be an even less appropriate measure. They are all time-series of

one kind or another, depictions of individual responses being tracked

over time or, at least, over order of presentation. In panel C you can

see that the data are very noisy trial by trial. But there also appears to

be some kind of large-scale wavy pattern overlaid on this noise.

Summary statistics such as the mean and variance would be hard-

pressed to capture this (see Chapter 6 by Holden). Panel D plots two

time series together. The average position of the two series can be said

to be the same if we simply add up the values and divide by the

number of observations. But it is quite apparent that this single value is

not an appropriate characterization of either time series or of the

differences between them. Indeed, there is not really a single mean for

either series; the mean of each changes over time, making it “illegal” to

conduct conventional analyses. Panel E suggests that tracking the

coincident changes in two variables might be informative. There is

more to these data than a correlation could reveal. Whether small

values of X1 go along with large or small values of X2 depends on when

the observations occurred in the series. Finally, in panel F, two parallel

functions are displaced from one another, not as a function of the X

variable but as a function of whether that variable was encountered in

an ascending series or a descending series (indicated by the arrows).

There might be a temptation to average over the two presentation

orders so as to identify “the” transition point, or to have ignored order

altogether in a randomized presentation (but see Chapter 8 by Tuller).
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In this opening chapter, we have two goals. First, we’ll take one

measure that is common in cognitive psychology research and use it to

illustrate the kinds of intellectual assumptions that standard data

analyses embrace. Second, we’ll provide an overview of the issues that

are treated in detail in the individual chapters.

A BRIEF HISTORY OF DECOMPOSING PERFORMANCE INTO

COMPONENTS

Reaction (or response) time is the workhorse for exploring the

nature of cognitive systems. Traditional approaches have tried to

understand responses as the sum of component effects. While such

approaches allow that the intrinsic dynamics of components may be

complex, they severely restrict the kinds of interactions that can occur

between components. In particular, it is common to assume that

interactions between components must be linear. Traditional

approaches have gambled that the effect of each cognitive component

combines additively with the effects of other components, which

together define the shape of response time distributions. This brief

history tracks the payoff, so far, of this gamble.

Linear interactions mean that the effect of an unobservable

component can be recovered in an overall measure like response time

because each component effect spans a sub-interval of response time.

The overall finishing time of the same component doing the same job

will vary from occasion to occasion, however. Thus, the overall time

course of all components would appear, to an experimenter, as a

distribution of finishing times (like one of those shown in Figure 1.1A).
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The enterprise of decomposing response time performance into

component processes is an old one. In 1868, Donders proposed a

subtractive method for identifying stages of information processing. The

subtractive method was based on the idea that a stage could be

inserted into (or deleted from) a sequence of stages. Donders

hypothesized that a new stage would be added to accompany specific

modifications to an experimental task. Comparing response times from

two tasks could estimate the duration of the added stage.

The subtractive method was the preferred procedure for

revealing mental stages for decades (Wundt, 1874; Cattell, 1886;

Jastrow, 1890). It fell out of favor for several reasons. One criticism was

that task modifications are more likely to alter the entire sequence of

stages than to insert or delete individual stages (Külpe, 1895). Devising

an experimental manipulation that unambiguously introduced a new

processing stage proved to be the downfall of the subtractive method.

A more contemporary effort to identify component processes

adopted Donders’ assumption of additive finishing times plus

assumptions geared to the asymmetrical shape of response time

distributions. Empirical response time distributions typically have a

hyperbolic shape with an elongated, slow tail, much like the dashed-

line distribution in Figure 1.1B. The slow tails of response time

distributions resemble exponential distributions (Christie & Luce, 1956;

McGill, 1963) and the fast tails resemble the left half of Gaussian

distributions. Christie and Luce hypothesized that empirical response

time distributions are the intertwining of an exponential distribution

and a base distribution of an unspecified form.
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Hohle (1965) suggested that the form of the base distribution was

Gaussian and indeed  the convolution of an exponential and a Gaussian

distribution can approximate very closely the shape of empirical

response time distributions (Luce, 1986). Based on this idea, response

time distributions are the sum of numerous component distributions

with similar variances plus an exponentially distributed component

with a much greater variance.

Hohle’s assumptions include Donder’s core assumption of

additivity, that the interactions between components are linear.

Consequently the shape of response time distributions should reduce

to three parameters. Two parameters, µ and Σ, summarize the shape of

an underlying Gaussian distribution. µ describes the location of the

Gaussian distribution along the time axis and Σ describes the extent of

the distribution’s spread. A single parameter, τ, summarizes the

location and spread of the exponential distribution.

Different component processes can be inferred if the parameter

estimates systematically dissociate across experimental manipulations.

Some manipulated factors should selectively influence one distribution

(e.g., the exponential distribution) without affecting the other (e.g., the

Gaussian distribution). This strategy for identifying component

processes avoids one of the pitfalls of Donders’ subtractive method, the

requirement that two different tasks add (or delete) a stage of

processing. Hohle’s method requires that different conditions of the

same task influence the exponential and Gaussian parameters

independently.

As part of a model of response time performance, Hohle

assumed that the exponential distribution is the effect of a response-
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choice process and the Gaussian distribution is the sum of all other

processes (see also, Christie & Luce, 1956). The mapping of parameters

to component processes was merely intuitive, however. For example,

McGill (1963) had opposite intuitions. He assigned response-choice

and other decision processes to the Gaussian sum of processes and

suggested that the exponential distribution represents motor

processes.

Unfortunately these ex-Gaussian strategies (combining

exponential and Gaussian distributions) fared no better than Donder’s

subtractive method (Sternberg, 1969). Different factor manipulations

did not systematically discriminate among different component

parameters across experiments (Hohle, 1967; Gholson & Hohle, 1968a,

1968b). This outcome presents a problem because the ex-Gaussian

hypothesis combines so many assumptions. When results are

inconclusive, it is difficult, or impossible, to decide which assumption is

false. Another problem, pointed out by Sternberg, is that combinations

of many other distributions also approximate response time

distributions (see also Van Zandt & Ratcliff, 1995).

Sternberg (1969) realized that the core assumption that cognitive

systems are composed of successive stages could be isolated from

supplemental assumptions such as specifying the form of component

distributions. Sternberg stripped the assumptions regarding the nature

of cognitive systems down to their core and asked, “How do component

processes interact?”—the recurring question in this brief history.

Sternberg proposed that if the component processes interact linearly

then there must exist some factors that when manipulated will

selectively influence different component distributions. If components
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interact linearly, then component distributions selectively influenced

by separate factors will combine additively.

Sternberg’s strategy of testing for linear interactions requires

experimental manipulations of two or more factors. If the influence of

one factor on overall performance is completely independent of the

influence of another factor—a statistically additive interaction—then the

two experimental factors relate to two different component processes.

Alternatively, if the influence of one factor is modulated by another

factor—a non-additive interaction—then both factors influence at least

one common component process.

Assessments of additive interactions between component

processes require estimates of component distributions that combine

additively. Appropriate estimates of component finishing times,

according to Sternberg (1969, p. 286), are arithmetic means. The mean

of a sum of component distributions is the sum of component

distribution means. Response time means, therefore, can be treated as

the sum of component means.

Unfortunately, Sternberg’s additive factors method has yet to

identify any component process unequivocally. Additive interactions

are the exception in cognitive studies. This situation could imply that

the right set of factors has yet to be identified. The right set of factors

could provide the necessary context to discover fundamental additive

interactions. However, there is no guarantee that such a set of factors

exists. Moreover, it may not be feasible to prove that such a set of

factors does not exist. Sternberg provided an elegant and scientifically

conservative test of the traditional assumption regarding the nature of
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cognitive systems. Unfortunately, the results have yet to answer

Sternberg’s question, “how do components interact?”

Following Sternberg’s lead, in some sense, the chapters in this

volume focus on the question, “how do components interact?”

Nonlinear dynamical systems provide another way to explore this

question. Nonlinear dynamical systems do not exclude the possibility of

linear interactions; linear interactions are special circumstances within

the range of possibilities of a dynamical system. Thus, modeling

response times, among other things, as a dynamical system is a very

general and conservative approach. There are fewer a priori

assumptions regarding the components of the system. Furthermore,

there are fewer restrictions on how components may interact.

THE CHAPTERS

The workshop focused on two types of analyses—recurrence

quantification and fractals—that seem particularly fruitful for behavioral

research. The general premises of these techniques are summarized in

the chapters by Webber and Zbilut (“Recurrence Quantification

Analysis of Nonlinear Dynamical Systems”) and by Liebovitch and

Shehadeh (“Introduction to Fractals”) and each is followed by

particular experimental implementations. Also included is an

illustration of what can be gained by treating an established

phenomenon dynamically from the start.

Recurrence Quantification Analysis

Much of the behavior of living systems is complex and seemingly

non-predictable. Nonetheless, aspects of this behavior can be counted

on to repeat. The bits that repeat may do so over long stretches,
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perhaps producing a pattern, or the recurrences can be quite short-

lived. Consider an activity like a square dance. Much of a dancer’s time

is spent synchronized with the group in a large and obvious pattern,

say, concentric circles alternately moving clockwise and

counterclockwise. Only occasionally and briefly does one dancer get

back together with his or her original partner. Both levels of

recurrence—the circular patterns of the group and the momentary

contact between partners—can be quantified and tell us something

additional about the activity.

The levels of recurrence in the “RQA Dance”1 as executed by

other kinds of particles may not be as obvious, particularly the rare

recurrences, but they are just as informative. And, it seems, the more

complex the behavior the rarer and less obvious the recurrences, and

the greater the need for ways to discover them. As noted by Webber

and Zbilut, “the degree to which those systems exhibit recurrent

patterns speaks volumes regarding their underlying dynamics.” Even if

we don’t have a recurrent behavior as obvious as dancing partners

holding hands, a system’s underlying dynamics are accessible. Picking

up on the theme that everything is connected to everything else,

Takens (1981) introduced a theorem allowing a behavior space to be

reconstructed from any measured variable. To be sure, a complex

system is ultimately characterized by a number of participating

variables. But these variables are necessarily coupled to one another

and, therefore, each reflects the behavior of the system. In keeping

                                                  

1 The metaphor of RQA as describing a dance of particles was first illustrated by the duo of M.
T. Turvey and Nobuhiro Furyama during a typically staid Turvey lecture at the University of
Tokyo in May, 2004.
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with our intuitions that behavior evolves over time, Takens’

reconstruction is accomplished through time-delayed copies of some

nominated variable. That is, some variable x is chosen as a preliminary

index of the system’s behavior and we track what happens to x over

time. But we also want to know how x behaves relative to itself at later

points in time, say, t plus a delay of δ or t plus a delay of 2δ So the

original variable x becomes a dimension of the system in question and

each time-delayed copy becomes another dimension of the system.

Trajectories are traced through this multi-dimensional space and

recurrences are measured: Do the trajectories come together at a

point, do they travel together for a sequence of points, and so on? Each

of these becomes an objective indication of some aspect of the system’s

dynamics. An advantage here is that the analysis allows you to

characterize the dynamics of the system from the measurement of any

variable, not necessarily a variable that seems like it ought to be right

(what standard analyses refer to as face validity).

This technique is illustrated in Shockley’s chapter “Cross

Recurrence Quantification of Interpersonal Postural Activity.” He

exploits RQA in a line of research aimed at quantifying the

synchronization between two people who are engaged in a

conversation. You can appreciate the challenge this behavior poses.

What do you measure? The history of interpersonal synchrony is to

treat it as a phenomenon of social coordination and to look for overt

signs of that coordination. This means that the problem has been

addressed fairly subjectively. For example, researchers might examine

videotapes and look for signs of synchrony (e.g., similar gestures by a

talker and a listener). As rigorously objective as researchers try to be,
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they must still interject themselves into the process of identifying an

occasion of synchrony. Shockley and his colleagues have instead

chosen a behavior—the postural sway of the participants—that is not an

overt part of the act of conversing and used RQA to sift through the

trajectories and extract the recurrent patterns. This is unlikely to be a

behavior that people are controlling consciously. It changes “for free,”

pushed around by the fact that our heads are pretty massive sitting up

on top of the relatively skinny sticks that are our bodies. So when we

breathe and talk and gesture, those big heads move around, moving

the body’s center of mass, CM, along with them. The trajectory of the

CM is tracked over time, time-delayed copies of its trajectory can be

generated, and you’re on your way to generating a behavior space.

The subtle measures of RQA allow Shockley and colleagues to

manipulate the constraints on just how coordinated the joint behavior

is. They have people talk to each other or to someone else, at the same

time or in the course of taking turns, using words that differ in their

similarity, and so on—in order to uncover influences on the degree of

coordination. This means that motor behavior, a level of behavior that

some might like to relegate to the bin of basic behaviors that we can

take for granted, can be used as an index of language, something we

take to be one of our fanciest behaviors.

In the chapter on related work by Pellecchia and Shockley

“Application of Recurrence Quantification Analysis: Influence of

Cognitive Activity on Postural Fluctuations,” RQA is applied to a single

postural trajectory. This time, your big head is moved around not by

coordinating with another person but simply by standing while

directing some of your attention to another task. Here the emphasis is
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not so much on the objectivity to be gained—postural sway indexed by

the excursions of the center of pressure (COP) is a common measure in

some domains. But Pellecchia and Shockley point out that more

traditional postural measures are summary measures, for example, of

COP path magnitude and variability. But these summary measures turn

out to be insufficiently sensitive to the varied ways in which cognitive

attentional load can influence certain aspects of postural stability but

not others. They “do not reflect the dynamical properties of postural

control.” In particular, they miss the temporal structure of a COP time

series. One challenge is that posture data are what is called

nonstationary. No single summary measure adequately captures them

because the mean changes over time and the variability changes over

time (see Figure 1.1C). The notion of an average postural location

doesn’t make sense. But this nonstationarity also makes posture data

inappropriate for analyses that assume stationarity. RQA, in contrast,

makes no such assumptions about the way the data are distributed.

Pellecchia and Shockley deal with some of the technical aspects

of carrying out RQA. When you’re evaluating the RQA dance, what

qualifies as an instance of the two original partners having come

together? Do they actually have to touch hands or can they simply slap

hands or wave in the vicinity of each other? When you’re generating

your behavior space through time-delayed copies, what should the

delay be? How many dimensions define your hyper-space?

Pedagogically, our preferences is to illustrate it with three because we

can visualize three-space. But there are no such mundane constraints

on RQA. Pellecchia and Shockley suggest a kind of exploratory strategy

in which the RQA quantities are calculated for a range of parameter
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values (numbers of dimensions, size of time-delay), and then settle on a

value of the latter from a range that doesn’t have dramatic

consequences for the RQA measures. The upshot in the research they

describe is that RQA promotes a different understanding of what

attention does. In the particular experiment they described, for

example, summary measures of COP were all affected in the same way

by attentional demands, suggesting that attention causes a decrement

in postural control. The RQA measures, in contrast, yielded differences

that suggest a nuanced understanding of the ways in which postural

components (e.g., the front to back vs. side to side movements) might

be modulated by a stander in order to meet attentional demands.

Variability is something to be harnessed by the system to achieve a

goal.

Fractal Analyses

Most of the things that we need to measure tend to be irregular.

This is no less true when the things we measure are behaviors rather

than objects. Geometrically, this means that things are more like

coastlines than rectangles. As Liebovitch and Shehadeh point out in

“Introduction to Fractals,” this not only makes them hard to measure, it

makes the ruler that we use important. Quite surprisingly, the

measured size of the coastline depends on the size of the ruler. Smaller

rulers get into more of the nooks and crannies, thereby including more

stretches of coastline than would be the case with a large ruler that is

forced to bridge those gaps. So the level of resolution that we choose to

achieve in our measurement affects the values we get. Consider one

classic value that is typically used to characterize the behavior of a

system, its mean. The mean is a measure derived from a collection of
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property or performance values that all tend to distribute around this

more or less central value. It is considered a value that typifies the thing

being measured. But with irregular objects like coastlines, there really

is no typical value. The mean depends on the resolution of the

measurement and isn’t all that meaningful.

Subjectivity in measurement is certainly a problem to be

reckoned with. You can appreciate how standard assumptions about

normal distributions (most notably, more samples should lead to more

precision, not more stuff) will be inappropriate in such circumstances.

But so-called fractal objects, which are defined, in part, by this

dependency on measurement resolution, have an additional property

that makes them especially interesting. Fractal objects are self-similar,

that is, structure at the large scale (or the structure of behavior at the

large scale) is duplicated at the small scale: “…the statistics of the small

pieces are similar to the statistics of the large pieces.” This is so

whether we are talking about the structure at different scales of space

or at different scales of time. What happens within a square centimeter

mimics what happens within a square meter; what happens within a one

second window mimics what happens within a one minute window.

Self-similarity can reveal much about the dynamics of a system.

Depending on how the variability relates to the size of the window—a

relationship indexed by what is called the Hurst exponent—it tells you

whether an increase in the value of a measure taken now is likely to be

followed by an increase or a decrease in that measure taken later. In

essence, continuous dynamical processes manifest a kind of memory

without the logical attributions and storage metaphors we gravitate to

in the behavioral sciences.
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A respect for unfolding dynamics encourages the treatment of

order effects as entities of interest in an experiment rather than as

sources of contamination. This is illustrated by Holden in “Gauging the

Fractal Dimension of Cognitive Performance.” He uses a simple

repetitive time-estimation task to demonstrate the options for analyzing

a time series of response times. A participant attempted to produce a

sequence of equal intervals to mimic a presented target interval. Here

our interest is not so much in accuracy as in the kind of process that

produced the performance that was obtained. The way in which the

variability changes over time is the source of the insight. Holden

provides a nice intuitive metaphor here. If the interval estimates did not

vary, then a graph (of value over time) would yield a one-dimensional

straight line. To the extent that the time series is messy, it more closely

resembles a two-dimensional plane. The fractal dimension of the time

series can be calculated from the time series, with a value of 1.5

indicating randomness and 1.2 indicating pink noise, a time-scale

dependent variability. It is, of course, more complicated than this, since

order matters. Shuffling the data yields white noise because you’ve

destroyed the fractal structure, the pattern of variability at short time

scales that is echoed at ever-longer time scales.

Holden’s chapter also contains several caveats for conducting

these kinds of nonlinear analyses. Caveats are necessary because there

are options and we are sensitive to the fact that options often entail

assumptions. Let’s consider a few that routinely arise due to the

practical finiteness of data collection. Ordinary statistics tell us that

outliers are a problem and should be eliminated. Sympathy for

dynamics burdens us with the knowledge that outliers are not
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necessarily produced by an aberrant procedural hiccup. We have to

assess the extent to which they would dominate the analysis. You also

have to be careful that the analysis is not dominated by spurious trends

(e.g., a stretch of linearity) in the finite data set that might be part of

something else if the data collection had continued. So the longer the

time series the better in order to see the cascading structure of varied

time scales. But since our interest is in emergence over time, we cannot

pretend that data collected over several days are the same as data

collected in one sitting. Finally, with all of these options, you’re bound

to come up with varied characterizations depending on which choices

you made. So you need to conduct more than one analysis type (e.g.,

spectral and dispersion analyses) as converging operations.

In her chapter “1/f Dynamic in Complex Visual Search: Evidence

for Self-Organized Criticality in Human Perception” Aks applies this

perspective to visual search behavior, the eye movements that people

engage in when looking for a specific small detail amidst a clutter of

distracting detail. These movements appear quite haphazard. Our eyes

dart back and forth, up and around, in a mix of short jumps and long,

often landing on the same places time and again. We do not follow a

systematic path, say, from upper left to lower right that would

seemingly guarantee that the target would be encountered. Our

behavior doesn’t show in any obvious way that we remember where we

looked in vain before. Yet the repetitive, jerky movements are

surprisingly effective—we find our friend in the crowd; we select the
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perfect bolt from a stash of culch.2 Indeed, the ordinary conditions

under which visual search happens don’t really favor the tidy, thorough

search. We don’t have all the time in the world; our targets or our goals

are often on the move.

At issue in this research domain is what guides visual search. If

eye movements truly were random, we would have to conclude that

they were driven by something other than what the system had done

before, that there was no real role for memory. But it is in the

superficially random noisiness that a fractal analysis uncovers subtle

structure. By quantifying how the noise changes over time we gain

insight into the kind of system that has produced that noise. Presenting

subjects with a difficult search task (looking for a target with a

conjunction of features, not just one) reveals that a bout of scanning has

its own internal history. What we do early in the bout does indeed

influence what we do later in that same bout. But this dynamic history is

quite different from more standard characterizations of memory that

entail a certain degree of address-specific tagging. It implicates more

subtle contingencies, indexed by what is called 1/f behavior.

The final chapter by Tuller does not incorporate either

recurrence or fractal analyses.  Instead, she illustrates  the advantage of

a general dynamical attitude in designing an experiment, with

subsequent opportunities for new interpretations of seemingly well-

understood results. The generality is especially apparent in that this is

strictly a perception experiment. The relevant series is not of the timing

                                                  

2 In the New England vernacular, culch refers to items that may (or may not) come in handy
someday.
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of the responses but of their content—why should a speech token sound

like one syllable versus another? Tuller tackles the classic phenomenon

of categorical perception. Syllables are synthesized to vary

incrementally on some acoustic property. Even though each syllable

token is defined by a different value taken from a wide range of the

acoustic property, each is heard as either one syllable or the other;

they belong to one syllable category or the other. Categorical

perception has historically been treated statically: You hear a token

and its maps better onto one representation than another. But Tuller

shows that thinking of the process as dynamical—with stable, attractive

states that change abruptly—focuses the experimenter on finding what

encourages those nonlinear shifts from one stability to another.

Tuller’s major caveat is that some standard methodological

choices, most notably, randomizing the order in which stimuli are

presented, obscure the dynamics of a system. In a now-familiar refrain

for this volume, she notes that far from being a nuisance that has to be

controlled, order effects allow a system’s dynamical signature to

emerge. A dynamical perspective requires that the stimuli be

presented in order, for example, alternating increasing and decreasing

levels of the acoustic property. This allows an interpretation of the

acoustic property as a control parameter rather than as a cue. Now the

categorical shift can be mined. Does it happen at the same value of the

control parameter in one order as the other (see Figure 1.1F)? Does the

syllable you first hear persist? Or do you switch to the other syllable at

a low level on the way up but a high level on the way down? Tuller

notes that all three of these patterns have been observed and one or the

other can be encouraged. Most notably, the abrupt change from one
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syllable to another, from one stable state to another, comes about

during situations of instability. What had been unanimity of responses

becomes somewhat mixed. Such instability links this perceptual

phenomenon to the general phenomenon of self-organized pattern

formation. This linkage allows one to write the differential equations

that “define systems with attractor properties that fit the observed

experimental data.” That is to say, the linkage is far from metaphorical.

A perception system is modeled in the same way, with the same

ontological status, as an action system, clearly a different direction from

the traditional treatment of categorical perception.

CONCLUSIONS

Behavioral scientists study the actions of humans and animals.

Some of these actions make sense at the level of the individual and

some emerge only in a social setting. As we noted at the outset, we

make a number of choices in conducting our studies. The practical

issue of what kind of equipment we have, how many participants are

available, and so on, are supplemented by the kinds of analyses we

know how to do and the kinds of data we collected to put into those

analyses. We have suggested that such choices are not necessarily as

benign and objective as we would like to believe. Do we try to avoid

data like those shown in panels B-F of Figure 1.1 because they are

messy? Or do we try to contrive our manipulations to produce those

kinds of data because they allow the richness of dynamical systems to

be seen? The following chapters are of a mind that we should not be

afraid of variability. It may well be the driving force of nature.
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