Up: Main Previous: Conclusions

REFERENCES

[1] F.A.L. Dullien, Porous Media Fluid Transport and Pore Structure, 2nd ed. (Academic Press, Inc., San Diego 1992).

[2] Most of the results presented in this paper originally appeared in the following paper: N. S. Martys, J. G. Hagedorn and J. E. Devaney, "Pore scale modeling of fluid transport using discrete boltzmann methods," Materials Science of Concrete, Ed. R. D. Hooten, M.D.A. Thomas, Jacques Marchand, James J. Beaudoin (2001).

[3] D. H. Rothman and S. Zaleski, "Lattice-gas model of phase separation: interfaces, phase transitions, and multiphase flow", Rev. Mod. Phys., 66[4], 1417-1479 and references, 1998.

[4] X. Shan and H. Chen, "A lattice Boltzmann model for simulating flows with multiple phases and components", Phys. Rev. E, 47, 1815-1819, 1993.

[5] N. S. Martys and H. Chen, "Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method", Phys. Rev. E, 53, 743-750, 1996.

[6] Y. H. Qian and D. d'Humières and P. Lallemand, "Lattice BGK models for Navier-Stokes equation", Europhys. Lett., 17, 479-484, 1992.

[7] H. Chen and S. Y. Chen and W. H. Matthaeus, "Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method", Phys. Rev. A, 45, R5339-R5342, 1992.

[8] X. Shan and G. Doolen, "Diffusion in a multicomponent lattice Boltzmann equation model", Phys. Rev. E, 54, 3616-3620, 1996.

[9] N. S. Martys and J. F. Douglas, "Critical properties and phase separation in lattice Boltzmann fluid mixtures", Phys. Rev. E, 63, 31205 (2001).

[10] N. S. Martys, X. Shan, and H. Chen, "Evaluation of the external force term in the discrete Boltzmann equation," Phys. Rev. E, 58, 6855 (1998).

[11] Message Passing Interface Forum, "MPI: A Message-Passing Interface Standard", International Journal of Supercomputing Applications, 8[3/4], 1994.

[12] A. M. Chapman and J. J. L. Higdon, "Oscillatory Stokes Flow in Periodic Porous Media", Phys. Fluids A, 4[10], 2099-2116, 1992.

[13] T. Bourbie and B. Zinszner, "Hydraulic and Acoustic Properties as a function of Porosity in Fontainebleau Sandstone", J. Geophys. Res., 90[B13], 11,524-11,532, 1985.

[14] P. A. Goode and T.S. Ramakrishnan, "Momentum Transfer Across Fluid-Fluid Interfaces in Porous Media: a Network Model", AIChE Journal, 39[7], 1124-1134, 1993.

[15] E. N. Landis and D. T. Keane, "X-ray microtomography for fracture studies in cement-based materials," Proceedings of SPIE, Developments in X-Ray Tomography II, ed. U. Bonse, 3772, 1999.

[16] J. Koplik, H. Levine, and A Zee, "Viscosity renormalization in the Brinkman equation,: Phys. Fluids 26, 2864 (1983).

[17] H. C. Brinkman, "A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles," Appl Sci. Res. A 1, 27 (1947).

[18] N. Martys, D.P. Bentz, and E.J. Garboczi "Computer simulation study of the effective viscosity in Brinkman's equation," Phys. Fluids 6, 1434 (1994).

[19] M. A. A. Spaid and F. R. Phelan, "Lattice Boltzmann methods for modeling microscale flow in fibrous porous media," Phys. Fluids 9, 2468 (1997).

[20] N.S. Martys, "Improved approximation of the Brinkman equation using a lattice Boltzmann method," Physics of Fluids, 13, No. 6, 1807-1810, (2001).

[21] N. S. Martys, N.S., "A Classical Kinetic Theory Approach to Lattice Boltzmann Simulation," Int. J. Mod. Phys. C., 12 (8), 1169-1178 (2001).


Up: Main Previous: Conclusions