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ABSTRACT

The design and development of an airborne flight-test experiment to study
nonreacting gas jets injected transversely into transonic and supersonic crossflows is
presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar
laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the
jet flow. Time-dependent images are obtained with a high-speed intensified video camera
synchronized to the laser pulse rate. The entire experimental assembly is configured
compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the
F-104G research aircraft, which serves as a “flying wind tunnel” at NASA Dryden Flight
Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a
perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each
free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of
jet trajectory, spreading, and mixing characteristics. Comparisons will be made with
analytical and numerical predictions. (Results presented in AIAA CP-95-0516). This study
shows the viability of applying highly sophisticated ground-based flow diagnostic
techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid
dynamic conditions. Realistic flow environments, high enthalpies, unconstrained
flowfields, and moderate operating costs are also realized, in contrast to traditional
wind-tunnel testing.
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NOMENCLATURE

Roman letters

a speed of sound
A area
cp specific heat at constant pressure

D diameter of orifice
mass flow rate

M Mach number
Mn Mach number normal to shock wave
p pressure
q heat flux per unit area; power
Q jet-to-free-stream dynamic pressure ratio
R universal gas constant
T temperature
U velocity
v velocity
X X-position
Y Y-position
Z Z-position

Greek letters

α angle of attack
β angle of oblique shock
γ ratio of specific heats
ν Prandtl-Meyer function
ρ density
θ angle of deflection

Subscripts

1 upstream conditions
2 downstream conditions
0 stagnation/reservoir conditions
jet jet conditions at exit
exit exit conditions (interchangeable with jet conditions)
∞ free-stream conditions

ṁ
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CHAPTER I
INTRODUCTION

The development of supersonic and hypersonic flight vehicles capable of
atmospheric cruise has been of great interest over the past decade. The high-speed civil
transport (HSCT) has been the focus for civilian use, and the national aerospace plane
(NASP) has led the way in fundamental aeronautics research. From the point of view of the
propulsion system, the scramjet (supersonic combustion ramjet) engine has been proposed
for use when the flight Mach numbers exceed 6. Among the difficulties limiting
development of the scramjet is an inability to fully understand and predict the nature of the
supersonic combustion process. In particular, an understanding is sought for a combustor
environment in which very high temperatures and flow velocities, along with complex
shock structures, dominate the flowfield. To this end, experimental and computational
research in supersonic combustor development has experienced a resurgence over the past
several years [Northam and Anderson (1986), Uenishi and Rogers (1986), Reider (1986),
ASME Staff Report (1986), Schetz and Billig (1987), Chitsomboon et al. (1988)].

I.1 Background

Transverse injection of hydrogen fuel into a supersonic crossflow of air (Figure 1.1)
is the typical flow scenario in the scramjet [McDaniel and Graves (1988), King et al.
(1991)]. Experimental studies have utilized conventional mass sampling, schlieren, and
shadowgraph techniques as well as modern laser-based imaging techniques such as
Rayleigh/Mie scattering and planar laser-induced fluorescence (PLIF) [Lee et al. (1992)].
Analytical and numerical models have also been developed to describe the transverse jet
problem. Those developed at UCLA by Karagozian (1986) and Heister and Karagozian
(1990ab) are analytically oriented, and emphasize the vortical structures observed to
dominate the cross-section of transverse jets injected into a crossflow of the same phase,
whether compressible, subsonic, or supersonic; see Figure 1.2. The same counter-rotating,
vortex pair structure is also postulated to occur in liquid jets injected into a gaseous
crossflow [Heister et al. (1989), Nguyen and Karagozian (1991)]. Previous related studies
have been performed by Broadwell and Breidenthal (1984), Kamotani and Greber (1972),
and Zukoski and Spaid (1964). The transverse jet is a classical problem in fluid mechanics,
whose applications also include fuel jets for conventional turbojet and ramjet combustors,
dilutions jets for local cooling processes, thrust vector control systems, and vertical or short
takeoff and landing aircraft.

Limited experimental data are available with which numerically predicted
trajectories and mixing patterns can be compared. The only datasets for trajectories of gas
jets in a supersonic crossflow are those obtained by Lee et al. (1992), McDaniel and Graves
(1988), Orth et al. (1969), and Zukoski and Spaid (1964). Data for supersonic jets injected
into a subsonic crossflow have been reported for free-stream Mach numbers of 0.6 and 0.8
[Manela and Seginer (1986)]. As indicated in Figure 1.3, the UCLA model by Heister and
Karagozian (1990ab) shows reasonably good agreement under both conditions (within 10
percent). Almost all of the supersonic data available is for large free-stream Mach numbers
(2.0≤ ≤ 2.5), the only exception being a couple of points  at  = 1.4 [Lee et al.M∞ M∞
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(1992)] and 1.38 [Orth et al. (1969)]. No data at all are available in the transonic and low
supersonic regime (0.8 <  < 1.38). Because the analytical models behave nonlinearly
near M = 1, this regime provides a critical test. In addition, much of the data (as in Zukoski
and Spaid (1964)) is for severely underexpanded jets. The models predict increased
penetration for perfectly expanded jets, so this should be a more desirable operating
condition in a scramjet. Finally, in some cases the wind tunnel data show signs of
interference by the tunnel wall in the far field. This is thought to be responsible for the
poorer agreement for the jet origin exhibited in Figure 1.3a. In light of these issues, one is
motivated to look more extensively at perfectly expanded gas jets in the range 0.8 <
< 2.0, and to do so in such a manner that the jet is unconstrained by interaction with the
opposing wall.

I.2 Overview

We will examine the flow characteristics of nonreacting transverse gas jets as a
function of the jet-to-free-stream momentum flux ratio. For an ideal gas, this is equivalent
to the jet-to-free-stream dynamic pressure ratio, or “Q-ratio,” and is expressed as:

(1.1)

Since our aim is to study perfectly expanded jets (or slightly underexpanded jets), the
pressure values in the Q-ratio effectively cancel so that we only need to control jet and
free-stream Mach numbers. The ratios of specific heats are approximately the same. In the
current phase of our experiments, the jet velocity is fixed at M = 1 (a sonic gas jet), while
the free-stream velocity is varied from M = 0.8 to M = 2.0 in increments of 0.2. Thus, we
will test Q-ratios: 1.56, 1.00, 0.69, 0.51, 0.39, 0.31, and 0.25. In a future phase, jet velocity
will also be varied. The flow characteristics we will be interested in are the jet trajectory
(injectant penetration height vs. downstream distance), spreading rates, and mixing rates
with the free stream. Special attention will be given to free-stream Mach numbers around
M = 1 since, as mentioned above, this region is of special theoretical (and potentially
practical) interest. These observations would constitute the first experimental data in this
region ever obtained.

Experimental fluid mechanics investigations are typically conducted in
ground-based wind tunnel facilities, as surveyed by Pirrello et al. (1971). However, wind
tunnel facilities often impose certain limitations on the scope, accuracy, and reliability of
the experiments. For example: scale effects due to unit Reynolds number, size limitations
for models or test equipment due to test section dimensions, improper scaling of noise or
turbulence levels in the wind tunnel, and unreliable data near Mach 1.0 due to problems
such as shocks reflected off adjacent and opposing tunnel walls. Another limiting factor in
ground facilities is the need to conduct tests in several wind tunnels to span a wide range
of Mach numbers. In certain cases, conducting the investigation in flight using the “flying

M∞

M∞

Q

γjet

2
-------pjetMjet

2

γ∞
2
------p∞M∞

2
---------------------------=
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wind tunnel” concept, wherein an aircraft is used as a carrier vehicle for the experiment,
can avoid some or all of the above noted wind tunnel limitations, while maintaining
operational costs that are competitive with those of wind tunnels.

For reasonable jet diameters to be used in our experiments, it would indeed be very
expensive to conduct tests in a large enough wind tunnel so that issues such as wall effects
could be eliminated. For large jet momentum flux ratios, tests conducted in the external
flowfield surrounding a supersonic aircraft become attractive from an economic viewpoint.
From a technical viewpoint, such an aircraft would provide a realistic and reliable test
environment over all Mach numbers of interest, including the Mach 1.0 region.

Through the cooperative efforts of personnel at UCLA and the NASA Dryden
Flight Research Center, an agreement was made by which researchers at UCLA would be
able to use Dryden’s F-104G research aircraft #826 as a “flying wind tunnel” platform for
the transverse jet experiments; Figure 1.4. During the 1960’s, the Lockheed F-104G was
modified to carry a low aspect ratio fin on the underside of the fuselage for the purpose of
conducting panel flutter tests in a flight environment. This “flight test fixture” (FTF), as it
is known, has evolved into a highly versatile facility for aerodynamics and fluid mechanics
research [Meyer (1982)]; Figure 1.5. The capabilities of the FTF include (1) a large Mach
number envelope (0.4 to 2.0), including the region through Mach 1.0 with no adverse
effects, (2) the ability to test articles or study flowfields larger than those that can accurately
be tested in wind tunnels, (3) a larger Reynolds number and dynamic pressure envelope
than most tunnels. In addition, a flight trajectory guidance system uplinks engineering
parameters calculated on a ground-based computer (using aircraft and/or FTF telemetry) to
the cockpit display so the pilot can maintain desired flight test conditions. The result is that
some unique trajectories are routinely flown, including constant Reynolds number profiles,
dynamic pressure versus Mach number profiles, and constant Mach number, altitude, and
angle-of-attack profiles. Over the years, the flow environment around the FTF has been
well-characterized through the use of a variety of pressure and boundary-layer
measurement techniques. The F-104/FTF testbed suits our needs very well in terms of
achieving a wide range of Mach numbers at various pressures/altitudes so that a perfectly
expanded gas jet can be formed.

As illustrated in Figure 1.6, the jet will originate from the side of the FTF and turn
in to the crossflow. A nitrogen jet seeded with iodine was chosen to be the injectant. As far
as simulating the actual fuel-injection process of hydrogen (lighter than nitrogen) into air,
previous work has suggested that fuel penetration and spreading are insensitive to fuel
molecular weight [McDaniel and Graves (1988)]—so that nitrogen is an acceptable choice.
Keep in mind, however, that the injectant and air are nonreacting. The trajectory, spreading,
and mixing of the jet are determined by illuminating a horizontal cross-section of the
nitrogen jet with a sheet of light from a Nd:YAG laser, the fluorescence resulting from the
iodine seed excitation. This method of flow visualization is known as planar laser-induced
fluorescence or “PLIF” and is discussed in greater detail in section I.3. The flowfield
images are captured by a high-speed gated intensified video camera synchronized to the
laser pulse rate and equipped with appropriate optical filters to improve the
signal-to-noise—the noise being wavelengths outside the iodine fluorescence spectrum.
All components needed to generate, seed, and control the jet are housed inside the FTF in
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an internal components rack called the ICR. No external modifications to the FTF or
aircraft are made. The laser, video camera, and associated electronics are also assembled
inside the ICR. The complete assembly can be categorized into three subsystems: the
illumination subsystem, the image acquisition subsystem, and the jet formation subsystem.
These are detailed individually and collectively in sections II.1 through II.4.

I.3 Theoretical Considerations

Theoretical considerations were given to (1) the method of flow visualization, (2)
the means of image acquisition, and (3) the mathematical aspects of the experiment’s
thermodynamics and fluid mechanics.

I.3.1 The Method of Flow Visualization

Planar laser-induced fluorescence (PLIF) is a nonintrusive method of flow
visualization applied to gaseous as well as liquid flows [Merzkirch (1987)]. For gaseous
flows, visualization is achieved by seeding the primary gas flow with a gaseous fluorescent
tracer, whose molecules emit a characteristic fluorescent radiation upon excitation by light
of an appropriate wavelength. When a seeded flowfield is excited by a laser beam or planar
sheet, the tracer molecules are pumped to a higher electronic energy level, from which they
spontaneously decay to an intermediate energy level, so that the emitted radiation is of a
wavelength different from that of the exciting light. An appropriate narrow optical filter,
such as a band-pass or interference type, allows for blocking off noise generated by the
incident as well as background light.

The fluorescence signal is a function of the pressure, temperature, density, and
chemical composition of the flow, and complex equations exist to analyze these physical
parameters [Lee et al. (1992)], leading to quantitative deductions of the flow properties.
Our present scope, however, is more quantitative. From a first-order analysis, it follows that
the intensity of the emitted fluorescence is proportional to the number density of the tracer
molecules in the scattering volume. Since one generally assumes that the tracer molecules
are uniformly distributed in the flowing gas, one concludes from the recorded light
intensity onto the local value of the gas density in the compressible flow. Details of our
particular PLIF setup are given in section II.1.

I.3.2 The Means of Image Acquisition

Electronic imaging of the flowfield is provided by a gated intensified camera. The
core of the intensified camera is the electronic imaging tube, whose basic parts are shown
in Figure 1.7 [from Csorba (1990)]. Image intensifier tubes are used to intensify faint
images and make them bright and perceivable to the human eye. The light image (target)
to be amplified is first focused on a photocathode by the camera’s lens. Upon absorption,
the incident radiant energy is converted to photoelectrons, forming a low energy input
photoelectron image on the photocathode. These photoelectrons are then accelerated by a
high voltage power supply toward a microchannel plate (MCP). The current-multiplying
MCP multiplies the electrons in cascade fashion. The number of electrons that is generated
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in this manner  depends on the voltage applied between the two sides of the MCP.
After
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exiting the MCP, the photoelectron image is accelerated by an applied voltage toward a
fluorescent phosphor screen. There the kinetic energy of the photoelectrons is converted
into an intensified light image, which is transmitted through a fiber optic bundle to a CCD
array for further image processing before terminating in a video monitor. Images
10,000–100,000 times brighter are made possible with intensified camera imagery. Use of
the MCP is characteristic of “Generation II” intensifier tubes [Csorba (1988)]. Our current
application also involves gating circuitry allowing the intensifier to be gated “on” in
synchronization with the pulses of the illuminating laser. This further increases the
signal-to-noise by selectively “blocking out” image frames where no illumination (and thus
no fluorescence) is taking place.

I.3.3 Mathematical Aspects

The mathematical aspects of the experiment focused on two primary areas of
analytical and design interest: (1) on understanding the flowfield across the FTF at various
altitudes and free-stream velocities, and (2) on predicting the thermodynamics and power
requirements to form the transverse gas jet. Two FORTRAN programs, included in the
Appendix, were created to address these preliminary design issues.

The first code, FTF1, determines the pressure, density, and temperature just outside
the jet exit orifice for all altitudes from 2,500 to 50,000 ft based on aircraft Mach number
and the angle of the oblique shock,β, off the tip of the FTF. We assume a standard
atmosphere, ignoring seasonal changes, as defined by theU.S. Standard Atmosphere, 1976
handbook. This approximation is valid for altitudes above 15,000 ft, and is acceptable for
our needs since we do not conduct any experiments below this altitude. To obtain a
perfectly expanded gaseous jet, the free-stream pressure outside the orifice (∞), also known
as the back pressure, must equal the jet pressure at the nozzle exit.

(1.2)

This is achieved by having the pilot fly to an altitude where the free-stream back pressure
is known to match the jet exit pressure for the given free-stream Mach number. But since
the jet exit pressure is inherently fixed (cannot be adjusted in flight) and several Mach
numbers must be tested (0.8–2.0), the pilot must fly at different altitudes for different Mach
numbers to provide the appropriate back pressure. It is not critical that equation (1.2) be
exactly met. Though we are particularly interested in the perfectly expanded jet,
overexpanded jets are acceptable as well, as far as validating the numerical correlations of
Heister and Karagozian (1990ab) is concerned.

The basis for choosing the target jet exit pressure was twofold, both dealing with
temperature. On one hand, the ambient temperature at the jet exit should be as high as
possible to ensure the iodine vapor fluoresces and does not condense—suggesting low
altitudes and thus a higher fixed/atmospheric pressure. On the other hand, the ambient
temperature must not exceed the maximum inlet air temperature limit of the F-104’s

p∞ pjet=
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engines—suggesting high altitudes and a lower fixed/atmospheric pressure. At the advice
of NASA personnel familiar with the F-104, we were told that 40,000 ft at Mach 2.0 flight
would be ideal for the aircraft.

Using the FTF1 code, this altitude/speed combination produces a free-stream
pressure outside the jet orifice of 39,000 Pa, or about 0.38 atm. The jet formation subsystem
was adjusted (via a pressure regulator) to provide the necessary 39 kPa at the jet exit. With
the “target pressure” selected, the FTF1 code was run for the different Mach numbers
below 2.0 to determine which altitudes corresponded to the same target pressure. Results
are shown in Figure 1.8. Note: the altitudes for Mach numbers 0.8–1.4 were interpolated to
a first approximation since the shock off the tip of the FTF at these speeds is detached and
no reliable analytical formulation exists to solve for it.

The numerical code provides the desired free-stream conditions by calculating the flow
properties in four separate flow regions, as shown in Figure 1.9. Region 1 is the flow far
ahead of the aircraft. Upon reaching the FTF, the air flow crosses an oblique shock
produced by the 25.75° wedge tip of the FTF, and is turned laterally into region 2. We
assume adiabatic flow of a calorically perfect gas, so the appropriate relations are:

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)
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Theta, the deflection angle, is simply half the wedge angle and equals 12.875°. Beta, the
oblique shock angle, can be deduced from a plot of the following equation, known as the

 relation:

(1.9)

Such a plot may be found in any text on compressible fluid mechanics; for example,
Anderson (1990).

Upon reaching the shoulder of the FTF, the flow of region 2 is expanded
isentropically through a Prandtl-Meyer expansion fan/wave into region 3. The properties
are calculated using the relation:

(1.10)

where (M) is known as the Prandtl-Meyer function:

(1.11)

Equations 1.10 and 1.11 are solved numerically in FTF1 using the secant method. The
obtained result is M3. Because the flow is isentropic, T0 and p0 are constant through the
wave, so that T3, p3, and  only depend on M3:

(1.12)

(1.13)

(1.14)

Lastly, the flow encounters a bow shock just ahead of the gas jet. The properties of region 4,
behind the bow shock, are found using the following numerically-derived correlations by
Heister and Karagozian (1990a).
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(1.15)

(1.16)

The temperature is approximated through the ideal gas law:

(1.17)

For purposes of finding the crossflow Mach number at the jet exit, M4, the bow shock can
be approximated as a normal shock:

(1.18)

In summary, the user inputs a particular free-stream M1 and corresponding shock angle, ,
based on M1 and the deflection angle of the FTF wedge tip, . The code then gives the
pressure, density, temperature, and velocity of the flow at the jet exit for all altitudes up to
50,000 ft in intervals of 2,500 ft. The user then selects the altitude at which p4 equals the
target pressure of 39 kPa for a perfectly expanded jet. If the pressure values are slightly
different, the user is asked to choose the altitude that provides a slightly underexpanded jet,
i.e., the higher altitude. The code provides a theoretical estimate of the flow properties at
all regions of interest and in turn dictates the flight plan needed for the experiments, in
terms of altitude and Mach number (Figure 1.8).

The second code, FTF2, determines the thermodynamic conditions along the flow
through the jet formation subsystem. It also gives the power requirements for necessary gas
heating. We approach the analysis by working backward from the nozzle to the nitrogen
and iodine tanks. We know p4 = pexit = 39 kPa. We additionally require Texit to be above
373 K. The temperature must remain high in order that the iodine does not condense prior
to exiting or soon thereafter. Also, it increases the population of the high (50 < j < 100)
rotational states of iodine that are accessible at 532 nm for fluorescence. In practice, this
value will vary somewhat depending on how long a particular test is run, due to the heating
transients. The analysis of FTF2 assumes quasi one-dimensional flow of an ideal gas.
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Following the nomenclature of Figure 1.10, we calculate the pressure and temperature of
the nitrogen/iodine mixture in section 6 in the following manner, taking advantage of the
constant stagnation properties. The nozzle area ratio is 2:1, so that if Mexit = 1.0, then M6 =
0.306.

(1.19)

(1.20)

The pressure p6 is maintained during experiments by a pressure regulator on the nitrogen
tank, and monitored by pressure transducers located at sections 0, 1, and 6. The temperature
T6 is achieved through the use of heating tapes around the gas lines and a nitrogen
preheater, all monitored by digital temperature controllers. The preheater is necessary to
counteract the Joule-Thompson cooling effect across the regulator as well as to heat the
nitrogen high enough prior to iodine seeding to prevent iodine condensation.

Power requirements for the preheater are calculated from the simple relation:

(1.21)

where , which is approximately constant between sections 1 and the exit, is calculated as:

(1.22)

Volumetric flow rate is deduced by dividing  by density. The mass flow rate of iodine is
selected to provide a 2000 ppm seeding of iodine vapor into the nitrogen mass flow. The
orifice of the iodine valve is 0.116 in. and a pressure differential of about 2:1 across the
valve is chosen to facilitate proper seeding/flow. Iodine pressure is controlled by
maintaining high enough temperatures in the iodine reservoir. According to the vapor
pressure versus temperature chart in Hultgren et al. (1973), a temperature of 458 K (185°C)
will provide an iodine vapor pressure of 101 kPa (1.0 atm). And according to theCRC
Handbook of Chemistry and Physics, 190°C will provide 1.10 atm, 195°C will provide
1.22 atm, and 200°C will provide 1.37 atm. The 200°C/1.37 atm setting corresponds
exactly to a 2:1 pressure differential, although any of the above temperatures should deliver
adequate iodine concentrations for fluorescence.

Nitrogen supply requirements are also computed by FTF2. The nitrogen tank holds
5.1 liters, and typical pressures will go up to 3000 psi. Knowing the amount of nitrogen in
the tank and the mass flow rate, we find that we can support more than ten 10-second test
runs, without experiencing appreciable stagnation pressure loss due to nitrogen depletion.
Iodine supply requirements are similarly calculated. Typically, we supply at least 10 grams
of iodine per nitrogen refill.
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CHAPTER II
EXPERIMENTAL SETUP

The experimental apparatus can be categorically divided into three associated
subsystems. The illumination subsystem consists of the laser and its associated optics. The
image acquisition subsystem is comprised of the intensified camera and its filters and
mirrors responsible for imaging the fluorescent jet. The jet formation subsystem includes
all components involved in the storage, pressure regulation, heating, and flow control of the
nitrogen gas and iodine seed. The three distinct subsystems are mechanically integrated
using a unique internal components rack (ICR) and remotely controlled through analog and
digital electronics, also mounted on board the ICR.

II.1  The Illumination Subsystem

We use the 2nd harmonic of a Nd:YAG laser at 532.25 nm to pump several lines in
the R and P branches of the  transition for I2; the R(56) (32-0) line at 18788.348
cm–1, the P(83) (33-0) and R(134) (36-0) lines around 18787.814 cm–1, and the P(53)
(32-0), P(103) (34-0) and P(159) (39-0) lines around 18788.453 cm–1. A Q-switched
(pulsed) diode pumped laser (Adlas DPY 321 QD) is used, operating in the broadband
mode with visible green/yellow light. Its specifications are given in Figure 2.1. Operating
in this mode, the laser linewidth is approximately one wavenumber, so that none of the lines
listed above are individually resolved; rather, all the lines are simultaneously excited.

The I2  system has been used successfully in this application by McDaniel
and Graves (1988) and Fletcher and McDaniel (1990). In these wind tunnel experiments,
an argon ion CW laser (which pumps different ro-vibronic states) was used. In an aircraft
borne experiment, the Nd:YAG laser selected has several important advantages in
comparison to the argon ion laser.

• cavity dumped laser such as the Nd:YAG is much less sensitive to alignment
problems caused by vibration and temperature variations than a high-gain CW
laser. The laser selected for our experiments has been used successfully aboard
transport aircraft [Sitz and Farrow (1990), Simmons and Hougen (1977)].

• The Adlas laser has a very low power consumption (< 50 W; typ. 30 W), needs
no external cooling and utilizes only low voltages internally.

• Because the Nd:YAG is pulsed, for a given electrical load the peak power is
much greater, in our case greater than 1.6 kW. If advantage is taken of
lightweight, robust gated cameras, it is possible to obtain considerably better
signal-to-noise ratio at a given electrical load, or equivalently to obtain about
the same signal-to-noise at a much reduced load.

• The Adlas laser is very compact and light weight. (Head: 14.3  3.5  3.5; PS:
15  5.1  10.2 in.; combined weight: 29 lb)

B X←

B X←

× ×
× ×
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This reduced power consumption is very important in the present application. Not only is
power limited, but rejection of waste heat can also be a problem. Cooling requirements for
our laser head and power supply are relatively low, making it possible to reject heat to the
ambient air via natural convection. As an added measure, the laser head is equipped with a
thermocouple feedback and internal fan in case forced convection is needed. The use of low
voltages is also important, since the experiment is operated in pressure ranges where arcing
occurs most easily. The laser manufacturers have specially modified the laser power supply
to run from the 28 VDC power aboard the F-104G aircraft.

A further potentially useful feature of the Nd:YAG is the possibility of single-mode
(injection seeded) operation, reducing the linewidth to 0.0045 wavenumbers. The added
ability to scan over about one wavenumber allows not only the resolution of individual
lines, but also the determination of lineshapes. This is illustrated in Figure 2.2, which
depicts fluorescence obtained by scanning the pump laser over several fully resolved lines
in the I2 spectrum around 532 nm. The above result was obtained using an injection seeded
Nd:YAG laser and an iodine cell at a number density of 1016 molec/cm3 [Sitz and Farrow
(1990)]. Peak assignments are derived from Simmons and Hougen (1977). Fluorescence
intensity using the same laser in the multimode configuration is shown for comparison.
Higher peak signals for single-mode operation are a result of the higher spectral energy
density of the injection seeded laser.

If injection seeding can be made to work aboard the aircraft, this would allow us to
image the jet temperature and the velocity component in the direction of beam propagation.
The velocity component can be derived from the Doppler shift of the line centers. Jet
temperature can be derived from the lineshape.

Effective iodine seed concentrations were determined in preliminary tests using a
custom-built “iodine reference cell,” built by the UCLA Department of Chemistry Glass
Shop. The cell allows iodine vapor to be confined at a specified number density. Tests with
number densities similar to what is expected in the jet have shown that we can easily
achieve fluorescence intensities large enough to see against a background of normal room
light, provided that the intensified camera is gated to the laser pulse rate. The same tests
conducted in moderate outdoor sunlight show that fluorescence can be observed above the
background, although the signal-to-noise ratio is not nearly as good as for the indoor tests.
These tests utilized a long pass Shott glass filter with a cut-on wavelength of 550 nm.
Analysis of the fluorescence spectrum from 540–610 nm (Figure 2.3) shows the filter is
attenuating 80–90 percent of the strongest fluorescence band (between 540–545 nm). We
expect to improve the signal-to-noise in daylight environments by using more appropriate
band-pass or interference filters centered around 532 or 542 nm.

The laser and sheet formation optics are housed within the ICR as shown in
Figures 2.4 and 2.5. The sheet is formed by means of a –6.35-mm focal length front surface
cylindrical mirror (1) that expands the beam horizontally. A high-reflectivity mirror (2)
housed in the optical canopy (3) acts as a turning mirror, positioning the light sheet on the
jet plane. This positioning is dependent on the angle of attack (+3° alpha in level flight), so
provision or adjustment is made via a multi-axis kinematic mirror mount. This mirror
mount also  serves to orient the  edge of the  laser sheet parallel to the flight test fixture and
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thus reduce reflected light off the FTF surface. A 300-mm focal length cylindrical lens (4)
at the front of the canopy acts to thin the sheet so that its vertical divergence is kept to a
minimum.

II.2  The Image Acquisition Subsystem

Iodine will fluoresce at wavelengths somewhat greater than 532 nm (e.g. in the
yellow). As noted above, some previous 532 nm work at Sandia [20] has shown that visible
fluorescent intensities can easily be generated using about 1016 molec/cm3 I2 and energy
densities of about 150 J/cm2. The I2 number density here is a factor of 10–100 times that
for our jet exit conditions. Nevertheless, we can see visible fluorescence against a dark
background, and as previously mentioned, obtain a satisfactory signal in the presence of
room or outdoor light with an intensified camera.

We use an ITT image intensified solid-state CCD camera F4577. It incorporates a
Generation II image intensifier, an 11-mm CCD sensor, and integrated electronics to
produce a very high resolution RS-170 video signal. The image intensifier uses a
microchannel plate (MCP) current amplifier with an S20 photocathode. The CCD is a
Texas Instruments TC241 488(V)  754(H) pixel, frame-transfer device with a 6.6
8.8 mm image format. The electronics provide photocathode gating, gain control, and an
automatic iris control signal. The F4577 uses a tapered fiber optic coupling between the
intensifier and CCD to achieve a high-efficiency image transfer.

Background light is rejected using a Melles-Griot Interference filter centered at
550 nm with a 40 nm half-width. Other interference or band-pass filters or a combination
thereof may be employed as necessary.

The contribution of unfiltered background radiation to the signal is drastically
reduced by gating the camera ON only during the interval the jet is illuminated (e.g. for 6 ns
each laser pulse). This is the primary function of the image intensifier. It is not possible to
gate the high voltage supply that drives the intensifier as fast as 6 ns, but 100 ns is possible.
This effectively changes the integration period for background radiation from
approximately 20 ms to 100 ns, suppressing the background by a factor of 200,000. Since
the fluorescence may also be amplified by a factor up to 10,000, both factors together result
in a huge increase in signal-to-noise. The images from the camera are down-linked and
recorded for later analysis.

The camera, which measures 10.1 in.  4.7 in.  3.3 in., is located in the front
portion of the internal components rack near the jet exit (Figures 2.4–2.6). The jet
fluorescence is imaged onto the intensifier focal plane using a system of one internal and
one external mirror, along with a standard Nikon 28 mm f2.8 camera lens on the F4577.
The internal mirror is oriented at a 45° angle and mounted just above the camera lens,
allowing an outward view. The 45° external mirror is secured to the side of the ICR, and
allows an overhead view of the jet trajectory plane. This arrangement results in a viewable
area of about 11.5  16.6 cm in the plane of the jet. The field of view is depicted in
Figure 2.7, along with expected jet trajectories at Mjet = 1.0 and free-stream Mach
numbers,  = 0.8 and 1.4. Higher  Mjets will  give greater penetration and will use a
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Figure 2.7 Field of View of Camera
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greater portion of the viewable area. [Due to the recent addition of a mirror guard, the
viewable  area may be slightly smaller; but this will not pose a problem.] Additionally, the
external mirror will not disrupt the flow in the region of the jet, due to its thinness
(essentially 2D), inclination, and distance some 12 in. above the jet exit. Shocks off the
mirror edge do not coincide with the trajectory of the jet. A Plexiglas window is mounted
on the ICR and separates the inner and outer mirrors. It is positioned flush with the outer
skin of the FTF side panel.

II.3  The Jet Subsystem

A schematic of the apparatus used to handle and form the jet is given in Figure 2.8.
Photographs are shown in Figures 2.9–2.10. Nitrogen, stored at pressures up to 3000 psig
in a high pressure reservoir 5.1 liters in volume, is used to form the jet. The reservoir/tank
is flight-certified by NASA and was last pressure tested in June 1992. To conserve
nitrogen, the jet will be operated intermittently at preprogrammed intervals by activating a
solenoid valve. The valve is a Burkert Type 256 2/2 way, direct-acting, normally-closed
solenoid valve. Normally-open valves may be used for safety reasons, but continuous
power will be needed, since the valve must be usually closed. Also, normally-open valves
tend to have comparatively longer opening and closing times than normally-closed valves.

When the valve is activated, nitrogen flows through a single pressure regulator
previously adjusted to provide the desired pressure Pexit at the jet nozzle exit for some
target altitude and Mach number. The regulator, by Fisher Scientific, is a two-stage type,
which allows accurate downstream pressure regulation essentially independent of upstream
reservoir pressure. The first stage reduces the pressure by 90 percent, and the second stage
regulates the remaining 10 percent to the selected pressure value. To create a perfectly
expanded gas jet at other target Mach numbers, the F-104G will cruise at different altitudes
to obtain the correct . Communication between the pilot and control tower will also
facilitate the appropriate flight paths. (See Figure 1.8 for a closer look at the flight plan.)
For the first sequence of experiments (Mjet = 1.0), the downstream pressure of the regulator
will be set to approximately 64,900 Pa (9.42 psia). This will produce the desired Pexit of
39,000 Pa (5.66 psia). Due to the Joule-Thompson cooling from the extreme pressure drop
across the regulator, a heater is required to heat up the gas prior to mixing with the iodine
vapor. The “preheater,” as it is also known, is a Hejet heat-gun element that draws 7.8 A,
generating 858 W at 110 VAC, supplied by the aircraft. The heat-gun element is installed
inside a modified Whitey 300-cc stainless steel sample cylinder. A sufficiently high
temperature must be maintained at the jet exit in order to prevent condensation of the iodine
seed. It also increases the population of the high (50 < j < 100) rotational states that are
accessible at 532 nm. This is achieved by wrapping the jet line between the preheater and
jet exit with heating tapes. The heating tapes, made by Omega Engineering, are insulated
with Samox (registered trademark of Brisk Heat Corp.) yarn and can be exposed to
continuous temperatures of 1400°F (760°C); heating tape burnout should not be a
problem. Exit temperatures in excess of 373 K are common with the current preheater-tape
combination, though exact temperatures are dependent on preprogrammable run times
(which vary from 6–13 sec).

After preheating, the nitrogen passes a flow-control orifice 4 mm in diameter, made
of stainless steel. Iodine vapor is then seeded into the main nitrogen flow at a T-branch. The
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iodine is stored and heated to temperatures of 185–200°C in a 75-cc Whitey sample
cylinder using an Omega Incoloy (registered trademark of International Nickel Co.)
cartridge heater. The cartridge heater, as well as the heating tapes, are controlled by Omega
CN76000 series 1/16 DIN auto-tune controllers. All components exposed to iodine are
either stainless steel, Incoloy, or Teflon (registered trademark of E.I. Dupont de Nemours
& Co.), to prevent oxidation caused by the iodine. The iodine line and valve leading to the
T-branch are heated to temperatures up to 200°C (or slightly more), raising the vapor
pressure to about twice (or slightly above twice) the nitrogen pressure, under target flight
conditions. The valve orifice size is 0.116 in. and based on the 2:1 pressure differential,
should provide concentrations on the order of 103 ppm, suitable for visualization as
confirmed by preliminary lab studies. The iodine valve is a General Valve Series 9
two-way, normally-closed solenoid valve designed to handle corrosive materials and high
temperatures. It is enclosed in a small aluminum “oven” that provides uniform heating at
the valve’s designated temperature. Iodine cylinder pressures are very low and do not
constitute any pressure hazards. During actual experiments, the N2 and I2 valves are
controlled automatically from preprogrammed electronics. During purging or filling
procedures, both valves can be manually and independently activated/deactivated.

After seeding, the N2-I2 mixture is carried in heated stainless steel lines (0.5 in.
diameter) and finally passes through an aluminum nozzle to produce a sonic jet at the
nozzle exit/throat. The nozzle exit is machined to a diameter of 7.2 mm (0.2835 in.).
Different jet exit velocities can be obtained by either readjusting the upstream pressure or
by using a different nozzle contour or exit diameter. Information on how to do this can be
found in any text on compressible flows, such as Anderson (1990). A summary of the flow
properties along the jet subsystem is given in Figure 2.11.

The jet subsystem is pictured in Figures 2.9 and 2.10. Heating elements for the
iodine and nitrogen are internal to the iodine reservoir and jet preheater, respectively.
Figure 2.9 actually shows the entire ICR with all three subsystems. Figure 2.10 shows
selected close-ups of the jet formations subsystems.

The jet subsystem has been subjected to extensive fluid mechanic and
thermodynamic analyses as detailed in section I.3.3. The external flowfield around the jet
and FTF have been determined numerically considering:

• the oblique shock off the tip of the FTF;
• the expansion fan at the shoulder of the FTF;
• the curved, 3-dimensional bow shock in front of the transverse jet.

In addition, the internal analysis of the jet formation subsystem has been studied
using the FORTRAN code FTF2.FOR considering:

• non-ideal, non-isentropic flow from the nitrogen tank past the pressure
regulator, with Joule-Thompson expansion cooling;

• a steady-state (approximation), constant pressure, heating process;
• a quasi one-dimensional isentropic flow from the preheater to the nozzle exit.

Copies of both programs, FTF1.FOR and FTF2.FOR are included in the appendix. Both
codes were used for preliminary analytical and design studies. Not all subsequent
modifications were updated in the programs.
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Because the F-104G will fly at different altitudes, the jet thermodynamic settings
are held constant (and necessarily so). For a typical nitrogen flow of 0.0062 kg/sec (10 l/sec
out the preheater), we have enough nitrogen for at least ten 10-second bursts/runs per flight.
For a 2000 ppm seeding concentration, the iodine vapor will flow at 1.12 E-4 kg/sec. Since
the iodine is stored in condensed form, its supply is not a limiting factor (though at least
10 grams should be allotted per flight).

II.4  ICR Integration and the FTF

Mechanical integration of the three subsystems is facilitated by a unique internal
components rack (ICR), depicted in Figure 2.12. The ICR provides expedient access for
servicing between flight tests as well as between maintenance at UCLA and delivery to
NASA. The ICR is made of aircraft-type 6061-T6 aluminum and bolted together with the
use of Heli-Coil inserts. All parts and accessories within the ICR are bolted with Heli-Coil
Screw-Lock inserts as well. Heli-Coil Screw-Lock thread inserts positively lock screws and
bolts against loosening under impact and vibration by way of an internal, hexagon-like
locking thread. In the harsh environment under the fuselage of an aircraft, the effects of
both static and dynamic loading on threaded parts are of obvious concern. Screw-Lock
inserts meet military specifications for locking torque and vibration (MIL-N-25027 and
MIL-I-8846).

When the ICR is fully loaded, it is a completely self-contained unit (minus power
lines and signal cables, to and fro) and weighs 118 lb. The center of gravity is located 24 in.
from the front edge and 7 1/4 in. from the bottom edge. The ICR fits snugly inside the aft
bay of the flight test fixture, where it is appropriately secured. Two side panels, each made
of 6061-T6 aluminum, enclose the ICR inside the FTF. The left side panel is 0.25 in. thick
so that the nozzle and camera window are flush with the panel, providing a clean flow up
to and around the jet exit area. The right side panel is 0.125 in. thick. Both panels are
actually mounted in segments of three. The forward panel is continuous from the shoulder
of the FTF and extends past the jet exit area, again to provide a clean flow.

The ICR is equipped with several access holes between its three main
compartments for flow lines and electronic connections. The laser platform in the aft
compartment also serves as the base for the optical canopy. This configuration keeps all
laser optics stable and aligned.

Ground vibrations tests have been performed at UCLA to evaluate the ruggedness
of the experiment. The ICR, fully loaded, was bolted down to a wooden cart that rolls on
four pneumatic tires. The cart was then dragged over several 1 in.  4 in. wooden planks
separated by distances of 2, 3, and 4 ft. The wheelbase of the cart is 3 ft, and the most
intense oscillations to the cart were experienced with the planks 3 ft apart. The cart was
rolled over this test course several times, with the implied goal of trying to loosen up or
shake apart anything that might otherwise loosen up or shake apart while in flight or taxiing
on the runway, serious situations to be avoided. The result of the test was that none of the
components, electronics, or optics were affected; no visible vibration damage or
misalignment was detected. The experiment operated fine after the ruggedization tests.

×
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CHAPTER III
ELECTRONICS AND OPERATING SYSTEMS

III.1  The Electronics Board

The electronics board has two primary functions. It controls the timing of the
experiment and also locks out the other heaters when the main jet heater is on.  The latter
function is necessary to ensure that the 110 VAC load does not exceed 10 A when the jet
heater is on. The component and wiring sides of the electronics board are shown in
Figures 3.1 and 3.2. Many of the small components are mounted on the wiring side of the
board. Schematic diagrams of the circuitry are given in Figures 3.3 and 3.4. Tables
describing cable and pin connections are found in the appendix under “Maintenance and
Operations.”

Power supplies

Power for the electronics is provided by the 28 VDC aircraft power. The circuitry
draws about 2 A with the laser and valves off. Actuating the valves draws an additional 1 A.
The laser draws a maximum of 1 A. A±15 VDC switching power supply located on the
board provides the voltages necessary for the thermocouple signal conditioners (SC1-4). In
addition, there are separate +5 VDC and +15 VDC regulators located on the aluminum
bulkhead above the board. The +5 VDC (7805) regulator powers the logic. The +15 VDC
(7815) regulator powers the valves, heater relays, the camera and the high current portion
of the signal conditioning circuitry. Filtering capacitors associated with the regulators are
located on the pin side of the regulators and are potted in RTV. The regulators and
associated capacitors can be removed for service as a unit from the board side of the
bulkhead. Removing the laser power supply is not necessary.

Aircraft 110 VAC is used to power the temperature controllers and the heaters. The
main jet heater (a heat gun heating element) draws 7.8 A. The iodine line and valve heaters
(2 heating tapes connected in parallel) draw a total of 2.6 A. The jet line heater (3 heating
tapes connected in series) draw 0.9 A. The iodine reservoir heater (a 0.25-in. diameter
cartridge heater) draws 1 A. The laser head heating pad draws 0.7 A. The laser head, jet line
and iodine reservoir heaters are switched by 3 relays located on the board. These relays
(RL1-3) are rated for 2.5 A, 120 VAC resistive loads. The main jet and iodine line/valve
heaters are switched by solid state relays located at the top rear of the experiment module.
The SSRs are rated for 10-A resistive loads.

The experiment interfaces with aircraft power at the terminal strip located at the
front bottom of the module. The 28-VDC and 110-VAC connections are marked. The DC
power is grounded to the module frame only at the regulators. If the FTF is part of the
aircraft ground plane (presumably it is), hooking up the DC common could result in a minor
ground loop.
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Timing circuitry

Timing is provided by two 555 timers (IC1-2). The trigger input to the first is held
high with a 10 K resistor (R24). Grounding the input (PC edge connector, pin 13) triggers
the timer. In our testing this has been done by shorting PC edge connector pins 13 and P,
provided as an unterminated twisted pair. The pilot must perform this function each time
the experiment is cycled. The output of IC1 goes high on application of the trigger, and
stays high for a period determined by the DIP switch setting (DS1). This DIP switch
controls the resistance of the RC timing circuit. Only the first 6 switches are used, and only
one should be set at a time. Setting switch 1 introduces a resistance of 3.9 M (R25f),
providing an interval of approximately 5.8 sec. Setting switch 2 increases the resistance
1 M (R25a), adding approximately 1.5 sec to the interval. Subsequent switches act
similarly, so the approximate interval can be calculated by equation 3.1, where “n”
represents the number of the switch set.

interval (seconds) = 5.8 + 1.49 (n – 1) (3.1)

Thus, the interval can easily be adjusted from 5.8 to 13.25 sec. Intervals outside of this
range can most easily be achieved by changing the timing capacitor (C1). If this is done, a
high-quality, low leakage, low temperature coefficient capacitor should be used. A
polycarbonate capacitor is currently installed.

The output of IC1 is differentiated (C5/R23) producing a negative going pulse when
the timing cycle is complete. This provides the trigger for IC2. The timing circuitry is an
exact duplicate of that for the first 555, and is set in the same manner.

The outputs of ICs 1 and 2 are connected to an OR gate (IC4), the output of which
drives the main jet heater SSR. The output of IC2 activates the valve solenoids (connected
in parallel) through a power Darlington circuit (T1,T2,R22). Thus, the period of the first
timer (IC1) controls the warm-up interval of the jet heater. This interval should be set long
enough so that operating temperature can be achieved, but not so long as to cause the
element to overheat (it is designed for forced convective cooling). We have found the
heater begins to glow red hot about 7 sec after power is applied. Repeated operation of the
unit with low nitrogen flowrates can cause the jet heater chamber to become hot enough to
soften the soft soldered electrical feedthroughs. As the heater chamber is under pressure,
this will cause these seals to leak.

The period of the second timer determines the length of an experimental
measurement. This should be long enough to let the flow rates and pressures stabilize and
the jet to become steady. This interval will have to be selected based on data from the jet
exit pressure and temperature transducers during flight tests or in an altitude chamber. To
maximize the number of free-stream Mach numbers that can be examined in a single flight,
the test interval should be only slightly longer than that necessary to achieve steady state.
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The output of IC2 also controls the gain on the camera image intensifier. The
intensifier is actually gated continuously in synchronization with the laser pulses. The
details of the gating will be described subsequently. Since the laser is to be run
continuously during a flight, it is important to turn down the intensifier gain when data are
not being collected. The gain is set to zero when the jet is not activated, thus prolonging the
life of the intensifier tube. A comparator (IC3) increases the gain to a preset level during
the interval when the jet is activated. The intensifier gain can be set from 0 to 10 VDC using
a ten turn trimpot located at the upper left edge of the board (P5). Counterclockwise
rotation will increase the gain. The resulting voltage is most easily monitored by removing
IC3 from its socket and measuring the voltage at pin 1.

Solenoid valves

A 24-VDC solenoid controls the nitrogen valve and a 20-VDC solenoid controls the
iodine valve. They may be actuated manually or by the timing circuitry, depending on the
setting of two switches located at the top of the module near the nitrogen fill line. The left
hand switch controls the nitrogen valve, and the right the iodine valve. Either valve may be
actuated manually by pressing the respective switch downward. The valve will remain open
as long as the switch is held down. This feature is convenient when purging air from the
iodine tank. In the neutral (center) position, the valves are disconnected. When the switches
are in the up position, the valves are armed (connected to the timer board).

The board circuitry operates the iodine and nitrogen valves in parallel. The 28-VDC
aircraft power drops to 24 VDC across two 5-ohm resistors (R6–7) connected in parallel.
Another 5 ohm resister drops the 24 VDC to 20 VDC for the iodine valve’s lower operating
voltage. A clamping diode (D4) is located on the terminal strip at the forward lower part of
the module. Current flow to the valves is controlled by a homemade power Darlington
(T1,T2,R22).

Controller lock-out

The 0-5 VDC controller output is not directly compatible with TTL logic. Instead,
the controller output drives the base of an NPN transistor (T6). The collector is held high
by a 10 K resistor (R16). High controller output causes the transistor to conduct, pulling the
collector low. The collector voltage is inverted (IC5) and fed to one side of an AND gate
(IC6). The other AND input is connected to the (inverted) main jet heater SSR signal. Thus,
while the main jet heater is engaged, the AND gate output is low. When the jet heater is off,
the AND gate output reflects the controller output. In most cases, the AND gate output
drives the base of the transistor (T3) that switches the 110 VAC heater relays. The relays
are powered from the high current +15 VDC supply, which drops to the +12 VDC relay coil
voltage across a 36 ohm resistor (R1). The hot side of the 110 AC is connected to the
common of the SPDT relay (RL1). The heater element is connected to the normally open
contact. Thus, when the controller output is high, the heaters are engaged. The other end of
the heater is connected to the 110 AC common at one of the terminal strips.
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Laser relay

Provision is made for activating/deactivating the laser from the cockpit. The laser
power supply will activate when the 28-V power is applied, but the laser itself will not turn
on. The laser is turned on remotely by shorting pins 8 and J on the PC card edge connector,
thereby applying 5 volts to the coil of relay RL4. Access to these pins is provided as an
unterminated twisted pair. Energizing the relay is functionally equivalent to depressing the
reset switch on the front panel of the laser, toggling the laser between the off and on states.
The laser may take a few seconds to turn on after the relay is energized.

Thermocouple signal conditioners

The thermocouples are conditioned by Analog Devices 2B50A signal conditioners.
All the conditioners are configured to compensate type E thermocouples. The
compensation is set by the 1.87 K resistance (R27–30) between pins 1 and 40. The
conditioner gain is set by the resistance (R31–34) between pins 3 and 5. In each case we
utilize a low temperature coefficient metal film gain resistor in series with an 100 ohm
trimming potentiometer (P1–4). For conditioners 1 and 2, connected respectively to the
iodine reservoir and iodine valve thermocouples, a 976-ohm gain resistor is used. The
trimpot is set to provide a voltage gain of 200 at the output (pins 16–17). Conditioners 3
and 4 are connected respectively to the jet line and jet exit thermocouples. The gain
resistors here are 239 ohms, and the trimpot is set to provide a voltage gain of 700. The
trimpots were set up using the actual thermocouples immersed in boiling water.

Camera gating

The camera gating is controlled by added circuitry (Figure 3.5) inside the camera
case. This circuitry has been inserted between the External Gate Input BNC connector and
the cable originally attached to it inside the camera. The sync output from the laser is
connected to the External Gate Input BNC. The sync output falls upon activation of the
Q-switch, with the laser pulse occurring a few nanoseconds later. The inverted sync pulse
(IC7) drives the input of a dual monostable multivibrator (IC8). The first multivibrator
controls the delay between the fall of the laser sync and the start of the intensifier gate. The
falling output of the first multivibrator triggers the second, which controls the width of the
gate pulse. The output of this multivibrator is inverted and used to gate the intensifier power
supply.

The gate pulse width is set by potentiometer P7 to 120 ns, the minimum gate width
specified for the intensifier power supply. The delay between the fall of the Q-switch and
the laser pulse ranges from 620–1100 ns, depending on the laser pulse energy. The
approximate delay for different power settings is given in Table 1. The delay can be
adjusted by means of P6. It is currently set for 570 ns, ensuring that the intensifier is gate
on during the 20-ns duration of the laser pulse at full power. As long as the laser is operated
at full power, there will probably be no need to change the gate or delay settings. If changes
need to be made, both the delay and gate potentiometers can be accessed without removing
the camera case.  However, we have not provided access to the gate output. This oversight
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means that the camera case will still have to be dissembled. An easily accessible test point
for the gate output should be added. Possibly this could be accomplished by drilling a small
hole in the camera case opposite the gate out pin located at the side of the PC board.

When not in use, the two small potentiometer access holes in the camera case
should be covered by a piece of black tape to prevent light leaks.  This would also apply to
any access hole made for a gate output test point.

Table 1. Approximate relationship between Q-switching and
laser output as a function of laser power

Power (%) Delay (ns)

  6 1100
14   900
54   700
98   620

III.2 In-Flight Operating Procedure

During actual in-flight experiments, the operating procedures are purposely
straightforward and simple. Such an arrangement is necessary due to the limited amount of
activity the pilot can perform outside of flying the aircraft itself. Ground-based
maintenance, operation, and testing are more involved and is only briefly mentioned below
and detailed in the appendix.

By having the complete experiment inside the relatively thin (low-drag) FTF, we
plan to achieve speeds up to  = 2.0. As mentioned previously and outlined in Figure
1.8, we are also interested in running tests at Mach numbers: 0.8, 1.0, 1.2, 1.4, 1.6, 1.8. If
the F-104G/#826 cannot achieve Mach 2 in level flight, it will have to dive from a higher
altitude and then attempt to hold the right altitude at Mach 2 for the few seconds needed for
the test run. Because we cannot reposition the laser sheet in flight, all tests within a given
series of flights must be conducted at a fixed angle of attack (about +3°).

In preparation for a flight test, the ICR must be secured inside the FTF. Both
110-VAC and 28-VDC power should be supplied to the experiment prior to “buttoning-up”
with the FTF side panels. All four heater controllers should be confirmed on and controlling
their respective heaters as tuned. Upon power up, the laser power supply and electronics
board will also be on/armed. This power-up preflight check should be done no earlier than
60 min to takeoff as the heaters must stabilize to the set points. Of course, all other
components must be functional and flight ready. When all systems are checked out, the
FTF side panels may be secured and the aircraft may proceed to taxi onto the runway.

M∞
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The pilot has a series of concise tasks directly involved with the experiments,
although in effect, he is only required to press two buttons/switches at the proper times.

(1) Upon takeoff, activate laser. Laser begins to stabilize.
(2) Fly above target altitude at predetermined Mach number; cf. Figure 1.8.
(3) Begin descent through target altitude, trying to maintain target speed.

Activate experiment: nitrogen preheater is fired on first for a
preprogrammed interval; then, appropriate valves open and camera gated
for a given interval. Ideally, the middle of this interval will occur when the
aircraft is at target conditions.

(4) When valves and camera are on, pitch a few degrees above and below +3
alpha, the typical alpha for F-104G cruise, to ensure the gas jet intersects
with the laser sheet.

(5) Verify with tower successful downlink of images.
(6) Proceed to next target condition.
(7) Iterate (2) through (6) as needed and as allowable.
(8) After experiments, deactivate laser prior to landing.

Operators and experimenters will monitor the experiments and communicate with
the pilot during the tests from the control tower at NASA Dryden. Target flight conditions
will be confirmed with the use of aircraft-equipped pressure pitot probes. Signals from
pressure transducers and thermocouples inside the experiment will provide necessary and
sufficient data to help monitor the tests. Video signals (RS-170) downlinked from the
camera will be seen in real-time as well as recorded on a ground-based VCR (Beta) for later
analysis and processing. If images are unacceptable (either too faint or nondetectable), the
following troubleshooting procedures should be performed, assuming obvious failure is not
evident yet.

(1) Confirm left (experimental) side of FTF is facing away from sun, assuming
flight is in daylight. Confirm reflected sunlight from clouds is not too bright
to drown out fluorescence signal.

(2) Radio pilot to repeat same experiment.
(3) If fluorescence is not visible at all, even at foot of jet orifice, radio pilot to

return to base; proceed to step (5). If some fluorescence at foot of orifice is
visible, proceed with step (4).

(4) Request pilot to hold best alpha for full trajectory fluorescence during
experiment, as determined by downlinked images, regardless of altitude or
speed drift away from target conditions. Continue on to other experimental
conditions as possible.

(5) If no fluorescence is detected in flight, land plane and begin inspection of
all three subsystems for proper alignment and operation. Also inspect
electronics board.

(6) Process obtained images on computer-digitizer to detect any faint images.
(7) Run ground tests in environmental chamber as necessary, under simulated

flight conditions (pressure and temperature) wherein the experiment failed.
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(8) Correct area(s) of failure as found, and re-fly experiment as per previous
in-flight procedure.

(9) If no clear failure is found, fly at night to eliminate background daylight
noise factor. This option is possible, but logistically difficult due to
scheduling and manpower problems inherent in night (after-hours) flights.
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CHAPTER IV
DEVELOPMENT OF RESULTS

IV.1 Methods of Analysis

Upon completion of a successful series of flight tests, data from three separate
sources must be considered:

(1)  Aircraft speed, altitude, and pressure readings.
(2)  Experimental temperature and pressure readings from the jet subsystem.
(3)  Recorded video images of the transverse gas jet.

Data from all sources are interrelated based on their time dependence. Thus, it is important
to interpret video images in light of the data from sources (1) and (2).

Images, stored on Beta tape format, will be computer processed and digitized to
maximize visualization. Using the facilities of UCLA’s Office of Academic Computing
(OAC) Visualization Laboratory, several techniques are available, used either alone or in
combination, to generate highly refined and informative images. The process involves
transforming (rasterizing) the field data into pixel values. From there, the raw raster image
(of pixels) can be processed using such packages as AVS, Photoshop, NCSA Image, NIH
Image, or PV-WAVE.

Once an acceptable processed image is obtained, the image can be analyzed in two
general respects:  (1)  Qualitatively, the geometric trajectory and spreading of the gas jet;
including upper and lower boundaries, jet curvature, penetration distance/height,
downstream distance until zero curvature, extent of mixing with air along the jet. (2)
Time-dependently, the rate of spreading and mixing from the initial “burst” to the stabilized
jet flow; would require making real-time video “movies.”

IV.2 Previous Data and Model Predictions

Processed images can then be compared with previous data and model predictions.
Previous experimental data for the momentum ratios tested in this study are limited in
availability, which of course is one reason why these momentum ratios were tested. Gas
jets in crossflow velocities of M = 0.8 have been obtained by Manela and Seginer (1986).
A few data points for M = 1.38 are found in Orth et al. (1969) and for M = 1.4 in Lee et al.
(1992). Other data are for Mach numbers of 2.0 and greater, and usually for cases with
severely underexpanded jet; thus, they are not of great interest here. Outside of these
previous experimental results, we must depend on computational/analytical results. To this
end, we can run the appropriate numerical code [Heister and Karagozian (1990a)] at the
exact momentum ratio and thermodynamic conditions corresponding to a particular set of
images obtained in flight. Direct comparisons of qualitative features can be made in terms
of the characteristics outlined above in section IV.1. Examples of some numerically
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generated transverse jet trajectories are shown in Figure 4.1. The upper figure depicts
predicted trajectories for three jet-to-free-stream momentum ratios based on the Heister and
Karagozian (1990a) model. The lower figure shows trajectories for the same three
momentum ratios according to the code developed by Le and Karagozian (1992).
Researchers performing experimental work on transverse jets include R.K. Hanson at
Stanford University and J.C. McDaniel at the University of Virginia, Charlottesville.
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CHAPTER V
CONCLUSIONS

V.1 Summary

We have presented the detailed design and development of a unique flight test
experiment to study nonreacting gas jets injected into a range of transonic and supersonic
crossflows. Two preliminary design codes have been developed to predict fluid and
thermodynamic conditions of the experiment while in flight. The desired situation is to
form a properly regulated, heated, and seeded nitrogen jet that is either perfectly expanded
or slightly underexpanded upon exiting the nozzle. The results of these codes also provide
guidelines for the procedure in which the flights are to be conducted. The method of flow
visualization is to apply planar laser-induced fluorescence (PLIF) with a Nd:YAG laser
into the planned flight environment. Images will be recorded with a gated intensified
camera equipped with appropriate optical filters to capture the fluorescence. Laboratory
tests have been conducted to determine adequate iodine seeding concentrations using a
specially designed optical [iodine] reference cell. Other tests have measured the
fluorescence spectrum of iodine under the 532-nm light of the [frequency doubled]
Nd:YAG laser. The results summarized above are detailed in sections I.3 through II.3.

A highly compact and rugged internal components rack (ICR) has been designed
and built to integrate and carry the parts and instrumentation necessary for experimentation.
While entirely enclosed within this rack, PLIF of an iodine-seeded nitrogen jet with a
cross-sectional diameter of 7.2 mm has been successfully imaged using a gated intensified
camera (at sea level conditions). A thoroughly integrated electronics board has been
designed and wired to control the experimental run sequence; operate the heaters, valves,
and laser; and monitor/downlink critical temperatures and pressures within the jet
formation subsystem. The result is a simple two-button system of operation for the pilot to
perform when at target flight conditions. (PLIF and intensified camera imagery were never
meant to be this easy!) The main difference between sea level and flight conditions will be
the vibrations from the aircraft engine, the cooler ambient temperature, and the lower
ambient pressure. A series of vibration tests on the ground have shown no appreciable
affect on the experiment, in particular, the optical alignment. The lower temperature and
lower pressure are actually favorable for they respectively cool the electronics and create
the proper back pressure behind the nozzle for the perfectly expanded jet. Power supplies
and sources have been appropriately potted to prevent high-altitude arcing. Thus, as long
as the pilot can hold the predetermined flight plan and angle of attack, in-flight PLIF and
jet imaging will be successful. Some adjusting of the pressure regulator may be necessary
due to the pressure differential at altitude, but this and other minor adjustments are nothing
a thoughtful effort at trial-and-error cannot solve.

V.2  Future Work

Upon successful completion of this first phase of in-flight flow visualization
experiments, numerous other fluid mechanics phenomena can be studied. Essentially, we
will have pioneered the use of traditionally ground-based laser diagnostics and imaging
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techniques to fully realistic in-flight environments. The proverbial door will be wide open
to using the “flying wind-tunnel concept” where realism, versatility, and cost-effectiveness
will be the hallmarks. Limitations of test section area, improper scaling of noise and
turbulence levels, opposing wall effects, and narrow Mach range that are inherent in most
terrestrial wind tunnel facilities will either be greatly minimized or nonexistent.

The immediate extensions of the jet trajectory work to other geometries of practical
interest are straightforward. Examples include injection behind a rearward-facing step,
injection of multiple or staged jets, injection through slot or elliptical nozzles and at various
exit Mach numbers, etc. The use of liquid jets in the original, or many of the alternative
configurations, is also of interest. The rearward-facing step problem is of particular current
interest. The situation is sketched in Figure 5.1. Previous wind tunnel tests [McDaniel and
Graves (1988)] in this geometry have examined jet penetration with respect to injector
locations downstream of the point at which the shear layer reattaches to the wall. Recent
calculations by Le and Karagozian (1992) indicate that if the injector location were moved
upstream of this point into the recirculation region, it should be possible to double the jet
penetration. There is currently no experimental data available to confirm this. If it is true,
however, injection at this location should provide much better mixing in a scramjet or other
application requiring efficient and thorough mixing. Flight tests could provide the
experimental data necessary to validate this approach. The instrumentation developed for
the current program could be used with only minor (mostly external) modification.

The present aircraft for our experiments, NASA’s F-104G/#826, is ideal for
in-flight experiments because of the extensive amount and broad range of in-flight work it
has already accomplished. Although this aircraft will be retired within the next year,
another is scheduled to take its place, dubbed the “F-15B Aerodynamic Flight Facility.”
The McDonnell-Douglas twin-seat F-15B is a high-altitude, high-speed (over Mach 2.5)
fighter aircraft. It is also equipped with a newly designed and built “Advanced Flight Test
Fixture (AFTF),” similar to the current FTF, to carry and conduct aero/thermo/fluid
dynamic experiments. In addition, NASA Dryden has recently acquired two Lockheed
SR-71As and one SR-71B for use as supersonic/hypersonic research facilities [Urie and
Lux (1992)]. The SR-71 is, for sustained flight, the highest flying, fastest aircraft in the
world today, with cruising altitudes of 85,000 ft and speeds of Mach 3+. We are very
interested in the external burning experiments slated for the SR-71 (the future budgetary
state of the project is uncertain). Several diagnostic approaches are possible, based on the
proof of principles shown in the current F-104G experiments—regarding in-flight
laser-based methods. The simplest is imaging of OH chemiluminescence in the UV,
yielding the trajectory of the reacting portion of the jet. Alternatively, one could image OH
fluorescence obtained by pumping the X -> A transition with a XeCl excimer laser. This
would yield both the trajectory of the reacting jet and insight into its interior structure,
including interactions between turbulence and chemistry that dictate the burning rate.

Given the availability of aircraft and support at NASA Dryden and the numerous
experiments already conducted, proposed, and those yet to be, we can assuredly say that
in-flight aero/thermo/fluid dynamic experiments employing sophisticated instrumentation
and diagnostics have a bright and promising future.
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APPENDIX 1
MAINTENANCE AND OPERATIONS

The following is a detailed text on proper maintenance procedures necessary to
keep the subsystems operational. Various parts referred to can be seen in Figures 2.4–2.10.
Critical parts and issues are highlighted for convenience should repairs or maintenance be
needed. For reordering information, see the Parts List and Supplier List included as
Appendix 2.

Jet Formation Subsystem

Thenitrogen tank is filled to 3000 psi through a retractablefill port  at the upper
aft end of the ICR. By turning open theaccess valve, nitrogen is allowed to flow through
the regulator and into the tank. Filling should be performed by personnel familiar with
handling high-pressure gases. Note that pressurizing should be done slowly so that the tank
does not heat up excessively, though some warming is expected.Leaks can be detected
using soapy water injected around threaded or Swagelock connections. Problems with the
valve stem of the nitrogen tank should be directed to the supplier, Phoenix Distributing.
Problems with the tank should be directed to its supplier, NASA Dryden.

The Fisher Scientificpressure regulator does not need regular maintenance. It is
adjusted using the dial knob in front. If maintenance on any of the three Statham
transducers is needed, consult NASA Dryden or Schlumberger Industries. Note that they
are all connected with AN (not Swagelock) fittings.

Thenitrogen line leading from the regulator to the nitrogen solenoid valve is the
primary component to remove when access to the rest of the jet subsystem under the laser
platform is required. Removing the line involves loosening the Swagelock nuts at the line
ends and removing the 1/4-20 allen hex screws holding down the solenoid valve. Upon
doing this, the higher end of the line will have enough play so that it can be pulled down/out
of its fitting. Reinstalling the above is in reverse order, the last item being inserting the line
up/in to its fitting. A screwdriver acting as a cantilever against the heater controller mount
can assist in reinserting the line.

All Swagelock connections should be tightened in accordance with standards
outlined in the Swagelock manual. A handy reminder is to tighten the nut 1.25 turns after
the nut has been tightened finger tight, assuming it can be finger tightened freely. A Gap
Inspection Gage can also be purchased to check proper fitting installation.

The Burkertnitrogen solenoid valve is maintenance-free. If it should fail, first
check if the maximum inlet pressure has been exceeded (approx. 45 psia), in which case
the solution is simply to adjust the regulator to a lower pressure.

Thenitrogen preheatermay need upkeep from time to time. In particular are the
electrical feedthroughs and the heating element itself. Thefeedthroughs are susceptible to
loosening up when the temperature inside the preheater is too hot, causing the solder joints
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to melt. To avoid this, make sure there is always a sufficient amount of nitrogen flow (near
operating conditions) when the heater is on. If the feedthroughs should fail, higher
temperature solder should be applied to the joints. During ground tests where low flow may
be necessary, place some wet towels around and under the preheater to draw away excess
heat.

The heating element core is susceptible to embrittlement, also due to excessive
temperatures, caused by insufficient nitrogen flow rates. If the core cracks, it should be
replaced (see Parts List). Note that mica sheets, included with a new heating element should
be placed inside the preheater; this prevents possible short circuiting should the coils touch
the preheater inner surface. Removal/replacement of the element is facilitated by an access
hole/bolt (solder-sealed and threaded) on top of the preheater.

The nitrogen and iodine lines are mixed at a stainless-steelT-branch. The flow
control orifices for both gases are installed on this branch. The nitrogen orifice is press fit
(and easily removed), whereas the iodine orifice is soldered. [The currently replaced iodine
valve by General Valve has a proper orifice size, so that the orifice in the T-branch has been
removed.]

Theiodine solenoid valve needs moderate maintenance due to its high-temperature
and corrosive environment. The valve should be checked periodically to ensure iodine
condensation is not a problem. Condensation can be prevented by assuring that the valve is
always the hottest part of the iodine flow path, especially during cooling times, so that
iodine will preferentially condense in the iodine tank or the iodine line, rather than in the
valve. Because high temperatures are a potential problem to most solenoid valves, we use
a General Valve Series 9 valve, which incorporates a coil rated for 220°C. [If this solenoid
valve fails under high temperatures of around 200°C, air-actuated bellows valves can be
used. Such an option is currently under consideration.]

The iodine line and tank are made of stainless steel to handle the corrosive
properties of iodine. From time to time, the line and tank should be removed and washed
down with acetone, and examined. Doing so will eventually help determine how much
iodine is used during test runs, and how much should be added between tests. The Omega
cartridge heater inside the iodine tank is made of Incoloy alloy and has a welded, sealed tip.
Solder tipped cartridge heaters are not robust enough to combat iodine corrosion and must
be avoided.

The nitrogen/iodine line from the T-branch to the nozzle is sectioned into two
separate lines to facilitate removal if/when necessary. One line is very short and straight,
and is easily removed when the T-branch is free. The other line is longer and serpentine,
and can be removed by manipulating it under the laser power supply or by removing the
forward panel of the ICR.

Thenozzle is removed by first removing the nozzle mount, and then unscrewing the
nozzle off the O-ring face seal fitting. Nozzles of different exit diameter or shape should be
machined with the mount in mind to facilitate interchangeability between nozzles.
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Fiberglass clothinsulation is required on all lines and components that are heated
with heating tape, both for safety purposes and to prevent heat loss to the surroundings. In
some cases, insulation is also needed to prevent adjacent components from being
overheated, (e.g. the laser head). Glass wool can be helpful in this application.

Items and parts not mentioned above require no special knowledge of removal or
maintenance procedure. A little experience, common sense, and elbow grease will go a
long way.

Image Acquisition Subsystem (Camera)

The ITT F4577 intensified camera is mounted in the front section of the ICR
experimental module. The camera lens and two turning mirrors are located above the
camera body. The mirrors are mounted and dismounted easily with allen screws. Care
should be taken to ensure the mirrors are properly aligned to provide the correct field of
view in the fluorescing plane. Due to space constraints,it is not possible to insert the ICR
into the flight test fixture with the camera installed. The same applies toremoval of the ICR
from the flight test fixture. After ICR installation, the camera may be inserted as follows.
First, make sure the switches at the rear of the camera are configured properly. This is
discussed in some detail below. Connect the appropriate coaxial cables to the Video Output
and External Gate Input BNCs. Connect the camera cable to the DB25 I/O connector at the
rear of the camera. Work the camera carefully into its mount from the nozzle side of the
ICR, beginning with the rear of the camera. Installation is completed by securing the
camera to its mount by tightening the upper three allen screws on the mount back. The
bottom allen screw secures a shim to the camera mounting bracket, and need not be
touched. To remove the camera, the above procedure is reversed.

It is very important that the configuration switches located at the rear of the
camera be set properly before power is applied.Even momentary operation at ambient
light levels with improper settings can permanently damage the costly intensifier tube.
Familiarity with the operating principles of the camera (as obtained, for example, by
reading its operating manual) is recommended. In particular, operation in the CW gate
mode should not be attempted without some forethought.

The proper settings for the present experiment are given in Table 2. Refer to
Figure 5 of the camera installation and operation manual to determine the location of the
switches. As a safety measure, it is recommended that controls not listed in Table 2 be
placed in the full CCW position. This especially applies to theGain Control Potand the
Width Course Control Switch.

Table 2. Camera Setup

Control                  Position
Gate mode                    Ext
Gain mode                    Ext
Intensifier mode          Gate
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Illumination Subsystem (Laser)

The laser is powered directly from the aircraft 28 VDC. This modification was
installed by the factory. The modification appears to mainly involve installation of a couple
of switching power supplies, although it is difficult to be sure (the manufacturer considers
all the schematics proprietary, both for the modifications as well as the standard power
supply). The 28-V power is supplied to the rear of the power supply via banana plugs. The
polarity is arbitrary. We have added a pair of wires, the shorting of which simulates the
depression of the laser reset button on the front panel. These wires exit through the back of
the case, where they are RTV’d in place. A temporary push button switch shorts the wires,
thus activating the laser. The laser power supply is connected to the laser head via three
cables; two multiconductor and one coaxial. A coaxial cable must also be connected
between sync out BNC at the rear of the power supply and the gate input BNC on the
camera.

The laser power supply should be set up as specified in Table 3.

As noted in the above table, we have set the laser repetition rate to the maximum
power setting (about 2 kHz). In preliminary tests with room light background, this seemed
to provide the best signal to noise. However, according to the laser manufacturer (see page
7 of the manual), the highest pulse energy can only be maintained below 1 kHz. To gain
full benefit of the gated camera, the pulse energy should really be maximized (not the
power, e.g., the product of the pulse energy and repetition rate). Therefore, in high ambient
light environments better signal to noise may be obtainable at lower repetition rates. This
adjustment can easily be made at the front panel of the power supply.

The laser head incorporates a solid state (diode) laser pumping a frequency
doubled Nd:YAG laser. A thermoelectric heater/cooler, designed to operate between 0 and
30°C, is used to maintain the temperature of the doubling crystal. We have made provision
for heating the laser head in the event of low ambient temperature. The temperature
controller is currently set at 15°C. This particular controller has an alarm circuit, which is
set at 30°C. The alarm relay could be used to interrupt the power to the laser head heater,

Table 3. Laser Setup

Control Position
110-VAC  key Off & removed
28-VDC  key Inserted & on

110-VAC/28-VDC switch 28 VDC
Feedback Int
Q- switch Int
Prelasing Off

Frequency Range High
Frequency Pot Adj for max power (approx. 2 kHz)
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providing some measure of protection against overheating. We have not done this, but we
probably should. The laser head contains a mechanical beam shutter, manipulated by
twisting the knurled knob at the beam exit aperture. Make sure the shutter is open before
trying to run the experiment.

The associated optics are aligned in front of the laser head via allen screws
mounted from beneath. For fine tuning of the laser sheet position, the turning mirror (inside
the optical canopy) is equipped with a multi-axis kinematic mount and tuning screws. The
optical canopy is affixed with a series of 8-32 aircraft screws. Thecanopy window is
actually a 300-mm focal length cylindrical lens that acts to “thin out” the thickness of the
laser sheet. It is held in place by epoxy and an aluminum protective plate. Replacement of
this window will require removal of the protective plate (a simple and obvious procedure)
and melting off of the old epoxy, with the help of a heat gun.

Miscellaneous

Electronic circuitry  is detailed in Chapter IV of this paper.

Specific instruction and/or operating manuals for the laser, camera, valves,
heaters, controllers, conditioners, relays, and thermocouples can be obtained by the
manufacturers or suppliers. Individuals at UCLA and NASA responsible for the
experiment should have copies of these manuals.
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APPENDIX 2
SUPPLIER AND PARTS LISTING

SUPPLIER ADDRESS & PHONE NO. CONTACT

AB Lasers 4 Craig Road Gerhard Marcinkowski (Tech Rep)
Acton, MA 01720 Joanne Keene (Sales & Marketing)
Tel 508-635-9100
FAX 508-635-9199

A. Biederman, Inc. 627 Hazel Street Pablo or Dave (Sales)
P.O. Box 25003
Glendale, CA 91201-3095
Tel 818-246-8431

ADLAS Advanced Seelandstrasse 67
   Design Lasers 2400 Lubeck 14

Germany
Tel 49-451-3909300
FAX 49-451-3909399

All Aircraft 6712 Balboa Blvd.
Van Nuys, CA
(Sherman Way west exit off 405)
Tel 818-894-9115

Analog Devices 3000 W. MacArthur Blvd. Jean (Sales)
Suite 150
Santa Ana, CA 92704
Tel 714-432-5224

Angeles Valve & 427 S. Victory Blvd.
   Fitting Burbank, CA 91502

Tel 818-846-8201

B.J. Wolfe Ent. 10760 Burbank Blvd. Brad Wolfe (Owner)
N. Hollywood, CA 91601
Tel 213-877-5518
Tel 818-984-3754
FAX 818-984-2351

Burkert Contromatic 1091 N. Batavia Street Craig Occhiato (Tech Rep)
   Corporation Orange, CA 92667

Tel 714-744-3230
FAX 714-639-4998
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Crest Industries 26845 Oak Avenue, Unit 15 Richard Hayes (President)
Santa Clarita, CA 91351 Joyce (Sales)
Tel 805-252-6873
FAX 805-252-4658

Edmund Scientific 101 E. Gloucester Pike Steven (Tech Rep)
Barrington, NJ 08007-1380
Tel 609-573-6250
FAX 609-573-6295

Fisher Scientific 2761 Walnut Avenue
P.O. Box 9800
Tustin, CA 92681
Tel 714-669-4600

General Valve 19 Gloria Lane Marie (Sales)
Corporation P.O. Box 1333

Fairfield, NJ 07006
Tel 201-575-4844
FAX 201-575-4011

ITT Electro-Optical 7635 Plantation Rd, NW Bill Decker (Sales) x4415
   Products Division Roanoke, VA 24019-0065 Nancy Dowdy (Cust. Service)

Tel 703-563-0371 x4337
FAX 703-362-7370

McMaster-Carr P.O. Box 54960
   Supply Company Los Angeles, CA 90054-0960

Tel 310-692-5911

Melles-Griot 1770 Kettering St. Glen Mashburn (Cust Service)
Irvine, CA 92714
Tel 714-261-5600
Tel 800-835-2626

NASA Dryden P.O. Box 273 Al Bowers
   Flight Research Edwards, CA 93523
   Center Tel 805-258-3716

FAX 805-258-3567
Email: bowers@rigel.dfrf.nasa.gov

Newport Corp. 1791 Deere Avenue
Irvine, CA 92714
Tel 714-863-3144
Tel 800-222-6440
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Omega Engineering, 1 Omega Drive
Inc. Box 4047

Stamford, CT 06907
Tel 800-622-2378
Tel 800-872-4328 (heaters)

Oriel Corporation P.O. Box 872
250 Long Beach Blvd.
Stratford, CT 06497
Tel 203-377-8282
FAX 203-378-2457

Phoenix Distributors 11711 S. Alameda St. Larry Box (Sales)
Los Angeles, CA 90059
Tel 213-564-5711
FAX 213-569-4951

Samy’s Camera 7122 Beverly Blvd. Louis Friedman (Sales)
Los Angeles, CA 90036
Tel 213-938-2420
Tel 800-321-4-SAMY
FAX 213-937-2919

Schlumberger 2230 Statham Blvd. Mike Moerson
   Industries; Statham Oxnard, CA 93033
   Transducer Div.

UCLA Engineering SEAS Machine Shops Dave (tool crib)
Tool Crib` 1012 Engineering I Rick (electrician)

UCLA Gene (welder)
Los Angeles, CA 90024 Ian (machinist)
Tel 310-825-2264 Steve (manager)
Tel 310-825-2186
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ITEM DESCRIPTION PART NO. SUPPLIER

The Illumination Subsystem

Laser, Diode pumped Nd:YAG DPY321QD AB Lasers/ADLAS
   (head and power supply)

Cylindrical lens holder 07LHC001 Melles-Griot

Plano-cylindrical precision lens 01LCN123/001 Melles-Griot
   f = –6.35 mm
   coated on concave surface

Stock mirror, 1 in. diam. 10D20/BD.1 Newport Corp.
   1/20 , BD.1 Dielectric
   coating, Pyrex

Mirror mount, 1 in.  1 in. MM-1 Newport Corp.

Plano-cylindrical lens 01LCP019 Melles-Griot
   f = 300 mm, 50 mm  60 mm

Flexible Silicone Rubber Heater SRFG-307/5-P Omega Engineering
   (for laser head)

The Image Acquisition Subsystem

Image intensified solid-state F4577 ITT Electro-Optical
   video camera Product Division

C-mount adapter Samy’s Camera

Nikkor 28 mm, f 2.8 lens Ser #328226 Samy’s Camera

Vis. band-pass filter 03F1V044 Melles-Griot
   550 nm, FWHM = 40 nm

Broadband Int. filter 57581 Oriel Corp.
   550 nm, 70 nm bandwidth

Colored glass filter 59500 Oriel Corp.
   530 nm, cut-on

Laser line int. filter 59040 Oriel Corp.
   (Nd:YAG 532)

λ

×

×



69

Precision elliptical flat B32,135 Edmund Scientific Co.
   mirror; enhanced Al coating

Mirror mount, 1 in.  1 in. MM-1 Newport Corp.

Support holder VPH-2 Newport Corp.

Square flat mirror 01MFG015 Melles-Griot
   100 mm  100 mm
   Protected Al surface

Long pass IR filter 59884 Oriel Corp.
   550 nm cut-on

Long pass colored glass 59502 Oriel Corp.
   filter, 550 nm cut-on

Support post SP-3 Newport Corp.

The Jet Formation Subsystem

Nitrogen cylinder NASA Dryden
   3000 psi; 6/92 hydro-stated

Valve stem, 1 in. NPT, CGA 580 Phoenix Distributing

Pressure regulator 10-572Q Fisher Scientific
   two-stage

Iodine cylinder 304L-HDF4-150 Angeles Valve &
   Whitey sample cylinder Fitting
   75 cc

Fiberglass cloth tape 01-472B Fisher Scientific
   51 mm width  30.5 m long

Nitrogen solenoid valve 256-A-3/8-F-SS-1/2 A. Biederman, Inc.
   Type 256 -240/60-10-U-H-000

Nitrogen solenoid S-0256-3004-302-00 Burkert Contromatic Corp.

Iodine solenoid valve 255-A-1/4-E-SS-1/2 A. Biederman, Inc.
   Type 255 -240/60-U-H-000

Iodine solenoid S-0255-3004-302-00 Burkert Contromatic Corp.

×

×

×
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Iodine solenoid valve Series 9, SS body, General Valve Corp.
   (high-temp coil) Kalrez seat & seal,

Normally closed,
20 VDC, 1/8 in. NPT,
0.116 in. orifice

Nitrogen preheater 304L-HDF4-300 Angeles Valve &
   Modified Whitey Fitting
   Sample cylinder, 300 cc

Assorted brass & stainless Angeles Valve &
   steel fittings Fitting

Stainless steel tubing UCLA Eng. Tool Crib
  1/2 in., 3/8 in., 1/4 in. or McMaster-Carr

Pressure transducers NASA Dryden
   0-15 psia Ser. #4214 or Schlumberger,
   0-50 psia Ser. #28145 Statham Transducer
   0-5000 psia Ser. #10418 Division

Samox ultra-high temp. Omega Engr.
   heating tapes
   1/2 in.  1/2 in. STH051-020
   1 in.  2 in. STH101-020

Temperature controller CN76120-PV Omega Engr.
   CN76000 series

Thermocouples, Type E CO1-E Omega Engr.
   (cement-on)

Solid-State relay SSR240AC10 Omega Engr.

Thermocouple wire, Type E GG-E-30-25 Omega Engr.
   (insulated)

Nitrogen fill valve SS-20VM4-F4 Angeles Valve &
   (integral bonnet Fitting
   needle valve)

Leak detector, Snoop MS-SNOOP-207 Angeles Valve &
Fitting

Thermocouple signal 2B50A Analog Devices
   conditioner, isolated

×
×
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Nitrogen heating element 3456K23 McMaster-Carr
   120 V,  8 A

DC/DC Converter Power Supply 945 Analog Devices

T/C grounded sheath probe GEMQSS-040G-6 Omega Engr.
   submini; Type E

Heat conductive putty 3568K1 McMaster-Carr
   1 gallon

Glass fiber insulation sheet 9350K1 McMaster-Carr
   semi-rigid, 1 in. thick
   foil faced

Transducer connectors (Bendix) PT06A-10-6SSR Crest Industries

Iodine cylinder cartridge CIR-105/120 Omega Engr.
   heater, 1/4 in. diam., 5 in. long,
   100 W, Incoloy sheath

Miscellaneous & Special Items

Dow Silicone RTV 3145 NASA Dryden
   (opaque or grey)

Helicoil Repair Kit McMaster-Carr
4-40 91732A267
8-32 91732A269
10-24 91732A311
1/4-20 91732A312
Metric M6 91732A062

Helicoil Screwlock Inserts McMaster-Carr
   4-40 (short) 90296A101
   4-40 90296A102
   8-32 (short) 90296A111
   8-32 90296A112
   10-24 90296A122
   1/4-20 (short) 90296A121
   1/4-20 90296A122
   Metric M6 90296A308

≈
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Helicoil Extracting Tool McMaster-Carr
   3-8(UNC) 90254A310
   10-3/8(UNC) 90254A320

Wagon, Steer-rite 8354T41 McMaster-Carr
   wood deck

100 deg., 3/8 in. diam., 3-flute 2742A35 McMaster-Carr
   countersink, for
   aircraft screws

Heating element for preheater 3149K31 McMaster-Carr
   (lower wattage)
   5 A, 120 V

Epoxy, 5-minute UCLA Tool Crib

Aircraft structural screws All Aircraft or
   8-32, various lengths  NASA Dryden

AN fittings (blue) NASA Dryden

Nitrogen cylinder straps NASA Dryden
   (flight-certified)



73



74

APPENDIX 3
 PRELIMINARY ANALYTICAL AND DESIGN CODES
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