
Appears in Proceedings of the 1999 IEEE Aerospace Conference, Aspen CO.

- 1 -

Validation and Verification of the Remote Agent for
Spacecraft Autonomy

Ben Smith1 William Millar 2 Julia Dunphy1 1Yu-Wen Tung1 Pandu Nayak3 Ed Gamble1 Micah Clark1

1Jet Propulsion Laboratory,
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

(818) 393-5371
benjamin.d.smith@jpl.nasa.gov

2,3NASA Ames Research Center,
MS 269-2, Moffett Field, CA 94035
2Caelum Research Corp. @ Ames

3RIACS @ Ames
(650) 604-0263

millar@ptolemy.arc.nasa.gov

Abstract—The six-day Remote Agent Experiment (RAX)
on the Deep Space 1 mission will be the first time that an
artificially intelligent agent will control a NASA spacecraft.
Successful completion of this experiment will open the way
for AI-based autonomy technology on future missions. An
important validation objective for RAX is implementation
of a credible validation and verification strategy for RAX
that also “scales up” to missions that make full use of
spacecraft autonomy.

Autonomous flight software presents novel and difficult
testing challenges that traditional flight software (FSW)
does not face. Since autonomous software must respond
robustly in an immense number of situations, the all-paths
testing approaches used for traditional FSW is not feasible.
Instead, we advocate a combination of scenario-based
testing and model-based validation. This paper describes
the testing challenges faced by autonomous spacecraft
commanding software, discusses the testing strategies and
model-validation methods that we found effective for RAX,
and argues that these methods will “scale up” to missions
that make full use of spacecraft autonomy.

Among the key challenges for validating autonomous
systems such as the RAX are ensuring adequate coverage
for scenario-based tests, developing methods for specifying
the expected behavior, and developing automated tools for
verifying the observed behavior against those specifications.
Another challenge, also faced by traditional FSW, is the
scarcity of high-fidelity test-beds. The test plan must be
designed to take advantage of lower-fidelity test-beds
without compromising test effectiveness.

TABLE OF CONTENTS

1. INTRODUCTION

2. REMOTE AGENT ARCHITECTURE

3. REMOTE AGENT EXPERIMENT

4. TEST CASE SELECTION AND COVERAGE

5. ALLOCATING TESTS TO TEST BEDS

6. AUTOMATION ISSUES

7. MODEL VERIFICATION AND VALIDATION

8. STATUS OF RAX TESTING

9. CONCLUSIONS

10. ACKNOWLEDGMENTS

1. INTRODUCTION

The Deep Space One (DS1) spacecraft, which launched
October 24, 1998, is a technology validation mission.
Unlike previous missions its primary objective is not to
gather science observations, but to flight validate several
new technologies. Successful validation of these
technologies will remove a major obstacle to their use on
more risk-averse science missions.

One of the new technologies is the Remote Agent (RA), an
artificial-intelligence based architecture capable of
autonomously commanding the spacecraft. The Remote
Agent Experiment (RAX) will demonstrate autonomous
operations of the DS1 spacecraft by the RA for a period of
six days in the Spring of 1999. Successful flight validation
of the RA will open the door to the use of autonomous
spacecraft commanding technology on future science
missions. A excellent description of the experiment design
and validation objectives can be found in [1].

One of the Remote Agent’s validation objectives is
demonstrating a credible verification and validation (V&V)
approach that will “scale up” from the experiment scope to
missions that make full use of autonomy. The V&V
approach for traditional flight software is not feasible for
autonomous flight software.

Traditional FSW V&V is able to achieve very high
confidence by testing each sequence (a time-ordered list of
commands) before uplinking and executing it. Autonomous
software is commanded by high-level goals rather than an
explicit sequence. The software decides how to command
the spacecraft in order to achieve those goals. The exact
command sequence is difficult to predict in advance
because the RA’s decisions are conditional on onboard
events. It is this ability to “close-loops” on-board instead of
through the ground operations team that makes autonomy
technology so valuable, but it also means that the
traditional sequence validation approach is no longer
feasible. A different V&V approach is needed. Autonomous
software will not be accepted on risk-averse science
missions without a credible V&V strategy.

Traditional FSW Testing

For testing purposes, traditional FSW can be thought of as
having two components: the onboard software and a

- 2 -

sequence. The onboard software consists of low-level
procedures for commanding aspects of the spacecraft
hardware. The sequence is a time-ordered list of
commands, where each command corresponds to one of the
software procedures.

The commands are tested independently. This provides a
moderate level of confidence in each of the commands, but
it does not address interactions among commands. These
interactions can be subtle and are often unsuspected. They
may depend on the exact sequence and timing of prior
commands, subtleties of the spacecraft state, etc.

Potential interactions and other subtle problems are
detected by sequence testing. Sequences have a single
execution path, or at most a small handful, which allows
very detailed testing and interaction analysis to be focused
on just those paths.1 This is a very powerful approach, but it
is only feasible when there are a small handful of execution
paths and those paths are known in advance.

Testing Autonomous Software

Traditional FSW testing approaches are not suitable for
autonomous software. In autonomous operations, the
spacecraft is not given a sequence, but a set of high-level
goals which the Remote Agent expands into lower-level
commands. If problems arise during execution, the software
automatically takes corrective action and selects alternate
methods for achieving the goals. There are millions or
billions of possible execution paths. It is impossible to
identify the handful that will be needed and exhaustively
test only those. The testing approach must provide high
confidence that the software will perform properly for all of
those paths.

The approach we have taken for RAX is scenario-based
verification augmented with model-based verification and
validation. The universe of possible inputs (goals,
spacecraft state, device responses, timing, etc.) is
partitioned into a manageable number of scenarios. The
RA is exercised on each scenario, and its behavior verified
against the specifications.

Testing Challenges

Scenario-based testing is hardly a novel approach, but there
are a number of issues that must be addressed for this
approach to provide the high confidence levels required by
science missions.

First, the effectiveness of scenario-based testing depends on
the coverage of the scenarios. Success on the tested
scenarios must imply success on the untested scenarios with
high confidence. The universe of possible input scenarios is
very large, but the number of tested scenarios must be
manageable. RAX has taken a parameter-based approach

1
 The level of testing and analysis need not be the same for every sequence,

and can depends on the importance of the sequence and a-priori confidence of
the operations team in it. At the most detailed level, the sequence is executed
on the flight test-bed in real-time, and the resulting telemetry and the sequence
itself are analyzed by subsystem engineers and automated constraint checkers
for negative interactions, etc.

to characterizing the input space and measuring coverage.
The RA’s models were used to identify non-interacting or
low-interaction regions of the parameter space, thereby
reducing the number of parameter combinations that must
be tested. Orthogonal arrays were used to design minimal-
sized test suites with comprehensive coverage of the
necessary parameter combinations.

The second challenge is that high-fidelity test beds are
expensive and correspondingly scarce, but scenario-based
testing involves many scenarios—more than can be run on
the scarce high-fidelity test beds. The test suite must
therefore allocate most of the scenarios on lower-fidelity
(and more available) test-beds without compromising test
effectiveness. RAX can be tested on lower-fidelity platforms
due to the abstraction layers presented by the RA and FSW.
 The RA reasons about and acts upon an abstraction of the
spacecraft presented by the FSW, which allows most of the
RA behavior to be tested against that abstraction on lower-
fidelity test-beds. The RA is composed of mission- and
platform-independent reasoning engines, and mission-
dependent models. Almost all of the engine requirements
can be verified on lower fidelity platforms. The high-
fidelity platforms test the remaining engine and RA
requirements, and ensure that the RA as a whole operates
correctly.

Third, since the RA interacts in a close-loop fashion with
the spacecraft, the test-scenarios must be able to specify
how the spacecraft will react in response to the RA. More
specifically, testers must be able to inject events relative to
the RA’s actions and internal reasoning process. We
designed a test controller that observes the RA’s telemetry
stream to determine what the RA is doing, and
automatically injects events based on those observations.
We believe this is a new approach in the spacecraft testing
community, though similar approaches have been used for
non-spacecraft applications.

The fourth challenge is automated verification.
Determining whether the software responded correctly to a
given scenario is difficult to automate, and laborious to
perform manually. Developing formalisms for specifying
the correct behavior and developing automated analysis
tools that work with those specifications is therefore an
important part of a credible testing strategy. The behavior
of the RA is complex, and correctness of that behavior
depends strongly on environmental details (spacecraft state,
hardware response timing, etc). We designed several
verification tools and methodologies for RAX, such as
verifying abstractions of the behavior, and checking the
behavior against safety and correctness constraints derived
from DS1 requirements (“flight rules”) and RAX
requirements.

Finally, scenario-based testing provides relatively high
confidence in the test artifact, but it can provide even
higher confidence when combined with formal design-
validation methods. For the Remote Agent Experiment, the
scenario-based testing alone is more than adequate since
the traditional FSW provides a number of “safety nets” that
will abort the experiment if it behaves improperly. For risk-
averse science missions, higher levels of confidence are

- 3 -

needed. We have identified a number of these for the RA,
and have provided proof-of-concept demonstrations in
several cases, but these are not part of the RAX testing
plan. We expect these model-based methods will be part of
the testing story for science missions that make full use of
spacecraft autonomy.

The remainder of this paper is organized as follows.
Sections 2 and 3 describe the Remote Agent architecture
and the experiment. Section 4 describes a number of test-
case selection methods used for RAX, and discusses why
these methods should scale up to missions where the
universe of possible scenarios is much larger than it i s for
RAX. Section 4 discusses the automated verification tools
and specification formalisms that we found effective.
Section 5 describes the testbed allocation approach and
lessons for larger-scale testing efforts. Automated testing
and verification issues are covered in Section 6, and formal
verification and validation methods in Section 7. We
discuss the current status of RAX testing in Section 8 and
conclude in Section 9.

2. REMOTE AGENT ARCHITECTURE

The Remote Agent [2] consists of three components:
Executive (EXEC), Planner/Scheduler (PS), and Mode
Identification and Reconfiguration (MIR). The planner is
given a set of high-level goals from the ground operations
team and from the onboard navigation system. PS generates
a plan that achieves the goals while obeying safety
constraints and resource constraints.

The fundamental execution units in the plan are tokens and
timelines. Each activity in a plan is defined by a token,
though not every token is an executable activity. Tokens
also track spacecraft states and resources. A timeline is a
sequence of tokens that specifies the evolution of that state
variable over time. The plan has several parallel timelines.
The plan specifies start and end time windows for each
token, and temporal constraints among the tokens (before,
after, contains, etc).

There are 18 timelines and 37 tokens defined in RAX. The
executive tracks only 8 of these timelines and 22 tokens.
The remainder are used by the planner for representing
goals, untracked resources, and abstract activities that
simplify the planning process but are not directly
executable.

The executive executes the plan in a robust manner by
issuing appropriate commands to the flight software. These
are the same commands that would be used in traditional
sequences. The executive guarantees that each activity in
the plan will be executed within the temporal constraints
specified in the plan. The temporal constraints are needed
to synchronize the start and end times of activities on
parallel timelines. For example, consider activities A and B
with a start-time window of [5,10] and a temporal
constraint that B must start two seconds after A. If A starts
at time 6, then B must start at time 8, even though the start
window for B is [5,10]. It is insufficient to guarantee only
that A and B start within their time windows. See Figure 1.

During execution, MIR observes the commands and the
state of the spacecraft. If the commanded state differs from
the observed state, MIR uses its model of the device to infer
the most li kely failure mode. It then suggests a repair
activity to the executive, which carries it out. If the failure
cannot be resolved within the constraints imposed by the
plan, then the executive aborts the plan and requests a new
one. The planner then generates a plan that achieves the
remaining goals from the current state of the spacecraft.

The Remote Agent architecture is shown in Figure 2.

3. REMOTE AGENT EXPERIMENT

The Remote Agent controls the following spacecraft
hardware and software: the camera for use in autonomous
navigation, the Solar Electric Propulsion (SEP) subsystem
for trajectory adjustment, the attitude control system for
turns and attitude hold, the navigation system for
determining how the actual trajectory is deviating from the
reference trajectory and what SEP thrusting profile is
needed to stay on the reference trajectory, the Power

Planning Experts
(NAV, ACS)

Planner/
Scheduler MIR

Exec Real-time
Flight
Software

Flight
Hardware

Fault
Monitors

4GOQVG�#IGPV

Figure 2: Remote Agent Architecture

start
within

8

6

starts 2s
before

5 10

A

B

Figure 1: Temporal Relations

- 4 -

Amplification and Switching Module (PASM), for use in
demonstrating fault protection capabilities.

Four failure modes are covered by RAX. These are:

F1. Power bus status switch failure

F2. Camera power stuck on

F3. Hardware device not communicating over bus to
flight computer

F4. Thruster valve stuck closed

Mission Scenario

The Remote Agent experiment is executed in two phases, a
12 hour Phase One followed a few days later by a 6 day
Phase Two. In Phase One, we start slowly by first
demonstrating the executive operating in the manner of a
low level sequencer by accepting commands to turn devices
on and off. Next, a “scripted” mode is demonstrated with
execution of plans uplinked from the ground. The main
demonstration here will be commanding the spacecraft to
go to and stay in a known, safe, standby mode and then
take a series of optical navigation (OpNav) images. In
addition, Failure mode F1 will be demonstrated by injecting
power bus switch status readings indicating that a power
bus is unexpectedly off. No planning or SEP thrusting are
attempted in Phase One.

In Phase Two, we also start by demonstrating low level
commanding, and then initiate on-board planning. Based
on the spacecraft initial state and the uplinked goals, the
planner will generate a three day plan including imaging
for optical navigation, thrusting to stay on the reference
trajectory, and simulated injection of faults to exercise
failures F2, F3, and F4. First the camera power stuck on
failure (F2) is injected. When the executive is unable to
turn off the camera when the plan so dictates, the executive
realizes that the current plan should be aborted and
replanning is indicated. This might be necessary, for
example, because the initial plan’s assumptions on power
consumption are incorrect with the camera on when it
should be off. The plan is declared failed, the spacecraft is
sent to a standby mode while the planner is requested to
replan based on the new information that the camera power
switch is stuck on. When the new plan is received by the
executive, execution resumes including navigation and SEP
thrusting. Near the end of the three day plan, the planner
is called to generate the plan for the next three days. This
plan includes navigation and SEP thrusting as before. It
also includes two simulated faults. First, a failure of a
hardware device to communicate is injected (F3); the
proper recovery is to reset the device without interrupting
the plan. Next, a thruster stuck closed failure (F4) is
simulated by injecting an attitude control error monitor
above threshold. The correct response is to switch control
modes so that the failure is mitigated.

4. TEST CASE SELECTION AND COVERAGE

The effectiveness of scenario-based testing depends largely
on how well the scenarios cover the requirements. Good
coverage requires not only that the test suite exercise each

requirement, but that the test-suite provide high confidence
that if the requirement is satisfied on the test suite that the
requirement will also be satisfied on all of the untested
inputs.

In addition to providing good coverage, the test-suite must
have a manageable number of tests. Finding the right
balance between coverage and test-suite size can be
difficult, and may involve trading risk (coverage) for
manageability. The manageability of a test-suite depends on
the availability of appropriate test-beds, the running time of
the suite, and the analysis effort it entails.

The Remote Agent consists of three modules, the planner,
the executive, and MIR. Each of the modules consist of a
mission-independent engine and a mission-specific model.
For RAX, the engines and models are tested as a unit by
module-specific test suites. For future missions, the engines
can be tested separately for increased confidence. Finally, a
system test-suite exercises the RA as a whole.

The module test-suites were designed using a parameter-
based approach. The universe of possible input scenarios is
characterized by a multi-dimensional parameter space. A
given assignment of values to parameters specifies a unique
scenario. The test suite consists of a subset of the possible
parameter values. The RAX test-suite uses three methods to
achieve good coverage and manageability: abstracting the
parameter space to focus on the relevant parameters and
values, analyzing the RA models to identify independent
regions of the parameter space and thereby reduce the
number of parameter combinations that must be tested, and
using orthogonal arrays to generate minimal-size test suites
that cover those combinations.

The system tests provide confidence in the RA behavior as
a whole. Since the system test-suite must be performed on
scarce high-fidelity platforms, it can contain only a handful
of scenarios. RAX is forced to trade risk (coverage) for
feasibility. The system tests are therefore intended to verify
the handful of requirements that could not be tested in the
module test-suites on lower-fidelity platforms, and to
exercise the module interactions. The system suite also
serves as a “spot-check” of requirements verified in the
module tests, to be sure that they are still satisfied in a
high-fidelity system context. These issues are discussed
further in Section 5.

The remainder of this section discusses the test-selection
and coverage analysis approaches for the engines; the PS,
MIR, and EXEC modules (engines plus models as a unit);
and the system test-suite.

Engine Verification

Each component of the RA (EXEC, MIR, PS) consists of a
domain-independent engine that reasons about and acts
upon domain-dependent knowledge contained in a model.
This separation is a key aspect of the RA design for
testability.

Since the reasoning engines are domain-independent, they
need not change from mission to mission. The reasoning
and actions performed by the engines are also platform

- 5 -

independent, with the exception of a handful of localizable
performance and timing issues. This allows developers to
provide one release of the engine software that can be used
by several missions. Testers can validate the engine design
and verify the platform-independent portions of the engines
once. Only the platform-dependent requirements need to be
verified for each mission. Since the testing cost is
effectively amortized across several missions, the testers
can provide correspondingly higher confidence in the
engines.

A full-scale approach for verifying and validating the RA
engines would be to identify key properties that the engines
must enforce, perform a formal design analysis to ensure
that the design does in fact enforce those properties, and
then verify that the engine implementations satisfy the
design requirements.

This process verifies that the engines enforce certain formal
properties. For example, the EXEC engine ensures that the
tokens (activities) in the plan will be dispatched and
terminated at times consistent with the temporal constraints
in the plan. The PS engine ensures that the plans it
generates will obey all of the constraints encoded in the
plan model. The MIR engine ensures that its diagnosis is
the most probable one consistent with the model. These
properties could be quite useful for validating the RA as a
whole. Determining exactly what properties and formal
validation methods would be most appropriate for this task
is an area for future work.

Since RAX is the first user of these engines, and our testing
resources are fairly limited, we could not invest the testing
effort needed for this full-scale V&V approach. Instead, we
treated each engine and its model as a single test artifact,
and verified requirements on each of these artifacts with
scenario-based testing. The following subsections describe
how these test cases were selected As a proof-of-concept
demonstration we used formal methods to validate selected
properties of the EXEC as discussed in Section 7, but this
was not part of the formal testing process.

Testing the engine and model as a single artifact is a valid
approach, but it prevents amortizing the test cost across
missions. In addition, this approach does not verify formal
properties of the engine, and so these are not available for
validating the RA as a whole. Future science missions can
use either of these testing approaches, but we believe the
amortized V&V approach discussed above is more
powerful. The domain-independence of the engines makes
this approach possible.

Planner Test Case Selection

The planner takes as input a requested plan start time, an
initial spacecraft state, a set of goals (some of which come
from the onboard navigator), and a set of constraints. It
generates a plan that begins at the requested start time and
achieves the goals from the initial state while obeying the
constraints. The constraints are specified in the plan model
and are largely fixed. However, a few of them can be
modified by changing parameter settings, and fewer still
are defined as external functions provided by onboard

systems. (Specifically, the duration and legality of
spacecraft slews (turns) are defined as functions provided
by the attitude control subsystem.) The constraint
parameters and the behavior of the ACS function must both
be treated as inputs.

The planner’s behavior is strictly a function of its inputs.
Its behavior does not depend on the order or timing of
events that occur while it is planning2. This makes it a good
candidate for parameter-based testing (e.g., [4]). The input
space is characterized by a multi-dimensional parameter
space. Each assignment of values to parameters identifies a
single point in the input space. The planner is tested on a
carefully chosen subset of parameter values, and the
resulting plan is checked against a list of plan correctness
requirements as discussed in Section 6.

The test-suite must have good coverage, as defined by some
metric, but not be too large to run and analyze. Based on
our experience a suite of 200 to 300 plan-request scenarios
is about the upper limit for a one-person testing effort,
assuming an automated scenario-runner and adequate plan
analysis tools.

A combination of approaches has proven effective for
generating test-suites for the RAX planner. First, the
parameter space is reduced by identifying equivalence
classes of parameters and parameter values. The planner
behavior is not expected to change qualitatively on inputs
drawn from the same equivalence class, but is expected to
change for inputs in different classes. Next, regions of high
and low interaction in the reduced parameter space are
identified by analyzing the planner model. Parameters from
strongly interacting regions should be tested in
combination, while fewer combinations must be tested from
weakly interacting regions. Parameters from non-
interacting regions can be tested independently. Finally, an
orthogonal array-based algorithm generates a small (nearly
minimal) size test-suite with comprehensive coverage of the
identified parameter combinations.

Parameter Space Construction—The input space is
characterized by a multi-dimensional parameter space such
that there is a one-to-one correspondence between
parameter settings and inputs. We term this the “true”
parameter space. The true parameter space for the RAX
planner is shown in Table 1. This space is infinite, and
clearly infeasible for testing.

To produce a manageable number of test cases, it i s first
necessary to control the size of the parameter space. This
was done by selecting parameters and parameter values that
focus on aspects of the input space to which the planner is
expected to be sensitive. We term this the “abstract”
parameter space. Each parameter setting in this space
specifies an equivalence class of inputs rather than a single
input. The planner is expected to behave similarly on every
input in a given class, but to have qualitatively different
behavior for inputs drawn from different classes.
Abstraction entails some risk, since there is no guarantee

2
 The onboard goals and ACS constraint functions are invoked during

planning, but they always give the same results for the same inputs regardless
of when they are called or in what order.

- 6 -

that the parameter space actually has these properties, but
this risk is needed to construct a manageable test-suite.

Table 2 shows abstract parameter space for the RAX
planner. Real or integer-valued parameters from the true
space, and those with large numbers of values, were
abstracted by selecting a small handful of discrete values to
test. Where it was known which values were at boundaries
of qualitative behavior regions of the planner, those
boundary values were selected. In the other cases values
were selected from the parameter’s domain according to
their expected distribution in operations. No attempt was
made to select a statistically significant number of values.
The abstraction makes several educated guesses, such as the
qualitative behavior boundaries, the distribution of values
in operations, and the number of parameter values to select.

The primary abstractions are as follows. The initial states
are restricted to twelve canonical states that cover all of the
qualitatively different initial states [all combinations of
MICAS state (2), MICAS health (2), and final attitude (3)].
The planner is either insensitive to other variations, or
those variations are not initial states that the exec would

ever generate. The plan start time is restricted to ten
boundary points: before, during, and after plan horizon
boundaries; and before, during, and after op-nav windows.

Several parameters are set to fixed values. Most of these are
design-time parameters that might change during testing
and integration, but will not change during the experiment
itself. The suite will be re-run if those parameters change.
The remaining parameters control values that the planner
does not reason about, but simply “passes through” to the
executive. Testing a single arbitrary value is sufficient.

Scaling Up—There are a number of aspects to the planner
and RA design that reduce the size of the parameter space,
and thereby facilitate testing. It will be important to pay
attention to these design decisions for future missions.

There are a vast number of possible initial states, but only
ten or so that are qualitatively different. If the Exec cannot
recover from a fault while executing a plan, it terminates
the plan and achieves a standby state. This is a quiescent
state in which the spacecraft can remain for an indefinite
period. The exec then requests a new plan, using this
standby state as the initial spacecraft state. There are only a

Table 1. True parameter space for RAX Planner

3DUDPHWHU ,QSXW 9DOXHV 'LVWULEXWLRQ

RU�([SHFWHG

9DOXH

1XPEHU�RI

9DOXHV

Plan start time
(relative to experiment start)

start time 0-518,400
(6days in seconds)

uniform 518,401

initial state initial state all standby states, all legal
end-states

uniform infinite

NAV win duration goal (ops) integer > 0 3-5 hours. maxint
NAV win goal start goal (ops) integer 0 2 * maxint
NAV win period goal (ops) integer > 0 3 days maxint
NAV win slack goal (ops) integer > 0 12 hours maxint
Comm. window start time [6] goal (ops) 0-518,400 8 AM ea. day 518,401
Comm window duration [6] goal (ops) 0-518,400 8 hours 518,401
Image goals [20] goal (nav) see below 8-10 see below
 Exposures/Image [20] goal (nav) small integer 4 ~10
 Exposure duration [20] goal (nav) 0-31 8-20 32
 Instrument Settings [20] goal (nav) 0-31 0-2 32
 Image target id [20] goal (nav) integer uniform maxint
IPS Maneuver Goals [12] goal (nav) see below 1-2 see below
 Maneuver start [12] goal (nav) integer 0 maxint
 Maneuver duration [12] goal (nav) integer > 12 hours 7 days maxint
 Thrust profile [12] goal (nav) real x 4 uniform infinite
 Thrust level [1] goal (nav) 0-99 70-100 100
Solar Power available constraint 0-2500.0 2400-2500 infinite

Slew Duration Function constraint all possible functions -- infinite
Misc. integer-valued parameters
[15]

constraint integer > 0 expect one
nominal
value for
each

maxint * 15

Random Seed constraint integer 15386 2*maxint
Exec Latency constraint small integer > 0 uniform in 4-

10
maxint

- 7 -

handful of standby states: one nominal state, and a small
number of degraded states corresponding to various
failures. For RAX, there are only four standby states
including the nominal that correspond to all combinations
of camera healthy or broken, and camera on or off.

In nominal operations, the initial state for a given plan is
the end-state of the previous plan. This allows execution to
continue seamlessly from plan to plan. The planner model
is designed so that every plan ends in a relatively quiescent
state similar to the standby state. There are only a small
number of qualitatively different end-states.

Table 2. Abstracted Parameter Space

3DUDPHWHU 7UXH�VSDFH

SDUDPHWHUV

9DOXHV 'LVFUHWL]DWLRQ &DVHV

�'LVFUHWL]HG�

Plan start time start time 0-518,400 10 boundaries 10

MICAS state initial state ON, OFF ON, OFF 2
MICAS health initial state OK, FAILED OK, FAILED 2
Final attitude initial state infinite Along IPS thrust

vector, at op-nav
target, cruise attitude

3

NAV win duration same integer > 0 2h, 3h, 4h, 6h 4
NAV win goal start same 0-518,400 1h, 2h, 4h 3
NAV win period same integer fixed (nominal) 1
NAV win slack same integer fixed (nominal) 1
LGA start time [6] same 0-518,400 0,+1day,+2days,…+5d

ays
1

LGA duration [6] same integer 8 hours 1
Number Image goals image goals 0-20 10, 20 2
 Exposures/Image * same [20] integer 3,4,5 3
 Exposure duration* same [20] integer 16,25,27 3
 Instrument Settings* same [20] integer fixed 1
 Image target id [20] same integer random 1
Number IPS Maneuvers IPS goals 0-12 0-3 4
 First Maneuver start Maneuver

start [1]
integer At plan start,

After plan start, Before
plan start, Before RAX
 start

4

 Last maneuver end Maneuver
Start [2-12],
Maneuver
duration [2-
12]

integer At plan end,
Before plan end, After
plan end, or After
RAX end

4

1 hour break between
maneuvers?

Maneuver
Start [2-12],
Maneuver
duration [2-
12]

None,
b/t 1 and 2,
b/t 2 and 3,
b/t 1, 2 and 3.

None,
b/t 1 and 2,
b/t 2 and 3,
b/t 1, 2 and 3.

4

 Thrust profile* same infinite arbitrary fixed value 3
 Thrust level [1] same 0 70, 80, 90 3
Solar Power Available same 0-2500.0 1500, 2400, 2500 3
Slew Duration slew duration

function
1s – 20min. 2 ,5,10, 20 (minutes) 4

Misc. parameters [15] same integer nominal values 1
Random Seed same integer any three 3
Exec Latency same small integer > 0 1, 4, 10 3

TOTAL infinite 6 billion

- 8 -

A full-scale science mission will have a few more standby
states and end-states, but not many more. The number will
be proportional to the product of the health-states tracked
by the planner. If the planner covered the entire DS1
mission, it would track only three more health timelines:
IPS health, MICAS high-voltage switch health, and RCS
thruster health for a total of 32 initial states.

The spacecraft is commanded by a handful of high-level
goals that the planner expands into a plan for achieving
them. The ground operations team specifies most of the
goals, with a few coming from onboard systems (navigation
for RAX). Goals tend to interact strongly, which means that
they cannot be tested independently. On the other hand,
missions are typically designed so that the spacecraft is
only doing one or two things at a time. So although the
goals interact, one can make assumptions about what
combinations of goals will appear in practice. Each of those
goal-sets can be tested independently.

Test Suite Construction—The test suite must provide
adequate coverage, according to some metric, yet have a
manageable number of cases. We use a combination of two
approaches. First, we use orthogonal arrays [4] to generate
a minimal-sized test-suite in which every parameter value
and every pair of values appears in at least one test case,
and every parameter value appears in about the same
number of cases.

This approach detects every bug caused by a single
parameter value or by an interaction of two parameter
values. It will detect only some bugs caused by interactions
of three or more parameter values. The risk of this
approach is that it assumes that the majority of bugs are due
to one or two parameter values.

The PS test-suite was constructed using an orthogonal
arrays approach. The RAX test-suite contains three sub-
suites generated with orthogonal arrays: one for the twelve-
hour experiment, and one each for the six day replan cases
and the six-day back-to-back plans. The twelve-hour suite
has 24 test cases (many of the above parameters are fixed
for the twelve-hour experiment), and the other suites have
about fifty cases each.

Coverage Metrics—Constructing this test suite required
several assumptions and abstractions, and each of these
introduces some uncertainty in the coverage. In order to
assess this risk, we developed several orthogonal coverage
metrics with which to evaluate the test suite and its
assumptions.

One metric is whether there is at least one test case from
each set of inputs for which the planner behavior is
expected to be qualitatively different. Whether the planner
behaves qualitatively similarly or differently to a set of
inputs depends on the constraints in the planner model. If
the inputs differ on plan elements that are interact strongly
(have many constraints among them), then the planner
behavior is likely to differ dramatically. If the inputs differ
on weakly interacting plan elements, then the output plans
are likely to be similar. With this metric, one identifies all
the strongly interacting plan elements and the combinations
of “true” parameter values that control these elements. The

abstract parameter space should not have settings that
correspond to these combinations. If it does, then settings
in the abstract space do not correspond to equivalence
classes where the behavior is qualitatively similar.

The test-suite coverage is measured with respect to this
metric by identifying the combinations of abstract
parameter values that control the strongly interacting
regions. The test-suite should have at least one test case for
each combination. The orthogonal array algorithm can be
extended to include these test cases (e.g., [5]), or they can
simply be appended to the test-suite with no attempt to
minimize.

We performed a very rough interaction analysis to identify
the most heavily interacting goals, initial states, and
constraint parameters. The test suite contains at least a few
test cases from each of these interaction regions. Additional
work is needed to implement the interaction analysis
metric.

A second metric is how well the test suite exercises all of
the requirements. If a requirement is trivially satisfied for
some test-case, then that case does not exercise the
requirement. A third related metric is how well the test-
suite exercises all of the knowledge in the plan model. The
plan model consists of constraints of the form “if token A
appears in the plan, then token B must also appear in the
plan and be in the following temporal relation to A.” Token
A is called the master token, and B is called the target
token. The constraint is exercised if and only if the master
token appears in the plan. It is therefore easy to determine
which constraints were exercised by examining the tokens
in the resulting plan. As an additional check, the plan
maintains temporal relations, which makes it possible to
tell whether a master/target pair occurred by accident or as
a result of exercising a constraint in the model. The
coverage of the test-suite is proportional to the percentage
of the total constraints exercised.

It is difficult to predict which inputs will exercise a given
constraint or requirement, though one can often make a
good guess. For the RAX planner, we use these two
coverage metrics to measure the coverage of the suite after
running it, and then add test-cases if needed. The third
metric is analogous to code-covering metrics which are also
used for post-hoc coverage analysis.

Single Variation Test Suites—The orthogonal array-
generated test suite provides excellent coverage with a
handful of test cases. However, it i s difficult to identify
which parameter caused a problem and file a meaningful
bug report. To address this problem, we constructed a
second suite of test-cases in which each case is identical to
a baseline scenario in every parameter value but one. Since
the planner is known to perform correctly on the baseline
case, any problems are very likely to be caused by the one
parameter that changed.

In practice, these “single variation” cases catch most of the
initial bugs. The orthogonal-array suites are useful for
identifying additional bugs once the single variation cases
all pass.

- 9 -

MIR Test Case Selection

The MIR module is responsible for the following aspects of
autonomous control:

• Confirmation of EXEC commanding
• Detection and Diagnosis of Failures
• Generation of Recovery Sequences
• Reporting State Change to Ground Control
• Incorporating model updates from Ground Control

There are two additional classes of MIR responsibilities
that are a feature of the Remote Agent being run as a
technology validation experiment:

• Abortion of the experiment when in a state that is
beyond scope

• Robustness to real failures during failure
demonstration scenarios

The details of these responsibilities, together with their
performance and resource usage constraints, are captured
into a set of MIR requirements. The goal during test case
selection is to define a set of test scenarios that provide
confidence that the test artifact meets all requirements.

In principle, the scenario space is bounded from the MIR
perspective given that models of the FSW, hardware, and
environment are finite state automata, that transitions in
these automata take time, and that the duration of the
mission is bounded. In practice, this scenario space is
prohibitively large for any manner of exhaustive testing,
even in simulation. The challenge is therefore to identify a
representative sample of the scenario space and exercise the
test artifact against that sample, with the ability to claim
that requirements met in the sample imply adequate
confidence that they are met in the large. In this section,
we first provide a descriptive feel for the scenario space,
then we provide a more concise parameterization for the
space, and finally describe how we exploit this
parameterization to select a test suite that meets our needs
in terms of coverage and prioritization.

Scenario Space Description—To provide a feel for the
scenario space facing MIR during RAX, we frame a
scenario as a discrete time series over the finite set of
events that include: EXEC commands to FSW, FSW
monitor events to MIR, Clock timeout notifications to MIR,
communication between MIR and EXEC, and
communication between MIR and Ground. For instance,
consider the following fragment of a scenario:

Event-0 Command-1: Power On Camera
Event-1 to Clock: Command-1 Timer
Event-2 Monitor-1: Camera Status On
Event-3 Clock: Command-1 Timeout
Event-4 to Exec: Camera On, Healthy
Event-5 to Ground: Camera On, Healthy

In this fragment, MIR first observes the EXEC requesting
that the Camera be powered On, and requests that a timer
be started to allow any monitored values to stabilize in
response to the command. MIR is then notified by a

monitor that the Camera switch sensor is reporting that the
switch has transitioned to the On position, and
subsequently MIR is notified that the command timer has
expired. MIR concludes that the Camera is now On, and
reports this state change to both Exec and Ground. Now
consider the following fragment further downstream:

Event-145 Monitor-83: NEB Current Nominal
Event-146 Command-56: Power Off Camera
Event-147 to Clock: Command-56 Timer
Event-148 Monitor-84: NEB Status Off
Event-149 to Clock: Monitor-84 Timer
Event-150 Clock: Monitor-84 Timeout
Event-151 to Ground: NEB Sensor Pop Off
Event-152 Clock: Cammand-56 Timeout
Event-153 to Exec: Camera Stuck On
Event-154 to Ground: Camera Stuck On
Event-155 from Exec: Recovery? Camera Off
Event-156 Recovery: Power Camera Off
Event-157 Command-57: Power Off Camera

In this off-nominal scenario fragment, two failures have
occurred: a non-essential power bus (NEB) switch sensor is
erroneously reporting that the NEB switch has popped off,
and the Camera power switch is stuck in the On position.
The NEB switch sensor failure is neither recoverable nor
serious, and demonstrates MIR’s ability to disambiguate
sensor failure from failure in the sensed device. The
Camera switch failure is used here to demonstrate recovery.
 Looking at the event sequence, MIR first receives a
monitor report from the NEB current sensor indicating that
current is in the Nominal range. The Exec is then observed
to request that the Camera be powered Off, and MIR
requests that a timer be started to allow monitors to
stabilize. MIR then receives a monitor report indicating
that the NEB switch sensor is reporting that the NEB
switch is in the Off position. This report is inconsistent
with the current desired state of the spacecraft, so MIR
starts an additional timer going to allow monitored values
to stabilize before initiating a diagnosis. The monitor timer
then expires, and MIR diagnoses the switch sensor to be
faulty based primarily on these facts: the NEB current
sensor is reporting Nominal, the NEB switch must be in the
On position to draw current, and a NEB switch sensor
failure is more likely than failure of both the NEB current
sensor and the NEB switch. MIR thus reports to Ground
that the NEB switch sensor has popped off (the Exec does
not control this device and thus is not informed). MIR next
receives notification that the Command-56 timer has
expired, and diagnoses the Camera switch to be stuck On,
for no monitor report indicates the Camera switch sensor
observing the switch transition to the Off position, and a
faulty Camera switch is more likely than a faulty switch
sensor. MIR reports the diagnosis to both Exec and
Ground. In the remainder of the fragment, Exec requests
that MIR suggest how to recover from the Camera switch
failure to achieve the goal of Camera Off, MIR suggests
that Exec re-issue the command to power it off, and finally
Exec follows that advice.

These examples are intended to make the notion of a
scenario more concrete, but provide only a glimpse into the

- 10 -

reasoning capabilities of MIR. Next, consider the following
curious fragment:

Event-145 Clock: Command-56 Timeout
Event-146 Clock: Command-56 Timeout
Event-147 Command-56: Power Off Camera

Here the Clock is reporting the same command timeout
twice, and prior to the command itself having been issued.
Both of these are anomalies that are legal scenarios
according to our current time series definition. A tester
would expect very little of MIR in this case, for design
assumptions about its environment have clearly been
violated; the action in such cases is to track down an
external problem in hardware, FSW or a simulator. From
the MIR testing perspective, then, we constrain the
candidate scenario space and consider only those scenarios
that behave within certain design assumptions.

In addition, there are scenarios that are possible given
design assumptions but that are considered beyond the
scope of the experiment. In some of these scenarios, MIR
is responsible for identifying that the experiment is outside
of scope and must request that the experiment be aborted;
in others, there is no such requirement, and FSW fault
protection will abort the experiment if necessary. In
selecting test scenarios for MIR, we consider only the
former in the candidate scenario space.

Parameterized Scenario Space—By exploiting structure in
the scenario space, as induced by design assumptions about
the environment and experiment scope, it i s possible to
more concisely characterize the scenario space. The
parameterization of the MIR scenario space is shown in
Table 3.

Values within each entry of the table are mutually
exclusive, thus a single value is drawn from the range
shown in each entry. The scenario space can therefore be
viewed as a 34-tuple (one for each device parameter), each
ordinate of which is itself a 5-tuple specifying a value for
Behavior, State, Timing, Attempt and Context. The strong
structural claim being made here about the scenario space
is that all scenarios passing through such a configuration
can be viewed as equivalent from the MIR perspective.

It is important to explicitly capture all environmental
assumptions that we use to justify this parameterization,
though we do not report on the details here, for doing so
would require a level of description of the domain that is
beyond the scope of this paper. These assumptions can
serve to focus model checking of properties of subsystems
in the environment. For example, MIR testing makes
assumptions about the nature and frequency of EXEC
commanding to justify this parameterization, and such
properties therefore warrant special attention during EXEC
testing.

Coverage and Prioritization—The parameterized scenario
space is prohibitively large for any manner of exhaustive
testing of our artifact, even on low fidelity testbeds that
support rapid simulation of the environment. (Exhaustive
testing of our design is another matter. We are in the
process of applying model-checking techniques to validate

our design. We are attempting this using both the
parameterized scenario space, and the less structured time
series representation described in the previous section.)

We take the set of candidate test cases to be the space of all
possible scenarios; that is, every configuration in the
parameterized representation is considered for inclusion in
the test suite. There are reachability and controllability
assumptions made here about the testbed, for some possible
scenarios cannot be performed on some higher-fidelity
testbeds: the testbed may not support injection of a desired
fault into real hardware or software, or there may be
insufficient observability or responsiveness in the testbed to
time such an injection appropriately during a transitional
period of interest in the scenario. We make these
assumptions during test case selection and test the artifact
on the highest-fidelity testbed capable of executing the
scenario, or perhaps prune such test cases from the test
suite if no such testbed exists. It is worth noting here the
guideline that scenarios that are difficult to produce in a
testbed environment for the above reasons are for the same
reasons rather unlikely to occur in flight.

Our current approach to selecting a covering sample of the
parameterized scenario space is qualitative. We note first
that every entry in the table has nominal values, or those
that can be considered such; we label all such
configurations involving only nominal values as the
nominal scenario. To this scenario, we add all single
variations, consisting of configurations whose parameter
values differ from a nominal one in at most one entry. We
then include any multiple variations deemed to provide
additional interesting interactions, as obtained by manual
inspection of the MIR models.

Traditional FSW development and testing often makes the
simplifying assumption that multiple variations are beyond
scope, and the justification cited is usually that the
likelihood of multiple variations in negligible. The
justification for our current qualitative approach to
coverage is also guided by this tradition, and is deemed
acceptable for RAX particularly given testing resources
available. Another traditional justification for the single
variation scope is that the risk in supporting multiple
variations due to added complexity in the software
outweighs the risk inherent in the variation itself; this
claim is justified in part by noting that the matter is
traditionally addressed by ground operations. An
autonomous system will t herefore have to go a step beyond
single variation scope to gain wide acceptance. We take
our test suite a step further into a reasonable number of
multiple variations to provide additional confidence, as we
believe this is a necessary requirement in any long-term
testing story for an autonomous system.

We are currently pursuing a more quantitative approach to
test case selection. Given our parameterization above, we
augment it with information available in the MIR models
about the likelihood of various off-nominal entries
occurring. Given a mission profile, or even a probability
distribution over possible mission profiles using the
parameterization discussed in the Planner Test Case
Selection section, it i s possible to measure the expected

- 11 -

amount of time spent in each of the nominal configurations
above. The expected time in each nominal configuration
together with the likelihood of off-nominal values occurring
in that configuration yield an estimate on the likelihood of
entering an arbitrary configuration during the mission; this
estimate can then be used to focus test case selection on
highest likelihood configurations.

The quantitative approach outlined here also enables an
“any-time” approach to testing by prioritizing test runs
according to the highest li kelihood configurations; this
prioritization is valuable in an environment of uncertain
testbed availability, enabling testers to deal optimally both
with testbed shortages and with any unexpected
opportunities in testbed availability that may arise.

EXEC Test Case Selection

The executive carries out plans provided by the planner,
and responds to fault diagnoses and repair suggestions from
MIR. Accordingly, the majority of executive testing
consists of exercising the EXEC on the planner and MIR
test cases and verifying that the EXEC behaves properly.

A few EXEC requirements are verified with unit tests. In
particular, the EXEC has a procedure for each token in the
plan. The procedures are largely independent of each other,
and so unit testing provides high confidence that the
procedures are correct.

System Test Case Selection

RAX is required to be able to react positively to a
predetermined set of fault conditions that can occur on the

spacecraft. It is also required to abort when requested to by
the flight software and to ensure that the present spacecraft
state matches the state that is asserted by the plans. There
are also a handful of lower-level safety, performance, and
timing requirements that must be met. In all, there are 66
system requirements.

The system tests consist of 22 scenarios that exercise these
conditions. The scenarios consist of segments of the
nominal RAX scenario, the nominal experiment in its
entirety, and a handful of the most li kely off-nominal
scenarios. Each scenario configures the FSW simulators or
actual hardware simulators to provide desired behavior, and
then the RA is run normally. The RA generates a log file,
which testers analyze to verify that the RA behavior is
correct.

The system scenarios exercise all of the requirements in the
highest-likelihood conditions, but do not test them in all the
possible situations that could occur. The module tests on
the low-fidelity test-beds provide confidence in the RA
behavior under the off-nominal conditions. The scarcity of
high-fidelity test beds forces us to trade risk for feasibility.

This approach to system testing assumes that there is one
nominal scenario that is known prior to execution. This is
certainly true for RAX, where the scenario is almost
entirely under control of the experiment team and the only
anomalies that are likely to occur are those simulated as
part of the experiment (though RA must also respond
properly if those anomalies occur naturally). The system
suite therefore provides relatively high confidence in RAX.

Table 3: MIR Scenario Space

Parameter Behavior State Timing Attempt Context
Camera Power Throw Responsive,

Unresponsive
On, Off Nominal,

Delayed
1-3 Tries Startup, Standard,

4 Demos
Camera Status Throw Nominal, Stuck On, Off Nominal 1-3 Tries Startup, Standard,

4 Demos
PASM Power Throw Responsive,

Unresponsive
On, Off Nominal,

Delayed
1-3 Tries Startup, Standard,

4 Demos
PASM Status Throw Nominal, Stuck On, Off Nominal 1-3 Tries Startup, Standard,

4 Demos
8 Static Power Throws Uncommanded On, Popped Off Nominal None Startup, Standard,

4 Demos
8 Status Throws Nominal, Stuck On, Off Nominal None Startup, Standard,

4 Demos
8 Thruster Valves Uncommanded Open, Stuck Closed Nominal,

Delayed
None Startup, Standard,

4 Demos
ACS MDC State Nominal,

Unexpected
Sun Standby, Earth
Standby, RCS, TVC

Nominal 1 Try Startup, Standard,
4 Demos

 IPS/DCIU State Nominal,
Unexpected

Standby, XFS Init,
Thrust, Safe

Nominal 1 Try Startup, Standard,
4 Demos

LPE Remote Terminal Responsive,
Unresponsive

Comm., No Comm. Nominal,
Delayed

1-3 Tries Startup, Standard,
4 Demos

3 Other Remote
Terminals

Uncommanded Comm., No Comm. Nominal,
Delayed

None Startup, Standard,
4 Demos

- 12 -

The same approach should scale to science missions.
Science missions have a nominal mission plan. The system
test-suite will consist of this scenario combined with the
most li kely off-nominal scenarios. The purpose of the
system tests is to gain confidence that the software behaves
properly as a whole, interacts properly with the actual FSW
and hardware, and that there are no timing or performance
problems. Module tests on lower fidelity platforms are
necessary to gain confidence that the RA responds robustly
to off-nominal situations. This approach still entails some
risk, perhaps more than flight project mangers are willing
to accept. Additional testing or formal V&V methods may
be needed to reduce the perceived risk and the actual risk to
acceptable levels.

5. ALLOCATING TESTS TO TEST BEDS

The DS1 flight project has a number of test beds ranging in
fidelity (with respect to the spacecraft) and scarcity, as
shown in Table 4. The highest fidelity platforms, such as
the spacecraft itself, are scarce and testing time on them is
limited. CPU speed decreases with increasing fidelity,3

further limiting the effective testing time. Lower fidelity
platforms are more numerous and have faster CPUs, but
tests performed on them must be combined with a strong
argument that additional fidelity will not change the
outcome.

High fidelity test beds are also the most difficult to
configure and instrument for a given test, whereas lower
fidelity test-beds are generally the easiest. This means that
some tests can only be performed on lower fidelity test
beds.

A key challenge is deciding how to allocate tests to
platforms in order to maximize confidence in the Remote
Agent. Traditional FSW also faces this challenge, but to a

3
 Flight processors are typically one or two generations behind the state-of-

the-art due to the need for radiation hardening and the need to select a CPU at
the beginning of the project (at least two years before launch).

lesser degree since there are fewer tests and most of them
must be run on high fidelity test-beds.

The general approach we have taken for RAX is to allocate
most of the module (PS, MIR, and EXEC) tests to the low-
fidelity PPC test-beds, with timing and performance issues
being tested on Radbed. Scarce access to high-fidelity test
beds is reserved for system level tests.

RA architecture supports multi-fidelity testing

The Remote Agent architecture is well suited to testing at
multiple fidelity levels. Each element of the RA (EXEC,
MIR, PS) consists of a domain-independent reasoning
engine, a domain-specific model, and a handful of
implementation-specific interfaces with the flight software.
Low fidelity platforms (such as Unix) can verify almost all
of the engine requirements since the way in which the
engines reason about and act upon the knowledge in the
models does not change with increasing fidelity. The
remaining handful of timing and performance
requirements can be independently verified on high-fidelity
platforms.

The RA interacts with the spacecraft via FSW interfaces.
The FSW abstracts the details of the spacecraft. The
Remote Agent reasons about and acts upon the spacecraft at
that level, according to the knowledge in the RA’s models.
This abstraction layer makes it possible to verify the models
on low to medium fidelity platforms.

The FSW presents an abstraction to the RA that is
relatively easy to capture in a simulator. The RA interacts
with the FSW simulator on low or medium fidelity
platforms. This is sufficient to verify that the RA reasons
and reacts correctly with respect to the abstracted
spacecraft.

Testers can configure the FSW simulator to produce
behavior that would be difficult to elicit from the actual
FSW. This allows the low-fidelity tests to more thoroughly
exercise the RA than would otherwise be possible.

Table 4. DS1 Test-beds

Platform Fidelity CPU Hardware Availabilit
y

CPU speed

Spacecraft Highest Flight Flight 1 for DS1 1:1

DS1 Testbed High Flight Flight spares + DS1 simulators 1 for DS1 1:1

Hotbench High Flight Flight spares + DS1 simulators 1 for DS1 1:1

Papabed Med Rad6k DS1 simulators only 1 for DS1 4:1

Radbed Low Rad6k RAX simulators only 1 for RAX 4:1

PowerPC Lowest PPC RAX simulators only 2 for RAX 10:1

Unix Minimal Sparc Ultra RAX simulators only unlimited 40:1

• The flight CPU is a radiation hardened RS-6000 chip (Rad6k) running on the flight bus, memory, etc.
• The Papabed and Radbed run on a Rad6k chip bus, but have some non-flight bus and memory components.
• The PowerPC (PPC) is a non-hardened, off-the-shelf RS-6000 chip with higher clock speed than the Rad6k.
• The RAX simulators were written by the RAX team, and are of lower fidelity than the DS1 simulators.

- 13 -

This argument is used extensively for Planner testing, since
the PS test-suite is the most time-intensive of all the RA
modules. In order to obtain adequate coverage, the test suite
must have about 200 plan generation cases. Plans take four
hours to generate on flight CPUs, but less than five minutes
to generate on a Sparc Ultra/1 which means it would take
over a month to run through the entire suite on a high-
fidelity test-bed, but only sixteen hours to run through on
Unix.

The only planner input that changes on higher fidelity test-
beds is the exact content of the goals provided by on-board
systems such as NAV and ACS. This means that modulo
timing and performance issues, the planner behavior is
expected to behave identically on Unix and the spacecraft
for any given input. This permits comprehensive planner
testing on Unix platforms with full expectation that the
results will scale up to other platforms. A handful of tests
are repeated on higher fidelity platforms to address
performance issues and to be sure that the plans are
identical (i.e., no anomalies are introduced by platform-
dependent implementation differences, the CPU, or because
we are using a RAMdisk instead of an NFS file system).

At some point the RA must be tested in conjunction with
the actual FSW. The FSW may have drifted from its
original specifications, or may have subtle behavior not
captured by the simulator. These tests require test-beds that
support the FSW. For DS1 this means Papabed or the high-
fidelity testbeds. If the FSW ran on lower-fidelity test-beds
such as the PPC, we could test the RA/FSW interactions on
those testbeds.

Finally, the RA/FSW combination must be run on the test-
beds with the highest fidelity spacecraft hardware and
simulators (Hotbench or DS1 testbed) in order to verify
timing and performance issues, and to ensure that there are
no subtle hardware behaviors that violate their FSW
abstraction.

A test-suite with adequate coverage is too large to run on
the scarce high-fidelity test-beds. The approach we are
taking for RAX is to devise high-coverage suites for each of
the RA modules (EXEC, MIR, and PS), and run these on
the low fidelity PPC and Radbed platforms. A fourth test-
suite, called the system tests, covers system requirements
and provides minimal coverage of the most critical module
requirements. This suite is run on higher fidelity platforms.
Since these platforms are scarce, and tests take longer to
run on them, the system test suite is very small (about 20
tests). The correspondingly low level of coverage is only
acceptable because of the comprehensive module testing on
lower fidelity platforms. Table 5 shows the allocation of
RAX requirements to testbeds.

Experiment Design for Testability

The system tests consist of the nominal RAX scenario, plus
a handful of the most li kely off-nominal scenarios. Each
test configures the FSW simulators or actual hardware
simulators to provide desired behavior, and then the RA is
run normally. The RA generates a log file, which testers
analyze to verify that the RA behavior is correct.

The scenarios vary in duration from twelve hours to six
days. The high-fidelity testbed schedules have very few
contiguous time slots large enough to accommodate these
scenarios, and many of the scenarios will have to be
repeated (detect a bug, fix it, repeat test).

Testbed availability therefore imposes very strong
constraints on the number of scenarios in the system test-
suite, and the running time of those scenarios. Most test
slots are one day long, with three-day slots the next most
common, and only two or three opportunities for six-day
runs. Correspondingly, the running time of scenarios in the
test suite should follow this distribution. The number of
scenarios of each length should be one half to one third the
number of available slots for that running time, to allow for
re-running scenarios and slots lost due to downtime or
preemption.

- 14 -

Since the test-suite can have only a few scenarios, each
scenario must exercise several requirements. We identified
the events that we wanted to exercise within a single run,
and selected scenario start and end times or events
accordingly. However, two issues make it difficult to define
and execute these scenarios.

First, the critical events in the experiment are temporally
distant, which makes it difficult to pack several of them
into a short run. On low-fidelity test-beds the simulators
can be jumped ahead (“warped”) to the next interesting
event, but this is not possible on high-fidelity test-beds.
Even if it were, at least some scenarios would have to be
run without warping, since this is the way it will run in
flight.

The second issue is starting and ending the scenario at the
selected boundary points. The high-fidelity test-beds
operate as much like the spacecraft as possible. This means
the RA can only be operated as it would in flight. That is,
the RA starts in one of a few initial states, requests a plan
and executes it. The plan can be a pre-specified plan if the
RA is in “scripted” mode, or generated on-board if the RA
is in “autonomous” mode. The RA cannot start in the
middle of a plan or in an initial state outside of the
specified set. The RA cannot begin in the middle of a plan,
even if that is the most logical place to do so from a testing
standpoint.

For RAX we have managed to design a test-suite in spite of
these restrictions, largely because there are only a few
critical events that need to be tested and because the
experiment has very short plan horizons that happen to fit
the available time slots (12 hours, 2.5 days, and 3 days).
Future missions will have more critical events and longer
plan horizons, which will make it more difficult to design
an adequate system test suite. One possibility is to define
mini-scenarios that exercise the critical events within a

short time span. This entails some risk, since the software
is not tested on the nominal flight scenario.

6. AUTOMATION ISSUES

Automation is an important component of modern testing.
For RAX we developed automated test runners to reduce
the time and workforce needed to collect test results after
each major release (every 3-4 weeks), and to ensure
reproducible test-cases for purposes of debugging and
regression testing.

Table 5. RAX Test Allocation

Requirement Test Suite Platform

Timing (execution, fault response, etc) System DS1 Testbed

Resource utilization System DS1 Testbed

Performance (e.g., planning duration) System DS1 Testbed

Plan generates plan in four hours System DS1 Testbed

RAX Aborts when commanded System PPC, confirm on DS1 Testbed

Planner generates correct plans w.r.t. real NAV goals and ACS
constraint functions

System Papabed, DS1 Testbed

Planner generates correct plans w.r.t. simulations of NAV goals and
ACS constraint function.

PS Unix, PPC

MIR diagnoses faults correctly MIR PPC

MIR suggests correct fault recovery MIR PPC

Exec dispatches tokens according to temporal constraints in plan EXEC PPC

Exec issues proper commands to execute plans EXEC PPC

- 15 -

We also developed automated tools for analyzing the test
results and checking them against requirements. Because
RAX must react robustly to a wide variety of situations, it is
often infeasible to specify the expected output for each
input scenario. Instead, we had to develop customized
analysis tools or perform the analysis by hand.

The following sections describe the automation methods we
found useful for testing RAX.

Testing Process

After producing a relatively stable and full-featured version
of RAX, the RAX team split i nto development and testing
sub-teams. Every three to four weeks the development team
releases a new version of RAX along with a release
document li sting the bugs that the developers believe they
have fixed.

The testers run the entire test suite on the release and
archive the execution logs for future reference. The suite is
full y automated for repeatability and to reduce workforce
requirements. The next section discusses the automated
test-running infrastructure in more detail. Running through
the test suite take about five to eight work days, with each
of the test teams (EXEC, MIR, PS, SYSTEM) allocated one
three-hour time window on the PPC platform per day.

The testers analyze the logs using special-purpose
verification tools. These are discussed in the following
sections. Bugs are reported via GNATS, a web-accessible
bug tracking database in the GNU tool chain. Bugs are
initiall y filed as “open,” and move through “analyzed” to
“feedback” when the developers believe they have resolved
the problem.

Bugs are not “closed” until (a) the bug has been declared
fixed in an official release, and (b) the tester who filed the
initial report has verified the fix with an appropriate test.
The test results are referenced in the database when the bug
is closed. A bug may also be “suspended” to indicate the
bug may be safely ignored for some reason (e.g., the
behavior is technically incorrect but harmless, or there
exists a work-around).

Figure 3 summarizes the testing procedure. The following
sections describe the test-running infrastructure and
verification tools in more detail.

Automation methods: Running tests

We are given a test artifact, and a set of scenarios with
which to exercise the artifact. The goal is to quickly and
reliably determine how the artifact behaves when faced
with each scenario. Making this determination requires
having the ability to embed the unmodified test artifact into
a testbed so that it can be operated in the standard way, and
it requires having the ability to both observe and control the
testbed environment in such a way that forces the test
artifact through the scenario of interest to collect the
necessary data.



 GNATS © is a trade-mark of Free Software Foundation, Inc.

Running a single test scenario in a testbed generally
involves having a test operator perform the tasks outlined
in Figure 4.

The purpose of spelling out this test procedure it twofold.
First, it should be apparent that the test operator is playing
the roles of ground operator and, to the extent required, the
environment. With some testbeds, little is required of the
test operator to control the environment if the testbed
simulator is able to support scripting and timed fault
injection. In other cases, the test operator is required to
monitor the test artifact as it progresses through the
scenario, and must manually inject a failure while the
system is observed to be in some context of interest, by
exploiting an observable of which the simulator is not
aware; this is traditionally necessary when the observation
is based on the telemetry stream, for instance.

Second, the procedure serves to make clear that running a
test scenario is a rather involved, time-consuming, and
potentially error-prone task; this is of course a function of
the testbed: some operations above (uplink, for instance)
are trivial on lower-fidelity testbeds. However, even on
lower-fidelity testbeds, running an arbitrary scenario places
a significant demand on the test operator. Operator errors
are costly, usually requiring a restart of the above process
and with it the loss of valuable testbed time. Worse, the
operator error may not have been noticed during the test
run, resulting in a data set from a scenario other than the
one intended. Such errors will t hen have to be caught
downstream in the testing process during the data analysis
phase, at a much higher cost.

Runner
(PPC)

Test Cases
(Exec, MIR, PS, System)

PPC
logs

RADbed
logs

Unix
logs

Requirement
Checkers

(Planchecker,
Execview, etc)

hand
analysis

automated
report

PRs
(Gnats)

Test Cases
(System)

Runner
(Radbed)

Runner
(Unix)

Papabed &
Testbed
Scripts

logs

Figure 3: Testing Process

- 16 -

Our goal is to quickly and reliably acquire data from
hundreds of test scenarios on a sufficiently frequent basis to
keep pace with major releases of new test artifacts, and to
enable feedback in a manner timely enough to impact the
following release. To accomplish this, we have developed a
test controller to automate this process of running the test
artifact through an arbitrary scenario of interest.

The test controller accepts as input a formal specification of
a test scenario (the first step in the test operations
procedure). The scenario specification fixes values for the
parameters discussed in the Planner and MIR Test Case
Selection sections, thus dictating the mission profile to be
used and the behavior of the environment during the
scenario. In addition, numerous other parameters
facilitating test operations are provided; we outline some of
the most important in the remainder of this section, and
highlight the associated benefits.

One challenge in running through a test suite using an
automatic test runner is in knowing when it i s safe to stop
the current test and move onto the next. To address this, a
condition is provided in the scenario specification for
automatically stopping the test based on what is observed in
the telemetry stream during a run. As a safeguard, a test
timeout duration is also provided to allow the test controller
to stop the test in the event of unexpected behavior. The

value in the stopping condition is that the time it takes to
run the test is dramatically reduced when the software
performs as expected. The timeout is intended only as a
conservative bound on the time the test will t ake, and it
must be viewed a waste of testbed resources if the test times
out. Such control and safeguarding is critical in planning
and performing effective overnight runs on scarce testbed
resources.

Another way of speeding up test runs is to speed up the
environment; many simulators support this. The important
constraint to keep in mind when designing a test is to
ensure that the speedup is otherwise irrelevant to the
outcome of the test. We have developed a warping
mechanism that is able to determine when it is safe to warp
the testbed to a future time; this is possible, for example,
when the test artifact is going to be idling for an extended
period. In addition to warping, the scenario specification
enables various simulator parameters to be specified to
reduce the time it takes to execute a turn, to take a picture,
etc.

The ability to automatically monitor the decoded telemetry
stream in real-time during a test opens the door to a
broader class of context-sensitive fault-injection. The
scenario specification provides a language for specifying
actions (simulator or ground commands) to be taken in
terms of what is being observed in the telemetry stream. By
actively
monitoring the telemetry stream, the test controller is able
to track the progress of the test artifact; when it enters the
context of interest, a fault can be injected into the
simulator. This provides a much finer-grained and reliable
control over the testbed than is traditionally possible, and
thus enables a greater set of test scenarios to be performed
on each testbed.

Our approach raises awareness with respect to designing
telemetry content to improve testability and operability.
For example, engineers might wish to add certain telemetry
content to increase observability into the artifact by
exposing in telemetry key aspects of its internal state; this
remedies certain aspects of the reachability and
controllability issues raised in the MIR Test Case Selection
section.

Complementary to augmenting telemetry content, one may
wish to provide some form of instrumentation to customize
the data collected during a run. The RA is equipped with a
general mechanism for adding such instrumentation on the
fly as part of its interface with ground operations. This
mechanism can be exploited during testing equally well,
and serves to minimize any non-standard interaction with
the test artifact during testing that may have otherwise been
necessary.

Finally, our approach to specifying test scenarios is
designed with the need to run the same scenarios on
multiple testbeds in mind. For instance, telemetry content
is a property of the test artifact, and is therefore an
invariant of the testbed on which the artifact is exercised;

1. Read and understand a description of the current
test scenario

2. Reset the testbed:
a. Hardware, FSW, and any simulators in

standard bootup state
b. Prepare testbed for RAX uplink:

- Issue testbed commands to configure the
hardware and simulator

- Issue ground sequence to configure FSW
c. Issue ground sequence to Uplink RAX software

3. Start RAX
a. Issue testbed commands to configure the

hardware and simulator
b. Issue ground sequences to configure the FSW

for RAX startup
c. Wait until RAX Start time
d. Issue ground sequence to Start RAX

4. As the current test scenario description dictates, in a
timely manner:
a. Issue testbed commands to simulate any off-

nominal events
b. Issue scenario-related ground sequences to

RAX
c. Issue ground sequence to Stop RAX

5. Ensure RAX correctly downlinked all validation
logs
a. Issue ground commands to salvage missing logs
b. Move test data files out of downlink area into

permanent storage
6. Reset the testbed for the next test scenario

 Figure 4: Test Operations Procedure

- 17 -

thus, having a test strategy that defines scenarios in terms
of this testbed invariant is a very useful way of easing
migration from one testbed to another.

More generally, we have attempted to make scenario
specifications a testbed invariant. We have developed an
API for our test controller that provides abstractions for
ground commands and simulator commands required to
exercise an arbitrary scenario on any testbed. Only the API
is reimplemented when migrating to a new testbed. The
test suite itself, as a collection of scenario specifications,
need not change during a migration. We have succeeded in
seamlessly migrating our test suite from a PowerPC testbed
to a higher-fidelity RADbed using this approach. This
portability does have inherent limits, of course: one cannot
expect higher-fidelity testbeds involving flight hardware to
support injection of all faults supported in simulation-based
testbeds.

Planner Verification

The planner generates a plan from an initial spacecraft
state, a set of goals, and constraints. The main requirement
on the planner is that the plan meet a long list of
correctness requirements. Plans can be several hundred
kilobytes long, and are not human-readable. There are
about two hundred plans in the test-suite, and the entire
suite must be analyzed once a month. There is clearly a
need for automated plan verification tools.

We have developed two such tools for RAX. They both use
the same basic approach, which is to read the plan into an
assertions database and then verify that the assertions
satisfy constraints expressed in first order predicate logic
(FOPL). These tools were implemented in AP5 [3], a
language that supports these kinds of FOPL operations.

The plan correctness requirements are FOPL statements
that specify constraints that must hold among plan
elements. For example, one constraint is that the plan must
not contain OP_NAV_WINDOW tokens if the MICAS
camera switch is stuck in the off position (as specified by
the MICAS_HEALTH token). This is encoded as the FOPL
statement “for all opnav window tokens w there exists a
MICAS_HEALTH token h such that h contains w.”

Some of these constraints correspond directly to
compatibilities in the planner model. Other constraints do
not map to a single compatibility, but are satisfied by some
collection of compatibilities.

The first tool verifies the constraints that do not correspond
to a single compatibility in the plan model. If the plans in
the test suite satisfy these constraints, we have high
confidence that the planner model correctly enforces the
constraints for all plans. It is much easier to verify that a
given plan satisfies a constraint than it i s to write
compatibilities that enforce the constraint for all plans. For
the RAX planner, there are about 40 constraints in this
category.

The second tool verifies that the plan satisfies every
compatibility in the model. The primary purpose of this tool
is to verify that the planning engine obeys the semantics of

the plan model. The secondary purpose is to verify all the
constraints that correspond to a single compatibility. The
model is inspected to verify that each constraint does in fact
have a corresponding compatibility. If so, the constraint is
satisfied since the engine guarantees that every
compatibility is satisfied in the plans it generates.

This tool verifies plans as follows. Roughly speaking,
compatibilities are of the form “if token A exists in the
plan, then there also exists a token B such that the temporal
relation R holds between A and B.” A plan satisfies a
compatibility if for every token of type A there exists a
token of type B in the specified temporal relation, and the
relation is specified explicitly in the plan. It is very
important that the temporal relation appear explicitly in the
plan. First, the exec uses the relations in the plan to
maintain the proper relationship among executing tokens.
Second, the existence of an explicit relationship makes it
clear that the tokens did not satisfy the relation by accident,
thereby avoiding false “PASS” results. False PASS results
are more dangerous than false FAIL results, since the FAIL
results are all investigated to identify the bug that caused it,
but the PASS results are not. False FAIL results will
therefore be detected and corrected, but false PASS results
will not be corrected.

The verification tools provide high confidence that the
planner generates plans that satisfy the correctness
conditions. It is also necessary to validate the correctness
conditions themselves. A minimal approach is to have
appropriate system engineers review the conditions. We
took this approach for RAX. A more systematic approach
would be to augment the review process with formal
design-validation methods such as SPIN [6] to ensure that
the correctness conditions guarantee a small handful of
high-level safety and “liveness” conditions.

This was done for RAX by having appropriate DS1
engineers review the correctness conditions.

Final approach is to validate the model itself. Since model
is declarative, we rely on inspection-based validation by
experts.

Execution Verification

During execution, the Remote Agent generates data in the
form of telemetry and (for the experiment) an additional
validation log file detailing behavior and key aspects of its
internal state; EXEC, MIR, and System testing focuses on
this data during the analysis phase to determine if
requirements are met. There are twenty-two system-level
scenarios, and several hundred scenarios for EXEC and
MIR. These data files are human-readable, though rather
long (over a megabyte), making a thorough manual
inspection of every execution trace infeasible.

There are two levels at which requirements checking can
occur: first, one can attempt to verify that every
requirement is met by every execution trace; alternatively,
one can note that each execution trace was produced by
running a scenario that was included in the test suite to test
a very focussed subset of the requirements, and thus focus
only on verifying that small subset.

- 18 -

We have adopted the latter approach for RAX, primarily
because it turns out to be quite manageable given the
experiment scope. The key is that each execution trace
need only be examined in very localized regions to
determine if the relevant requirements have been met, for
the tester has knowledge of the scenario and where it i s
intended to deviate from nominal. The execution trace
from the nominal scenario is examined in its entirety.

One incompleteness in the above approach is that focussing
exclusively on regions of the execution trace that are
expected to deviate from nominal (given the scenario) will
fail to detect deviations in other (supposedly nominal and
uninteresting) regions. One solution is to specify a “gold
standard” execution trace that specifies the correct behavior
during the nominal scenario. The gold standard is then
contrasted against the current execution trace, and all
deviations are examined.

This solution comes at a cost of having to again examine
each execution trace in its entirety, but here the property
being detected is simply “deviation from nominal” rather
than a complete check on all requirements. This
intermediate solution strikes the right balance. We have
developed a differencing tool that takes an abstraction of
the execution trace and highlights deviations with the gold
standard. Expected deviations are checked for pertinent
requirements, unexpected ones are debugged.

While we believe the approach we have taken is the right
one for RAX given testing resources, we are well aware
that it will not scale up to larger missions. We have taken
the opportunity to begin pursuing in parallel a longer term
approach. Specifically, we have found that special-purpose
visualization tools will go a long way towards helping to
focus attention on key aspects of the trace, and can present
information in an intuitive fashion. We have had
significant external support in developing the following
tools:

• Planview
Determining if the Executive really did what it was
supposed to do in certain situations often requires an
expert to review the log generated by the Executive.
This can be time consuming and errors may be
overlooked. In order to address this problem, a
visualization tool for validating Executive plan
execution, called Planview, was developed at Carnegie
Mellon University by Simmons and Whelan [9].
Planview provides the user an overall view of all the
executing timelines, highlights execution flaws, and
allows the user to zoom in on an individual token
showing its values and constraints.

• Log checker
This Perl-based tool reads the validation log and
performs information filtering, analysis, statistics and
preliminary diagnosis. It checks the log against several
system level requirements automatically while helping
the human reader to get necessary information easily to
check against other requirements.

• Packet View
This Tcl/Tk tool reads the decoded telemetry stream
and displays it at various levels of granularity,
providing support for color-coding packets and
probing for other properties.

• Stanley Ground Ops
This Tcl/Tk tool provides a hierarchical schematic
representation of the MIR models, accepting as input
the decoded telemetry stream and displaying the
resulting state changes that occur within MIR as
execution progresses.

With these tools, a tester can analyze a log much more
quickly than is possible by analyzing the raw logs.

Flight-rule Checking

One of the system requirements is that the Remote Agent
obey all of the DS1 flight rules. Flight rules are
requirements on how the spacecraft is commanded. They
typically address issues such as subsystem interactions (e.g.,
always turn off the high-power instrument switch before
turning on the low-power switch to avoid damaging the
instrument), and operational work-arounds for bugs or
limitations in the flight software.

For RAX we will address this requirement by generating
sequences from the execution log for several of the system
test scenarios. We are developing a tool that extracts
spacecraft commands from the log file, and convert them
into a sequence file, a JPL SASF (Space Activity Sequence
File) format. This file can then be fed into the DS1 uplink
sequence constraint checker, which verifies that the
sequence is consistent with the flight rules. This is the same
checker that validates the traditional sequences used for the
rest of the DS1 mission. The sequences can also be
confirmed manually by subsystem engineers.

This verification step is needed to build confidence in the
RA for this first mission, but it should not be needed for
testing autonomy software on future science missions.
Instead, the flight rules should be encoded in the planner
model. The planner will guarantee that any plan it
generates will obey these rules. This guarantee can be
stated as a property of the planner and validated with
formal methods. This is a much stronger proof that the RA
will not violate flight rules than spot-checking a handful of
scenarios.

7. MODEL VERIFICATION AND VALIDATION

We have identified a number of formal methods approaches
for verifying and validating the RA models and engines.
Portions of the EXEC engine were validated using a SPIN-
based model-checker that identified a number of subtle
interactions that would not have been caught with scenario-
based testing [8]. The planner model and the planner
engine are verified by generating plans for a variety of
initial states and goals, and using a plan-checker to verify
that the plans meet a validated set of constraints (this was
discussed in Section 6). The MIR team is investigating

- 19 -

methods for automatically generating minimal-length test
suites directly from the MIR models.

With the exception of the plan-checker, time limitations
have prevented us from incorporating these methods into
the RAX testing strategy in any significant way. Further
work is needed to fully develop these methods and integrate
them into the testing strategy for future missions that utilize
the RA technology.

Design-analysis of the EXEC

A formal analysis approach is used to check if the
Executive code violates design specifications [8]. In this
approach, we create a formal model that characterizes the
abstract behavior of critical Executive constructs (for
example, those dealing with resource management). We
also formalize design requirements that should be enforced
whenever the constructs are used (for example, aborted
activities must always give up any resources that were
allocated to them). Then we run this abstract model
through a formal model checker, which either proves that
the formal model satisfies the design requirements or
generates an example scenario where the requirement
would be violated.

This approach discovered errors in the Executive code that
would have been very difficult to discover using the test
methods described above. A major drawback of this
approach is that it is time-consuming and has only been
applied to a small part of the Executive. Decreasing the
time and expertise required to perform this analysis is an
ongoing research area.

Automatic generation of minimal-length tests

In the MIR Test Case Selection section, a parameterization
for the MIR scenario space was provided, and a method for
test case selection offered. The result i s a prioritized set of
configurations that are to be tested. Each configuration
corresponds to an equivalence class of scenarios, any one of
which can be selected and executed to test MIR.

Several issues arise: given a configuration, what is the best
scenario to select to represent the corresponding
equivalence class? Can we and how do we instruct a
testbed to follow that scenario? To answer these questions
requires having a model of testbed capabilities, and an
ability to exploit that model to generate a plan that will
bring the testbed into that configuration.

For RAX, we developed these plans manually, not at high
cost given the complexity of the domain. We are investing
an approach that would exploit the MIR models themselves
to generate minimal-length plans to use in controlling a
testbed.

8. STATUS OF RAX TESTING

As of October 1998, we have performed the low-fidelity test
suites on four RAX releases. Between December and March
we will perform the system test suite on the high-fidelity
test beds. We have been able to achieve this testing effort

with a four-person testing team working approximately
half-time.

9. CONCLUSIONS

Verifying and validating autonomous systems raises a
number of issues not faced by traditional flight software.
Traditional flight software (FSW) can focus testing efforts
on the small handful of known execution paths, whereas
autonomous software must provide high confidence that it
will behave correctly in all situations. To provide this
confidence, the test suite must have adequate coverage of
the requirements and input space. Some of the standard
coverage metrics and test-suite construction methods are
applicable to the RA, but in some cases new metrics and
methods were needed. We identified a number of these that
we found useful for testing RAX.

Test suites with good coverage also have a relatively large
number of test cases, at least with respect to traditional
FSW. Since high-fidelity test beds are scarce on flight
projects, it was necessary to distribute the tests among high
and low fidelity platforms. Several aspects of the Remote
Agent architecture made this feasible. We expect that future
missions can use a similar approach.

The complexity of autonomous systems makes it i s difficult
to specify and verify the expected behavior. We identified a
number of methods for specifying the expected behavior,
and developed tools for automatically verifying the
observed behavior against those specifications.

A full-scale testing effort should also include formal
validation methods to provide even higher confidence in
the RA. We identified a few such methods and performed
proof-of-concept demonstrations. Expanding upon these
methods is an area for future work.

Overall, the RAX testing effort has identified several issues
that arise when testing autonomous spacecraft commanding
systems, and demonstrates a credible verification and
validation approach that will scale up beyond the scope of
the Remote Agent Experiment. Successful validation of the
RAX will open the door to use of this exciting technology
on future science missions, and perhaps encourage the
development of new mission classes that are only possible
with autonomous spacecraft.

10. ACKNOWLEDGMENTS

This paper describes work performed at the Jet Propulsion
Laboratory, California Institute of Technology, under
contract from the National Aeronautics and Space
Administration, and by the NASA Ames Research Center.
This work would not have been possible without the efforts
of the rest of the DS1 team, Doug Bernard, Greg Dorais, Ed
Gamble, Chuck Fry, Bob Kanefsky, Jim Kurien, Nicola
Muscettola, Kanna Rajan, and Will Taylor.

REFERENCES

[1] Doug Bernard, Greg Dorais, Chuck Fry, Edward

- 20 -

Gamble Jr., Bob Kanefsky, James Kurien, William Millar,
Nicola Muscettola, P. Pandurang Nayak, Barney Pell,
Kanna Rajan, Nicolas Rouquette, Ben Smith, and Brian
Williams, “Design of the Remote Agent Experiment for
Spacecraft Autonomy,” In Proceedings of the 1998 IEEE
Aerospace Conference, Aspen CO

[2] B. Pell, D. E. Bernard, S. A. Chien, E. Gat, N.
Muscettola, P. Nayak, M. D. Wagner, and B. C. Williams,
“A Remote Agent Prototype for Spacecraft Autonomy,”
SPIE Proceedings Volume 2810, Denver, CO, 1996.

[3] D. Cohen. “Compiling Complex Database Transition
Triggers,”. Proceedings of the ACM SIGMOD
International Conference on the Management of Data,
225-234. Portland, Oregon. ACM Press, 1989.

[4] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton,
“The Combinatorial Design Approach to Automatic Test
Generation”, IEEE Software, pp. 83-88, September 1996.
(Also voted one of the best papers at Seventh International
Conference on Software Reliability Engineering [ISSRE],
Oct. 30 to Nov.2, 1996).

[5] D. M. Cohen, S. R. Dalal, M. L. Friedman, and G. C.
Patton, “The AETG System: An Approach to Testing
Based on Combinatorial Design”, IEEE Transactions on
Software Engineering, Vol., 23 No. 7, pp. 437-444, July
1997.

[6] Holzmann, G. Tutorial on SPIN/Promela. Computer
Networks and ISDN Systems, 25:981-1017, 1993.

[7] James Clarke “Automated Test Generation from a
Behavioral Model”, May 1998, Software Quality Week
conference, volume 1, section 2T1.

[8] Lowry, M., Havelund, K., and Penix, J., “Verification
and Validation of AI systems that Control Deep-Space
Spacecraft,” in Foundations of Intelligent Systems,
Proceedings ISMIS-97: 10th Int’l Symp. Methodologies for
Intelligent Systems, Lecture Notes in Artificial Intelligence,
No. 1325, Springer-Verlag, 1997.

 [9] Reid Simmons and Greg Whelan “Visualization Tools
for Validating Software of Autonomous Spacecraft,” In
Proc. of the Fourth International Symposium on Artificial
Intelligence, Robotics, and Automation for Space (i-
SAIRAS), Tokyo, Japan, 1997

Ben Smith is a member of the Artificial
Intelligence group at JP. He is Deputy
Project Element Manager for RAX, and
Deputy Lead of the JPL element of the
DS1 planning team. He holds a Ph.D. in
computer science from the University of
Southern California. His research
interests include intelligent agents,

machine learning, and planning.

William Millar is a computer scientist at the NASA Ames
Research Center, and holds a degree in pure mathematics
from the University of Waterloo. He is leading the MIR
testing effort and designed the automated test controller.

Julia Dunphy received her Master’s and Bachelor’s
degrees in Physics and Mathematics from Cambridge
University, UK, (’63) and her doctorate in Theoretical
Physics from Stanford in ‘67. After a career in magnetic
recording research in the 70s, she switched to software
development and was a cofounder of a small company
which provided development software for the then infant
microcomputing industry. She now works as a contractor to
JPL in the areas of design research and network
computing. Her interests include the field of collaborative
engineering design infrastructures and automatic source
code generation. She holds several patents and has
published over two dozen papers in various areas, such as
magnetic recording, error-correction coding, and control
of robotic vehicles (for the Mars Pathfinder Rover).

Yu-Wen Tung is a member of the RAX Executive team at
JPL, where he is leading the Executive testing effort. He
received his M.S. and Ph.D. degrees in Electrical
Engineering with an emphasis in Computer Engineering
from the University of Southern California. His research
interests include spacecraft software engineering,
autonomy, computer graphics and parallel computing. He
is a reviewer for the ACM Computing Review Journal.

Pandurang Nayak is a Senior Computer
Scientist at the Computational Sciences
Division of the NASA Ames Research
Center. He received a B.Tech. in
Computer Science and Engineering from
the Indian Institute of Technology,
Bombay, and a Ph.D. in Computer
Science from Stanford University. His
Ph.D. dissertation, entitled "Automated
Modeling of Physical Systems", was an

ACM Distinguished Thesis. He is currently an Associate
Editor of the Journal of Artificial Intelligence Research
(JAIR), and his research interests include model-based
autonomous systems, abstractions and approximations in
knowledge representation and reasoning, diagnosis and
recovery, and qualitative and causal reasoning.

Ed Gamble is a member of the Advanced Multimission
Software Technology group at JPL. He received his
bachelor's and master's in Electrical Engineering from
UCLA. His doctorate was awarded in Electrical
Engineering with a specialty in Artificial Intelligence from
MIT. His interests have ranged from laser scattering in
fusion plasmas and in critical phenomenon, to
computational vision and integration of sensory
information, and to programming languages and real-time
systems. He is currently interested in spacecraft software
architectures for reuse and autonomy.

- 21 -

Micah Clark was a member of the
RAX system testing team as a co-op
student at the Rensselaer Polytechnic
Institute, and is now a Member of the
Technical Staff at JPL where he
continues to work on the Remote Agent
Experiment.

