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Abstract

The amount and spatial distribution of forest biomass in the Amazon basin is a

major source of uncertainty in estimating the flux of carbon released from land-cover

and land-use change.   Direct measurements of aboveground live biomass (AGLB) are

limited to small areas of forest inventory plots and site-specific allometric equations that

cannot be readily generalized for the entire basin.   Furthermore, there is no spaceborne

remote sensing instrument that can measure tropical forest biomass directly. To

determine the spatial distribution of forest biomass of the Amazon basin, we report a

method based on remote sensing metrics representing various forest structural

parameters and environmental variables, and more than 500 plot measurements of forest

biomass distributed over the basin. A decision tree approach was used to develop the

spatial distribution of AGLB for 7 distinct biomass classes of lowland old-growth forests

with more than 80% accuracy.  AGLB for other vegetation types, such as the woody and

herbaceous savanna and secondary forests, was directly estimated with a regression

based on satellite data.

Results show that AGLB is highest in Central Amazonia and in regions to the east

and north, including the Guyanas. Biomass is generally above 300 Mg/ha here except in

areas of intense logging or open floodplains.  In Western Amazonia, from the lowlands

of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150-300

Mg/ha.  Most transitional and seasonal forests at the southern and northwestern edges of

the basin have biomass ranging from 100-200 Mg/ha.  The AGLB distribution has a

significant correlation with  the length of the dry season. We estimate that the total

carbon in forest biomass of the Amazon basin, including the dead and belowground

biomass, is  86 PgC with 

€ 

±20%  uncertainty.
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1. Introduction

The distribution of forest biomass over tropical forests is uncertain.   Current

estimates for the forests of the Amazon basin vary widely (Fearnside, 1996; Brown,

1997; Houghton, 1997; Houghton et al., 2001; Eva et al., 2003; Fearnside et al., 2003),

and contribute more than any other factor to the uncertainty in estimates of carbon flux

from land-cover and land-use change  (Houghton et al. 2000; Houghton, 2005).  While

extensive forest inventories could provide the data required for accurate determination of

the sources and sinks of carbon from changes in land use, systematic on-the-ground

measurements of biomass over large areas, such as the Amazon basin, are expensive and

highly unlikely.  Partial inventories, such as the one carried out by RADAMBRAZIL in

the 1970s, and measurements at individual plots, provide information on biomass in

certain forest types, but they have been insufficient for the entire region.

Houghton et al. (2001) compared seven methods that have been used to estimate

forest biomass over the Brazilian Amazon.  The methods were based on the

RADAMBRAZIL inventory, on an interpolation of measurements from 44 plots, on

empirical relationships between environmental factors and aboveground biomass, on

percent tree cover from satellite data, and on estimates of biomass modeled with satellite-

derived measurements of NPP.  Basin-wide estimates of biomass (including dead, live,

and belowground) ranged over more than a factor of two, from 39 to 93 PgC, with a

mean value of 70 (

€ 

±7 ) PgC. Average forest biomass was 177 (

€ 

±17) MgC ha-1.  Data

from the RADAMBRAZIL inventory produced estimates of total biomass that varied

between 62.5 PgC and 93.1 PgC, depending on the factors used to convert stem volumes
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to biomass. A spatial comparison of four of the most reasonable maps showed agreement

over only 5% of the Brazilian Amazon (essentially random agreement).

Estimates of biomass for the region suffer from two sources of uncertainty: (1)

uncertainties associated with measurements at individual plots and (2) uncertainties in

extrapolating data from individual plots to the entire basin.  Measurements at individual

plots are often incomplete. Full accounting requires measurement of live and dead

biomass, above- and belowground biomass, lianas, palms, small trees, and other

components of biomass (Brown and Lugo, 1992; Fearnside, 1992; Higuchi et al., 1994;

Kaufman et al., 1996). Measurements at individual plots also suffer from other problems,

such as the possible bias of data towards low (accessible) biomass, the possible bias of

small plots towards large biomass, and the use of different allometric equations to

calculate biomass (Brown and Lugo, 1984, 1992; Brown et al., 1995; Fearnside, 1997;

Houghton et al., 2001; Keller et al., 2001; Nelson and Mesquita; 1998; Saatchi et al.,

2005) (see Chave et al. (2004) for a systematic accounting for these uncertainties and the

propagation of errors).

Systematic inventory plots using statistical sampling protocols can reduce the

errors in biomass estimation to 10-20% at the stand level  (Brown and Lugo, 1992;

Brown et al., 1995; Keller et al., 2001; Chambers, et al., 2001). A recent study by Brown

et al. (2000) in the Noel Kempff National Park of Bolivia showed that a statistically

designed sampling technique (over 600 plots) reduced errors to less than 10%. However,

a similar sampling intensity over the Amazon basin has not been feasible because of the

basin’s large and inaccessible regions, and the fine scale variation in forest structure and

in species composition.
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The largest uncertainty in estimating the distribution of biomass over large

regions results from the techniques used in extrapolation (Houghton et al. 2001). In the

absence of large-scale inventory plots and direct measurement of forest biomass from

remote sensing data, most efforts for quantifying the distribution of biomass have focused

on either interpolation techniques aimed at providing patterns of biogeographical

variation of forest biomass (Wood et al., 2006), or a combination of modeling and remote

sensing (Potter et al., 2001).   In this paper, we report a new method of extrapolation over

the Amazon basin.  By collecting data from a large number of biomass plots in a variety

of forest types distributed over the basin, and by using remote sensing data sensitive to

forest characteristics and environmental variables, we develop a series of metrics for

extrapolating the plot data to the basin.  The approach combines the strengths of both

forest plots (limited in spatial coverage but providing accurate measurement of biomass)

and remote sensing data (less accurate in measuring biomass directly but covering the

entire region). The spatial resolution is 1-km.  To cover the wide range of biomass values

across the basin, we considered all vegetation types present: old growth terra firme

forests, floodplains, woody and herbaceous savanna, and small forest patches along the

eastern Andes and Atlantic coast.  We also included the most recent land-cover map of

the region (1 km resolution) in order to separate undisturbed vegetation from the

ecosystems modified by human activities (secondary and degraded forests).   The region

of study includes all vegetation types in South America between 14o N and 20o S latitude.

The paper is divided into several sections.  The first section describes the biomass

plots and the remote sensing data used in this study. The section on methodology
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describes the approach for extrapolating the plot data over the basin.  The last section

presents the biomass distribution at 1 km resolution, estimates the accuracy from cross-

validation, and discusses sources of errors and uncertainties.

2. Data

 2.1 Biomass Plots

Measurements of forest biomass across the Amazon basin have increased in recent years.

Although these measurements do not follow a systematic inventory protocol (they vary in

plot size, sampling scheme, allometric equations, and the number of components

measured), they have produced the largest data set on woody biomass throughout the

basin.   We refer to these measurements as biomass plots and not forest inventory plots.

The plots included in this study met the following criteria: (1) Almost all biomass

measurements were made after 1990.  (2) All secondary forests plots included the years

since disturbance.  (3) Plots were representative of larger areas.  All plots, except a few in

secondary forests, were sampled within a larger forest patch and thus could be integrated

with the remote sensing data. (4) Plots were geo-located.  We located all plots on high

resolution (30 meter) Landsat ETM (Enhanced Thematic Mapper) imagery acquired in

late 1990s and early 2000s and, if necessary, we modified the geographical locations to

make sure they fell in the described vegetation type.

All plots contained information on aboveground live biomass (AGLB), and only

occasionally included other components of forest biomass, such as dead and belowground

biomass, structural information, such as the basal area and height, and average wood

density.  Because the most consistent quantity provided for each plot was AGLB, our

analyses concentrated on the distribution of this quantity.  However, the relationships
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between AGLB and other components of total biomass from the published literature were

used to calculate total biomass over the basin  (Brown and Lugo, 1992; Delaney et al.,

1997; Cairns et al., 1997; Houghton et al., 2001).  For example, aboveground dead

biomass (AGDB) and the belowground biomass (BGB) in South American forests

averaged 9% and 21% of AGLB, respectively (Houghton et al, 2001).   Cairns et al

(1997) also showed a direct relationship between AGLB and belowground biomass based

on 85 studies of forest plots around the world.

Fig. 1.   Location of forest plots in the Amazon basin.  Each location on the map
represents several plots.  Location 25 represents biomass plots scattered across the
basin.

In this study, we identified and collected data from 544 biomass plots sampled in

different vegetation types throughout the basin (Fig. 1).  Most of the data were not

published but were contributed to this study by individual investigators.  The data (plot

size, vegetation cover, geographical region, date, and name of the principal investigator)

are summarized in Table 1.
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Table 1.  List of biomass plot data used in this study with general locations, number of
plots, vegetation types, and sources. Location of biomass plots from Noel Kempff
National Forest in Bolivia were not available to this study and average biomass for 6
vegetation types in the park were used as training data set.

Reference Location Vegetation Type No. of Plots/Size
1 Cummings et al.

2002
Rondonia, Brazil Terra firme open and ecotonal

forests
20 plots (0.79 ha)

2 Rice et al., 2002 Tapajos, Para, Brazil Terraa firme closed canopy dense
forest

4 transects (5 ha)

3 Hoakman et al. 2002 Guaviare, Colombia Terra firme primary and
secondary forests

23 plots (0.1 ha )

4 Hoakman et al., 2000 Araracuara,
Colombia

Terra firme and inundated forests 23 plots (0.1 ha)

5 Sanden, 1996 Mabura Hill, Guyana Moist tropical forests 28 plots (1 ha)
6 Laurance et al., 2002 Amazonas, Brazil Terra firme dense & fragmeneted

forests
65 plots
(1 ha)

7 Lucas et al., 2002 Manaus, Amazonas,
Brazil

Secondary & Primary forests 22 plots (0.1 ha)

8 Luckman et al., 1998 Tapajos, Para, Brazil Secondary & primary forests 18 plots (0.1 ha)
9 Steinenger, 2000 Manaus, Januaca,

Amazonas, Brazil
Secondary forests 18 plots (0.1 ha)

10 Steinenger et al.,
2001

Santa Cruz, Bolivia Inundated, liana, secondary, semi-
deciduous, deciduous forests

26 plots (0.1 ha)

11 Brown et al., 2000 Noel Kempff Natl.
Park, Bolivia

Liana, inundated and evergreen
forests

6 vegetation classes,
from 625 plots

12 Moran & Brondizio,
2000

Marajo Island, Brazil Secondary, logged, inundated
forests

19 plots
(0.1-1.0 ha)

13 Moran & Brondizio,
2000

Bragantina, Brazil Secondary forest, 19 plots
(0.1-1.0 ha)

14 Moran & Brandazio,
2000

Tome-Acu, Brazil Secondary forest 12 plots
(0.1-1.0 ha)

15 Moran & Brandazio,
2000

Altamira, Brazil Secondary forest 16 plots
(0.1-1.0 ha)

16 Moran & Brandazio,
2000

Yapu, Colombia Secondary forest, agroforestry
unit

8 plots
(0.1-1.0 ha)

17 Nelson, 1998 Acre, Brazil Dense evergreen, bamboo forests 20 plots (0.5 ha)
18 Saatchi et al. 2005 Jaru, Rondonia,

Brazil
Terra firme open forest 5 plots (5 ha)

19 Santos et al., 2003 Mucajai, Roraima,
Brazil

Dense, open evergreen, secondary
forest, savanna

38 plots
(0.1-0.25 ha)

20 Santos, et al 2003 Comodoro, Mata
Grosso, Brazil

Secondary forest, woodland, grass
savanna

30 plots
(0.1-0.25 ha)

21 Santos, et al. 2003 Jaru, Rondonia Secondary, primary forests 18 plots
(0.1-0.25 ha)

22 Pitman et al.,1999 Yasuni, Ecuador Terra firme and swamp forests 24 plots (0.1-1 ha)
23 Silman et al. 2001 Manu, Peru Terra firme and floodplain forests 29 plots ( 1 ha)
24 Alves, et al., 1997 Rondonia, Brazil Secondary, primary open forests 9 plots (0.1 ha plots)
25 Houghton et al. 2001 Brazil, Bolivia, Peru,

Venezuela, Colombia
Primary, lowland, montane and

submontane forests
44 plots (varying)

Total 544 plots

The biomass plots included 216 terra firme old-growth forests, 191 secondary

forests of different ages, 59 woodland savannas, 40 floodplain forests, and more than 38

submontane and montane tropical forests (Table 2).
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Table 2.  Distribution of number of plots and biomass ranges for general vegetation types
across the Amazon basin.

Vegetation Type Number of Plots Average AGLB
Tons/ha

Standard Deviation
AGLB

Tons/ha
Old Growth Terra
Firme Forest

216 254.8 103.2

Floodplain Inundated
Forest

40 161.3 101.7

Secondary Forest 191 52.9 47.5
Woodland Savanna 59 20.1 30.2
Grass/Shrub Savanna 38 4.4 1.9

2.2 Remote Sensing Data

We compiled a set of remote sensing data and products from different earth

observing sensors to derive metrics sensitive to the structural attributes of vegetation,

landscape, and environmental variables (Table 3).  The data set included both optical and

microwave remote sensing sensors.  Optical data were derived from four years of MODIS

32-day composite products.  Images of the normalized difference vegetation index

(NDVI) at 1 km resolution were from Huete et al. (2002), and (leaf area index) LAI data

were from Myneni et al.(2002).  We processed the data sets to create, first, a one-year

monthly maximum NDVI composite and average LAI images.  This step improved the

quality of the data by filtering out cloud cover and reducing noise in the LAI data.   Then,

we computed 4 metrics of LAI and NDVI from these data: maximum, annual mean, mean

of 4 driest months (July, August, September, October), and mean of 4 wettest months

(December, January, February, and April).  These data sets provided measures of

vegetation greenness, seasonality (deciduousness), leaf properties and heterogeneities.

We also included MODIS-derived percentage tree cover data, available from the Global
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Land Cover Facility at the University of Maryland, as an indicator of tree cover and a

possible surrogate for the spatial distribution of biomass (Hansen et al., 2002).

Microwave data from spaceborne radar instruments were used as a surrogate for

forest structure and biomass. JERS-1 backscatter image mosaics for dry and wet seasons

at 100 meter resolution were aggregated to 1 km to produce mean backscatter and a

coefficient of variation (texture) (ratio of standard deviation to mean backscatter for 100

pixels). Backscatter and texture at L-band (1.25 GHz) from this instrument are sensitive

to forest structure and biomass at low densities of tree cover, such as open forests and

woodland savannas (Saatchi et al., 1997; Saatchi et al., 2000; Podest and Saatchi, 2002;

Luckman et al., 1997). Texture also provides information on vegetation roughness and

crown size distribution, again, related to variations in biomass.

As part of the microwave remote sensing measurements, we included global

QSCAT (Quick Scatterometer) data available in 3-day composites at 2.25 km resolution

(Long et al., 2001).  The 3-day data over four years (2000-2004) were used to create

average monthly composites at 1 km resolution and then further processed to produce 4

metrics that included annual mean and standard deviation of radar backscatter at both HH

and VV polarizations (H: horizontal, and V: vertical).  QSCAT radar measurements are at

KU band (12 GHz) and are sensitive to surface roughness, moisture, leaf water content,

and other seasonal attributes, such as deciduousness of vegetation. For vegetation types

of low density biomass, such as woodland and herbaceous savanna, measurements at

different polarizations correlate positively with the aboveground biomass (Long et al.,

2002). For areas with dense forest, the sensitivity of backscatter measurements to forest

canopy roughness can help distinguish differences in biomass.
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Table 3: List of remote sensing data and metrics from MODIS LAI (Myneni et al. 2002),
MODIS NDVI (http://glcf.umiacs.umd.edu/data/modis/), MODIS derived percentage tree
cover (http://glcf.umiacs.umd.edu/data/modis/), QSCAT scatterometer (Long et al.,
2001), JERS-1 radar (Saatchi et al., 2000), and SRTM (http://www2.jpl.nasa.gov/srtm/).

Data Record
Instrument

Vegetation/
Landscape
Parameter

RS Metrics at 1 km
Resolution

Monthly NDVI 2000-2004

MODIS Vegetation type &
seasonality

NDVI-1: Maximum NDVI
NDVI-2: Annual Mean NDVI
NDVI-3: Mean NDVI Dry Months
NDVI-4: Mean NDVI Wet Months

Monthly (2000-2004)
Leaf Area Index (LAI) MODIS

Vegetation type,
seasonality,
productivity

LAI-1: Maximum LAI
LAI-2: Annual Mean LAI
LAI-3: Mean LAI wet months
LAI-4: Mean LAI dry Months

Percent Tree Cover MODIS Forest cover,
heterogeneity VCF: Continuous Field Product

Scatterometer Backscatter
Monthly composites at 1 km
1999-2004 QuikSCAT Vegetation Moisture

Leaf/Wood Density

QSCAT-H: Mean Backscatter HH
QSCAT-V: Mean Backscatter VV
QSCAT-SH: Std Backscatter HH
QSCAT-SV: Std Backscatter VV

Radar backscatter at 100 m
Resolution (1995-1996)

JERS-1
Biomass, Structural
Heterogeneity, cover
type

JERS-DRY: Dry Season backscatter
JERS-WET: Wet Season backscatter
JERS-DT:  Dry Season CV Texture
JERS-WT: Wet Season CV Texture

Digital Elevation (100 m
Resolution) 2000 SRTM Surface Elevation SRTM-HGT:  Mean Elevation

SRTM-STD:  Ruggedness factor

Finally, we included the SRTM (Shuttle Radar Topography Mission) digital

elevation data, aggregated from 100-meter resolution to 1 km.  In addition to the mean

elevation, the standard deviation elevation about this mean was included as an indicator

of surface ruggedness or vegetation roughness. Overall, 19 remote sensing image layers

representing vegetation and landscape features were included in this analysis (Table 3).

2.3 Climate Data

A series of climate metrics was chosen to examine the relationship between

biomass distribution and climate variables over the Amazon basin.  The climate data were

compiled from a number of data bases and are available from the WorldClim website
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(http://biogeo.berkeley.edu/) (Hijmans et al. (2004). These bioclimatic variables included

11 temperature and 8 precipitation metrics at 1 km spatial resolution (Table 4).   The data

bases used to produce these climate metrics were obtained from the Global Historical

Climatology Network (GHCN), the FAO (the United Nations Food and Agricultural

Organization), the WMO (world Meteorological Organization), the International Center

for Tropical Agriculture (CIAT), R-HYdronet, and additional country-based stations.

The station data were interpolated to climate surfaces by using three independent

variables (latitude, longitude, and elevation) and the thin plate smoothing spline

technique (ANUSPLIN, Hutchinson 1999).  Elevation (from SRTM data) was

incorporated to reduce statistical error (Hutchinson 1999).

Table 4.  Description of long term averaged climate surfaces (Hijmans, et al. 2004).

Bioclimate layer Layer Description & Unit

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (P2/P7) (* 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (P5-P6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
Rain1 Number of Months Less than 100 mm

Rain2 Number of Months Greater than 300 mm
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To these climate surfaces, we added two additional layers: the number of months

rainfall was less than 100 mm and the number of months it exceeded 300 mm.  These

precipitation metrics indicate the length of the dry season and the seasonality of

precipitation (Malhi and Wright, 2004).

2.4 Vegetation Map

To improve the extrapolation of the biomass plots over the basin, we used a

vegetation map recently produced from a fusion of remote sensing data (Saatchi et al.,

2004).  Vegetation cover was divided into 16 types based on structure (tree density),

phenology, and surface inundation conditions. The cover types were largely based on the

vegetation classification of the RADAMBRASIL project, but included cover types found

outside the Brazilian Amazon (Veloso et al. 1991; Prance, 1979; Pires and Prance, 1985;

IBGE, 1997).  The cover types included: terra firme forest (1.dense closed forest, 2.open

forest, 3.bamboo dominated forest, 4.liana or dry forest, 5.seasonal forest), savanna

vegetation (6.dense woodland, 7.open woodland, 8.park or shrubland savanna,

9.grassland), wetlands (10.closed forest, 11.open forest, 12.herbaceous, 13.mangrove,

14.open water) and anthropogenic vegetation (15.secondary forest and plantation,

16.deforested cover types, including pasture, crops, and bare areas).     The vegetation

map has two advantages over other global or regional land cover maps: 1) it separates old

growth forests into a number of vegetation types based on seasonality or dominance of

species, and 2) it separates anthropogenic cover types by using higher resolution remote

sensing data.     The classification was verified with existing regional and national maps

over the region.  We used the map in this analysis to separate forest from nonforest types,
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to locate the biomass plots associated with a vegetation type (Fig. 2), and to allocate

AGLB to land-cover types in the Amazon basin.

Fig. 2. Vegetation map of the Amazon basin, at 1 km spatial resolution, derived from
remote sensing data (Saatchi et al., 2004).  The map divides the basin into 16 land cover
types and open water bodies.

3. Methods

Our overall approach was to determine relationships between remote sensing

metrics and AGLB from forest plots, and use these relationships directly to estimate

AGLB over the entire Amazon basin.  We tested several techniques, such as multivariate

regression analysis and a maximum likelihood estimator (MLE). Both methods

performed poorly when tested against the plot data (R2 <0.3) because of high spatial



15

variability of biomass at local scale and, thus, weak correlations between remote sensing

metrics and biomass values.   For this reason, we adopted a biomass classification

approach to segment the image into different ranges of AGLB.   Our methodology can be

summarized in three steps: 1) classification, 2) accuracy assessment, and 3) correlation

with environmental variables.

3.1 Classification

For biomass classification, we used the decision tree method (DTM) described in Simard

et al. (2000).  The method is based on the algorithm of Breiman et al (1984), in which a

hierarchical set of rules derived from a training data set are developed to split the input

data layers into clusters associated with the class definition.   DTM has been successfully

applied to remote sensing data in the past because of its simplicity, efficiency, and

robustness (Simard et al., 2000, 2001; Saatchi et al., 2000, 2004;, 1998; Hansen et al.,

2000).  It is simple because, once the rules are determined, the classification can be

readily performed by using a simple program.  Its efficiency is primarily due to the fact

that, unlike traditional approaches (e.g. MLE), it uses only input data layers to define the

classes.  Finally the methodology is robust because it does not assume any a priori

statistical characteristics for the input data layers and therefore can be applied with

remote sensing data from different sensors.  Moreover, the decision tree rules are explicit

and allow for the identification of data layers relevant for particular class types.

We performed the classification of the AGLB in two steps. (1) We used the DTM

approach to classify the AGLB of forests with biomass values above 150 Mg/ha into

classes of 50 Mg/ha increments. (2) For forests with biomass values less than 150 Mg/ha,

we developed direct regression equations from the field plots and the remote sensing data
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to define biomass classes of mostly 25 Mg/ha increments.  The following sections

summarize the methods at each step.

3.1.1 Forest Biomass > 150 Mg/ha

.  By concentrating on old growth terra firme and floodplain varzea forest types, we

developed a training data set of 256 biomass plots (216 terra firme and 40 inundated) that

included a wide range of AGLB values, the majority of which were greater than 150

Mg/ha.   The following steps summarize the overall procedure for biomass classification.

1. Using each plot’s geographic coordinates, we identified the land-cover types of

256 biomass plots on the 1-km resolution vegetation map of the Amazon basin.

All biomass plots were identified as belonging to either dense, open (degraded),

bamboo or deciduous, dry, and floodplain or swamp forests in the classification

map.  If more than one plot was located on the same 1-km pixel, we used the

average AGLB to represent the pixel value.  These co-located plots reduced the

effective number of plots from 256 to 228. The plot locations were used to create

a training dataset for the 19 remote sensing data layers (Table 3). We divided the

training plots into seven biomass classes with 50 Mg/ha increments (i.e. 0-150,

150-200, 200-250, 250-300, 300-350, 350-400, >400.).    Each class had 10-30

forest plots.   For those plots that were in the middle of large contiguous forest

stands and had similar landscape features (no change in elevation and land cover

type), the training data were extracted from 3x3 pixels around the plot location.

This approach increased the training data set to 50-100 pixels for each biomass

class and allowed the development of input statistics for the DTM classifier.
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2. The vegetation map was used to create a mask identifying classes of old growth

and inundated forests.   The mask included the dense and open terra firme forests,

bamboo and liana dominated forests, seasonal, and dense and open floodplain

forest cover types.

3. The DTM classifier was used to generate a biomass map with seven classes over

areas masked by the vegetation map. The structure of the decision tree is

determined by optimizing a cost function iteratively to assign a final node to each

biomass class (Simard et al, 2000).  The optimization works in a global sense; it

optimizes the cost function for the entire group of classes rather than individual

classes. This process is performed by selecting a random sample of the training

data to develop the decision tree rules and to assess the performance of the rules

by predicting the biomass classes for the rest of the training pixels as an

independent test data.  This procedure is repeated until the highest accuracy for

the independent test data is achieved.  The optimized decision tree uses the most

relevant data layers, and the least number of splits to obtain the classes of biomass

(Simard et al., 2000).  We applied the decision rules from the DTM classifier to

the input data layers over the region masked by the vegetation map and thereby

generated a map with seven biomass classes.

3.1.2 Forest Biomass < 150 Mg/ha

To complete the mapping of biomass distribution over the Amazon basin, we

included areas of woody savanna and park savanna, disturbed or secondary forests, and

tree plantations.   The extent and the biomass of secondary forests depend on recent rates

of deforestation and land-use change.  Most areas of secondary forest are small compared
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to the resolution of the images used in this study.  However, pixels with a mixture of

secondary, old growth and non-forested land were identified as anthropogenic or open

forests in the vegetation map.   Similarly, the woodland savanna pixels were mixtures of

forest and non-forested areas.  We combined these pixels from the vegetation map with

the areas of the lowest biomass class (0-150 Mg/ha) to create a second vegetation mask

for low biomass forests.

The estimation algorithm was developed first by extracting spectral information

from the remote sensing data layers for pixels representing the forest plots with 0-150

Mg/ha of AGLB.  Similar to the old growth forest case, we combined those plots that

were located on the same 1 km pixel and used an average biomass to represent the pixel.

After combining the pixels, we were able to create a spreadsheet of spectral information

and biomass for 214 plots that included 100 secondary forests, 58 woodlands and non-

forest savannas, and 4 mixed open forest and herbaceous swamps.    The spectral data

were extracted either from an individual pixel or from 3x3 pixels around the plot location

wherever the biomass plot was in the middle of a contiguous large stand.   We developed

an optimum multivariate regression model using a bootstrapping approach by randomly

selecting half of the training data for model development and half for testing the model.

The optimum model was found for the best correlation and the least error.  The model

was then applied to the input data layers over areas masked by the vegetation map and the

resulting biomass values were classified into five classes with 25 Mg/ha increments (0-

25, 25-50, 50-75, 75-100, 100-150 Mg/ha).

3.2. Accuracy Assessment

Maps created from remote sensing data have at least three sources of error: (1)
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from the imposition of discrete classes on natural continua, (2) from the overlap of

spectral characteristics of different classes, and (3) from inconsistencies between

vegetation characteristics and resolution of the map.  Testing and understanding the

sources of errors in the biomass map are crucial in defining its applications.  We used two

standard approaches to assess the accuracy of the AGLB map:

1. Classification Accuracy: By classification accuracy, we refer to the probability

that a randomly selected location is classified correctly on the map.  Because the

classification and estimation of AGLB were fully automated, we were able to

embed a combination of bootstrapping and holdout procedures in the

methodology to automatically estimate the expected accuracy of classification (or

error of misclassification).  In the holdout approach, we randomly split the

training datasets into training and test subsamples. The training subsample was

used to develop the decision rule or the estimation regression model, and the test

subsample was used to evaluate the classification accuracy (Steele et al., 1998).

Assuming the training data represented the probability of biomass distribution

over the basin (no a priori standard probability sampling technique was designed

for biomass plots), the accuracy assessed from the holdout approach provides a

nearly unbiased estimate of the prediction accuracy of the classification. In the

bootstrap method, the holdout approach is repeated many times, by replacing the

training and test data with a new random split.  The individual accuracy of each

classification simulation is then combined with the others to produce the expected

prediction accuracy for AGLB classes (Crawford, 1989; Stehman and

Czaptweski, 1998).
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2. Spatial Accuracy: The above estimates of classification accuracy provide useful

information about class-specific accuracy, yet there may be substantial spatial

variation in accuracy across the biomass map that is not accounted for in these

estimates.   The spatial accuracy of the map provides the probability that any pixel

or region on the map is classified correctly.  Without a reference map or post-

classification probability sampling data, spatial accuracy cannot be computed

rigorously.  Interpolation techniques, such as krigging of class accuracy over the

entire map (Steele et al. 1998) and krigging with post-classification sampling

(Kyriakidis and Dungen 2001), are among common methods for assessing the

spatial accuracy. However, these methods are time consuming and do not

necessary provide reasonable assessment of accuracy in sample-deficient areas.

For this analysis, we applied the bootstrap aggregation or “bagging” method,

commonly used to estimate the spatial accuracy of maps in the absence of test

samples or reference maps (Breiman, 1996; Steele et al., 2003).  By combining

the DTM and the regression model, we produced one classifier from each

bootstrap sampling of training data (drawn randomly with replacement) and hence

one biomass map from each classifier.  By repeating the bootstrap classifications

many times, the probability of class membership for each pixel can be estimated

as the percentage of times that pixel was classified as the optimum class.  The

spatial accuracy of classification is therefore the joint probability of the class

membership for each pixel and the probability of the optimum class.    We

obtained estimates of probability with a Monte Carlo approximation.   Note that

the resulting spatial accuracy map is not an absolute assessment of biomass
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accuracy across basin, but a relative measure of uncertainty of the methodology

across the basin.

3.3 Correlation with Climate

Environmental variables such as topography, geomorphology, soil types, solar

radiation, wind, temperature and rainfall are important factors affecting the formation of

the tropical forests, their diversity, structure, density, and productivity.   To quantify the

relationship between biomass and average bioclimatic variations over the Amazon basin,

we intersected the AGLB map with the BIOCLIM variables interpolated with the digital

elevation model from the SRTM data at 1km grid cells.   For each AGLB class, we

calculated the average and standard deviation of the climate variables and analyzed the

relationship for each climate variable separately.   To improve the correlations with

climate variables and to limit the analysis to only few biomass ranges, we combined the

biomass classes into 4 levels (0-100, 100-200, 200-300, and > 300).

4. Results

Forest Biomass > 150 Mg/ha

Application of the decision tree method (DTM) to classify the AGLB of forests with

biomass greater 150 Mg/ha resulted in the map shown in Fig.Fig. 3. Out of the 19 remote

sensing data layers only 16 contributed to optimizing the decision rules. These layers, and

the associated binary decisions are explicitly shown in Fig. 4.  The DTM originally

produced 30 nodes from the classification with 16 data layers. Each node was associated

with one of the seven biomass classes and was used to choose the pixel class in the

biomass map.  However, among these nodes, only 14 were accurate enough to determine
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classes. These nodes were related to only 13 remote sensing layers. The rest were

considered weak nodes with low accuracy in classification of pixels and were eliminated

from Fig.Fig. 4.   In the final map, the pixels associated with these weak nodes were

corrected by applying a filter that renamed the class based on the probability of classes

within a 3x3 box centered around the pixel with the low accuracy.

Fig. 3.  AGLB class map of terra firme old growth forests derived from the decision rule
classifier and multiple layers of remote sensing data.

The interpretation of the decision tree rules for choosing biomass classes is difficult

because of the large number of data layers and the multiple tree branches defining each

biomass class.  However, several branching rules could be considered significant in the

overall classification. SRTM elevation and the ruggedness factor (standard deviation of
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Fig. 4.  Optimized decision tree rules used in the classification of the dense forest
biomass map.  The name of remote sensing data layers are at shown at the top of
branches with their binary rules.  The final nodes derived from the rules are shown at the
end of each branch, with the red nodes representing the weak rules that will be finally
removed by using a majority filter around the pixels associated with the weak rules.

elevation) were among the first data layers to define classes.   The majority of pixels with

biomass classes 4, 5, 6, and 7, referring to values above 250 Mg/ha, were located in areas

below 190 meter elevation and with a ruggedness of less than 6 meter in the central

Amazon.  These regions had the highest probability of co-locating with the

geomorphological features of dense river systems.  The second series of data layers

important in decision rules was the QSCAT horizontal and vertical polarizations and their

temporal standard deviations. These layers were sensitive to canopy roughness and

moisture condition.  Higher canopy roughness and moisture were, in general, associated

with higher biomass values, whereas smoother canopies and lower moisture content were

associated with lower biomass values.  From the four NDVI metrics, the average annual

NDVI was never used in the classification. The maximum and dry season NDVI metrics
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were primarily associated with high biomass classes  (3, 4, and 5) and the wet season

NDVI, with the low biomass classes (1 and 2).   Among the LAI metrics, only the dry

season layer was used in the final branches of the decision tree.  It is possible that the dry

season LAI was associated with regions of high water availability and increased leaf

production during the dry season when solar radiation is usually maximum and cloud

cover is minimum (van Schaik et al., 1993; Wright, 1996).    The dry season radar

backscatter and texture were also important in separating biomass classes 3 and 4 but not

for distinguishing among high biomass values.

The accuracy of the biomass classification was assessed from the combination of

bootstrapping and holdout approach embedded in the DTM.  The overall accuracy of

classes produced from the optimum decision tree was 81% (Fig. 5), which is reasonably

high given the range of AGLB chosen for the classification.  The bootstrapping

simulation with the holdout approach was performed 25 times to estimate the mean

accuracy for each biomass class.  The largest errors were for high biomass classes 6 and 7

with 73% and 58% accuracy, respectively.  Given the limited sensitivity of the input data

to high biomass values, such results were expected.  The low and medium biomass

classes had the largest number of points and the highest accuracy.   We found for classes

1 through 5 mean prediction accuracies of 85%, 83%, 84%, 87%, and 76%, respectively.

These values are considered unbiased estimates of classification accuracy. In other

words, given the biomass plots and remote sensing data, the DTM performed optimally.

Some of the obvious sources of errors in the classification of high biomass values were

the limited number of biomass plots and the sensitivity of remote sensing data.
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Fig. 5.  Validation of biomass classification map performed internally by the DTM
classifier using the a subsample of the training pixels.  The number of pixels correctly
classified created an overall R2=0.81.

The results show several interesting features of AGLB distribution in the basin:

1. The areas in the northeastern Amazonian region, including the Brazilian coast and the

Guyanas, were estimated to have high biomass (300-400 Mg/ha).    The region includes

relatively intact forests because of its low human population, low agricultural potential (

infertile and highly weathered forest soils), low commercial timber volume, and

inaccessibility.  The climate is hot and wet and strongly influenced by the northeastern

trade winds from the ocean and the intertropical convergence zone.  The forest structure

is multi-tiered with height reaching 40m and emergents up to 50m.  Despite patches of

savannas and low density marsh forests around the rivers, the lowland forest in this

region is expected to have high biomass values (Lindeman and Mori, 1989).
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2. The central areas from west of Trombetas river to the west of Rio Negro, the region

containing the main geomorphological features of the Amazon basin, with high rainfall,

and elevation less than 100 meter, were also classified as high biomass. The forests in

this region are on well-drained clay or loam soil with no shortage of water. They are high

in diversity, with 150 to 300 tree species in a single hectare and more than 500 tree

species.  The canopy structure is irregular, with heights ranging from 25 to 45 m, taller

emergent trees and many palms.   According to the biomass map, AGLB in this region

ranges from 300 to 400 Mg/ha with occasional low stature forests (biomass < 300 Mg/ha)

on sandy soil.  The main channel of the Amazon River, all major tributaries, and a large

extent of varzea and igapo floodplains (biomass as high 250-300 Mg/ha) are also in this

region.   Along the Amazon river, the high biomass forests extend to the eastern regions

of the state of Para and the Marajo island.

3.  The Western region of the Amazon basin covering a large area of the lowlands of

Peru, Ecuador, Colombia, and Bolivia has biomass ranging from 200-300 Mg/ha.   This

region extends to the submontane and transitional forests near the Andean mountains and

is covered by forests with open canopy, a low density of large trees, mixed with semi-

deciduous, deciduous, bamboo, and liana forests.  Data from permanent plots in this

region suggest the forests are more dynamic, have a higher productivity than their

counterparts in the central and eastern Amazon, and have a higher number of smaller and

medium sized trees (Malhi et al., 2004; Baker et al., 2004; Fearnside, 1997).
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Forest Biomass < 150 Mg/ha

Spectral data for forest biomass plots with less than 150 Mg/ha AGLB were extracted

from all 19 remote sensing data layers. We found 6 spectral data that showed the highest

correlation with the field plots (Fig. 6).

Fig. 6. The relationship between five remote sensing data and the AGLB of low-density
forests and savanna woodlands: (a) JERS-1 radar data at L-band HH polarization with
R2=0.68, (b)  QuikSCAT V- and H-polarized channels with R2=0.69, and R2=0.68
respectively, (c) MODIS derived mean NDVI of dry season with R2=0.43, (d) MODIS
continuous field percent tree cover with R2=0.56, and (e) MODIS derived mean LAI of
dry season with R2=0.66.

The best correlations, as expected, were based on radar backscatter measurements.  In the

case of JERS-1 data, the backscatter was measured at L-band (25 cm wavelength) and at

38 degrees from nadir where the radar signal has the potential of penetrating through the

forest canopy and scattering from stems.   As shown in Fig. 6a, the sensitivity to biomass
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declines at values above 80 Mg/ha and almost saturates between 100 and 150 Mg/ha.

Similar results have been reported in the literature for other tropical forests (Luckman et

al., 1998; Saatchi et al. 1997; Rignot et al., 1997).

A second significant relation was found for the annual mean of the QSCAT

scatterometer measurements at both horizontal and Vertical polarizations.  The QSCAT

radar backscatter was measured at KU Band (2 cm wavelength) at incident angles of 46

and 54 degrees for the H and V polarizations, respectively.  At these angles, the short

wavelength radar returns are highly sensitive to forest crown structure, roughness, leaf

density and moisture.  According to Fig. 6b, these parameters are good surrogates for

aboveground biomass in sparse woodlands and low-density forests (up to 50 Mg/ha

biomass).   Similar results with the spaceborne scatterometer data have been observed

over savanna woodlands (Long and Hardin, 1994).   Often, seasonal changes due to the

deciduousness of trees or moist surface conditions may affect the scatterometer data, but

these effects were not present in the annual mean backscatter data used in this study.

MODIS data, including NDVI metrics, LAI metrics, and percent tree cover, all

showed reasonable correlations with the ground data. However, the best correlations with

the AGLB were found for the mean NDVI  of the dry season (R2=0.43), the percent tree

cover derived from the continuous field approach (DeFries et al., 2000) (R2=0.56), and

the LAI of dry season (R2=0.66).    The low correlation with NDVI may be related to its

high sensitivity to leaf greenness, density, and seasonality.  The mean NDVI for the dry

season carries more information about the woody vegetation, as the grasslands and dry

herbaceous understory are mostly absent during this season.
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Using these six measurements (JERS-1, QSCAT H, and V, dry season NDVI,

percent tree cover, and dry season LAI), we developed a linear regression equation for

the logarithm of AGLB in the following form:

€ 

log(AGLB) = 2.99 + 0.18LHH + 0.0467QH + 0.218QV + 0.0028LAI
                     + 0.00059NDVI + 0.0133VCF

 ( 1 )

where LHH is the JERS-1 radar backscatter in dB (decibels), QH and QV

respectively represent the QSCAT H and V polarized backscatters in dB, and VCF is the

fraction of tree cover (ranging between 1-100).  NDVI and LAI are both dry season

metrics, and their values in the equation range between between 0 and 1 for NDVI and

between  0 and 8 for LAI.  Equation (1) was developed by using an optimum set of

coefficients derived from  bootstrapping and holdout sampling of the training data.  As

discussed in the methods section, for every bootstrap random sample, a linear regression

model was developed and tested over the rest of the training data. Through several

iterations (25) the coefficients were estimated using the best correlation and RMSE (Root

Mean Square Error).  This process helped select the optimum equation and guaranteed an

unbiased accuracy assessment.   The comparison of measured and estimated values for

the optimum regression model produced R2=0.91 and RMSE=9.32 (Fig. 7). By

partitioning the estimated biomass values into biomass classes with finer increments, the

results can be represented as a map.

The overall AGLB map, combining forests with biomass < and > 150 Mg/ha, is

shown in Fig. 8a. The spatial distribution of biomass shows that the entire area of

herbaceous cover, park savanna, caatinga,  and parts of open woodlands fall in the first
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Fig. 7.  Validation of biomass estimation of low density forests and savanna vegetation
using the regression model derived from of combined remote sensing data (R2=0.91, P-
value<0.0001).

biomass class (0-25 Mg/ha). This area includes savanna regions of the eastern and

southern Amazon basin extending to the Atlantic Ocean, the savannas of Roraima in

northern Brasil, the La Gran Sabana of southern Venezuela, and the areas along the

Andes extending to the northwestern region of Venezuela.    the majority of woodland

savanna, secondary forests and regions of mixed pasture and forests fall in the second and

third categories (25-50 and 50-75 Mg/ha).  The map also divides the 0-150 Mg/ha class

of high density forests into sub-categories with the majority of pixels in the 100-150
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Mg/ha class.   The combined map includes regions outside of the Amazon basin and

provides reasonable biomass values, but  we cannot verify these results.

Fig. 8.  Aboveground live biomass classification and the spatial accuracy assessment: (a)
biomass map of the Amazon basin at 1 km spatial resolution derived from combined DTM
and regression analysis with 11 biomass classes and overall accuracy of 88% and (b) the
spatial accuracy derived from the Monte Carlo approximation of bootstrap aggregation
at 5 km resolution showing the regional variations in accuracy of biomass classification.

Spatial Accuracy

The boostrapping aggregation or bagging approach was used to generate 25

biomass maps from combined the DTM and regression models.  The spatial accuracy was

computed for each pixel by multiplying the probability of the pixel being the optimum

class by the classification accuracy of that class.   We assumed that 25 iterations

approached the Monte Carlo approximation of the bootstrap variance (Steele et al., 2003).

However, depending on the quality and calibration of remote sensing variables at a

particular pixel, 25 iterations may not be adequate to estimate the true variance.  To

reduce the effect of noisy or outlier pixels resulting from the classification and the

estimation approach, we aggregated a map to 5 km resolution (Fig. 8b)..  Fig.Two general

features are apparent: (1) Accuracy varies with biomass.  Areas with less than 150 Mg/ha

biomass usually have more than 80% accuracy in biomass, although the accuracy is less
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in some areas of old secondary forests and dense woodlands, where biomass ranges from

100-150 Mg/ha. (2) The spatial accuracy varies within each biomass class depending on

the type of vegetation or the characteristics of the remote sensing data. For example,

within one biomass class, areas with higher elevation and ruggedness had relatively less

accuracy than areas with flat topography.  Furthermore, biomass classes in areas with

high seasonal variations tend to have less accuracy than they do in areas with more

sTable seasonality.  For example, areas dominated by bamboo forests in the southwestern

Amazon, where seasonality is high, has a lower accuracy (60-75%) than they did in other,

less seasonal areas.

The spatial accuracy map provides an estimate of regional uncertainty in forest

biomass.  It identifies where future measurements might contribute most to reducing

residual uncertainties.

Discussion

The distribution of AGLB in distinct classes and the associated spatial accuracy enable us

to examine the factors responsible for the magnitude and distribution of carbon stocks in

the Amazon basin.  We discuss three aspects of our results: 1) the relation between

biomass and vegetation types,  2) comparison of the total stock of carbon obtained in this

study with published results, and 3) the correlation of environmental variables with the

patterns of AGLB.

Biomass of Vegetation Types

To quantify the relationship of AGLB to vegetation types of the Amazon, we

intersected the vegetation map (Saatchi et al., 2004) with the biomass map, and for each

vegetation type we estimated the percentage of area covered by each biomass category.
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The results are shown in Table 5.   The five classes of vegetation within the old growth

terra firme forests (dense, open, bamboo, liana, and seasonal forests) occupy

approximately 62% of the legal Amazon basin and represent the undisturbed or

selectively logged forests.   In each vegetation class the biomass ranges between 150 and

350 Mg/ha.  The results show that Amazonian forest biomass is extremely variable and

not well correlated with vegetation type. Nor surprisingly, the techniques successful in

distinguishing vegetation types need not be the ones successful for distinguishing

biomass classes, and vice versa.

Table 5. Area of the biomass classes within each general vegetation category of the
Amazon basin.  The percent area of each vegetation type is with respect to the total Area
of Legal Amazon (8235430 km2) and the percent cover of biomass class is given with
respect to the area of each vegetation class type.

Biomass
Range
Mg/ha

Old Growth
Terra Firme

(62.3%)

Floodplain/
Inundated

Forest
(4.19%)

Secondary
Forest

(1.67%)

Woodland
Savanna
(24.47%)

Grass/Shrub
Savanna
(4.79%)

0-25 0% 5.30 21.76% 48.23% 82.93%
25-50 0% 5.44 71.69% 21.26% 12.06%
50-75 1.19% 1.89 5.12% 7.03% 3.77%

75-100 0.77% 1.38 1.18% 2.86% 1.23%
100-150 11.41% 7.86 0.23% 16.45% 0
150-200 21.67% 16.49 0 2.37% 0
200-250 18.37% 31.79 0 0.45% 0
250-300 23.72% 29.82 0 1.16% 0
300-350 18.80% 0% 0 0.1% 0
350-400 3.96% 0% 0 0 0

>400 0.66% 0% 0 0 0

The mean and standard deviation of biomass for old growth forests are shown in

Table 6.  Vegetation types and biomass classes are to a large extent independent, and

extrapolation approaches that assign vegetation types an average biomass value are

unlikely to capture this variability. The spatial variation of the biomass is important. It is

required for computing accurate estimates of carbon flux associated with deforestation
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and disturbance.  Average values of forest biomass for regions or vegetation types may

be quite different from the biomass values of the forests actually deforested.

Table 6.   The average and standard deviation of biomass densities for areas covered by
terra firme and floodplain dense forest types.

Biomass
Range

Dense
Forest

Open
Forest

Bamboo
Forest

Liana/Dry
Forest

Seasonal/
deciduous

Forest

Varzea
Flooded
Forest

Mean
(Mg/ha)

272.5 228.1 236.9 189.7 248.6 238.3

Standard
Deviation
(Mg/ha)

82.5 63.6 56.9 54.5 64.5 72.1

The area of AGLB greater than 350Mg/ha is very small (4.5% of the area of the

terra firme class).  The inundated forests, including the closed and open floodplain forests

and the estuary and coastal mangroves, occupy almost 4% of the basin and have lower

biomass than terra firme types.   The secondary forest class is approximately 1.7% of the

basin and is primarily classified in the lower biomass range of 0-50 Mg/ha.   The

accuracy of this result cannot be independently verified from published data.  However,

this result is similar to estimates for the Brazilian Amazon (Alves et al., 1997) and

implies that secondary forests are a small portion of the total biomass of the basin.

Woodlands, on the other hand play a major role in total biomass distribution within the

basin because they cover 24% of the basin and their biomass is 50 to 150 Mg/ha.

Total Amazon Biomass Compared with Previous Estimates

To estimate the total biomass of the Amazon basin and compare the results with

other studies, we used published ratios of aboveground dead biomass (AGDB) and

belowground biomass (BGB) to AGLB derived from forest plots (Houghton et al., 2001).
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AGDB averaged 9% of the AGLB (range: 2% to 17%), and BGB averaged 21% of

AGLB (range: 13% to 26%).    We used the average ratios for all vegetation types of the

basin and calculated the range of total biomass and its components for terra firme and

floodplain forests in terms of carbon and the mean total biomass weighted by area.   To

quantify a range of estimates, we used minimum, maximum, and the mid biomass values

for each biomass class.  To find the extreme ranges of the total biomass and carbon stock,

we used the minimum and maximum ratios of BGB and AGDB with the minimum and

maximum range of the AGLB.  The results are shown in Fig. 9.    The uncertainties in

quantifying total biomass (TB) or the total carbon stock in the Amazon basin are mainly

due to uncertainties in medium to high range biomass classes.  These class types are

spatially extensive and, when used with the wide range of ratios for AGDB and BGB,

they produce large uncertainties in total biomass stock.

Fig. 9.  Contribution of biomass classes to the total biomass of the legal Amazon basin
and uncertainty calculated by using the minimum, maximum, and middle range of each
class.
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Converting biomass to carbon (0.5 x biomass) gives a total AGLB of 66 PgC

(range 59-73 PgC) and a total biomass of 86 PgC (range 69-102 PgC) (Table 6). The

latter is within the range of estimates reported by Houghton et al. (2001) (39-93 PgC) and

close to the high end.  In contrast, mean forest biomass (158 MgC/ha in this study) is near

the lower end of the range previously reported (100-232 MgC/ha). The difference is

explained, in part, by the larger area considered in this study (5.46 x 106 km2, as opposed

to 4 x 106 km2) (thus, more carbon) and, in part, by the consideration of savannas in this

analysis (thus lowering the mean biomass). The analysis by Hougthon et al. (2001)

considered only the forests of Brazilian Amazonia. The results are summarized in Table

7.

Table 7.   The area and the biomass carbon components (AGLB, AGDB, and BGB) of
terra firme and floodplain forests in the Amazon.

Forest
Type

Area
Km2

AGLB
PgC

AGDB
PgC

BGB
PgC

TB
PgC

Mean
Biomass
MgC/ha

Terra
Firme

5135200 63.02 5.67 13.24 81.93 159.54

Floodplain 328825 3.25 0.29 0.68 4.22 128.33
Total 5464025 66.27 5.96 13.92 86.15 157.66
Range 59.19-73.34 1.32-12.27 8.62-17.23 69.13-102.84 140.81-174.49

Biomass and Climate Variables

From the 21 BIOCLIM layers considered in this analysis, only the rainfall

variables showed significant correlations with the biomass classes.   We discuss several

of these correlations: the mean annual rainfall,  the number of months rainfall is below

100 mm, the number of months rainfall exceeds 300 mm, and the rainfall of the driest

quarter.   These variables relate to total water availability, the extent of the dry condition,
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and the magnitude and seasonality of moisture (Fig. 10).    All 4 biomass levels are

clearly separated by the number of dry months (rainfall less than 100 mm) (Fig. 10a).

The mean evapotranspiration rate of a fully wet tropical rainforest is approximately 100

mm per month (Shuttleworth 1989; Malhi and Wright, 2004).  When the precipitation is

less than 100 mm per month, the forest may experience a net water deficit; hence 100

mm threshold is a good definition for the dry season, and the number of months with

precipitation below this threshold is a common definition of the length of the dry season

for tropical forests.  The low biomass of transitional forests, with deciduous and semi-

deciduous trees, at the margins of the basin demonstrate a seasonal behavior.   Biomass

values less than 100 Mg/ha occur largely in regions with long dry season (around 6

months), while forests with 100-200 Mg/ha occur in areas with shorter dry season (almost

4 months).   The area of forests with high biomass density decrease as the number of dry

months increases, indicating the consistency of moist condition for their distribution.

However, there is no distinct relationship between biomass classes and the high monthly

rainfalls.  All four biomass categories showed similar behavior for the number of months

in which rainfall exceeded 300 mm (Fig. 10b), suggesting that very high rainfall is not an

important factor in controlling the biomass density.  The results are similar for the

relationship between mean annual rainfall and aboveground biomass.  Fig. 10c shows the

mean and standard deviation of annual rainfall for the 11 biomass classes.   Mean annual

rainfall separates only low from high biomass forests and loses its sensitivity as biomass

increases.  The majority of high biomass forests are in regions with high rainfall

distributed evenly throughout the year.      However, the best relationship is found with

the rainfall of the driest quarter (Fig. 10d).  This finding is consistent with the observation
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that biomass production in tropical forests depends on the moisture available during the

dry season where there is ample light and radiation (Saleska et al., 2003; Wood et al.

2006).

Fig. 10.  Relationship between rainfall variations and the biomass distribution across the
Amazon basin: (1) percent area of biomass categories falling in rainfall metric
representing the number of months rainfall is less than 100 mm, (b) percent area of
biomass falling in areas of rainfalls with number of months exceeding 300 mm, (c) the
relationship between mean annual rainfall and the biomass class types, and (d) the
relationship between the biomass class types and the rainfall of driest quarter.

Analyses with near surface air temperature show no significant correlation

between temperature and biomass.  In general, temperature does not vary significantly

over the Amazon basin.  Except at higher elevations in the Andes, where temperatures are

lower, most of the basin remains between 24o-28o C (Celsius) throughout the year with

thermal small oscillations of ~5oC.
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Conclusion

We compiled a large dataset of AGLB from 544 forest plots and a large set of

spatial data from remote sensing satellites to quantify the distribution of Amazonian

forest biomass at fine spatial resolution. We produced a map of forest biomass classes at

1 km spatial resolution with reasonable accuracy (better than 70%) that enabled us to

estimate the total carbon stock of the basin, including the dead and belowground biomass.

Our estimate of the total carbon content of the Amazon forests ranged between 77 and 95

PgC with an average of 86 PgC, which was within the range of published results from

different approaches (Houghton et al., 2001).     As we used the extreme ranges of dead

wood and belowground biomass ratios with low and high estimates of AGLB to compute

the total biomass, the range (77-95 PgC) must reasonably bound the total carbon stock of

the basin.

Efforts to reduce this range must consider at least three questions.

1. How accurate are ground measurements of biomass over the basin?  In this

study, we did not address the errors associated with the aboveground biomass of

forest plots.  However, we know that the individual plots varied in plot size, the

size of sampled trees, allometric equations, and the biomass components

measured.   Although a standard approach may seem desirable, it is not clear that

one approach is appropriate on forest plots with different species composition

and with different geographical and environmental characteristics.

2. Is it possible to reduce the uncertainty by improving the spatial resolution of data

layers?  This question might be tested by incorporating all available high

resolution satellite imagery and employing a multi-scale approach for estimating
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or extrapolating biomass.  One of the main sources of uncertainty in our study

was the discrepancy between the resolution of images and the size of the forest

plots.  The spectral information obtained from 1 km resolution data is unlikely to

represent the plot biomass or structure.   By incorporating images at 30-100

meter resolutions, we may be able to locate the plots directly on the images and

remove location uncertainty, to incorporate surface heterogeneity in our

calculations, and to improve the separation of the anthropogenic landscapes from

forests.  By using a multiscale approach, a final biomass map of 100 m

resolution, or finer, might be produced, providing datasets useful in estimating

the area and impact of deforestation on the carbon stock and changes in the

basin.

3. What are the environmental variables responsible for the magnitude and

distribution patterns of biomass density over the basin?  Our results suggest a

relationship between vegetation types and climate conditions.  However, climatic

conditions do not explain the distribution of the biomass everywhere.  Soil,

geomorphology, radiation and hydrological features, as well as management and

land-use change, impact forest structure, species composition, and biomass.  The

importance of these factors can be addressed in the future as higher resolution

environmental and remote sensing data layers are acquired.  We expect that data

available through LBA and through other ground measurements obtained from

permanent and carefully organized forest plots, such as RAINFOR, will reduce

the uncertainties inherent in the data used in this analysis.
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