

Three-Dimensional Lithium-Ion Battery Model

Understanding Spatial Variations in Battery Physics to Improve Cell Design, Operational Strategy, and Management

4th International Symposium on Large Lithium Ion Battery Technology and Application Tampa, Florida May 12–14, 2008

Gi-Heon Kim and Kandler Smith

gi_heon_kim@nrel.gov, kander_smith@nrel.gov

NREL/PR-540-43166

NREL is operated by Midwest Research Institute • Battelle

Multi-Scale Physics in Li-ion Battery

Electrochemical Kinetics Solid-Phase Lithium Transport Lithium Transport in Electrolyte Charge Conservation/Transport (Thermal) Energy Conservation Basic battery physics occurs in a wide range of length & time scales

- Kinetics
- Phase transition
- Ion transport
- Energy dissipation
- Heat transfer

NREL's Li-ion Battery Model Activities

focusing on different length scale physics

- a) Quantum mechanical and molecular dynamic modeling
- b) Numerical modeling resolving architecture of electrode materials
- c) Electrode-scale performance model
- d) Cell-dimension 3D performance model

Why use a 3D model?

Spatially Nonuniform Battery Physics

Enhanced understanding provides an opportunity for improving cell ...

- Design
- Operation Strategy
- Management
- Safety

Electrode-Scale Model

This model captures relevant solid-state and electrolyte diffusion dynamics and predicts the current/voltage response of a battery.
Composite electrodes are modeled using porous electrode theory, meaning that the solid and electrolyte phases are treated as superimposed continua without regard to microstructure.

Chemical Kinetics

 $J^{Li} = a_s i_o \left\{ \exp\left[\frac{\alpha_a F}{RT}\eta\right] - \exp\left[-\frac{\alpha_c F}{RT}\eta\right] \right\}$ $i_0 = k(c_e)^{\alpha_a} (c_{s,\max} - c_{s,e})^{\alpha_a} (c_{s,e})^{\alpha_c}$

(Doyle, Fuller, and Newman, 1993)

r

NREL's Model

- Finite-Volume Method
- Matlab Environment

Charge Conservation

3D Battery Dimension Model

Addressing the effects of:

- Nonuniform distributions
- Thermal/electrical path design inside cells/batteries
- Localized phenomena
- Geometries; shape and dimensions of cell component

Approach in the Present Study: Multi-Scale Multi-Dimensional (MSMD) Modeling

To Address ...

- Multi-scale physics from sub-micro-scale to battery-dimension-scales
- Difficulties in resolving microlayer structures in a computational grid

Solution Variables

NOTE: Selection of the "sub-grid electrochemical model" is independent of the "macrogrid model" selection.

Model Combination

Axisymmetric FVM Model for Macro-Domain Model + 1D FVM Model for Electrochemistry Submodel

Simulation Results Snapshot 2 minutes after start of discharge

Normalized ANODE SURFACE CONCENTRATION

Another Combination Choice

Axisymmetric FVM Model for Macro-Domain Model + State Variable Model (SVM) for Submodel

MSMD model incorporating SVM Submodel runs ~1.75 faster than real time.

SVM is preferred because of its fast execution

SVM, developed by Kandler Smith (NREL), quickly solves "Newman type" governing equations using numerical schemes for calculating load reduction.
Dropping very fast battery responses (approx. 60 Hz or more) is one of the main calculation order reduction methods used in the model.

SVM is **promising for use in on-board BMS reference model** because of its fast execution and capability to provide nonmeasurable electrochemical parameters and current and voltage responses with potentially better accuracy.

For details about the State Variable Model:

See the Poster Presentation by Kandler Smith (NREL) titled, "Fast Running Electrochemistry-Based Models for Battery Design, Integration, and Control"

Analysis

Temperature Variation in a Cylindrical Cell

- Uniform Potential Assumption
- Impact of Aspect Ratio
- Impact of Cell Size

Temperature & Potential Variation in a Prismatic Cell

Impact of Tab Location and Size

Temperature Variation in a Cylindrical Cell

- Uniform Potential Assumption
- Impact of Aspect Ratio
- Impact of Cell Size

Temperature & Potential Variation in a Prismatic Cell

Impact of Tab Location and Size

Considerations for Addressing Thermal Issues in PHEV-type Cells

High energy and high power requirements

- Large format may be preferred to small cells
 - Fewer number of components
 - Fewer interconnects
 - Less monitoring & balancing circuitry
 - Less expensive
 - Less weight

Significant heating may be possible, depending on power profile

Internal temperature imbalance can lead to unexpected performance and life degradation

Analysis Parameters

For a fixed capacity (electrode volume), surface area for heat rejection can be increased via:

- Reducing D/H ratio
- Increasing number of cells in parallel (#P)

*Surface area includes side, top & bottom of can. All cells assumed to have inactive inner mandrel with 8mm diameter.

Two Usage Profiles

The two cases explored in this presentation:

Moderate Thermal Condition

Severe Thermal Condition

Results: 150 A Continuous Discharge

Transient Results

D/H = $\frac{1}{4}$ h = 15 W/m²K T_{amb} = 35°C

After 500 seconds of discharge:

- Cell center is slightly warmer than exterior
- Preferential reaction current at cell center

Near the end of discharge:

- Cell center depleted/saturated
- Preferential reaction current at cell exterior

150 A Single Discharge (at End)

 $D/H = \frac{1}{4}$

Moderate usage + air convection = small internal gradients

200 A Geometric Cycling

1P size cell (40 Ah)

200 A Geometric Cycle (Steady-State)

Severe usage + liquid cooling = large internal gradients

Renewable Energy Laboratory

200 A Geometric Cycle (Steady-State)

- Under severe usage, low D/H and/or >1P designs significantly reduce thermal stress
- Larger diameter leads to higher internal gradient
- Multidimensional electrochemical cell model quantified the impacts of D/H aspect ratio and cell size on the internal temperature difference.

Analysis

Temperature Variation in a Cylindrical Cell

- Uniform Potential Assumption
- Impact of Aspect Ratio
- Impact of Cell Size

Temperature & Potential Variation in a Prismatic Cell

Impact of Tab Location and Size

Impact of Tab Location & Size

- Thickness: 12 mm
- 40 Ah
- 2-minute discharge, 200 A
- 200A geometric cycle

200A Discharge for 2 minutes

Current Field – 2-min 200 A discharge

Voltage across Current Collector Foils – 2-min 200 A discharge

 $V_{max}-V_{min}=0.0364 V$

 $V_{max} - V_{min} = 0.0154 V$

Temperature – 2-min 200 A discharge

$$T_{max}-T_{min} = 5.03$$
 °C

 $T_{max} - T_{min} = 1.35^{\circ}C$

Current Production – 2-min 200 A discharge

 i_{max} - i_{min} = 13.2 A/m²

 i_{max} - i_{min} = 4.54 A/m²

SOC – 2-min 200 A discharge

$$SOC_{max}$$
- $SOC_{min} = 1.91\%$

 SOC_{max} - $SOC_{min} = 0.76\%$

200A Geometric Cycling

Temperature Variation

SOC swing

Summary

- Nonuniform battery physics, which is more probable in large-format cells, can cause unexpected performance and life degradations in lithium-ion batteries.
- A three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.
- The developed tool will be used to provide better understanding and help answer engineering questions about improving *cell design*, *cell operational strategy*, *cell management*, and *cell safety*.

Engineering Questions to be addressed in *future works* include ... What is the optimum form-factor and size of a cell? Where are good locations for tabs or current collectors? How different are measured parameters from their non-measurable internal values? Where is the effective place for cooling? What should the heat-rejection rate be? How does the design of thermal and electrical paths impact under current-related safety events, such as internal/external short and overcharge?

Acknowledgments

DOE and FreedomCAR-Fuel Partnership Support

- Tien Duong
- Dave Howell

NREL Energy Storage Task

• Ahmad Pesaran