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1. INTRODUCTION

artificially intelligent agent will control a NASA spacecraft. The Deep Space One (DS1) spacecraft, which launched
Successful completion of this experiment will open the wayoctober 24, 1998, is a technojoyalidation mission.
for Al-based autonogtechnolog on future missions. An Unlike previous missions its primarobjective is nb to

important validation objective for RAX is implementation
of a credible validation and verification stragefgr RAX
that also “scales up” to missions thamake full use of
spacecraft autonomy.

Autonomous flight software presents noveldadfficult
testing challenges tharaditional flight software (FSW)
does not face. Since autonorsosftware must respond

gather science observations,t lta flight validate several
new technologies. Successful validation of these
technologies will remove a major obstacle to their use on
more risk-averse science missions.

One of the ne technologies is the Remote Agent (RA), an
artificial-intelligence based architecaur @pable of
autonomousgl commanding the spacecraft. The Remote

robusty in an immense number of situations, the all-pathé\gent Experiment (RAX) will demonstrate autonomous
testing approaches used for traditional FSW is not feasibl@perations of the DS1 spacecrajtthe RA for a period of

Instead, we advocate a combination of scenario-basédk days in the Spring of 1999. Successful flight validation
testing and model-based validation. This paper describé¥ the RA will open the door to the use of autonomous

the testing challenges faced/ lmutonomos gacecraft

spacecraft commanding technofogon future science

commanding software, discusses the testing strategies aftssions. A excellent description ofetixperiment design

model-validation methods that we found effective for RAX,
and argues thiathese methods will “scale up” to missions
that make full use of spacecraft autonomy.

Among the kg challenges for validating autonomous
systens sich as the RAX & ensuring adequat overage

and validation objectives can be found in [1].

One of the Remote Agent's validation objectives is
demonstrating a credible verification and validation (V&V)
approach that will “scale up” fro the experiment scope to
missions tha make full use of autonomy. The V&V

for scenario-based tests, developing methods for specifyirgPproach for traditional flight software is not feasible for
the expected behavior, @hdeveloping automated tools for autonomous flight software.

verifying the observed behavior against those specifications: o jitional

Another challenge, also faced kraditional FSW, is the
scarciy of high-fidelity test-beds. The test plan must be
designed to take advantage of lower-figelitest-beds
without compromising test effectiveness.
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FSW V&V is able to achieve werhigh
confidence b testing each sequence (a time-ordered list of
commands) before uplinking and executing it. Autonomous
software is commandedy thigh-level goals rather than an
explicit sequence. The software decidesvtio command
the spacecrafin order to achieve those goals.eTkact
command sequence is difftuto predi¢ in advance
because the RA’s decisionseamnditional on onboard
events. Itis this abiltto “close-loops” on-board instead of
through the ground operations tedha makes autonomy
technoloy so valuable, bt it also means thathe
traditional sequence validation approach is no longer
feasible. A different V&V approach is needed. Autonomous
software will not be accepted on risk-averse science
missions without a credible V&V strategy.

Traditional FSW Testing

For testig puposes, traditional A8 can be thought of as
having two componentsthe onboard software and a
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sequence The onboard softwar @nsists of low-level to characterizing the input space and measuring coverage.
procedures for commanding aspects of the spacecrafihe RA’s models were used to idewtifon-interacting or
hardware. The sequence is a time-ordered list dbw-interaction regions of the parameter space, thereby
commands, whereach command correspondsdne of the  reducing the number of parameter combinations tnast
software procedures. be tested. Orthogonal arrays were used to design minimal-
sized test suites with comprehemsivoverage of the

The ®mmands are tested independently. This provides ﬁecessarparameter combinations

moderate level of confidence in each of thmmands, but
it does not address interactions among commands. Thefbae second challenge is that high-fideltest beds are
interactions can be subtle and are often unsuspected. Thexpensive and correspondigigdcarce, but scenario-based
may depend on th eact sequence and timing of prior testing involves manscenarios—more than can be run on
commands, subtleties of the spacecraft state, etc. the scarce high-fideljit test beds. The test suite must
therefore allocate most of the scenarios on lower-fidelity
and more available) test-beds without compromising test
ectiveness. RAX can be tested on lower-figgiitatforms

e to the abstraction layers presentgthe RA and FSW.
The RA reasons about and acts upon an abstraction of the
spacecraft presenteg the FSW, which allows most of the
'RA behavior ¢ ke tested agaimshat abstraction on lower-
fidelity test-beds. The RA is composed of mission- and
) platform-independent reasoning engines, and mission-
Testing Autonomous Software dependetimodels. Almost all of th engine requirements
Traditional FSW testing approaches are not suitable fof@n be verified on lower fidejit platforms. The high-
autonomos ®ftware. In autonomous operations, thefidelity platforms tes the remaining engine and RA
spacecrdfis not given a sequence, but a set of high-leveféquirements, and ensure thihe RA as a whole operates
goals which the Remote Agent expands into lower-leveforrectly.

commands. If problems arise during execution, the softwargnijrq, since the RA interacts in a close-loop fashion with
automaticaly takes corrective action and selects alternatgne spacecraft, the test-scenarios must be able to specify
methods for achieving the goals. There are millions opqy the spacecraft will readn response to the RA. More
billions of possibt eecution paths. tlis impossible to gpecifically, testers must be able to inject events relative to
identify the handflithat will be needed and exhaustively ine RA's actions and internal reasogimprocess We

test ony those. The testing approach must provide highyesigned a test controller that observes the RA’s telemetry
confidence that the software will perform progedr all of  ctrean to determine whia the RA is doing, and
those paths. automaticaly injects events based on those observations.
The approach we have taken for RAX &enario-based We believe this is a meapproach in the spacedragsting
verification augmented with model-based verification anccommunity, though similar approaches have been used for
validation. The universe of possible inputs (goalsnon-spacecraft applications.

spacecraft state, device responses, timing, etc.) ifhe fourth challenge is automated verification.
partitioned into a manageable numbersoénarios The  petermining whether the software responded co ¢oth

RA is exercised on each scenario, and its behavior venﬂegiiven scenario is diffidt to automate, and laborious to

Potentid interactions and other subtle problems ar
detected § sequence testing. Sequences have a sing
execution path, ortamost a small handful, which allows du
very detailed testing and interaction analysisbé focused
on just those pathisThis is a vey powerful approach, but it
is only feasible when there are a small handful of executio
paths and those paths are known in advance.

against the specifications. perform manually. Developing formalisms for specifying
_ the @rrect behavior ath developing automated analysis
Testing Challenges tools that work with those specifications is therefore an

important part of a credible testing strategy. The behavior
of the RA is complex, and correctness of that behavior
epends stronglon environmental details (spacecraft state,
ardware response timing, etc). We designed several
verification tools and methodologies for RAX, such as
First, the dfectiveness of scenario-based testing depends overifying abstractions of the behavior, and checking the
the m@verage of the scenarios. Success on the testdmbhavior against safeaind correctness constraints derived
scenarios must implsuccess on the untested scenarios witfrom DS1 requirements (“flight rules”) and RAX
high confidence. The universe of possible input scenarios igquirements.

very large, bw the number of tested scenarios must be_. . . . . .
inally, scenario-based tesginprovides relativel high
manageable RAX has taken a parameter-based approae%onfid):ance in the test arti}gctnﬂ)lix can provi%:e e/?an

higher confidence when combined with formal design-

! The level of testing and analysis de&d be the same for every sequence, Va“datl,on methods. ,For the Re,mOte Agent Experiment, the
and can depends on the importance of the sequence and a-priori confidencé‘:‘gﬁna”(?'_baSEd testing ?-lone is more than adequate since
the operations team in it. At the most detailed level, the sequence is execuide traditional FSW provides a number of “spieets” that

on the flight test-bed in real-time, and the resulting telemetry and the sequenggll abort the experiment if it behaves improperlyr Figk-

itself are analyzitby subsystem engineers and automated constraint checketgyarse science missions higher levels of confidence are
for negative interactions, etc. !
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Scenario-based testing is hardl novel approach, but there
are a number of issues thmust be addressed for this
approach to provide the high confidence levels required
science missions.




needed. We have identified a number of these for the RA;
and have provide proof-of-concept demonstrations in
several cases, buhese are not part of the RAX testing 5 10|
plan. We eped these model-based methods will be part of |
the testing stgrfor science missions thanake full use of
spacecraft autonomy.

The remainder of this paper is organized as follows.| start
Sections 2 amh 3 describe the Remote Agent architecture within 6

and tte eperiment. Sectio describes a number of test- starts 2s
case selection methods used for RAXd aiscusses why Eefore
these methasl dould scale up to missions where the

universe of possible scenarios is much larger ihas for B
RAX. Section4 dscusses the automated verification tools
and specification formalisms that we found effective.
Section 5 describes the testbed allocation approach ang
lessons for larger-scale testing efforts. Automated testing
and verification issues armvered in Section 6, and formal Figure 1: Temporal Relations
verification and validation methods in Section 7. We

discuss te arrent status of RAX testing in Section 8 andDPuring execution, MIR observes ehommands and the
conclude in Section 9. state of the spacecraft. Ifalmmmanded state differs from

the observed state, MIR uses its model of the device to infer
the mos likely failure mode. 1 then suggests a repair
2. REMOTEAGENT ARCHITECTURE activity to the executive, which carries it out. If the failure
_ cannot be resolved within ¢heonstraints imposedybthe
The Remote Agent [2] consists of éer omponents: pjan, then th eecutive aborts the plan and requests a new
Executive (EXEC), Planner/Scheduler (PS), and Mod@ne. The planner then generates a plan that achieves the

Identification and Reconfiguration (MIR). The planner isremaining goals from the current state of the spacecratt.
given a set of high-level goals frothe ground operations

team and from the onboard navigation system. PS generatb8e Remote Agent architecture is shown in Figure 2.
a plan that achieves the goals while obeying safety
constraints and resae nstraints.

8

The fundamental execution units in the plan are tokens & Remote Agent
timelines. Each actiwtin a plan is definedyba token,
thouch not evey token is an executable activity. Token:
also track spacecraft states and resources. A timeline i
sequence of tokens that specifies tiolution of that state
variable over time. The phahas sveral paralletimelines.
The plan specifie gart and end time windows for each
token, and temporal constraints among the tokens (befc
after, contains, etc).

There are 18 timelines drB7tokens defined in RAX. The
executive tracks oml8 of these timelines a@n22 tokens.
The remainder are used he planner fo representing
goals, untracked resources, and abstract activities t
simplify the plannig process but are not directly
executable.

The eecutive eecutes the plan in a roliumanner by Figure 2: Remote Agent Architecture
issuing appropriat @mmands to the flight software. These
are the sam ®mmands that would be used in traditional
sequences. Eh&ecutive guarantees that each agfivit 3. REMOTE AGENT EXPERIMENT

the plan will & xecuted within the temporal constraints The Remote Agent controls the fo||owing Spacecraﬂ
SpeCiﬁed in the plan. The temporal constraints are need%rdware and softwar¢he amera for use in autonomous
to synchronize the start and end times of activities omavigation, the Solar Electric Propulsion (SEP) subsystem
p(_:lrallel tlmelln_es. FOI’_ example, consider activities A and Hor trajectoy adjustment, the attited ontrol system for

with a start-time winde of [5,10] and a temporal tyrns and attitude hold, the navigation system for
constraint that B must stawo seconds after A. If A starts determining hw the actuhtrajectoy is deviating fran the
attime 6, then B must start at time 8, even though the staféference trajectgr and what SEP thrustin profile is

window for B is [5,10]. t is insufficiert to guarantee only needed to staon the reference trajectory, the Power
that A and B start within their time windows. See Figure 1.
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Amplification and Switching Module (PASM), for use in requirement, butha the test-suite provide high confidence
demonstrating fault protection capabilities. thet if the requiremenis stisfied on the test suite thténe

_ requirement will als be satisfied on all of the untested
Four failure modes are coveregRAX. These are: inguts.

F1. Power bus status switch failure . - .
In addition to providig good coverage, the test-suite must

F2. Camera power stuck on have a manageable number of tests. Finding the right
F3. Hardware device not communicating over busto ~ balance between coverage and test-suite sem be
flight computer difficult, and mg involve trading risk (coverage) for

manageability. The managealjlif a test-suite depends on
the availabiliy of appropriate test-beds, the running time of
Mission Scenario the suite, and the analysis effort it entails.

The Remote Agent experimeeis executed in two phases, a The Remote Agent consists of three modules, the _planner,
12 hour Phase One followed anfelays later ¥ a 6 day th_e &ecutive, and MIR. E_ach of the modules consist of a
Phase Two. In Phase One, we start sfowy first mlssmn-mdepend_ent engine and a mission-specific m_odel.
demonstrating t eecutive operating in the manner of a For RAX, tre engines and models are tested as a unit by
low level sequencenkaccepting commands to turn devices module-specific test suites. For future m|_SS|one,e’rg|nes

on and off Next, a “scripted” mode is demonstrated with can be tested separatébr increased confidence. Finally, a
execution of plans uplinked fmo the ground. The main System test-suite exercises the RA as a whole.

demonstratio here will b2 @mmanding the spacedtdd  The module test-suites were designsing a parameter-

go to and stain a known, safe, stangbnode and then aqeq approach. The universe of possible input scenarios is
take a series of optical navigation (OpNav) imagée  characterized yoa multi-dimensional parameter space. A
addition, Failure mode F1 will be demonstratgdrjecting  given assignment of values to parameters specifies a unique
power bis svitch status readings indicating that @ powergeenario, The test saitonsists of a subset of the possible
bus is unexpecteglioff. No planning or SEP thrusting are parameter values. The RAX test-suite uses three methods to
attempted in Phase One. achieve good coverage and manageability: abstracting the
In Phase Two, we also stary blemonstrating b level ~parameter space to focus on the rele_zvant_ parameters and
commanding, and then initiate on-bdagianning Based Values, analyzing the RA models to identiidependent

on the spacecrafnitial state and the uplindegoals, the regions of the parameter space and thenmsluce the
planner will generate a threeydplan including imaging number of parameter combinationstthaust be tested, and

for optical navigation, thrusting to stan the reference Using orthogonal arrays to generate minimal-size test suites
trajectory, and simulated injectionf daults to exercise that cover those combinations.

failures F2, F3, and F4. Firthe @mera power SWUCk ON The systen tests provié onfidence in the RA behavior as
failure (F2) is injected When tfe eecutive is unable 0 5 \yhole. Since the systetest-suite must be performed on
turn df the @amera when the plan so dictates &®ecutive  goarce high-fidelit platforms, it can contain oph handful
realizes tha the arrent plan should be aborted and ot gcenarios. RAX is forced to trade risk (coverage) for
replanning is indicated. This might be necessary, fOfeqgibility. The systm tests are therefore intendesiverify
example, because the initial plan’s assumptions on poWgfe handful of requirements that could not be tested in the
consumption are incorrect with éh@mera on when it | ,qqule test-suites on lower-fidsfitplatforms, and to

should be off. The plan is declared failed, the spadesraf gyercise the module interactions. The system suite also
sert to a standp mode while the planner is requested t0geryes as a “spot-check” of requirements verified in the
replan based on thewenformation that te @amera power ., qule tests, o be sure thathey are still satisfied in a

switch & guck on. When the meplan is received othe g fidelity system context. These issues are discussed
executive, execution resumes including navigation and SEE

thrusting Near tle end of the three daplan, the planner urther in Section 5.

is called to generate the plan for the néixee days This ~ The remainder of tki ction discusses the test-selection
plan includes navigation and SEP thrusting as befdte and coverage analysis approaches fer éigines the PS,
also includes two simulated faultsFirst, a failure of a MIR, and EXEC modules (engines plus models as a unit);
hardware device to communicate is injected (F@) and the system test-suite.

prope recovey is to resethe device withouinterrupting

the plan Next, a thruster stuck closed failure (F4) is Engine Verification

simulated k injecting an attitud @ntrol error monitor .
abowve threshold. Té orrect response is to switch control E&Ch component of the RA (EXEC, MIR, PS) consists of a
modes so that the failure is mitigated domain-independent engine that reasons about and acts
| upon domain-dependent knowledgontained in amodel
This separation is a ke aspect of the RA design for

4. TEST CASE SELECTION AND COVERAGE testability.

The dfectiveness of scenario-based tegtilepends largely Since the reasoning engines are domain-independent, they
on how well the scenarios cover the requirements. Goodl€€d not change fo mission to mission. The reasoning
coverage requires not gniha the test suit exercie ech and actions performedybthe ergines are also platform
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independent, with # eception of a handful of localizable systems. (Specifically, the duration and legalibf
performance and timing issues. This allows developers tspacecraftslews (turns) are defined as functions provided
provide one release oféhmgine software that can be usedby the attitué ntrol subsystem.) Téh @nstraint

by severhmissions. Testers can validateetingine design parameters and the behavior of the ACS function must both
and verif/ the platform-independent portions oktingines  be treated as inputs.

once. Ory the platform-dependent requirements neebet
verified for each mission. Since the testing tcas
effectively amortized acres gverd missions, the testers
can provig orrespondingl higher confidence in the
engines.

The planner’'s behavioisigrictly a function of its inputs.

Its behavior does not depend on the order or timing of
events that occur while it is plannfdhis makes it a good
candidate for parameter-based testing (e.g., [4]). The input
space is characterized/ lma multi-dimensional parameter

A full-scale approach for verifying and validating the RA space. Each assignment of values to parameters identifies a
engines would be to idenfikey properties thathe engines  single poirt in the input space. The planner is tested on a
must enforce, perform a formal design analysis to ensurearefuly chosen subset of parameter values, and the
tha the design does in fact enforce those properties, amgsultirg pan is checked against a list of plan correctness
then verif tha the engine implementation stisfy the  requirements as discussed in Section 6.

design requirements. The test-suite must have good coverage, as defiynedrbe

This process verifies that the engines etdaretain formal  metric, but not bedb large to run and analyze. Based on
properties. For example, the EXEC ergmsures thiathe  our experience a suite of 200300 pan-request scenarios
tokens (activities) in the plan will be dispatched andis abow the upper limit for a one-person testing effort,
terminated at times consistent with the temporal constrainsssuming an automated scenario-runner and adequate plan
in the plan. The PS enginensures thiathe plans it analysis tools.

generates will oheall of the ®@nstraints encoded in the
plan model. The MIR enge ensures thiits diagnosis is
the most probable enmnsistent with the model These
properties could be quite useful for validating the RA as
whole. Determining exagtl what properties and formal
validation methods would be most appropriate for this tas
is an area for future work.

A combination of approaches has proven effective for
generating test-suites for the RAX planner. First, the
2;i)arameter space is reduceg Hlentifying equivalence
Classes of parameters caiparameter values. The planner
gehavior is not expected to change qualitayivai inputs

rawn fran the sare euivalerce dass, btiis expected to
change for inputs in different classes. Next, regions of high
Since RAX is the first user of thesngines, and our testing and lav interaction in the redudeparameter space are
resources are fairllimited, we ®uld nd inveg the testing identified ky analyzing the planner model. Parameters from
effort needed for this full-scale V&V approach. Instead, westrongly interacting regioa diwould be tested in
treated each engine and its model as a single test artifacgmbination, while fewer combinations must be tested from
and verified requirements on each of these artifacts witiweakly interacting regions. Parameters from non-
scenario-based testing. The following subsections descrilieteracting regions can be tested independently. Finally, an
how these test cases were selected As a proof-of-conceptthogonal array-based algorithm generates a small (nearly
demonstration we used forinaethods ¢ validate selected minimal) size test-suite with comprehensive coverage of the
properties of the EXEC as discussed in Section ¥7fhis  identified parameter combinations.

was not part of the formal testing process. Parameter Space ConstructiefThe input space is

Testing tlke engine and model as a single artifée a valid  characterizedypa multi-dimensional parameter space such
approach, buit prevents amortizing the test cost acrossha there is a one-to-an ®rrespondence between
missions. In addition, this approach does not yddfmal  parameter settings and inputs. Wentethis the ‘true”
properties of th engine, and so these are not available forparameter space. The true parameter space for the RAX
validating the RA as a whole. Future science missions caplanner § diown in Table 1. Tl gace is infinite, and

use dther of these testing approaches, but we believe theearly infeasible for testing.

amortized V&V approach discussedboae is more
powerful. The domain-independence oé tengines makes
this approach possible.

To produce a manageable number of test cases, first
necessar to contrd the size of the parameter space. This
was done pselecting parameters and parameter values that
focus on aspects of the input space to which the planner is
expected @ be sensitive. We tem this the “abstract”
The planner takes as input a requéégian stat time, an  parameter space. Each parameter setting in ghace
initial spacecraft state, a set of goals (some of which comgpecifies an equivaler dass of inputs rather than a single
from the onboard navigator), and a set of constraints. lnput. The planner is expecteal tehave similagt on every
generates a plan that begirighe requested statime and  input in a given class, buo have qualitativel different
achieves the goals fio the initial state while obeying the behavior for inputs drawn from different classes.
constraints. Th @nstraints are specified in the plan modelAbstraction entad ome risk, since there is no guarantee
and are larggl fixed. However, a f& of them can be
modified ty changirg parameter settings, and fewer still 2 The onboat gals and ACS constraint functions are invikering

are defined as external functions provideg dnboard planning, but they always give the same results for the same inputs regardless
of when they are called or in what order.
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Table 1L True parameter space for RAX Planner

Parameter Input Values Distribution Number of
or Expected Values
Value
Plan start time start time 0-518,400 uniform 518,401
(relative to experiment start) (6days in seconds)
initial state initial state all stangiistates, all legal | uniform infinite
end-states
NAV win duration goal (ops) integer >0 3-5 hours. maxint
NAV win goal start goal (ops) integer 0 2 * maxint
NAV win period goal (ops) integer > 0 3 days maxint
NAV win slack goal (ops) integer > 0 12 hours maxint
Comm. windev start time [6] goal (ops) 0-518,400 8 AM ea. day 518,401
Comm windev duration [6] goal (ops) 0-518,400 8 hours 518,401
Image goals [20] goal (nav) see below 8-10 see below|
Exposures/Image [20] goal (nav) small integer 4 ~10
Exposure duration [20] goal (nav) 0-31 8-20 32
Instrument Settings [20] goal (nav) 0-31 0-2 32
Image target id [20] goal (nav) integer uniform maxint
IPS Maneuver Goals [12] goal (nav) see below 1-2 see below
Maneuver start [12] goal (nav) integer 0 maxint
Maneuver duration [12] goal (nav) integer > 12 hours 7 days maxint
Thrust profile [12] goal (nav) real x 4 uniform infinite
Thrust level [1] goal (nav) 0-99 70-100 100
Solar Power available constraint 0-2500.0 2400-2500 infinite
Slew Duration Function constraint all possible functions -- infinite
Misc. integer-valued parameters | constraint integer >0 expect one | maxint * 15
[15] nominal
value for
each
Random Seed constraint integer 15386 2*maxint
Exec Latency constraint small integer > 0 uniform in|4maxint
10

tha the parameter space actydflas these properties, but ever generate. The plan dtaime is restricted to ten
this risk is needed to construct a manageable test-suite. bounday points: before, during, and after plahorizon

Table 2 shows abstract parameter space for the RA;zoundarles; and before, during, and after op-nav windows.

planner. Real or integer-valdigparameters fnm the true  Several parameters are set to fixed values. Most of these are
space, and those with large numbers of values, wermdesign-time parameters thenight change during testing
abstracted yselecting a small handful of discrete values toand integration, but will not change duringetlxperiment

test. Where it was known which values were at boundarigsself. The suite will be re-run if those parameters change.
of qualitative behavio regions of the planner, those The remainig parameters control values thiéhe planner
bounday values were selected. In the other cases valuatoes not reason about, but sisnfppasses through” to the
were selected frao the parameter’s domain according to executive. Testing a single arbityasalue is sufficient.

their expectd dstribution in operations. No attempt was

made to select a statisticaignificant number of values. Scaling Up—Fhere are a number of aspects to the planner

The abstraction makes several educated guesses, such asat'ri:l I,?hpé r%(;s:‘ggilgthaa;é rteéjsl:ﬁ]e thft) aﬁle t())f tirr'ﬁ pi[?nrpeter Space,
qualitative behavior boundaries, the distribution of valueélttention 10 these desian dg.i ions f ref i Frjomi ? ﬁay
in operations, and the number of parameter values to sele&' esign decisions for future missions.

The primay abstractions are as follows. The initial statesThere are a vast number of possible initial states, but only

are restricted to twebv@nonical states that cover all of the " " sc; that a:ce c:ualnrgtlyedilfferent. Iflthe_ Exc annot
qualitatively differert initial states [all combinations of rre]covler rongja ﬁ.Ut Wi aeCléEDgg aTPh?‘”!t terminates
MICAS state (2), MICAS health (2), and final attitude (3)]. '€ P'an and achieves a stapatate. This is a quiescent
The planner is either insensitive tther variations, or state in which the spacecraft can remain for an indefinite

those variations are hanitial states thathe eec would ~PEMod- Tre eec then requests a weplan, using this
standly state as the initial spacecraft state. There anganl
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Table 2 Abstracted Parameter Space

Parameter True-space Values Discretization Cases
parameters (Discretized)
Plan start time start time 0-518,400 10 boundaries 10
MICAS state initial state ON, OFF ON, OFF 2
MICAS health initial state OK, FAILED OK, FAILED 2
Final attitude initial state infinite Along IPS thrust 3
vector, at op-nav
target, cruise attitude
NAV win duration same integer > 0 2h, 3h, 4h, 6h 4
NAV win goal start same 0-518,400 1h, 2h, 4h 3
NAV win period same integer fixed (nominal) 1
NAV win slack same integer fixed (nominal) 1
LGA start time [6] same 0-518,400 0,+1day,+2days,...+5d
ays
LGA duration [6] same integer 8 hours 1
Number Image goals image goals 0-20 10, 20 2
Exposures/Image * same [20] integer 3,4,5 3
Exposure duration* same [20] integer 16,25,27 3
Instrument Settings* same [20] integer fixed 1
Image target id [20] same integer random 1
Number IPS Maneuvers IPS goals 0-12 0-3 4
First Maneuver start Maneuver | integer At plan start, 4
start [1] After plan start, Before|
plan start, Before RAX
start
Last maneuver end Maneuver | integer At plan end, 4
Start [2-12], Before plan end, After
Maneuver plan end, o After
duration [2- RAX end
12]
1 hour break between Maneuver None, None, 4
maneuvers? Start [2-12], | b/t1and 2, b/t 1 and 2,
Maneuver b/t 2 and 3, b/t 2 and 3,
duration [2- b/t 1, 2 and 3. b/t 1, 2 and 3.
12]

Thrust profile* same infinite arbitrgifixed value 3
Thrust level [1] same 0 70, 80, 90 3
Solar Power Available same 0-2500.0 1500, 2400, 2500 3
Slew Duration slev duration | 1s — 20min. 2,5,10, 20 (minutes) 4

function
Misc. parameters [15] same integer nominal values 1
Random Seed same integer ydhree 3
Exec Latency same small integer > 0 1,4,10 3
TOTAL infinite 6 billion

number of degraded states correspondimmg various
failures. For RAX, there are onlfour standlg states

of camera healthor broken, and camera on or off.

handful of standp states: one nominal state, and a smalln nominal operations, the initial state for a given plan is
the end-state of the previous plan. This allows execution to
continue seamlegsfrom plan to plan. The planner model
including the nominlathat correspond to all combinations is designed so that eyeplan ends in a relativelquiescent
state similar to the stangtstate. There are gnla small

number of qualitativgl different end-states.
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A full-scale science mission will have arMfanore standby abstract parameter space should not have settings that
states and end-states, but n@ny more. The number will correspond to thesmmbinations. If it does, then settings
be proportionkto the product of the health-states trackedin the abstract space do not correspond to equivalence
by the planner. If the planner coveredetlntire DS1 classes where the behavior is qualitatisemilar.

mission, it would track omlthree more health timelines:

IPS health, MICAS high-voltage switchealth, and RCS | 1€ test-sué mverage is measured with respéc this
thruster health for a total of 32 initial states. metric ly identifying the @mbinations of abstract
parameter values that cortrohe strongy interacting

The spacecrafis commandedyba handful of high-level regions. The test-suite should havéemst one test case for
goals tha the planner expands into a plan for achievingeach combination. The orthogonal agri@gorithm can be
them. The ground operations team specifies most of thextended to include these test cases (e.g., [5]), grcdre
goals, with a fer coming from onboard systems (navigation simply be appended to the test-suite twito attemp to
for RAX). Goals tend to interact strongly, which means thatninimize.

they cannot be tested independently. On the other han
missions are typicall designed so thathe spacecrafis
only doing one or two things at a time. So although th
goals interact, am @n make assumptions about what
combinations of goals will appear in practice. Each of thos
goal-sets can be tested independently.

%e performed a vgrrough interaction analysis to identify
e(he most heawl interactirg goals, initial states, and
constraint parameters. The test sudintains &least a few
fest cases from each of these interaction regions. Additional
work is needed to implementhe interaction analysis
metric.

Test Suite ConstructierThe test suite must provide . . .
adequat ®verage, according to some metric, yet have \ﬁ)seconq metric is ho well the test sué eercises all of
manageable number of cases. We use a combination of e requirements. If a requiremess trivially satisfied f(_)r
approaches. First, we usethogonal arrayg4] to generate some test-case, then that case does not exercise the

a minimal-sized test-suite in which eygrarameter value requirement. A third related metric Is wovel the test-
and evey pair of values appears irt keast one test case, suite eercises all of the knowledge in the plan model. The

and evey parameter value appears in abdbe same plan model consists of constraints of the form “if token A
number of cases appears in the plan, then token B must also appear in the

plan and be in the following temporal relation to A.” Token
This approach detectgvery bug caused yo a single A is called the master token, and B is called the target
parameter value oryban interaction of two parameter token. The @nstrair is exercised if and oplif the master
values. It will detect oryisome bugs caused nteractions token appears in the plart.i$ therefoe eg/ to determine
of three or more parameter values. The risk of thisvhich constraints wer exercised i examining the tokens
approach is that it assumes that the mgjafibugs are due in the resultig pan. As an additional check, the plan
to one or two parameter values. maintains temporal relations, which makes it possible to
tell whether a master/target pair occurrgdabcident or as
a result of exercising a constraim the model The
coverage of the test-suite is proportibb@ the percentage
%t the total constraints exercised.

The PS test-suite was construttesing an orthogonal
arrays approach. The RAX test-guiontains three sub-
suites generated with orthogonal arrays: one for the twelv
hour experiment, and eneach for the si day replan cases
and the six-dp back-to-bak plans. The twelve-hour suite It is difficult to predict which inputs will exercise a given
has 24 test cases (maaf the dowe parameters are fixed constraint o requirement, though en@an often make a

for the twelve-hour experiment), and the other suites hawgoad guess. For the RAX planner, we use these two
about fifty cases each. coverage metrics to measure ttoverage of the suite after
running it, and then add test-cases if needed. The third
metric is analogous to code-covering metrics which are also

ed for post-hoc coverage analysis.

Coverage Metrics-Constructing this test suite required
several assumptions and abstractions, and each of th
introduces me uncertaint in the ®verage. In order to
assess this risk, we developed several orthogonal covera§engle Variation Test SuitesThe orthogonal array-
metrics with which to evaluate the test suite and itgenerated test suite provides excellent coverage with a
assumptions. handful of test cases. Howevet,is difficult to identify
which parameter caused a problem and file a meaningful
bug report. To address this probleme wonstructed a
econd suite of test-cases in which each case is idefttica

a baseline scenario in eygrarameter value but one. Since

inputs depends on ¢honstraints in the planner model. If the planner is known to perform corrgetin the baseline
the inputs differ on plan elements that are interact stronglcase’ an problems are verlikely to be @used  the one

(have mamg constraints among them), then the planneregarameter that changed.

behavior is likey to differ dramatically. If the inputs differ In practice, thes “single variation” cases catch most of the
on weaky interactirg plan elements, then the output plansinitial bugs. The orthogonal-alyasuites are useful for
are likely to be similar. With this metric, one identifies all identifying additional bugs once the single variation cases
the strongy interacting plan elements ancetltombinations  all pass.

of “true” parameter values that corittbe® dements. The
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One metric is whether there i$ l@ast one test case from
each set of inputs for which the planner behavior i
expected da be qualitativey different. Whether the planner
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MIR Test Case Selection monitor that the Camera switch sensor is reportingttiea
witch has transitioned to the On position, and
ubsequergl MIR is notified tha the mmmand timer has
expired. MIR concludes thahe Camera is wo On, and

«  Confirmation of EXEC commanding reports ths sate dange ® bah Exec and Ground Now
consider the following fragment further downstream:

The MIR module is responsible for the following aspects OE
autonomous control:

» Detection and Diagnosis of Failures

* Generation of RecowgiSequences Event-145 Monitor-83: NEB Current Nominal
» Reporting State Change to Ground Control Event-146 Command-56: Power fOCamer_a
+ Incorporating model updates from Ground Control Event-147 to Clock: Command-56 Timer

. _— Event-148 Monitor-84: NEB Status Off
There are two additional classes of MIR responsibilities  Eyent-149 to Clock:

; Monitor-84 Timer
that are a feature of the Remote Agent being run as a Eyent150 Clock:

Monitor-84 Timeout

technolog validation experiment: Event-151 to Ground: NEB Sensor Pop Off
« Abortion of the experiment when in a state this Event-152 Clock: Cammand-56 Timeout
beyond scope Event-153 to Exec: Camera Stuck On
: . . Event-154 to Ground: Camera Stuck On
gobustness_ o re_al failures  during  failure Event-155 from Exec: Recovery? Camera Off
emonstration scenarios Event-156 Recovery: Power Camera Off

The details of these responsibilities, together with their ~Event-157 Command-57: PowerfOCamera
performance and resource usag@nstraints, & @ptured _
into a set of MIR requirementsThe goal during test case In this off-nominal scenario fragment, two failures have
selection is to define a set of test scenarios that provideccurred: a non-essential power bus (NEB) switch sensor is
confidence that the test artifact meets all requirements. ~ erroneoust reporting thathe NEB switt has popped off,

. _ ) and the Camera power switch guck in the On position.
In principle, the scenario space is boundeanftbe MIR  The NEB switch sensor failure is neitheecoverable nor
perspective given thanodels of the FSW, hardware, and gerigys, ad demonstrates MIR’'s abiljt to disambiguate
environment are finite state automata,tth@ansitions in  sensor failure from failure in the sedsekevice The

these automata take time, andtthiae duration of the  camera switch failure is used here to demonstrate recovery.
mission is bounded In practice, th8 <enario space is | goking & the aent sequence, MIR first receives a
prohibitively large for ay manner of exhaustive testing, monitar report from the NEB current sensor indicating that
even in simulation. Téallenge is therefore to idenfid  cyrrent is in the Nominal range. The Exec is then observed
representative sample of the scenario space and exercise fBereques tha the Camera be powered Off, and MIR
test artifact againsthat sample, with the abdjitto claim  requests that a timer be started to wallmonitors to
that requirements rhein the sample impl adequate giapilize MIR then receives a monitaepot indicating
confidence thathey are me in the large In this £ction,  ih4 the NEB switch sensor is reporting thtne NEB

we first provide a descriptive feel for the scenario spacgyjich is in the @ position This repot is inconsistent
then we provide a mer oncise parameterization for the yjth the wrrent desired state of the spacecraft, so MIR
space, and finall describe he we eploit this  giarts an additiondaimer going to alle monitored values
parameterization to select a test suitd thaets our needs 4 stapilize before initiating a diagnosis. The monitor timer
in terms of coverage and prioritization. then expires, and MIR diagnoses the switch sersdet
Scenard Spae Description—Fo provide a feel for the faulty basel primarily on these factsthe NEB current
scenario space facing MIR during RAX, we frame aSensor is reporting Nominal, the NEB switch must be in the
scenario as a discrete time series over the finite set &N position to drav current, and a NEB switch sensor
events tha include: EXEC commands to FSw, FSw failure is more like} than_fallure ofboth the NEB current
monitor events to MIR, Clock timeout notifications to MIR, sensor and the NEB switchMIR thus reports to Ground
communication between MIR and EXEC, andtha the NEB switch sensor has poppéti (the Exec does

communication between MIR and GroundFor instance, not control this device and thus is not informed). MIR next

consider the following fragment of a scenario: receives notification thathe Command-56 timer has
expired, ad dagnoses the Camera switah lie stuck On,
Event-0 ~ Command-1: Power On Camera for no monite repot indicates the Camera switch sensor
Event-1 to Clock: Command-1 Timer observing the switch transition to thdf@osition, and a
Event-2 Monitor-1: Camera Status On faulty Camera switch is more likelthan a faulg switch
Event-3 Clock: Command-1 Timeout sensor MIR reports the diagnosisotbah Exec and
Event-4  to Exec: Camera On, Healthy Ground. In the remainder of the fragment, Exec requests

that MIR suggest hw to recover fron the Camera switch
failure to achieve the goal of Camera Off, MIR suggests

In this fragment, MIR first observes the EXEC requestingtélfécﬁéﬁgv\rg't'ﬁzltjzmirenmand to power it off, and finally

tha the Camera be powered On, and requests that a timef
be started to alle any monitored values to stabilize in Thee eamples are intended to make the notion of a
response to # @mmand MIR is then notified by a  scenario ma @ncrete, but provide opla glimpse into the
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reasoning capabilities of MIR. Next, consider the followingour design We are attempting this using both the
curious fragment: parameterized scenario space, and tke $euctured time
series representation described in the previous section.)

Event-145 Clock: Command-56 Timeout
Event-146 Clock: Command-56 Timeout We take the set of candidate test casd® tthe space of all
Event-147 Command-56: Powerf©OCamera possible scenaripstha is, evey configuration in the

Here the Clock is reporting the samommand timeout parameteriz_ed representation is con_s_idered for incl_u_sion in
twice, and prior to ta @mmand itself having been issued the test suite. There are reachapiland controllability
Both,of these are anomalies that are legal scena.ri assumptions made here about the testbed, for some possible

X . . - %eenarios cannot be performed on some higher-fidelity
according & our curren time series Qeflnltlon A tester testbedsthe testbed manot supparinjection of a desired
would expect vef little of MIR in this case, for design ¢, i+ into real hardware or software, or there yniae
\alli%sl;ggt?hn; a?:?igwt?n iﬁ‘g;orggsgg iga?g dtf:égwr?egﬂ insufficient observabilit or responsiveness in the testbed to

X g time such an injection appropriatedluring a transitional

external problm in hardware, FSW or a simulatof~rom period of interes in the scenario We make these

Eg?l dil\c/jlg?e ;?:Set:griﬁrsgggtgﬁé ggﬁ;a;\'ﬁgztgé‘nggé assumptiqns duri_ng test case selection arldth&sar_tifact
that behave within certain design assumptions on the_ highest-fideljt testbed capable of executing the
' scenario, or perhaps prune such test cases fhe test
In addition, there are scenarios that are possible givesuite if no such testbed existét is worh noting here the
design assumptions buhat ae onsidered beyond the guideline that scenarios that are difficto produce in a
scope of tk experiment In some of these scenarios, MIR testbed environment for thé@e reasons are for the same
is responsible for identifying thahe experimert is outside reasons rather unliketo occur in flight.
of scope and must requdba the eperiment be aborted;
in others, there is no such requirement, and FSW fauﬁ
protection will abar the eperimen if necessary. In
selecting test scenarios for MIR,ewmnsider ory the
former in the candidate scenario space.

ur current approach to selecting a covering sample of the
arameterized scenario space is qualitatiée note first
that evey entry in the table has nominal values, or those
that can b ®onsidered such; we label all such
configurations involving oyl nominal values as the
Parameterizd Senaro Spa&e—By exploiting structure in  nominal scenario To this <enario, we add alkingle
the scenario space, as inducgdibsign assumptions about variations consisting of configurations whose parameter
the eawvironment and experiment scopé,is possible to Vvalues differ from a nominal one it most ore entry. We
more ®ncisey characterize the scenario spaceThe then include ay multiple \ariations deemed to provide
parameterization of the MIR scenario spasesiown in  additiond interesting interactions, as obtaineyl rhanual
Table 3. inspection of the MIR models.

Values within each engr of the table are mutually Traditional FSW development and testing often makes the
exclusive, thus a single value is drawnnfrghe range simplifying assumption thamultiple variations are beyond
shown in each entryThe scenario sga @n therefore be scope, and the justification cited is usyatha the
viewed as a 34-tuple (one for each device parameter), ealtkelihood of multiple variations n nregligible  The
ordinate of which is itself a 5-tuple specifying a value forjustification for our current qualitative approach to
Behavior, State, Timing, Attempt and Context. The strongoverage is also guidedy this tradition, and is deemed
structural claim being made here abthe scenario space acceptable for RAX particularlgiven testing resources

is that all scenarios passing through such a configuratioavailable Another traditional justification for the single
can be viewed as equivalent from the MIR perspective.  variation scope is thathe risk in supporting multiple
variations due to added complegxitin the software
outweighs the risk inherénin the variation itsejf this
claim is justified in part $ noting tha the matter is
fladitionally addressed b ground operations An
autonomos g/stem wll t herefore have to go a step beyond
single variation scope to gain wide acceptan¥ge take
MSur test suite a step further into a reasonable number of
multiple variations to provide additional confidence, as we
believe this is a necesgarequiremen in ary long-term
éesting stoy for an autonomous system.

It is importan to explicitly capture all environmental
assumptions that we use to jugtithis parameterization,
though we do not report on the details here, for doing s
would require a level of description of the domainttisa
beyond the scope of this papeThese assumptions can
serve to focus model checking of properties of subsyste
in the ewvironment For example, MIR testing makes
assumptions abouthe nature and frequenocof EXEC
commanding to justf this parameterization, and such
properties therefore warrant special attention during EXE
testing. We ae airrrently pursuing a more quantitative approach to

d Prioritizatior-Th ved . test case selectionGiven our parameterizatiorbeve, we
Coverage and Prioritization-The parameterized scenario augmen it with information available in the MIR models

space is prohibitivgi large for ay manner of exhaustive 5pq; the Jikelihood of various off-nominal entries
testing of our artifact, even onwofidelity testbeds that ,c0ring. Given a mission profile, or even a probability
support rapid simulation of éhewironment. (Exhaustive gigirihytion over possible mission profiles using the

testing offourdle_signis ar}otplerkr_natter ;\’V‘? are in the 5 ameterization discussed in the Planner Test Case
process of applying model-checking techniquesdiidate  gejection sectionit is possible to measure ethexpected
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Table 3: MIR Scenario Space

Parameter Behavior State Timing Attempt Context
Camera Power Throw Responsive, | On, Off Nominal, | 1-3 Tries Startup, Standard,
Unresponsive Delayed 4 Demos
Camera Status Throw Nominal, Stugk  On, Off Nominal 1-3 Tries Startup, Standard,
4 Demos
PASM Power Throw Responsive, On, Off Nominal, | 1-3 Tries Startup, Standard,
Unresponsive Delayed 4 Demos
PASM Status Throw Nominal, Stuck  On, Off Nominal  1-3 Trie$ Startup, Standard,
4 Demos
8 Static Power Throws Uncommande¢d  On, Popped Off Nominal None Startup, Standard,
4 Demos
8 Status Throws Nominal, Stuck  On, Off Nominal  None Startup, Standard,
4 Demos
8 Thruster Valves Uncommanded Open, Stuck Closed Nomjrdbne Startup, Standard,
Delayed 4 Demos
ACS MDC State Nominal, Sun Standby, Earth | Nominal | 1 Try Startup, Standard,
Unexpected Standby, RCS, TV({ 4 Demos
IPS/DCU State Nominal, Standby, XFS Init, Nominal | 1 Try Startup, Standard,
Unexpected Thrust, Safe 4 Demos
LPE Remote Terminal Responsive, [ Comm., No Comm. Nominall 1-3 Tries Startup, Standard,
Unresponsive Delayed 4 Demos
3 Other Remote Uncommanded | Comm., No Comm. NomingalNone Startup, Standard,
Terminals Delayed 4 Demos

amount of time spent in each of the nominal configurationspacecraft. Itis also required to abort when requestbg t
above. The «pected time in edic nominal configuration the flight software and to ensure thle present spacecraft
together with the likelihood of off-nominal values occurring state matches the state ths assertedybthe plans. There

in that configuration yield an estimate on the likelihood ofare also a handful of lower-level safety, performance, and
entering an arbitrgrconfiguration during the missiothis  timing requirements thiamust be met. In all, there are 66
estimae @n then be used to focus test case selection @ystem requirements.

highest likelihood configurations. The syste tests consist of 22 scenarios that exercise these

The quantitative approach outlined here also enables anditions. The scenarios consist of segments of the
“any-time approach to testing ybprioritizing test runs nominal RAX scenario, the nominal experimhem its
according to the highedikelihood configurations this  entirety, and a handful of the ntofkely off-nominal
prioritization is valual® in an environment of uncertain scenarios. Each scenario configures the FSW simulators or
testbed availability, enabling testers to deal optimadth  actual hardware simulators to provide desired behavior, and
with testbed shortages and with yanunexpected then the RA is ro normally. The RA generates a log file,
opportunities in testbed availabjlithat ma arise. which testers analyzeo tverify tha the RA behavior is
correct.

EXEC Test Case Selection The system scenarios exercise all of the requirements in the
) _ ) highest-likelihood conditions, but do not test them in all the
The eecutive a@rries out plans providedylthe planner, possible situations that could occur. The module tests on
and responds_ to fault dlagnoses_, and repair suggestions frope low-fidelity test-beds proviel onfidence in the RA
MIR. Accordingly, the majorit of executive testing penhavior under the off-nominal conditions. The scgroit
consists of exercising the EXEC on the planner and Mifyigh-fidelity test beds forces us to trade risk for feasibility.
test cases and verifying that the EXEC behaves properly.
) . _ This approach to systetesting assumes théere is one
A few EXEC requirements are verified with itiests. In - nominal scenario thds known prior to execution. This is
particular, the EXEC has a procedure for each token in th@ertainy true for RAX, where the scenario is almost
plan. The procedures are largeidependent of each other, entjrely under control of ta experimert team and the only
and so uit testig provides high confidence thahe  gnomalies that are likglto occur are those simulated as
procedures are correct. part of tte eperiment (though RA must also respond
i propery if those anomalies occur naturally). The system
System Test Case Selection suite therefore provides relatiydligh confidence in RAX.
RAX is required & be able to react positivelto a

predetermined seff éault conditions that can occur on the
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Table 4. DS1 Test-beds

Platform Fidelity CPU Hardware Availabilit CPU speed
y

Spacecraft Highest Flight Flight 1 for DS1 1:1
DS1 Testbed High Flight Flight spares + DS1 simulators 1 for DS1 1:1
Hotbench High Flight Flight spares + DS1 simulators 1 for DS1 11
Papabed Med Rad6k DS1 simulators only 1 for DS1 4:1
Radbed Low Rad6k RAX simulators only 1 for RAX 4:1
PowerPC Lowest PPC RAX simulators only 2 for RAX 10:1
Unix Minimal Sparc Ultra  RAX simulators only unlimited 40:1

» The flight CRJ is a radiatio hardened RS-6000 chip (Rad6k) running on the flight bus, memory, etc.
* The Papabed and Radbed run on a Rad6k chip bus, but have some non-flight bus agcongoooents.
 The PowerPC (PPC) is a non-hardened, off-the-shelf RS-6000 chipigliter clock speed than the Rad6k.

. The RAX cimiilatare were written/hhe RAX team and are nf Inwer fidslithan the NQ1 cimiilatare

The same approach should scale to science missiorlssser degree since there are fewer tests and most of them
Science missions have a nonlin@ission plan. The system must be run o high fidelity test-beds.

test-suite will consist of tki £enario combined with the
mog likely off-nominal scenarios. The purpose of the
systen tests is to gain confidence tithe software behaves
propery as a whole, interacts propgsith the actual FSW
and hardware, and ththere are no timing or performance
problems. Module tests on lower fidgliplatforms are
necessarto gain confidence thiahe RA responds robustly ) o i
to df-nominal situations. This approach still ensaiome ~ RA architecture supports multi-fidelity testing

risk, perhaps more than flight projetangers are willing  The Remote Agent architecture is well suited to testing at
to accept. Additioniatesting or formal V&V methods may multiple fidelity levels. Each element of the RA (EXEC,
be needed to reduce the perceived risk and the actual riskNgR, PS) consists of a domain-independent reasoning
acceptable levels. engine, a domain-specific model, and a handful of
implementation-specific interfaces with the flight software.
Low fidelity platforms (such as Unix) can variélmost all

5. ALLOCATING TESTS TO TE$ BEDS of the engine requiremest snce the wg in which the
The DS1 flight project has a number of test beds ranging iingines reason about and act upon the knowledge in the
fidelity (with respet to the spacecraft) and scarcity, asmodels does not change with increasing fidelity. The
shown in Table 4. The highest fidgliplatforms, such as remanirg handful of timing ad performance
the spacecréitself, are scarce and testing time onnthis ~ requirements can be independgntrified o high-fidelity
limited. CRJ spee decreases with increasing fidelity, Pplatforms.

further limiting tre dfective testing time. Lower fidelity The RA interacts with the spacecraft via FSW interfaces.
platforms are more numerous and have faster CPUS, bghe FSW abstracts the details of the spacecraft. The
tests performed on themust & @mbined with a strong  Remqte Agent reasons about and acts upon the spacecraft at
argumen that additional fidely will not change the ih4 |evel, according to the knowledge in the RA’s models.
outcome. This abstraction layer makes it possilerify the models

High fidelity test beds are also the most difficuo  On low to medium fideliy platforms.

qonf_lgure and instrument for a given test, whereas lowefne Egw presents an abstraction to the RAt ta
fidelity test-beds are generpline esiest. This means that rg|ativel eay to capture in a simulator. The RA interacts
some tests can onlbe performed on lower fidejittest \ith the FSW simulator on Vo or medium fidelity
beds. platforms. This $ aifficient to verify that the RA reasons

A key challenge is deciding ko to allocate tests to and reacts corregtl with respet to the abstracted
platforms in order to maximé& mnfidence in the Remote Spacecraft.

Agent. Traditional FSW also faces this challenge,tbla  Tegters can configure the FSW simulator to produce
behavior that would be diffituto elicit from the actual

3 Flight processors are typicalbre or two generations behind the state-of- FSW. This allows the low-fideljttests to more thoroughly

the-art due to the need for radiation hardening and the need to select a CPlextercise the RA than would otherwise be possible.
the beginning of the project (at least two years before launch).

The general approach we have taken for RAX is to allocate
most of the module (PS, MIR, and EXEC) tests to the low-
fidelity PPC test-beds, with timing drperformance issues
being tested on Radhedbcarce access to high-fidglitest
beds is reserved for system level tests.
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This argument is used extensivér Planner testing, since The scenarios vgrin duration fran twelve hours to six
the PS test-suite is the midime-intensive of bhthe RA  days. The high-fidelit testbel schedules have verfew
modules. In orderatoltain adequate coverage, the test suitecontiguous time slots laegeough to accommodate these
must have abol200 gan generation cases. Plans take fourscenarios, and manof the scenarios will haveothbe
hours to generate on flight CPUs, but less than five minutegpeated (detect a bug, fix it, repeat test).

to generate on a Sparc Ultra/1 which means it would ta
over a month to run through éhentire suite on a high-
fidelity test-bed, but omglsixtean hours to run through on
Unix.

k‘Ieestbed availabilit therefore imposes wer strong
constraints on the number of scenarios in the sydst-
suite, and the running time of those scenarios. t Mest
slots are one galong, with three-dga slots the nexmost
The ony planner input that changes bigher fidelity test- common, and ogltwo a three opportunities for six-day
beds is tk &act content of the goals provideg @n-board  runs. Correspondingly, the running time of scenarios in the
systens sich as NAV and ACS. This means thmodulo  test suite should folle this distribution. The number of
timing ard performance issues, the planner behavior iscenarios of each length should be one tathe third the
expected d behave identicayl on Unix and the spacecraft number of available slots for that running time, toalifor

for ary given input. This permits comprehensive plannerre-running scenarios and slots lost due to downtime or
testing on Umt platforms with full expectation thiathe  preemption.

results will scale upat aher platforms. A handful of tests

are repeated ro higher fidelity platforms to address

performance issues ana te sure tha the plans are

identical (i.e., no anomalies are introduced fdiatform-

dependent implementation differences, the CPU, or because

we are using a RAMdisk instead of an NFS file system).

At some poin the RA must be tested in conjunction with
the actual FSW. The FSW maave drifted fron its
original specifications, or nyahave subtle behavior not
captured B the simulator. These tests require test-beds that
support the FSW. For DS1 this means Papabed or the high-
fidelity testbeds. If the FSW ran on lower-fidgliest-beds
such as the PPC,enmuld test the RA/FSW interactions on
those testbeds.

Finally, the RA/FSV combination must be run on the test-
beds with the highest fidglit spacecraft hardware and
simulators (Hotbench or DS1 testbed) in orderwverify
timing and performance issues, and to ensurethieae are

no subtle hardware behaviors that violate their FSW
abstraction.

A test-suite with adequatmverage isdo large to run on
the scarce high-fidelit test-beds. The approach we are
taking for RAX is to devise high-coverage suites for each of
the RA modules (EXEC, MIR, and PS), and run these on
the lowv fidelity PPC and Radiepatforms. A fourth test-
suite, called the syste tests, coves g/stem requirements
and provides minimal coverage of the most criticaodule
requirements. This suite is run bigher fidelity platforms.
Since these platforms are scarce, and tests take longer to
run on them, the systetest suite is versmall (about 20
tests). Tk @rrespondingl low level of coverage is only
acceptable because oktimmprehensive module testing on
lower fidelity platforms. Table 5 shows the allocation of
RAX requirements to testbeds.

Experiment Design for Testability

The system tests consist of the nominal RAX scenario, plus
a handful of the maslikely off-nominal scenarios. Each
test configures the FSW simulators or actual hardware
simulators to provide desired behavior, and then the RA is
run normally. The RA generates a log file, which testers
analyze ¢ verify that the RA behavior is correct.
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Table 5. RAX Test Allocation

Requirement Test Suite| Platform

Timing (execution, fault response, etc) System DS1 Testbed
Resource utilization System DS1 Testbed
Performance (e.g., planning duration) System DS1 Testbed

Plan generates plan in four hours System DS1 Testbed

RAX Aborts when commanded System PPC, confirm on DS1 Testbed
Planner generates correct plans w.r.t. real NAV goals and ACS System Papabed, DS1 Testbed
constraint functions

Planner generates correct plans w.r.t. simulations of NAV goals and PS Unix, PPC

ACS constraint function.

MIR diagnoses faults correctly MIR PPC

MIR suggests correct fault recovery MIR PPC

Exec dispatches tokens according to temporal constraints in plan EXHC PPC

Exec issues proper commands to execute plans EXEC PPC

Since the test-sw@t @n have ony a few scenarios, each shot time span. This entalome risk, since the software
scenario must exercise several requirements. We identifiéd not tested on the nominal flight scenario.

the events that we wanted to exercise within a single run,

and selected scenario start and end times or events

accordingly. However, two issues make it difftcio define 6. AUTOMATION ISSUES

and execute these scenarios. Automation is an important component of modern testing.

First, the citical events in te eperiment are temporally For RAX we developed automated test runners to reduce
distant, which makes it diffidtito pack several of them the time and workforce needed to cdlléest results after
into a short run. On low-fideljt test-beds the simulators each majo release (evgr 3-4 weeks), and to ensure
can be jumped ahead (‘warped”) to the tnaxeresting reproducible test-cases for purposes of debugging and
event, bt this is not possible ro high-fidelity test-beds. regression testing.

Even if it were, aileast some scenarios would hawebg

run without warping, since this is the y will run in

flight.

The second issue idarting and ending the scenaribthe
selected boundgr points. The high-fidelit test-beds
operate as much like the spacecraft as possible. This means
the RA can onf be operated as it would in flight. This,

the RA starts in one of aVeinitial states, requests a plan
and executes it. The plan can be a pre-spddtfien if the

RA is in “scripted” mode, or generated on-board if the RA
is in “autonomous” mode. The RA cannot stam the
middle of a plan or in an initial state outside of the
specified set. The RA cannot begin in the middle of a plan,
even if that is the most logical place to do so from a testing
standpoint.

For RAX we have managed to design a test-suite in spite of
these restrictions, largelbecause there are gnh few
critical events that needothbe tested and because the
experiment has vegrshort plan horizons that happen to fit
the available time slots (12 hoursb2lays and 3 dys).
Future missions will have meraitical events and longer
plan horizons, which Wl makeit more difficut to design

an adequate systetest suite. One possibiliis to define
mini-scenarios that exerciseethritical events within a
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We also developed automated tools for analyzing the teRunning a single test scenario in a tedttgenerally
results and checking them against requirements. Because/olves having a test operator perfothe tasks outlined
RAX must react robustlto a wide variet of situations, itis in Figure 4.

often infeasible to spegifthe epected output for each

input scenario. Instead, we had to develop customizet@ihe purpose of spelling buhis test proceduré twofold.
analysis tools or perform the analysishand. First, it should be apparethat the test operator is playing

Wthe roles & ground operator and, to the extent required, the
Environment With some testbeds, little is required of the
test operator to contrahe ewvironmen if the testbed

) simulator is able to support scripting and timed fault

Testing Process injection.  In other cases, the test operator is required to

After producing a relativglstable and full-featured version Monitor the test artifact as it progresses through the
of RAX, the RAX team sft into development and testing Scenario, and musmanualy inject a failure while the
sub-teams. Evsrthree to four weeks the developrhéeam  SYsten is observedd ke in sone ontext of interest, by
releases a me version of RAX along with a release exploiting an observable of which the simulator is not

documen listing the bugs thahe developers believe they @ware this is traditionaly necessgr when the observation
have fixed. is based on the telemgistream, for instance.

The testers run th entire test suite on the release andsecond, the procedure serves to enakar that running a
archive tte execution logs for future reference. The suite istest scenario is a rather involved, time-consuming, and
fully automated fo repeatabiliy and to reduce workforce potentialy error-prone taskthis is of course a function of
requirements. The next section discusses the automat@¢k testbed: some operationsoee (uplink, for instance)
test-running infrastructure in more detail. Running throughare trivial on lower-fideliy testbeds However, even on
the test suite take about five to eight kalays, with each  |ower-fidelity testbeds, running an arbityescenario places
of the test teams (EXEC, MIR, PS, SYSTEM) allocated ong significant demand on the test operat@perator errors
three-hour time winde on the PPC platform per day. are wstly, usualy requiring a restart of thebave process

The testers analyze the logs using special-purpos%nd withit the loss of valuable testbed tim&Vorse, the
verification tools. These are discussed in the following?Perator error manot have bee noticed duing the test
sections. Bugs are reported via GNAT® web-accessible U, resulting in a data set from a sceoather than the
bug trackiy database in the GM tool chain. Bugs are ©nN€ intended Such errors Wi then have b be @ught
initially filed as “operf, and move through “analyzed” to downstrean in the testig process during the datnalysis

“feedback” when the developers believeythave resolved Phase, at a machigher cost.

The following sections describe the automation methods
found useful for testing RAX.

the problem.

Bugs are not “closed” until (a) the bug has been declared Test Cases Test Cases
fixed in an official release, and (b) the tester who filed the (Exec, MIR, PS, Syste (System)
initial report has verified the fix with an appropriate test.

The test results are referenced in the database when the bug 4/¢ A ¢

is closed. A bug maalso ke “suspended” to indicate the Runne | | Runner! [Runne Papabed &
bug my _be safey_ |gn_ored for some reason (e.g., the (PPC) | | (Radbed| | (Unix) Testbed
behavior is technicall incorrect but harmless, or there Scripts
exists a work-around). ¢ ¢ ¢

Figure 3 summarizes the tegfiprocedure. The following PPc | [rRADbed | | Unix

sections describe the testrunning infrastructure and| | |54 logs logs logs
verification tools in more detail.

Automation methods: Running tests / S <

We are given a test artifact, and a set of scenarios with i

which to exercise the artifactThe godis to quicky and Requirement hand PRs
reliably determine hw the artifact behaves when faced Checkers analysis [~ (Gnaty
with each scenario. Making this determination requires | (Planchecker

having the abiliy to embed thenmodifiedtest artifatinto Execview, ety

a testbed so that it can be operated instaedardway, and

it requires having the abijito bah observe and control the

testbed environménin such a wg that forces the test automated

artifad through the scenari o interes to colle¢ the report

necessardata.

o GNATS © is a trade-mark of Free Software Foundation, Inc.
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Our god is to quicky and reliaby acquire data from
hundreds of test scenarios on a sufficiefritquent basis to
keg pace with majo releases of nve test artifacts, and to
enable feedback in a manner timehough to impacthe
following release. To accomplish this, we have developed must be viewed a waste of testbed resources if the test times
test controllerto automate this process of running the tesbut Such control and safeguarding is critica planning

artifact through an arbitrgiscenam of interest.

The test controller accepts as input a formal specification o
a test scenario (the first step in the test operationﬁ‘
procedure) The scenario specification fixes values for the
parameters discussed in the Planner and MIR Test Ca

Selection sections, thus dictating the mission prolde
used and the behavior of ehewvironment during the

scenario

In addition, numerous other

parameters

facilitating test operations are provided; we outline some
the mos importart in the remainder of thi<ection, and
highlight the associated benefits.

value in the stopping condition is théne timeit takes to
run the tesis dramaticall reduced when the software
performs as expected. The timeads intended oyl as a
conservative bound on the time the tedlt take, and it

and performing effective overnight runs on scarce testbed
resources.

nother wa of speedig up test runs is to spdeup the
environment; maysimulators support this. The important
g6nstrain to keep in mind when designing a ttés to
ensure thithe speedup is otherwise irrelevato the
outcome of the test We have developed a warping
echanism that is able to determine when it is safe to warp

he testbed to a future timéhis is possible, for example,
when the test artifads going o6 be idling for an extended
period In addition to warping, the scenario specification

One dallenge in running through a test suite using arenables variasl sSmulator parametersot be specified to
automatic test runner is in knowing whigns safe to stop
the arrert test and move onto the next. To address this, &atc.

condition is provided in the scenario specification for

reduce the timé takes to execute a turn, to take a picture,

automaticaly stopping the test based on what is observed if he ability to automaticail monitor the decoded telemetry
the telemety stream during a runAs a safeguard, a test strean in real-time during a test opens the door to a
timeout duration is also provided to allohe test controller
to stop the tdsin the event of unexpected behaviorThe

1.

2.

Read and understand a description of the current|

test scenario

Reset the testbed:

a. Hardware, FSW, and sisimulators in
standarcbocup state

b. Prepare testbed for RAX uplink:
- Issue testbed commands to configure the

hardware and simulator

- Issue ground sequence to configure FSW|

c. lIssue ground sequence to Uplink RAX softeva

Start RAX

a. Issue testbed commands to configure the
hardware and simulator

b. Issue ground sequences to configure the FSV|
for RAX startup

c. Wait until RAX Start time

d. Issue ground sequence to Start RAX

As the current test scenario description dictates, i

timely manner:

a. Issue testbed commands to simulate @i
nominal events

b. Issue scenario-related ground sequences to
RAX

c. lIssue ground sequence to Stop RAX

Ensure RAX correcyidownlinked all validation

logs

a. Issue ground commands to salvage missing |

b. Move test data files out of downlink area into
permanent storage

Reset the testbed for the next test scenario

broader class of context-sensitive fault-injection. The
scenario specification provides a language for specifying
actions (simulator or ground commands) ke taken in
terms of what is being observed in the telegnstream. By
actively

monitoring the telemeyrstream, the test controller is able
to track the progress of the test artifact; when it enters the
context of interest, a fault can be injected into the
simulator. This provides a much finer-grained and reliable
control over the testbed than is traditiopgdossible, and
thus enables a greater set of test scenavitie performed

on each testbed.

Our approach raises awareness with rdspeaesigning
telemety contert to improve testabilit and operability.

For example, engineers might wish to add certain telemetry
contert to increase observabiitinto the artifact by
exposing in telemegrkey aspects of its internal statehis
remedies certain aspects of the reachabiliand
controllability issues raised in the MIR Test Case Selection
section.

Complementay to augmenting telemstrcontent, one may
wish to provide some form of instrumentation to customize
the data collected during a run. The RA is equipped with a
generdmechanism for adding such instrumentation on the
fly as part of its interface with ground operationghis
mechanism can eb ploited duing testing equayl well,

and serves to minimize ymon-standard interaction with
the test artifact during testing that ynt@ave otherwise been
necessary.

Finally, our approach to specifying test scenarios is
designed with the need to run the same scenarios on
multiple testbeds in mindFor instance, telemstrcontent

is a propen of the test artifact, and is therefore an
invariant of the testbed on which the artifég exercised,;
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thus, having a test stratethat define senarios in terms the plan model. The secongligsurpose isd verify al the

. g a test stray : . . iy

of this testbed invarianis a vey useful wa of easing constraints that correspond to a segbmpatibility. The

migration from one testbed to another. model is inspectedtverify that each constraint does in fact
have a corresponding compatibility. If sogttonstrain is

More generally, we have attempted to make scenarisatisfied since #h egine guarantees that every

- generally /e atiemp :

specifications a testbed invariant. We have developed asompatibility is satisfied in the plans it generates.

API for our test controller that provides abstractions for, . o .

ground commands and simulator commands required t-gh's to_ol__\_/erlﬂes plans as fOI,IPWS' Roughspeak_lng,h

exercise an arbitrgrscenare on ary testbed. Oyl the AP compatibilities are of the form “if token A exists in the

is reimplemented when migrating to awntestbed The plan3 then there also exists a token B such thatthe_te_mporal

test suite itself, as a collection of scenario specificationd€/ation R holds between A and B." A prllan satisfies a

need not change during a migration. We haveasled in  compatibiliy if for evey token of type A t I‘H_e('StS a H

seamlessi migrating our test suite from a PowerPC testbedPken Of type B in the specified temporal relation, and the

to a higher-fidely RADbed wsing this approach. This 'c/ation & gecified explicity in the plan. 1 is very

portability does have inhererimits, of course: om @nnot  'mPortant that the temporal relation appear expjiditithe

expect higher-fidelit testbeds involving flight hardware to plan. First, te «ec uses the relations in the plan to

c S s . aintain the properelationship among executing tokens.
ts;gp;gggtsmjectlon of all faults supported in simulation-base econd, tb «istence of an explicit relationship makes it

clear that the tokens did not safififie relation i accident,
Planner Verification therely avoiding fale “PASS” results. False PASS results
re more dangerous than false FAIL results, since the FAIL

The planner generates a plan from an initial Spacecrafkgits are all investigated to idegtihe bug that caused it,

state, a set of goals, and constraints. The main requiremgll the PASS results are not. False FAIL results will

on the planner is thathe plan meet a long list Of ,orefore he detected and corrected, but false PASS results
correctness requirements. Plans can be several hundrgd ot be corrected.

kilobytes long, and are not human-readable. There are
abou two hundre plans in the test-suite, andethmtire ~ The verification tools provide high confidence tththe
suite must be analyzed once a month. There is glearl planner generates plans that sgtisthe @rrectness
need for automated plan verification tools. conditions. t is also necessarto validate tle ®rrectness
conditions themselves. A minimal approach is to have
appropriate system engineers rewvithe onditions. We

ok this approach for RAX. A more systematic approach
.would be to augmeénthe reviev process with formal
Wesign-validation methedsich as SPIN [6] to ensure that
%he orrectness conditions guarantee a small handful of
high-level safgt and “liveness” conditions.

We have developed two such tools for RAX. ¥ibeth use
the same basic approach, which is to read the plan into
assertions database and then yetlia the assertions

(FOPL). These tools were implemented in AP5 [3],
language that supports these kinds of FOPL operations.

The plan correctness requirements are FOPL stateme
that specy§ constraints thia must hold amog pan
elements. For example, ®@monstrain is thd the plan must
not contain OP_NAV_WINDOW tokens if the MICAS Final approach isotvalidate the modetself. Since model
camera switchsi guck in the & position (@ Pecified by is declarative, we rglon inspection-based validation by
the MICAS_HEALTH token). This is encoded as the FOPL experts.

statement “for all opnav winao tokensw ther «ists a

MICAS_HEALTH tokenh such thah containsa.” Execution Verification

Rffis was done for RAX o having appropriate DS1
engineers revig the correctness conditions.

Some of thes onstraints correspoh drectly to During execution, the Remote Agent generates data in the
compatibilitiesin the planner model. Other constraints doform of telemety and (for tle experiment) an additional

not map to a singt @mpatibility, but are satisfiedytsome  validation log file detailing behavior drkey aspects of its
collection of compatibilities. internal state; EXEC, MIR, and Systdesting focuses on

d this data during the analysis phase to determine if
requirements are met. There are twenty-two system-level
scenarios, and several hundred scenarios for EXEC and
MIR. These data files are human-readable, though rather
long (over a megabyte), making a thorough manual
inspection of everexecution trace infeasible.

The first tool verifies tB @nstraints that do not correspon
to a singé mmpatibility in the plan model. If the plans in
the test suite satifthe® wnstraints, we have high
confidence thethe planner model corregtlenforces the
constraints for all planst is much easierotverify that a
given plan satisfies a constrairthan it is to write
compatibilities that enforce ¢honstraint for all plans. For There are two levels at which requirements checking can
the RAX planner, there are about 40 constraints in thisccur: first, o @n attemp to verify that every
category. requiremenis met ly everly execution trace; alternatively,
one @n note that each execution trace was produced by
running a scenario that was included in the test suite to test
g vey focussed subset of the requirements, and thus focus
only on verifying that small subset.
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We have adopted the latter approach for RAX, primarily

becauseit turns ow to ke quite manageable given the
experiment scope The ke is that each execution trace

Packet View
This Tcl/Tk tool reads the decoded telemestream
and dsplays it at various levels of granularity,

need oy be eamined in vey localized regions to
determine if the relevant requirements have been met, for
the tester has knowledge of the scenario and witdie
intended to deviate from nominal The eecution trace
from the nominal scenario is examined in its entirety.

providing support for color-codip packets and
probing for other properties.

Stanley Ground Ops

This Tcl/Tk tool provides a hierarchical schematic
representation of the MIR models, accepting as input
the decoded telemegtrstream ad dsplaying the
resulting staé dianges that occur within MIR as
execution progresses.

One incompleteness in thbae approach is that focussing
exclusivey on regions of th eecution trace that are
expected to deviate from nominal (given the scenario) will
fail to detect deviations in other (supposedbminal and
uninteresting) regions One solution is to spegifa “gold
standard” execution trace that specifies @hrrect behavior
during the nominal scenarioThe gold standard is the
contrasted agaihsthe airrent execution trace, and all
deviations are examined.

This ®lution comes at a cost of having to again examin&ne of the system requirements istttiee Remote Agent
each execution trace in its entirety, but here the proper@P& all of the DS1 flight rules. Flight rules are
being detected $ smply “deviation from nominal” rather f€quirements  how the spacecrafis commanded. They
than a complet dieck on all requirements This typically address issues such as subsystem interactions (e.g.,
intermediate solution strikes the right balance/e have always turn & the high-power instrument switch before
developed a differencing tbtha takes an abstraction of furning on the low-power switch to adoidamaging the

the execution trace and highlights deviations with the goldinstrument), and operational work-arounds for bugs or
standard Expectel deviations ae thecked for pertinent limitations in the flight software.

requirements, unexpected ones are debugged. For RAX we will address this requiremeny generating

While we believe the approach we have taken is the rigrfieguences fro the execution log for several of the system
one for RAX given testing resources, we are well awardest scenarios. We are developing al tduat extracts

that it will not scale up to larger missiandVe have taken SPacecraft commands frothe log file, and converthem

the opportunig to kegin pursuing in parallel a longer term into & sequence file, a JPL SASF (Space AgtiSiequence
approach. Specifically, we have found that special-purpodg!€) format. This fie @n then be fed into the DSudink
visualization tools will go a long watowards helping to S€quene onstraint checker, which verifies thahe
focus attention on keaspects of the trace, and can presenf€guence is consistent with thg _ﬂlght rules. This is the same
information in an intuitive fashion We have had checker that validates the traditional sequences used for the

significant external suppbrin developing the following 'est of the DS1 mission. The sequences cawo &k
tools: confirmed manuayl by subsystem engineers.

With these tools, a tester can analyze a log much more
n quickly than is possibleypanalyzing the na logs.

Flight-rule Checking

This verification step is needed build confidence in the
RA for this fird mission, bt it should not be needed for
testing autonom software on future science missions.

. ; A hstead, the flight ruke $ould k& ercoded in the planner
expet to revievw the lag generated Yy the Executive. The planner will guarantee thatyaplan it

This can be tire onsuming and errors mabe  generates will ohethese rules. This guar@e @n be
overlooked. In order to address this problem, astated as a propgrtof the planner and validated with
visualization tool for validating Executive plan formal methods. This is a much stronger proof tha RA
execution, called Planview, was developed at Carnegieill not violate flight rules than spot-checking a handful of
Mellon Universiy by Simmons and Whelan [9]. scenarios.

Planviev provides the user an overall vieof al the
executing timelines, highlights execution flaws, and
allows the user to zoo in on an individuhtoken
showing its values and constraints.

* Planview
Determining if the Executive reglldid wha it was
supposed to do in certain situations often requires

7. MODEL VERIFICATION AND VALIDATION

We have identified a numbef formal methods approaches
for verifying and validating the RA models and engines.
: Log checker L Portions of the EXEC engine were validhising a SPIN-
This Perl-based tool reads the validation log andyaseq model-checker thidentified a number of subtle
performs information filtering, analysis, statistics andinteractions that would not have been caught with scenario-
preliminary diagnosis. It checks the log against severabased testing [8]. The planner model and the planner
systen level requirements automaticalivhile helping  engine are verified yogeneratig plans for a varist of
the human reader to get necegsaformation easil to  initial states ad goals, ad using a plan-checkeotverify
check against otmeequirements. that the plans meet a validated set of constraints (this was
discussed in Section 6). The MIR meas investigating
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methods for automaticgllgenerating minimal-length test with a four-person testing team working approximately
suites direct from the MIR models. half-time.

With the eception of the plan-checker, time limitations

have preventd us fram incorporating these methods into 9. CONCLUSIONS

the RAX testing stratggin ary significant way. Further

work is needed to fufldevelop these methods and integrateVerifying and validating autonomeu g/stems raises a
them into the testing stratgépr future missions that utilize number of issues not facey braditional flight software.

the RA technology. Traditional flight software (FSW) can focus testing efforts
on the small handful of known execution paths, whereas
Design-analysis of the EXEC autonomos ftware must provide high confidence tha

) _ ) will behawe orrectly in all situations. To provide this
A formal analysis approach is used to check if thesonfidence, the test suite must have adequaverage of
Executive @de violates design specifications [8]. In thisthe requirements and input space. Some of the standard
approach, w aeate a formamodd that characterizes the coverage metrics and test-suitonstruction methods are
abstract behavior of critical Executivonstructs (for applicable to the RA, huin some @ses ne metrics and

example, those dealing with resource management). Wgethods were needed. We identified a number of these that
also formalize design requirements that sho@dforced e found useful for testing RAX.

whenever te onstructs are used (for example, aborted ) _

activities must always give up yamresources that were 1€st suites with good coverage also have a relgtlaege
allocated to them) Then we run this abstraanodel number _of test casest east with respecto tradltlona_\l
through a formamodel checker, which either proves that FSW. Since high-fidelit test beds are scarce on flight
the forma model satisfies the design requirements orProjects, it was necesseto distribute the tests among high

generates an example scenario where the requiremeditd lov fidelity platforms. Several aspects of the Remote
would be violated. Agent architecture made this feasil\¢e expect that future

missions can use a similar approach.

This approach discover_ed errors i|_1 the Exeqjti)de that  The omplexity of autonomos g/stems makes is difficult
would have been verdifficult to discover using the test 4 gpeciy and verif the expected behavior. We identified a
methods described bave. A major drawback of this nymper 6 methods for specifying thexpected behavior,
approach is thait is time-consuming and has gribeen 5 developed tools for automaticgll verifying the

applied to a small part of the Executive. Decreasing thgpserved behavior against those specifications.
time and expertise required to perfothis analysis is an

ongoing research area. A full-scale testing effort should also include formal
_ ) . validation methods to provdeven higher confidence in
Automatic generation of minimal-length tests the RA. We identified a fe such methods ahperformed

In the MIR Test Case Selection section, a parameterizatid?f0-0f-concept demonsrations. Expargliupon  these
for the MIR scenario space was provided, and a method fépethods is an area for future work.

test case selection offered. The tessia prioritized set of Qverall, the RAX testing effort has identified sevassues
configurations that areotbe tested Each configuration that arise when testing autonomous spacecraft commanding
corresponds to an equivatEndass of scenarios, gone of  systems, ah demonstrates a credible verification and
which can be selected and executed to test MIR. validation approach that will scale up beyond the scope of

Severdissues arise: given a configuration, wheathe best the Remote Agent Experiment. Successful validation of the
scenario to seléc to represen the wrresponding RAX will open the door to use of this exciting technology
equivalee das® Can we and he do we instruct a ©On future science missions, dirperhaps encourage the
testbed to follov that scenari® To answer these questions development of ne mission classes that are prossible
requires having a model of testbed capabilities, and afith @utonomous spacecraft.

ability to expldat that modd to generate a plan that will

bring the testbed into that configuration. 10. ACKNOWLEDGMENTS
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