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2.9 The FEL Equations with Betatron Oscillation 

 
In this section we will take betatron oscillation into account in the wiggler. We 

will also look at the behavior of the electron beam when it is off-axis and find some 

solutions to get maximum matching in the wiggler. 

 

  Natural focusing 

From the Maxwell’s equations we have the relation between the components of 

the magnetic field as 
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Electron moves in the wiggler as in Figure 2.9-1 and if the electron is not centered 

vertically, it will experience a Lorentz Magnetic force because of the magnetic field that 

we obtained in Eqn 2.9-2.  

 

Figure 2.9-1 Off axis electron trajectory in the wiggler, showing fields and forces. The 

paper plane is the wiggle-plane, the offset is in a direction perpendicular to the paper. 

In Figure 2.9-1, if the electron is at position 1 and y∆ >0, then zB∆ >0. 
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Therefore 0<yF  which means electromagnetic force is towards the axis of the motion in 

vertical direction.  

If the electron is in position 2 and y∆ >0, then 0<∆ zB  because 
z

By

∂
∂

 term in Eqn 2.9-2 is 

negative. The Lorentz force would still be negative toward the axis.  

If we have y∆ <0 then we would have positive Lorentz force which is also towards 

axis. Thus the Lorentz force always points to the y-axis and provide vertical focusing in 

the wiggler.   

 

 

Parabolic pole face – horizontal focusing  

 

 

Figure 2.9-2 Parabolic pole face design. The beam direction is perpendicular to the plane 

of the paper. 

Assuming the z-axis is going into the page in Figure 2.9-2 if we had parabolic 

faced poles in the wiggler we would have a variable strength magnetic field in y 

direction. The more the electrons are off-axis, the more magnetic field strength they 

would experience, and therefore they will experience more electromagnetic force toward 

the center. This causes horizontal focusing. 
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Figure 2.9-3 An electron trajectory with betatron oscillation (long period) and wiggle 

motion (short period). 

Thus the trajectory would be similar to what we see in Figure 2.9-3. When the electrons 

are in position 1 they will experience more electromagnetic field compared to position 2, 

therefore the curvature is larger in position 1.   

More quantitative description of the betatron-motion has been done by 

 E.T Scharlemann [3]. 

In section 2.3 we had described the vector potential as  
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However this is only an approximation near the axis, not a solution of Maxwell’s 

equations. A solution of Maxwell’s equations from Scharlemann’s paper is as follows: 
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So near axis y-component of the magnetic field can be expanded as  
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What we are interested in is having equal focusing in horizontal and vertical directions. 

Therefore we would like to have  
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Results of Scharlemann’s analysis is as follows: 

We have β− oscillation plus the wiggling motion as shown in Figure 2.9-4 

 

 

Figure 2.9-4 Decomposition of the electron’s trajectory into wiggle motion and betatron 

motion. 

We define displacement from the axis of the wiggler x as the summation of betatron 

displacement and wiggling displacement. 
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We have the equation for betatron oscillation as from Scharlemann’s paper as: 
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Where  
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For equal focusing we have 
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where nkβ  is called natural focusing wavenumber. 

The solution to Eqn 2.9-9 is  
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wx′ which was calculated in Eqn 2.3-4 becomes   
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using Eqn 2.9-6.  

        

Longitudinal velocity: 

The longitudinal velocity would be the summation of the betatron and the 

wiggling velocities.  
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If we average over the wiggler period we get 
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The underlined term in the longitudinal velocity is reduction and spread. β is constant 

during the betatron oscillation.  

 

Emittance 

One of the most important parameters of an electron beam is its emittance. Before 

we give the definition of emittance it would be beneficial to introduce the concept and the 

notation. 

In a bunch each electron has position and momentum ),( pr vv coordinates, where 

),,( zyxr ≡v and ),,( zyx pppp ≡v . We use the convenient notation ),( xx ′ and ),( yy ′ for 

the transverse vectors, where xmcpx ′= βγ and ymcp y ′= βγ , β and γ are the Lorentz 

factors. Each electron is described by six dimensional phase space coordinates but for 

convenience we use two-dimensional pairs as mentioned above.  The collection of 

electrons forms an ellipse in each phase space as shown in Figure 2.9-5. 

 

 

Figure 2.9-5 xx ′−  phase space ellipse of the beam, relating the shape to various 

functions of the beam matrix elements. 
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11σ is the radius of the beam size, 22σ′ is the divergence of the beam and 2112 σσ = is 

the correlation between the two axes defined as in Figure 2.9-5.  

Using the definition of an ellipse we obtain  
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σ  is called the beam matrix and, and the ellipse’s area is given 

by )det(A σπ=          Eqn 2.9-20 

When we represent a particle in the beam with a column vector 





′≡
x
x

X , we can write 

Eqn 2.9-19 as  

11 =− XX tσ           Eqn 2.9-21 

The emittance is defined as the volume occupied by the particles in the electron beam in 

six-dimensional phase-space. The emittance is thus a conserved quantity by Liouville’s 

theory. Under certain conditions the two-dimensional phase spaces (x,Px), (y,Py) are 

conserved. At a constant energy (x,x`) and (y,y`) would be conserved.  Thus the emittance 

is related to the area of the ellipse. Conventionally this emittance (the geometrical 

emittance) is defined as  
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Beam Matching 

Assuming  

)cos( xzkxx φββ +=          Eqn 2.9-23 

then )sin( xzkxkx φβββ +−=′  

Therefore  
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ββ xxkx  constant       Eqn 2.9-24 

 

 

 

Figure 2.9-6 Phase space plot for a matched beam: It is a circle in the xxk ′−β phase 

space. 

 
 
If this matching is not perfect then we would have a tilt ellipse instead a circle above. 
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Figure 2.9-7 Beam envelope of a matched beam.  

 

 

Figure 2.9-8 Phase space plot for an unmatched beam. The arrows show the direction of 

rotation of the beam ellipse. 

 

Figure 2.9-9 Beam envelope of an unmatched beam.  
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if 222 ><−>=< xxxσ  is the rms of x then the for a matched beam the emittance would 

be  
2. xxx kk σσσε ββ ==         Eqn 2.9-25 

The rms transverse momentum is  

xxp kmcmc σγσγσ β== ′.         Eqn 2.9-26 

The phase space conservation requires that  

== 2
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So the normalized emittance, which is a conserved quantity, is 

 2
xn k σγε β=           Eqn 2.9-28 

In general we need extra focusing in the wiggler to get better beam matching. In this case 

the equations modifies as follows. 

 

Phase Equations: 
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Thus we obtain the phase equation as   
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When nkk ββ =  (natural focusing) there is no longitudinal velocity modulation in betatron 

oscillation because β is constant as we mentioned above. However when nkk ββ >  then  
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which causes longitudinal velocity modulation 

 

 

Figure 2.9-10 The trajectory of an electron in the wiggler plane under wiggling and 

betatron motion, leading to a resultant modulation of the longitudinal velocity. 

The parallel velocity oscillates as shown in Figure 2.9-10.  
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We used the scaled ⊥r
v  for 3-D theory 
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Physically )(
8
1 222 xkp n

vv + is equivalent to energy spread in gain reduction. 

(θ  is defined as slow varying part of ψ )  
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Figure 2.9-11 Comparison of the divergence angles of the wiggle and betatron motions. 

( ) xkxkx σββββ ≅=′ 0max
        Eqn 2.9-35 

where xσ  is the beam size. 
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Beam size xσ  is of order of 0.3 mm or less however wλ  is of order of 10mm or more. 

Therefore wxx ′<<′β usually holds and we get the same 1-D equation for energy 

exchange  
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Maxwell Equation 

In section 2.5 we derived the results of the Maxwell equations. In this case the derivation 

exactly same and we use wxx ′<<′β  condition to calculate )(cos twzki
w

sszek − . Following 

exact same derivation in Fluid Model section we obtain Eqn 2.5-9 
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2.10  Universal Scaling 

 
The coupled Maxwell-Vlasov equations in 3-D can be reduced to the following: 
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After some calculation we obtain the dispersion relation for the electric field. 
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is uniform distribution (step fn),  

02 Rkka ws= is the scaled beam size and 0R  is beam size. 

The rms value of the beam is 06
1 Rx =σ . For a matched beam xx k σσ β=′ , thus the 

emittance is 2
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6
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Eqn 2.10-2 can be solved using a trial function 
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The continuity of logarithmic derivative at ar =  leads to  
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Substituting the trial function into Eqn 2.10-2 gives us  
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Thus we have two equations (Eqn 2.10-4 and Eqn 2.10-5) and two unknown (µ and χ) 

which we can use simulations to solve. 

The gain length can then be found using  
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In order to increase the speed of the simulations a scaling method is used by changing the 

variables as follows: 

We define 0222~ Rkkaa wsρρ ==  and change the integration variable ss ⇒ρ2   

 Then the Eqn 2.10-4 becomes 
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 and Eqn 2.10-5 becomes 
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More practical form of scaling function was introduced by Yu, Krinsky and Gluckstern 

[4] as follows: 

We change the variables as  

aD ~2ρ=  and sas ⇒~  therefore the Eqn 2.10-9 becomes scaled with D instead of 2ρ as:. 
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The continuity equation (Eqn 2.10-8) becomes  
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Therefore the gain function is 
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