Climate Change Impact on Food Security and Policy Adaptations A Synthesis from Selected African Countries

Tanveer A. Butt and Bruce A. McCarl, Texas A&M University, College Station, Texas

Climate Change Impacts Agriculture

- > Plant growth is altered by
 - Heat stress
 - > Changes in precipitation (dry and wet conditions)
- > Irrigation water supply changes
- > Pest/disease incidence can increase
- Animals may lose weight due to loss of appetite (lower meat production)

Broad Findings by Others

- Climate change does not pose a threat to global food supplies
- Agriculture in high latitude regions (mostly colder north) might benefit to increased growing season
- > Agriculture in low latitude regions (tropics), is often at risk
- Regions like Sub Sahelan Africa where climatic conditions have worsened in the recent past are likely to come under additional stress
- Adaptations can partially or totally mitigate climate change

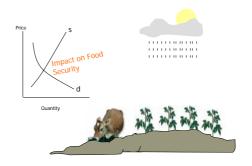
We examined climate change and Agriculture in select African Countries

- Like most of the world regions, Africa has experienced an increase in temperature in the last 100 years.
- During the last century many regions experienced increase in rainfall but parts of Africa experienced a decrease in rainfall.
- In Mali and Senegal rainfall has decreased by 30 to 50 percent, while temperature has increased by 0.4 degree (C°).
- GCM projections suggest that African countries will experience hotter and drier conditions.
- In our assessment of climate change impact, we considered Mali, Senegal, Uganda, and Kenya.

Agricultural and Geographic Scope of Assessment

Countries	Crops	Grasses	Livestock
Mali	7	3	3
Kenya	8	6	3
Uganda	5	x	X
Senegal	4	х	Х

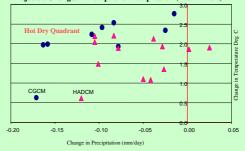
Assessment Methodology


An integrated Biophysical and Economic assessment

Biophysical Assessment

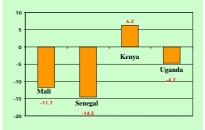
- Obtained future rainfall and temperature changes as projected by Global Circulation Models
- Used Erosion Productivity Impact Calculator (EPIC) to simulate climate change impact on crops
- Used Nutrition Balance (NUTBAL) model to simulate climate change impact on livestock
- Used Phytomus Plant Growth (PHYGROW) model to simulate climate change impact on rangeland

Economic Assessment


Used an Agriculture Sector Model to assess the impact on markets and availability of food and to finally compute the percentage of undernourished population

Climate Change Projections

- We used climate change projections from two of the Global Circulation Models – the Hadley (HADCM) model and the Canadian (CGCM) model.
- The projections are for a hot and dry future except in Kenya where rainfall increased in some cases


Projected Changes in Temp. and Precipitation (Mali - 2030)

Findings on Yield Effects

- > In Senegal yield losses ranged between 15 to 22 percent
- > In Uganda, yield losses ranged between 2 to 24
- In Kenya, yields of maize, millet, and beans increased while for sorghum and wheat the yields decreased.
- In Mali, the yield changes ranged from +8 percent for cotton to -17 percent for sorghum

Projected Changes in Cereal Production (%)

General findings - climate change effects

- Worsens conditions for African agriculture
- Worsens malnourishment (from 30+% to over 50+% in Mali)
- > Increases dependence on food imports
- > Increases degree of price instability
- Adaptations to climate change can effectively mitigate the climate change impact (In Mali, the malnourished population reduced to 22% - even lower than the base level of 34%)
- Adaptations through trade may be realized if markets are allowed to adapt.
- Investing in heat resistant varieties may have high pay-off.

Adaptations Can Help Reduce Losses

- Farmers can adjust cropping patterns that would mitigate some of the climate change related losses
- > Losses in production can be mitigated through higher imports and/or smaller export.
- Yield loss induced by heat-stress can be mitigated by shifting planting and harvesting dates. However, the applicability of this adaptation might be restricted to irrigated areas.
- Effect of higher temperature on yield comes through hardening of grain crust that keeps the grain from reaching its potential size. A variety whose maturity stages are better adapted to the projected hot and dry climate may reduce some of the yield losses