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Abstract

Droplet breakup in homogeneous shear flow at super
critical Capillary numbers and a viscosity ratio of unity is
studied using a lattice Boltzmann method. We find that
the total number of child drops that form from an isolated
super critical drop scales according to a power law
relation (n = 3.5). The child drops that form are all below
critical, but not wholly uniform in size, and the
distribution appears to be log-normal at high drop
numbers. It is also found that for large ratios of the
Capillary number to its critical value, the total strain
required to break up a drop into N sub-critical entities
tends to a constant value.

Introduction

Taylor [1,2] determined that the behavior of droplets of
equal density suspended in flow depends on the Capillary
number
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where R is the drop radius, γ& is the shear rate, σ is the

surface tension, dη is the drop viscosity and sη is the
viscosity of the suspending fluid. The Taylor theory
predicts that below a critical capillary number, the drops
will deform into ellipsoids whose shape is given by
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-- where L is the length of the drop, and B is the breadth
-- and that above critical, the drops become unstable and
break up into smaller, more stable entities whose capillary
numbers are all below critical [3].

The behavior of super critical droplets, i.e., droplets
whose capillary number exceeds the critical value, is of
importance in a variety of fluid mechanics problems, and
there is a generic interest in predicting the evolution of the
second phase droplets during flow. Our interest is
motivated by the processing behavior of immiscible
polymer blends. The microstructure of the second-phase

droplets -- i.e., their size, shape, orientation -- changes
significantly as the polymer flows. These changes affect
both the flow properties of the blend, and the final
mechanical and physical properties of a part molded from
such polymers.

In this paper, we undertake a numerical investigation of the
flow behavior of individual drops in super critical systems.
A variety of methods are available for modeling such
behavior, e.g., lattice Boltzmann (LB) methods [4-14,20],
coarse-grained Ginzburg-Landau type models [15-16], and
continuum surface force methods [17-19]. We investigate
three-dimensional drop breakup in homogeneous shear flow
using the multi-component LB model of Shan and Chen [6-
7,11]. As a starting point in our study, we consider the case
of isolated drops. This was accomplished by using meshes
with channel lengths (in the flow direction) long enough
interactions between neighboring drop breakup families
were eliminated. Our goal is to establish proper scaling
relationships between the initial super critical capillary
number, and the number of child drops that form, the
distribution of drop sizes, and the rate at which the drop
breakup occurs. Such relationships are necessary in order to
characterize complex flows, where large spatial gradients in
the shear rate (and hence the microstructure) are present.

Numerical Modeling

Lattice Boltzmann Method

The basic approach in the LB method is to solve the discrete
Boltzmann equation for the particle velocity distribution
function on a lattice. In the multi-component formulation,
the particle velocity distribution function is denoted as

( , )j
in x t where the i subscript refers to components of the

discrete velocity directions ie , and the superscript j labels
the fluid component.

Physically, the particle velocity distribution function
indicates the quantity of particles at position x and time t

for a given fluid component j which are traveling in the
direction ie . The traditional fluid flow quantities such as
density and velocity for each component are obtained
through the moment sums
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where ( , )j x tρ and ( , )ju x t are the macroscopic fluid

density and velocity, jm is the mass of fluid, and N is the
number of velocities comprising the velocity space.

The evolution of the particle distribution function ( , )j
in x t

is governed by the discrete Boltzmann equation given by
( , 1) ( , ) ( , )j j j

i i i in x e t n x t x tδ+ + = + (1.6)

where ( , )j
i x tδ is the collision operator which couples the

set of velocity states, and the problem is scaled such that
the time step is unity. The linear “BGK” form [4-5] of the
collision operator is employed in which the distribution
function is expanded about its equilibrium value

( )( , ) ( , )
( , )

j j eq
j i i

i j

n x t n x t
x tδ

τ
−= − (1.7)

where ( ) ( , )j eq
in x t is called the equilibrium distribution

function and jτ is a relaxation time for collisions
controlling the rate of approach to equilibrium. The form
of the equilibrium distribution function depends on the
particular lattice model chosen. The three-dimensional,
“D3Q19” model [9] which resides on a cubic lattice is
used here (D3 indicates the model is three-dimensional,
Q19 refers to the number of components in the velocity
space).

To model phase-separation using the LB method, an
interaction potential which produces a separating force
between fluid components is introduced. We use the
phase-separation model of Shan and Chen [6-7] where the
interaction force for each fluid component is given by
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where jk
iG are fluid interaction parameters. The

interaction force is introduced directly into the body-force
term of the Boltzmann equation according to the
procedure outlined in [11]. The Shan-Chen phase
separation model produces an artificial surface tension
that drives phase separation proportional to the local
curvature of the interface boundary between two fluids
[12].

SIMULATION

Flow Geometry and Boundary Conditions

Simulations were carried out for a two-component system
consisting of a single isolated droplet in steady,
homogeneous shear flow. The flow geometry and

boundary conditions for the problem are shown in Figure 1.
Periodic boundary conditions were used on the inlet, outlet,
and side boundaries of the flow. The boundary conditions

wV± , where wV is the wall velocity, were used on the upper
and lower surfaces of the flow, respectively. As an initial
condition, the droplet was placed at the center of the flow
geometry as shown in Figure 2, with the entire system at
rest.

The different values of the wall velocity and mesh sizes
used in the simulations are shown in Table 1, along with the
corresponding values of the initial, super-critical capillary
numbers. The critical capillary number for the system was
determined to be 0.375, the first case shown in the Table.
Because the boundary conditions at the inlet and outlet were
periodic, it was necessary to lengthen the mesh in the flow
direction as the capillary number went up, to prevent fluid
exiting at the outlet and reentering at the inlet (and vice-
versa) to coalesce upon itself.

General Observations

As expected, the simulation predicts that above the critical
capillary number the drop stretches and breaks up into
smaller entities. The simulations predict a three-stage
mechanism for drop breakup. In the first stage, the drops are
drawn into high aspect ratio liquid threads, with bulbous,
"dumbbell" shaped ends. Once drawn, instabilities develop
in the form of undulations in the cross-sectional area along
the axis of the drop. In the final stage, the severity of the
undulations causes child drops to pinch off from the ends of
the main body until it is itself below the critical size.

The final configuration of some steady-state drop families
for various capillary numbers are shown in Figures 3a-b. In
this state, all the drops are stable, below the critical
Capillary number. The drops are not uniform, there is a
definite distribution of sizes. Table 2 gives the number of
drops formed for each case, Table 3 breaks down the
distribution of sizes. For the case of Ca = 0.9, we were not
able to perform the calculations with a great enough mesh
density to accurately resolve the great number of drops that
form -- this will be an object of future work. We estimate
the uncertainty of the data generated by the model to be 5%,
based on the experience of the authors.

Number of Drops

Based on conservation of mass, we expect that there is some
type of power-law relationship between N, the number of
drops that form, and the initial super critical capillary
number. Assuming that the family of child drops that form
are well approximated by an equal average size, an
approximate expression for the number drops that can be
expected to form in super critical systems is
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where λ is the ratio between the mean and critical drop
size. Figure 4 shows that there is indeed a power law
relation between N and the initial capillary number, but
that the power law value is n = 3.5 (raw data values are
given in Table 2). The difference in the exponent can be
attributed to the distribution of sizes about the mean,
where the distribution is skewed towards the small end.

Rate of Breakup

The strain required to break down the initial drop into N
sub-critical entities is related to the rate at which the
break-up process occurs. The strain to complete breakup
as a function of Ca is plotted in Figure 5, where the strain

is given by
2 wV

t
d

γ = , and d is the distance between the

upper and lower plate of our flow geometry. Beyond the
simple cases of 2 and 3 drops, we find that the required
strain appears to plateau at around a value of 38. This is
an interesting result because it implies that for dilute
systems in complex flows, drop breakup is complete in
regions in which the critical strain has been reached.

Distribution

The drop size distribution for Ca = 0.75 are shown in
Figure 6. There is a pronounced mean value, and as
expected from the power-law relationship we observed
between N and Ca, the number density is skewed towards
the small end. This has the earmarks of a log-normal type
distribution. However, subsequent studies at higher values
of Ca are needed in order to reach a definitive conclusion.

Conclusion

Lattice Boltzmann simulations have been carried out for a
two-component system in homogeneous shear flow at
super critical Capillary numbers and a viscosity ratio of
unity. The simulations predict a three-stage mechanism
for drop breakup that is quite consistent with previous
numerical work, and known experimental behavior. We
find that the total number of child drops that form from a
single isolated super critical drop scales according to the

power law relation ( )3.5

0~N Ca . The child drops that

form are all below critical, but not wholly uniform in size,
and the distribution appears to be log-normal at high drop
numbers. Also pertinent is the result that for large ratios

of 0

c

Ca

Ca
the total strain required to breakup the initial drop

into N sub-critical entities tends to a constant value.

The present study has raised a number of questions we plan
to address in future work. First, calculations at higher Ca are
needed. This will allow us to further determine the range
over which the observed power-law relationship between N
and Ca is valid, and allow us to obtain enough drops to
establish a valid statistical relation for the drop size
distribution that is observed. A second issue we plan to
address is the effect of coalescence. It can be expected that
in non-isolated systems, drop-drop interactions will affect
the results observed here.
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Figure 1 -- Unit cell and boundary conditions for
homogeneous, shear flow. The upper walls move in
opposite directions. Periodic boundary conditions are used
at the inlet, outlet, and side boundaries of the flow.

Figure 2 -- Initial condition for drop in steady,
homogeneous shear flow. Upper and lower boundaries
moved as indicated in Figure 1.

Figure 3a-c -- Steady-state drop families for Ca = 0.6
(top) and 0.75 (bottom), respectively.1

Figure 4 -- The number of drops that form upon breakup as
a function of initial capillary number. The power law slope

is 3.5.

Figure 5 -- The strain required to break up a into N sub-
critical entities, as a function of initial capillary number.

Figures 6 -- Drop distribution for the case of Ca = 0.75.
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Wall Velocity (Vs) Mesh Size Initial Ca Critical Diameter (Dc)
0.125 39 x 301 x 41 0.375 25
0.137 39 x 301 x 41 0.412 22.8
0.15 39 x 801 x 41 0.45 20.8
0.2 39 x 801 x 41 0.6 15.6
0.25 39 x 801 x 41 0.75 12.5
0.3 39 x 951 x 35 0.9 10.4

Table 1. Wall velocity (dimensionless) and mesh sizes used in the simulations. The initial capillary number
of the drop and the critical diameter based on the wall velocity are also shown. The initial diameter of the
drop is 25 mesh units in all cases. Longer meshes in the flow direction are needed as the initial capillary
number is increased in order to wipe out the effects of periodicity.

Initial Ca Number of Drops Formed Strain to Breakup Reduced Mean Diameter (D/Dc)
0.375 2 28.8 0.8
0.412 3 29.4 0.733
0.45 4 35.7 0.7
0.6 11 39.0 0.46
0.75 22 37.7 0.32
0.9 - 38.5 -

Table 2. The number of drops formed by shearing as a function of the initial super critical capillary
number. No values are reported for the last case because the size of the smallest drops were too small to
resolve for the given mesh cross-sectional density.

Initial Ca Number of Drops Drop Diameter Reduced Diameter
0.375 2 20 0.8

0.412 1 17 0.68
2 9 0.76

0.45 2 16 0.64
2 19 0.76

0.6 4 10 0.4
5 11 0.44
2 15 0.6

0.75 2 6 0.24
6 7 0.28
12 8 0.32
2 10 0.4
2 11 0.44

Table 3. Drop distribution upon breakup for the different cases. The number of different discernable sizes
broadens as the number of drops produced increases.
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