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2.3 The Case of a Planar Wiggler 
 

In this section we will obtain the FEL equations with a planar wiggler, which is 

more practical one.   

 In the planar wiggler the vector potential is in the horizontal direction so electrons 

wiggle in the horizontal direction. The physics is exactly the same as helical wigglers but 

the potential has the form: 
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          Eqn 2.3-1 

Similar to the helical case the canonical momentum is conserved, therefore in the 
wiggler the mechanical momentum has the form 
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We convert the variable from time to longitudinal position, and get 
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The transverse velocity is 

zkK
dz
dx

cdt
dx

c
v

w
x cos

γ
β −=≅==⊥

                  Eqn 2.3-4 

where 
mc
eA

K w≡  as defined before. 

 

Energy Exchange: 

As explained previously in section 2.2, we expect the interaction between the 

electrons and a radiation field (in the presence of a wiggler field) to produce an energy 

exchange between the electrons and an electromagnetic field. Therefore we introduce a 

signal electromagnetic field similar to helical wiggler case.  

The equation of motion  
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          Eqn 2.3-5 
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We define the electric field similarly to the helical wiggler case (except for the 

polarization). In the planer wiggler the electric field would be linearly polarized, with the 

electric field in the wiggling plane (here assumed to be the x-z, or horizontal plane.)   
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The magnitude of the electric field amplitude ),( tzE  varies slowly on the scale of 1/Ω 

Therefore we will neglect its derivative, and write Eqn 2.3-5 as 
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      Eqn 2.3-7 

 

Phase Equation: 

From the expansion of cos(kwz) we have two phase factors 
)( jssw twzkzkie −+   and   )( jssw twzkzkie −+−         Eqn 2.3-8 

Let’s define the phase ψ j , in similarity to the helical wiggler case, as  

jsswj twzkzk −+=ψ          Eqn 2.3-9 

We neglect the second term in the phase equation for now.  If we differentiate the 

equation with respect to z we get 
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Where the parallel velocity is  
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After performing a Taylor expansion we get  
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   Eqn 2.3-12  

If we take the average over one wiggler period we obtain 
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          Eqn 2.3-13 
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The resonance condition is obtained when 01 =−+ −
avrsw kskk β , and the average jψ  

does not change after a period. If we convert parallel velocity into γ we get the resonant 

condition for 0γγ=  
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Thus the resonant wavelength is 2
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Next we consider energies near the resonance, that is γj is close to, but not equal γ0. 

For 0γγ ≠j , Eqn 2.3-10 becomes 
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     Eqn 2.3-15  

The electron motion in the resonant frame (the frame which is moving with the center of 

the electron bunch), that is jψ  as a function of x, can be obtained by integrating Eqn 2.3-3 

and the second term of Eqn 2.3-15. This plot, exhibiting the ‘figure of 8’ phase oscillations 

is shown in Figure 2.3-1: 

 

Figure 2.3-1 The electron’s “Figure of 8” motion in the resonant frame 
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We define phase θ; 
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        Eqn 2.3-16 

This variable is convenient, since we remove the oscillatory term, which is characteristic of 

a planar wiggler, and obtain a ‘smooth’ phase variable, very similar to the helical wiggler 

case. Then derivative of θj becomes 

0

0
2

00
2

2 )(2))((
)1(

γ
γγ

γ
γγγγ

γ
γθ −

≅
−+

=−= jw

j

jj
w

j
w

j k
kk

dz
d

    Eqn 2.3-17 

We also define the parameter 
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In the plane perpendicular to the magnetic field (the ‘wiggle plane’), the electrons move in 

a wiggling motion as shown Figure 2.3-2. 

 

 

Figure 2.3-2 The electron’s motion in the laboratory frame, in the wiggle plane (x-z) 
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If we take the second term into account in the phase equation then ][JJKK ⇒  as 
only difference where )()(][ 10 bJbJJJ −= and J0 and J1 are the Bessel functions 

Thus the equation of motion becomes  
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        Eqn 2.3-19 

where  
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The solution of these equations is similar to the helical case.  


