
Copyright © 2008 Software Quality Research Laboratory

Softw
are Q

uality
Research Laboratory

SQ
RL

Software Production Essentials

Beyond the Buzz Words

Tom Swain
Software Quality Research Laboratory

University of Tennessee

Department of Electrical Engineering and Computer Science

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Why Process?

Quality
– Maximize Customer Satisfaction
– Minimize Rework and Repair

Productivity
– Optimize Production Cost
– Shorten Time to Market

This is not a tradeoff. Quality is Free.This is not a tradeoff. Quality is Free.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Post ~2000 Scientific Computation
What’s Different?

Collaboration, Collaboration,
Collaboration
Results affect national policy NOW
(e.g., climate models)
Results can have major economic
impact SOON (e.g., materials, energy,
and IT infrastructure)

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Process Objectives in a
Scientific HPC Environment

Produce reliable software for community use
Implement functionality tailored to user
needs and expectations
Maximize resource commitment to scientific
innovation and productivity
Minimize resources required for rework and
maintenance
Meet regulatory SQA requirements, where
applicable

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Basic Process Elements

Requirements Definition

Coding

Release

Everybody does it, but the order may vary.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

How Do We Fill the Gaps?

Requirements Definition
Specification?/Design?/Verification?/?
Coding
Test?/ Inspection?/?
Release

No shortage of lifecycle/process candidates.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Software Production is
Incremental

An efficient, repeatable process is necessary for
expanding, changing requirements.

?

?

?

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Software Production Keys

Architecture

Architecture
Definition Requirements

Code

Implementation

Specification

Test Planning

Test Cases

Certification

Release
Decision

Code Inspection

Peer Review

Peer Review

Peer Review

(1) A seamless,
traceable
transformation from
requirements to
behavior specification.

(2) Mapping
specified
code to a
robust,
maintainable
architecture.

(4) Certification via
quantitative testing. (3) Peer

review of key
work products
including code
inspection.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Behavior Specification Objectives

Completeness
a response is defined for every stimulus history

Consistency
each stimulus history maps to only one response

Correctness
the specification is explicitly traceable to the
requirements

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Requirements

Individual requirements tagged for
traceability.

Initial requirements assumed to be
incomplete, inconsistent, and
possibly incorrect.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

The Simple Case: Static Calculations
(Things that run to completion without user interaction)

1. Partition input space into domains
bounded by discontinuities

2. Specify response function for
EVERY domain

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Function Specifications
Describe function mathematically for each
distinct region of input space
Specify correspondence between program
variables and math symbols used
Include responses to invalid inputs
Specify all function results - returned values,
state variable modification, modified globals
Practical Consideration: Embed Static Specs in
Code Using Doxygen, JavaDoc, or equivalent

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Function Specifications: Arguments
and Return Values

Scalars and arrays of fundamental types
– Specify type, definition, units, valid range, and

default value
Pointers to fundamental types
– Same as above for dereferenced values

Compound types – classes, templates, etc.
– Specify recursively by providing above info

wherever data members of fundamental types
are declared

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

The General Case: Stateful Systems
(GUIs, datacom, control, etc.)

Establish system boundary in terms of
human/software/hardware interfaces.
Itemize stimuli.
Itemize responses.
Perform enumeration of stimulus sequences.
Perform canonical sequence analysis.
Generate state machine specification.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

System Boundary and Interfaces

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Important Definitions

Stimulus - an event resulting in information flow
from the outside to the inside of the system
boundary

Output – externally observable item of
information flow from inside to outside the
system boundary

Response – occurrence of one or more outputs
caused by a stimulus

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Enumeration Mechanics

–

For each stimulus sequence of length n:

If illegal, mark it illegal and do not extend further.
Document correct response based on requirements.
If no requirement found, create derived requirement.
Record requirements trace.
Check for equivalence with previous sequences.

–

Extend only those sequences that are not illegal or
equivalent.

–

Continue until all sequences of a given length are illegal or
equivalent to previous sequences.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Canonical Sequence Analysis

Identify canonical sequences – all legal
sequences not equivalent to earlier
sequences.
List the canonical sequences in the order
enumerated.
Define state variables such that each
canonical sequence corresponds to a
unique state vector.

Canonical sequences define all system statesCanonical sequences define all system states

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

State Machine Generation

For each stimulus
– For each canonical sequence (CS)

Get state variable values
Find sequence (CS+stimulus) in enumeration
Get response
Get new CS (CS+stimulus or its equivalence)
Get new state variable values

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Map Code Specified in Behavior
Specification to Architecture

Stimulus
Gathering

Response
Generation

State Variable
Implementation

State Machine
Implementation

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Specification Procedure Summary
Specification must be complete, consistent, and
traceably correct
Partition system into manageable components for
scalability
Use enumeration to discover and correct
ambiguity and omissions in requirements
Completed enumeration converts to state machine
specification
Map stimulus gathering, response generation, and
state machine spec to architecture for code
generation

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

High Level Architecture Examples

Java API

Common Services

JUMBL Core

Math ● Error Handling ● Serialization ● Configuration ● GUI

Models ● States ● Arcs ● Constraints

Model I/O Model
Analysis

Results
Management

DOM4JANTLR

Test Case
Generation

Library Computational Component

System Abstractions Hardware/Software Context

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Architecture Specification Contents

Define components and their
responsibilities
Specify relationships among components
Specify intra-element and external
interfaces
Ensure unidirectional use hierarchy
Specify assumptions regarding
platform/environment

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Independent Peer Review
Domain Expert Review
– Initial Requirements
– Derived Requirements from Specification

Development Team Peer Review
– Architecture Specification
– Test Plan

Code Inspection
– Automated Enforcement of Coding Standards
– Manual Verification of Functional Correctness

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Manual Inspection

Manual and Automated Code Inspection

Code
Automated Inspection

+ Test

2. Verify correct code functionality
with respect to specification.

1. Identify defects related to semantic
errors and hazardous coding practices.

3. Iterate until defect volume
is acceptable for testing.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Software Certification
Certification establishes product conformance
with well-defined standards.

Product certification requires a process that is
independently repeatable within statistical
variation.

Statistical testing supports quantitative
certification through statistical characterization
of system use and reliability.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Testing is Always Sampling

Population
(All Uses)

Sample
(Tests)

What to test:
a statistically
appropriate

sample

How much to test:
a risk/benefit

tradeoff

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Model-Based Statistical Testing (MBST)

Usage Modeling
and

Test Planning

Build Model

Analyze/Revise
Model

 Generate Test
Cases

Analyze/Revise
Test Suite

Execute Tests

 Release Decision

Reliability
Analysis

Retest

Release

TML Files

 HTML
Report

Test Cases/
Scripts

 HTML
Report

Test
Results

Release
Criteria

 HTML
Report

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Pr[] = 0.0002

The Population of All Uses Is Represented by
a Markov Chain Usage Model

X (0.5)

Y (0.5)

X (0.2)

Y (0.1)

W (0.2)

Y (0.5)Z (0.1)

X (1)
Y (0.5)

X (0.9)

X (1)

Y (0.3)

X (0.5) X (0.5)

Z (0.2)

Y (0.75)
X (1)

X (0.7)

X (0.25)

Y (0.3)
•Nodes represent “states of use”

•Arcs represent stimuli/events

•Probabilities represent likelihood
of a stimulus, given the current
state.

A “use”

(or test) is any path from
the source to the sink.

W X XX ZX

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Special Case: Static Computation
with Large Input Space

Partition input space via abstractions
Model input selection
Provide specific parametric input at run time
Probability weighted generation can give all
possible input combinations after partitioning
Test oracles
– diverse implementations
– constraints based on science
– interpolate between benchmark points
– favor clarity over performance
– incentive for good specifications

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

For Static Computation
Model Input Selection

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

A Usage Model is
a Finite-State Markov Chain

Well-understood formalism
Rich body of analytical results
Engineering basis for testing
Objectivity in test planning and
management
Describes “use” of product and
not the product itself

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Useful Properties Available via
Markov Analysis

Expected Test Case Length: average number of
stimulus events from start to end
Arc/Stimulus Occupancy: fraction of all transitions
performed by each Arc/Stimulus
State/Arc Probability of Occurrence: probability a
State/Arc will be visited during a single use
State/Arc Visits per Test Case: Average number of
visits to each State/Arc per use
Mean First Passage: average number of test cases
required to exercise a particular state/function

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Model Revision and Validation

Analytical results are inescapable, given the
model.

If results do not square with what is known of
the real-world application, the model must be
revised.

Continue the analyze-revise cycle until the
model is an acceptable description of use of
the system.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Sampling Options
(Test Case Generation)

Population
(All Tests)

Expected Usage

Random

Weighted

Functionality
Coverage

Structural

Contractual,
Critial

Functions

Crafted

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Nonrandom Testing

Coverage tests
(cover all arcs at the least cost of testing)

Importance tests
(generate tests in order of probability or cost)

Crafted tests
(contractual, safety issues, critical functions)

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Random sample testing
Test cases are generated by random walks
through the usage model.

Permits statistical analysis of the sample
and generalization to the population of uses.

Each test case is a sequence of stimuli and
random test sets may be reused.

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Testing Scripts
Script commands are attached to arcs and give
the instructions for testing the transition:

Manual testing
–

written instructions
–

data to use
–

items to check

Automated testing
–

signals for testing equipment
–

commands for driver software (e.g., X-runner)
–

statements in a programmed test driver

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Test Automation

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Test Automation
Application-Specific Tools
–

Generate parametric data for abstract stimuli
–

Compute expected results
–

Make pass/fail determination
Generic Tools
–

Generate test cases as test scripts
–

Associate test instructions with arcs and states in
a model

–

Perform statistical analysis of test results

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Test Results

Record failures by test case and transition
Estimate reliability based on testing
experience
Evaluate stopping criteria

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Reliability Estimation

Test case pass/fail statistics give reliability
and confidence based on binomial
distribution.

Bayesian models

–

provide reliability estimates regardless of whether
failures are observed

–

allow use of prior reliability information

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

MBST Benefits
Better Product

– Clearer requirements, improved specification

Better Use of Resources
– Optimization of testing strategy
–

Reusable assets: models, test plans, scripts, test cases

Shorter Life Cycle
–

Test planning done in parallel with development
–

Easier test automation
Better Management

–

Quantitative support for release decisions
–

Quantification of expected reliability
–

Measurement tool for continuous process improvement

Copyright © 2008 Software Quality Research Laboratory

SQ
RL

Essential Process Elements

Requirements Definition
Robust Architecture Definition
Rigorous Specification
Domain Expert and Peer Review
Coding
Code Inspection
Statistical Testing/Certification
Release

Fill the gaps with rigorous engineering practices.Fill the gaps with rigorous engineering practices.

	Software Production Essentials
	Why Process?
	Post ~2000 Scientific Computation�What’s Different?
	Process Objectives in a �Scientific HPC Environment
	Basic Process Elements
	How Do We Fill the Gaps?
	Software Production is �Incremental
	Software Production Keys
	Behavior Specification Objectives
	Requirements
	The Simple Case: Static Calculations�(Things that run to completion without user interaction)
	Function Specifications
	Function Specifications: Arguments and Return Values
	The General Case: Stateful Systems� (GUIs, datacom, control, etc.)
	System Boundary and Interfaces
	Important Definitions
	Enumeration Mechanics
	Canonical Sequence Analysis
	State Machine Generation
	Map Code Specified in Behavior Specification to Architecture
	Specification Procedure Summary
	High Level Architecture Examples
	Architecture Specification Contents
	Independent Peer Review
	Manual and Automated Code Inspection
	Software Certification
	Testing is Always Sampling
	Model-Based Statistical Testing (MBST)
	The Population of All Uses Is Represented by a Markov Chain Usage Model
	Special Case: Static Computation with Large Input Space
	For Static Computation�Model Input Selection
	A Usage Model is �a Finite-State Markov Chain
	Useful Properties Available via Markov Analysis
	Model Revision and Validation
	Sampling Options�(Test Case Generation)
	Nonrandom Testing
	Random sample testing
	Testing Scripts
	Test Automation
	Test Automation
	Test Results
	Reliability Estimation
	MBST Benefits
	Essential Process Elements

