
DB2 UDB Server for OS/390 Version 6
Technical Update

Paolo Bruni, Sarah Ellis, Rod Gibson, Vusumzi Kopo, Neil Toussaint

International Technical Support Organization

SG24-6108-00

www.redbooks.ibm.com

http://www.redbooks.ibm.com/

International Technical Support Organization SG24-6108-00

DB2 UDB Server for OS/390 Version 6
Technical Update

May 2000

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 2000)

This edition applies to Version 6 of IBM DATABASE 2 Universal Database Server for OS/390 (DB2 UDB for OS/390
Version 6), Program Number 5645-DB2.

The document was created or updated on May 11, 2000.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix D,
“Special notices” on page 281.

Take Note!

Contents

Preface . vii
The team that wrote this redbook . vii
Comments welcome . ix

Chapter 1. Introduction .1
1.1 DB2 UDB for OS/390 Version 6 refresh. .2
1.2 Functional enhancement areas .4
1.3 Performance measurements .7

Chapter 2. Version 6 general news .9
2.1 Migration considerations .10

2.1.1 Release incompatibilities .11
2.1.2 Host variables must be preceded by a colon ":"12

2.2 UDF performance considerations .14
2.2.1 Built-in or application program. .16
2.2.2 External UDF or built-in function .17
2.2.3 Maximizing UDF efficiency .19
2.2.4 Use built-in functions. .21
2.2.5 Consider sourced functions .23
2.2.6 UDF summary .25

2.3 Trigger performance considerations .26
2.3.1 Trigger overview .28
2.3.2 Transition variables .29
2.3.3 Transition tables .30
2.3.4 Transition variable/table usage .31
2.3.5 Row trigger or statement trigger .33
2.3.6 Trigger coding considerations .35
2.3.7 Understanding trigger performance .37

2.4 LOBs performance considerations .39
2.4.1 LOBs overview .40
2.4.2 LOBs processing .41
2.4.3 LOBs read performance .43
2.4.4 LOBs write performance .45
2.4.5 LOBs recommendations .47

2.5 ESS performance .49
2.5.1 ESS read performance .50
2.5.2 DB2 logging rates by disk type .52

2.6 Distributed functions performance .53

Chapter 3. Application enhancements. .55
3.1 Identity columns .56

3.1.1 Existing techniques to create new keys .59
3.1.2 Definition of identity columns. .62
3.1.3 GENERATED options .64
3.1.4 Identity columns in DB2 catalog .66
3.1.5 Identity columns performance .67
3.1.6 Impact of caching .68
3.1.7 Applications and identity columns .70
3.1.8 IDENTITY_VAL_LOCAL function. .72
3.1.9 Managing tables with identity columns .74
3.1.10 Advantages of identity columns .77
© Copyright IBM Corp. 2000 iii

3.2 Savepoints . 79
3.2.1 Connecting to other DB2 systems . 80
3.2.2 Restrictions on using savepoints . 80
3.2.3 Savepoint performance . 81

3.3 Declared temporary tables . 82
3.3.1 Main differences between table types . 84
3.3.2 Considerations when converting from CTTs. 85
3.3.3 Defining a declared temporary table . 86
3.3.4 Authorization . 87
3.3.5 Referencing declared temporary tables . 88
3.3.6 Creating indexes . 89
3.3.7 Usage considerations . 90
3.3.8 Database and table space issues . 93
3.3.9 Restrictions . 95

3.4 Update with subselect . 97
3.4.1 Conditions for usage . 97
3.4.2 Self referencing considerations . 98

3.5 Columns in order by not in select . 99
3.6 Global transactions . 100

3.6.1 Funds transfer example . 101
3.6.2 Existing designs: 1 or 2 units of work . 102
3.6.3 Re-engineering design B . 103
3.6.4 Step 1 — Updates are performed under DB2 thread 1 104
3.6.5 Step 2 — DB2 thread 2 update times out . 105
3.6.6 Thread 2 in same global transaction — problem solved 106
3.6.7 Where the XID is passed — example 1 . 107
3.6.8 Where the XID is passed — example 2 . 108
3.6.9 Where the XID is passed — example 3 . 109
3.6.10 Flow between participants . 110
3.6.11 Flow with global transaction support . 111
3.6.12 Considerations. 112

Chapter 4. Language support . 115
4.1 DB2 REXX support . 116

4.1.1 Host environment and handling errors . 118
4.1.2 Isolation level and coding conventions . 120
4.1.3 REXX and stored procedures. 122
4.1.4 Set up WLM environment. 124

4.2 SQL Procedure language . 126
4.2.1 Reasons for using SQL stored procedures. 128
4.2.2 Creating SQL stored procedures . 130
4.2.3 Compound statements . 131
4.2.4 Example of a compound statement . 132
4.2.5 Handling errors . 134
4.2.6 Debugging SQL stored procedures . 136
4.2.7 Preparing SQL stored procedures . 137
4.2.8 Preparation using DSNTPSMP . 139
4.2.9 Preparation without DSNTPSMP . 141

4.3 SQLJ/JDBC driver support. 142
4.3.1 Using the new driver . 144
4.3.2 Combining SQLJ and JDBC. 145

4.4 Java stored procedures . 147
4.4.1 Defining a Java stored procedure . 148
iv DB2 UDB Server for OS/390 Version 6 Technical Update

4.4.2 Java SP coding considerations .149
4.4.3 Returning results set .150
4.4.4 Preparing Java stored procedures. .151
4.4.5 Preparing Java SPs using SQLJ .152
4.4.6 Running Java stored procedures .153

Chapter 5. Operational enhancements .155
5.1 Suspend update activity .156

5.1.1 Deciding whether to use this method for disaster recovery157
5.1.2 Use of SET LOG SUSPEND command .158
5.1.3 Effects of commands. .160
5.1.4 Suspend updates recommendations .162
5.1.5 Offsite recovery considerations .164
5.1.6 Re-establish recoverability offsite .165
5.1.7 Operational considerations .166

5.2 Defer defining data sets .170
5.2.1 Effect of deferring DEFINE of VSAM data sets170
5.2.2 Impact on DDL performance .172
5.2.3 Where define no helps .173
5.2.4 Restrictions .174
5.2.5 Things to watch out for .175

5.3 DDF suspend .177
5.3.1 Applications may retain incompatible locks177
5.3.2 STOP DDF MODE(SUSPEND) .179
5.3.3 STOP DDF MODE(SUSPEND) WAIT(n) .181
5.3.4 STOP DDF MODE(SUSPEND) CANCEL(n)182
5.3.5 DDF command options .183

5.4 Faster cancel thread .184
5.4.1 Cancel thread example .185
5.4.2 Operational improvement .186
5.4.3 Restrictions .186

5.5 Data sharing enhancements .187
5.5.1 Faster data sharing member shutdown .188
5.5.2 New IMMEDWRITE(PH1) bind option .190
5.5.3 IFI and commands with group scope .192

5.6 New EDM pool parameter .194
5.7 New CHECKPAGE option for COPY .196

5.7.1 How to activate page checking .196
5.7.2 Exploitation of CHECKPAGE. .197
5.7.3 How to detect and resolve errors .197
5.7.4 CHECKPAGE performance .198
5.7.5 Usage and recommendations .198

5.8 Runstats improvements .198
5.8.1 Non uniform statistics for SYSCOLDIST .199
5.8.2 Additional space statistics .199

Chapter 6. Performance .201
6.1 Star join .202

6.1.1 Introduction to star schema design .203
6.1.2 Introduction to star join support in DB2 V6207
6.1.3 More about DB2 V6 star join .210
6.1.4 Performance results .235

6.2 Volatile tables to use indexes .239
v

6.3 Query parallelism enhancements. 241
6.3.1 New feature to limit degree of parallelism 241
6.3.2 Short running static SQL running with parallelism 241

6.4 Active log I/O performance . 243
6.4.1 Reducing contention from log readers . 244
6.4.2 DB2 log write improvements . 245

6.5 Data sharing improvements . 247
6.5.1 Insert performance. 247
6.5.2 Remove CLOSE YES as requirement for data set physical close. . 248
6.5.3 Name class queue support . 248
6.5.4 Improved trace for asynchronous requests 249

Chapter 7. Additional functional enhancements 251
7.1 Unicode client toleration support . 252
7.2 IEEE float toleration. 254
7.3 Controlling updates to partitioning key . 256
7.4 Toleration of separator differences . 258
7.5 New LANGUAGE bind option . 258
7.6 New operator for NOT . 259
7.7 DBPROTCL default change . 259
7.8 Instrumentation enhancements . 260

Appendix A. DB2 APARs cross references .261
A.1 Functional enhancements .261
A.2 Performance related maintenance .264

Appendix B. Sample external user defined function265

Appendix C. DB2 and REXX .269
C.1 Sample main program REXX code .269
C.2 JCL to invoke REXX main program .273
C.3 REXX stored procedure .274
C.4 Create procedure statement for REXX SP .275
C.5 COBOL program calling REXX SP .275
C.6 WLM SP started task source JCL .277
C.7 WLM configuration .277
C.8 Commands to manipulate WLM and SP .278

Appendix D. Special notices .281

Appendix E. Related publications .285
E.1 IBM Redbooks .285
E.2 IBM Redbooks collections .285
E.3 Other resources .286
E.4 Referenced Web sites .286

How to get IBM Redbooks . 289
IBM Redbooks fax order form .290

Abbreviations and acronyms . 291

Index . 293

IBM Redbooks review . 297
vi DB2 UDB Server for OS/390 Version 6 Technical Update

Preface

This redbook, in the format of a presentation guide, describes the changes
introduced to-date in DB2 UDB Server for OS/390 Version 6 (DB2 V6 throughout
the book) since its general availability in June 1999. Several enhancements have
been provided through service in order to meet the increasing demands of
customers and vendors for new functions. These enhancements are planned to
be consolidated and integrated in a code refresh level available in May 2000.

This redbook describes the major functional enhancements and also provides
performance considerations based on the measurements performed at Santa
Teresa Laboratory. Since general availability of DB2 Version 6, more information
has been provided on DB2 functions with white papers or performance reports.
This redbook also includes recent performance and usage considerations not
strictly related to the refresh level enhancements, but generally applicable to
DB2 V6.

The information provided in this book will help DB2 system programmers,
database administrators, and application developers in understanding,
assessing, and utilizing the new functions of DB2 for OS/390 Version 6.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Paolo Bruni is a Certified Consultant I/T Architect currently on assignment as
Data Management Specialist for DB2 for OS/390 at the International Technical
Support Organization, San Jose Center, where he conducts projects on all areas
of DB2 for OS/390. Before joining the ITSO in 1998, Paolo worked in IBM Italy as
account SE at Banking, Finance and Securities ISU.

Sarah Ellis is a DB2 Specialist in Hursley, UK where she is responsible for the
DB2 for OS/390 Introduction Programs in EMEA countries. She also provides
technical support and consultancy on all areas of DB2. Before joining IBM in 1998
Sarah worked for 10 years for financial institutions specializing in database
design and performance.

Rod Gibson is a Certified Consultant I/T Specialist based in London, UK. He
works on an IBM team supporting one of the large UK financial institutions. Rod
has 10 years of experience in DB2, having previously worked with IMS for several
years. His areas of special interest within DB2 include performance and
availability. His work with his customers ranges from high-level architecture and
design for systems that use data (whether in DB2 or not) to database design and
performance work that is specifically related to DB2, or related products, such as
DB2 Data Propagator (DPropR).

Vusumzi Kopo is an I/T Specialist based in South Africa. He provides technical
and marketing support to DB2 customers. His areas of interest include Net.Data,
application performance and tuning, and accessing DB2 data from other
relational databases. He has recently worked on projects converting applications
from SQL/DS to DB2 for OS/390.
© Copyright IBM Corp. 2000 vii

Neil Toussaint is a Systems Programmer with IBM Global Services and is based
in the UK. He has 12 years of experience working with DB2 in a variety of market
sectors and on different platforms. He holds a Ph.D. in Biological Sciences from
The University of Edinburgh. His work with customers includes sub-system
installation, maintenance and support, problem diagnosis and resolution,
database design and consultancy services.

Thanks to the following people for their invaluable contributions to this project:

Vasilis Karras
Rich Conway

International Technical Support Organization, Poughkeepsie Center

Maria Sueli Almeida
Emma Jacobs
Yvonne Lyon
Elsa Martinez

International Technical Support Organization, San Jose Center

Terry Allen
Bill Bireley
Frank Bower
John Campbell
Roy Cornford
Karelle Cornwell
Curt Cotner
Ramani Croisettier
Dick Crus
Gene Fuh
James Guo
Akiko Hoshikawa
Eva Hu
Jeff Josten
John Kelly
Gopal Krishnam
Phil Lamb
Marsha Larson
Ching Lee
Debbie Matamoros
Claire McFeely
Roger Miller
Chris Munson
Todd Munk
Connie Nelin
Mai Nguyen
Dave Oberstadt
Mary Paquet
Mary Petras
viii DB2 UDB Server for OS/390 Version 6 Technical Update

James Pickel
Jim Pizor
Dave Raiman
Jim Ruddy
Jack Shedden
Frank Sherwin
Akira Shibamiya
Bryan Smith
Roy Smith
Jim Teng
Hong Tie
Annie Tsang
Jay Yothers
Jane Wang
Julie Watts
Maryela Weihrauch
Chung Wu

IBM Santa Teresa Laboratory

Namik Hrle

IBM SAP Competency Center, Waldorf

Norbert Jenninger
Georg Rohonyi

IBM Boeblingen Laboratory

Mike Bracey

IBM PISC, Hursley

Adrea Harris
Nin Lei
Dino Tonelli

IBM Teraplex Center, Poughkeepsie

Steve Bower

IBM UK

Bart Steegmans

IBM Belgium

Comments welcome

Your comments are important to us!
ix

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 297 to the
fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
x DB2 UDB Server for OS/390 Version 6 Technical Update

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

The main objective of this redbook is to bring the reader up-to-date with what has
been made available through standard maintenance to DB2 V6 in terms of
functions, what measurements have taken place since general availability, and
what major considerations can be drawn from these measurements.

The V6 general news will be discussed in detail in Chapter 2, “Version 6 general
news” on page 9, where we will mention general migration considerations and
provide information on triggers, UDFs, LOBs.

Introduction

Objectives of the redbook

Version 6 refresh specifics
general description
functional enhancements areas
performance measurements

Version 6 general news
migration
performance and usage information

1 00SJ6108001

Introduction

1 00SJ6108001
© Copyright IBM Corp. 2000 1

1.1 DB2 UDB for OS/390 Version 6 refresh

In 1998 IBM began refreshing the DB2 for OS/390 Version 5 product for its
customers by delivering not only maintenance, but also significant new DB2
capabilities. With Version 6, DB2 UDB for OS/390 continues to meet customer
needs in a rapidly changing business environment. DB2 V6 will receive
maintenance changes and periodical refreshes in order to deliver some more
functions that will increase the value of your investment.

The refresh provides a DB2 product with accumulated service that has
undergone integration and performance testing. This allows system programmers
and database administrators to plan for and perform an easier installation of a
service level that includes several new functions. This refresh is automatically
shipped to new orders of DB2 after May 26, 2000.

For existing users, the equivalent service level is obtainable by ordering the
preventive service update PDO level 0014, which should include service up to
PUT 0003, or ESO level 0003.

Before installing the refresh you must review the current Preventive Service
Planning (PSP) information referring to UPGRADE DB2610.

When ordering the DB2 V6 refresh level product, two new options are available:

• The REXX language support, previously downloadable from the Web, is now
integrated in the product as a no-charge feature.

• The DB2 Forms tool is now added to the growing family of separately
chargeable productivity tools.

Version 6 refresh level

Available May 2000

Rolls in functional enhancements

Integrated testing

Refresh distribution

Useful target point for production

Major new functions

Updated PDF version of the manuals

2 00SJ6108001
2 DB2 UDB Server for OS/390 Version 6 Technical Update

This refresh delivers new options for application programming and database
design to improve your productivity. It also incorporates substantial improvements
in performance and continuous availability. SQL can be used from REXX to
simplify many tasks in programming and administration. The SQL Procedures
Language provides a new option for stored procedures that meets international
standards. Coding applications, especially if moving from other products to DB2,
is easier now, with savepoints, identity columns, and declared temporary tables.

DB2 family compatibility is improved and many customer requests are satisfied
with the ability to update from a subselect in the SET clause. Star join
optimization can improve the elapsed time for certain queries by more than an
order of magnitude. The ability to defer data set definition helps in both the time
to install and management for some applications. Being able to suspend and
resume distributed processing and all DB2 processing makes some processes
much faster and less disruptive.

These functions are delivered with no additional charge. If you are running
Version 5 today, you can migrate directly to this level, so your systems
programmers have an easier task. There has been additional system and
performance testing, so this is the recommended maintenance level if you are
either migrating from V5 or already have DB2 Version 6.

The new DB2 capabilities are fully documented in the updated edition of the DB2
manuals available in PDF format at the following Web site:

http://www.ibm.com/software/data/db2/os390/v6books.html

DB2 Performance Monitor has been enhanced as well. It now provides an API to
the Online Monitor Data Collector. This allows you to retrieve performance
information about the subsystem being monitored. You can obtain raw data and
derived performance information including snapshot information and recent
history collected to a dataset. This also includes exception alerts based on DB2
events. DB2 PM also supports the enhanced functionality of DB2. The new and
updated DB2 PM manuals are also available at he Web site listed above.
Chapter 1. Introduction 3

1.2 Functional enhancement areas

These are the areas in which we have arbitrarily grouped the new functional
enhancements of DB2 V6 with a brief description of the key enhancements that
are being delivered.

• Application enhancements

• Better optimization for complex queries

Using a new star join method, DB2 for OS/390 can provide better
optimization and execution performance for queries that join tables
together in a star schema. A star schema consists of a fact table and a
number of dimensions, each of which consists of one or more tables. In
addition to improving execution performance, this enhancement enables
DB2 to handle more complex star schemas and more tables in a join.

• Savepoints

Your application can set a savepoint within a transaction. Application logic
can undo the data and schema changes made, since the application sets
the savepoint without affecting the overall outcome of the transaction.
Using savepoints makes coding applications more efficient. You no longer
need to include so much contingency logic in your applications.

• Support for defining identity columns

When a column of a table is an identity column, the column has an attribute
that enables DB2 to automatically generate a unique numeric value for
each row that is inserted into the table. Identity columns are ideally suited
to the task of generating unique primary key values. Applications that use

Functional enhancement areas

Application enhancements

Language support enhancements

Operational enhancements

Performance enhancements

Additional functional enhancements

3 00SJ6108001
4 DB2 UDB Server for OS/390 Version 6 Technical Update

identity columns may be able to avoid concurrency and performance
problems that sometimes occur when applications implement their own
unique counters.

• Ability to declare temporary tables

Declared temporary tables complement the existing global temporary
tables available in Version 5 of DB2 for OS/390. Declared temporary tables
do not have descriptions in the catalog tables. These new tables also
support indexes, UPDATE statements, and positioned DELETE
statements. You can implicitly define the columns and use the result table
from a SELECT.

• Global transaction support

Applications can take advantage of global transaction support: different
DB2 units of recovery can share locks and access the same data when
they are part of the same global unit of work. A syncpoint manager, such as
Component Broker or IMS, must coordinate commit operations using a
two-phase commit protocol.

• Update with subselect

You can use a subselect to determine the value that is to be used in the
SET clause of an UPDATE statement. This enhancement improves DB2
family compatibility.

• Language support enhancements

• SQL support for REXX

With this enhancement, application programmers can issue SQL
statements from REXX programs. The SQL statements can be anywhere a
REXX command can be. Programmers can also write DB2 stored
procedures in REXX. The SQL interface to REXX supports almost all SQL
statements that DB2 for OS/390 supports.

• Stored procedures that are written entirely in SQL

With SQL procedures, you can now write stored procedures consisting
entirely of SQL statements. An SQL procedure can include declarations
(of variables, conditions, cursors, and handlers), flow control, assignment
statements, and traditional SQL for defining and manipulating relational
data. These extensions provide a procedural language for writing stored
procedures, and they are consistent with the PSM (Persistent Stored
Modules) portion of the SQL standard. You can use the Stored Procedure
Builder to build SQL stored procedures. The Stored Procedure Builder is
an element of the DB2 Management Tools Package, which is a no-charge
feature of DB2 for OS/390 Version 6.

• Support for Java stored procedures

With this enhancement, DB2 for OS/390 handles stored procedures that
are written in the Java programming language. You can write Java stored
procedures that contain either static SQL (by using SQLJ) or dynamic SQL
(by using JDBC). Alternatively, you can use the Stored Procedure Builder
(an element of the DB2 Management Tools Package) to build Java stored
procedures. Java stored procedures that run on DB2 for OS/390 can also
run on other operating systems and platforms, including those of other
database vendors, without being recompiled or modified.
Chapter 1. Introduction 5

• Operational enhancements

• Deferred definitions of data sets

You can defer defining data sets when you have many tables that do not
have data in them. This enhancement will provide faster installation of
applications and make data set management easier for SAP R/3 and
PeopleSoft customers.

• DDF suspend and resume

You can use DDF suspend and resume commands at a server to
temporarily suspend activity from requesters without terminating
connections. Suspending requester activity enables data definition
operations at the server to complete.

• Suspend update activity

The LOG SUSPEND command suspends update activity and logging while
you take an external copy of your production system. The LOG RESUME
command causes update activity and logging to resume. During the brief
suspension, you can take a copy using a fast-disk copy facility, such as
Enterprise Storage Server FlashCopy or RAMAC Virtual Array SnapShot.

• Faster cancel thread

Threads inactive or suspended within DB2 can now be cancelled and
proceed to termination processing without waiting for thread control being
resumed by DB2. Thread termination becomes independent of application
activity.

• New CHECKPAGE option during Image Copy

With this option you can ask the Copy utility to perform the extra validity
checks that previously were only done by a separately executed
DSN1COPY with CHECK option.

• Performance enhancements

• Star Join

This provides a new way of processing multiple dimension tables to a
single fact table that can enhance the performance in star schema
database designs, which are typical of business intelligence systems.

• Log I/O

This provides improvement in the concurrency of read I/Os by accessing
the active log second copy and the higher concatenation of write I/Os.

• Volatile tables to use indexes are now available.

• Improved query parallelism has been implemented.

• Data sharing improvements have been provided.

• Additional functional enhancements

Several other miscellaneous enhancements for better compatibility,
portability and instrumentation have been provided.
6 DB2 UDB Server for OS/390 Version 6 Technical Update

1.3 Performance measurements

The performance measurements mentioned in this redbook come mostly from the
Performance Department in Santa Teresa Laboratory.

Measurements are part of the development plan and are meant to verify that
either no regression or the expected improvements take place. Most of the DB2
V6 GA code level measurements were referenced in the redbook DB2 UDB for
OS/390 Version 6 Performance Topics, SG24-5351 and they still apply. Other
measurements were performed after the cut-off date for that redbook and are
mentioned in Chapter 2, “Version 6 general news” on page 9. New specific
measurements were performed for the enhancements included in the code
refresh: they are referenced in the other chapters of this redbook.

The S/390 Teraplex Center in Poughkeepsie is often involved in
proof-of-concepts, installations and verifications, so interesting performance
measurements are performed for leading edge application environments. We
have referenced some measurements in 2.5.1, “ESS read performance” on page
50. For information on the Teraplex Center activities refer to the URL:

http://www.ibm.com/solutions/businessintelligence/teraplex/index.htm

Performance measurements

Refresh level related functions

Version 6 post GA measurements

Santa Teresa Lab Performance Department

S/390 Teraplex Center Poughkeepsie

4 00SJ6108001
Chapter 1. Introduction 7

8 DB2 UDB Server for OS/390 Version 6 Technical Update

Chapter 2. Version 6 general news

In this chapter we provide a summary reminder of considerations on migration
from DB2 UDB for OS/390 Version 5 to Version 6, and then we provide usage
considerations on triggers, user-defined functions (UDFs), and large objects
(LOBs). These usage considerations are based on measurements implemented
at Santa Teresa Laboratory on the V6 base code level, but are generally
applicable. We also briefly describe and point to other V6 relevant documents on
DB2 performance with the IBM Enterprise Storage Server (ESS) and on
distributed functions.

Version 6 general news

Considerations on:

Migrating from DB2 V5 to V6, base level or refresh

Considerations based on measurements of V6 base level
functions:

User defined functions performance

Triggers performance

Large objects performance

DB2 performance with the IBM Enterprise Storage Server

Distributed functions performance

2 00SJ6108001
© Copyright IBM Corp. 2000 9

2.1 Migration considerations

This section is meant to be only a quick summary of topics to consider when
migrating to DB2 V6 refresh level. You must consult the available updated official
documention available with the product or from the Web:

• DB2 UDB for OS/390 Version 6 Release Guide, SC26-9008-02

Chapter 8 helps in planning for migration and fall-back.

• DB2 UDB for OS/390 Version 6 Installation Guide, SC26-9008-01

Section 2.7 on Migrating the DB2 subsystem is the prime source for migration
planning and guidance.

• Program Directories

These documents are available with product or on the Web site:

http://www.software.ibm.com/data/db2/os390/books.html

Also consult the Preventive Service Planning and the information APARs II11442
and II12343, available through the IBM Information/Access or ServiceLink facility.
II1142 details migration related maintenance, while II12343 is specific for the V6
May refresh level, often mentioned as RML (Recommended Maintenance Level).

Migration to DB2 UDB for OS/390 Version 6 is only permitted from DB2 Version 5.

Migration considerations

Refer to current standard documentation
DB2 UDB for OS/390 Version 6 Release Guide, Installation Guide,
Program Directory, PSP bucket, and info APARs II11442, II12343

Toleration APARs/PTFs
PQ17740/UQ90001, PQ30684/UQ36939, PQ34199/UQ40803

Please note that PQ30684 applies to ALL customers
Required to avoid further action after fallback
Must be applied to all members for data sharing coexistence

Click here for optional figure #Click here for optional figure #
10 DB2 UDB Server for OS/390 Version 6 Technical Update

Notes on toleration and fallback
Verify that you have installed all the required maintenance on your DB2 Version 5
before you start to migrate. The following toleration APARs/PTFs for fallback
must be applied to your DB2 Version 5 system:

• PQ17740/UQ90001 for toleration of fallback from DB2 UDB Version 6

• PQ30684/UQ36939 and PQ34199/UQ40803 for toleration/fallback of
plans/packages bound in DB2 Version 6 with PQ30652/UQ38405 applied (the
APAR for identity column functionality).

UQ36939 and UQ40803 must be installed on the DB2 subsystem or on all DB2
data sharing members of the group, in order for customers to fallback to V5
without further action. These PTFs are also required to be able to run a data
sharing system in coexistence mode. Carefully check the supporting
documentation for advice on staging these PTFs, and related preconditioning
PTFs, through all the members of a data sharing group. If toleration PTF
UQ36939 is not installed and a fallback is required, the following will occur:

• DB2 will be unable to run plans and packages that have been bound or
rebound on the new level of DB2. It will try to auto-REBIND them, but this will
fail, and they must be explicitly rebound before they can be executed.

• Programs that have been precompiled and bound on the new level of DB2
must be precompiled and bound after fallback before they can be executed.

• Programs that use the new functionality will be frozen on fallback.

This issue may affect the decision of whether to run REBIND(*) after migration.
Please note that this APAR applies to all customers whether using data sharing
or not, and is not limited to customers exploiting the new identity column
functionality. APAR PQ36815 gives further details on this issue.

PQ36405/UQ41904 is important to fix problems with stored procedures in DB2
Version 6 where also the MEPL does not appear in the dump. This may
significantly impact problem diagnosis.

2.1.1 Release incompatibilities
For your pre-migration activities, browse through the following checklist and refer
to the DB2 UDB for OS/390 Version 6 Installation Guide, SC26-9008-01 for
details:

• Identify unsupported objects

• Convert indexes to type 2

• Remove data set passwords

• Eliminate shared read-only data

• Remove views on two catalog tables

• Save critical access paths (optional)

• DRDA support for three-part names (optional)

• Examine all new and changed values for DB2I panels

• Make adjustments for release incompatibilities

• Adjust application programs

• Maintenance level requirements
Chapter 2. Version 6 general news 11

• SQLCODE -101
• No colon on a host variable is an error (see 2.1.2, “Host variables must

be preceded by a colon ":"” on page 12)
• Changed format for DSN messages
• Changed format for message DSNU050I
• SQL reserved words
• Using the Euro symbol
• Using aliases
• QUIESCE return code
• DSNH message ID lengths
• Positive SQLCODE from PREPARE
• Changed SQLSTATEs
• New meaning for SQLCODE
• New DBPROTOCOL default option
• Changed default for RELCURHL subsystem parameter
• Changed default for DYNRULS subsystem parameter
• Changed default for PTASKROL subsystem parameter
• Using new column called CLUSTERRATIOF
• Support for large objects
• A technique for reducing number of matching columns no longer works
• New reserved qualifier for tables, SESSION

• Changes to the RLST

• SYSIBM.SYSPROCEDURES no longer used

• An 'X' plan in the PLAN_TABLE

• Limit backouts with system restarts

• Changes to IFCID fields

• DISPLAY BUFFERPOOL changes

• Index changes

• ALTER INDEX syntax

• RECOVER INDEX becomes REBUILD INDEX

• Work space formulas changed for utilities

• Support for up to 150,000 connections

• Change to parameter in IRLMPROC startup procedure

2.1.2 Host variables must be preceded by a colon ":"
DB2 Version 6 enforces the standard that requires all host variables preceeded
by a colon ":". All host variable references must have the leading colon. If the
colon is missing the precompiler will issue a DSNH104I message or interpret the
variable as a column name. Converting to the standard requires a REBIND. If the
DBRM was produced by DB2 V2R2 or prior release it is in an old format, called
Format 1, and the REBIND with DB2 V6 may fail. APAR II12100 contains
information on this problem, and APARs PQ26922 and PQ30390 may be
applicable in your case.
12 DB2 UDB Server for OS/390 Version 6 Technical Update

A sample REXX procedure, which analyzes all Format 1 DBRMs to check that all
host variables are preceded with a colon, is available from the Web. The
REXX/DB2 interface is used, and therefore DB2 for OS/390 V5 or V6 is required.
The procedure creates temporary EXEC libraries, copies the REXX EXEC,
executes DSNTIAUL using PARM(‘SQL’) to extract data from the catalog,
extracts DBRM listings from the catalog, executes the REXX to analyze the
output looking for missing colons preceding host variables ":hv", and produces a
report.

You need to examine the exceptions identified by the REXX program. It should be
obvious where you need to amend the source SQL and re-precompile.

It is a sample only and it is provided without any implied warranty or support. We
have not checked all eventualities, so we cannot guarantee that every invalid
DBRM will be found, but it can assist you with the migration.

The procedure is called F1 DBRM colon finder and it is available from the URL:

http://www.ibm.com/software/db2os390/downloads.html
Chapter 2. Version 6 general news 13

2.2 UDF performance considerations

The number of built-in functions increased considerably in version 6 over
previous releases. There are now over 90 different functions that perform a wide
range of string, date, time and timestamp manipulations, data type conversions,
and arithmetic calculations. These built-in functions can be used in conjunction
with each other and as the basis for sourced user-defined functions.

In addition, you can write your own user-defined functions (UDF) that call an
external program. This extends the functionality of SQL to whatever you can code
in an application program; essentially, there are no limits. For more information,
refer to the DB2 for OS/390 Version 6 standard manuals.

Motives for wanting to use UDFs include:

• Simplifying SQL syntax

• Extending power of SQL

• Helping customers who are considering migration from other database
management systems to DB2.

Just as there are techniques to ensure efficient access paths using SQL, there
are ways you can maximize the efficiency and reduce the costs of UDFs. We
have compared the performance of coding functions within your application
program against DB2 built-in functions and UDFs. We have also compared the
efficiency of coding external UDFs as a main program or sub-program.

UDF performance considerations
Large number of built-in functions

mathematical functions, string/date/time manipulation
perform well
can be used together

can be used as source for user-defined functions

Can write external programs and define as functions
extends power of SQL
assists migration from other DBMS to DB2

simplfies SQL syntax

Performance evaluation
built-in function vs. coding functionality in application program
external user-defined function vs. built-in function
sourced user defined function vs. built-in function
what are the important factors to obtain good performance
main vs. sub-program
14 DB2 UDB Server for OS/390 Version 6 Technical Update

For the performance measurements, we took a simple example of converting a
string to lower case. This was done in three ways:

• Using the DB2 built-in function LCASE(string)

• Retrieving the string variable into the host program and using programming
logic to convert the string to lower case

• Defining an external user-defined function to perform the character translation

The following section, 2.2.1, “Built-in or application program” on page 16,
compares the performance of these techniques.
Chapter 2. Version 6 general news 15

2.2.1 Built-in or application program
Here, we consider how you would convert a string from upper or mixed to lower
case. On the left side, we have used the LCASE built-in function as part of the
declare cursor statement and then retrieve all rows from the table. On the right
side, we have coded the same functionality within an application program
retrieving all the raw data from DB2 into a cursor.

The table definition is:

CREATE TABLE ACTIVLOG01(ACTTABLN CHAR(8) NOT NULL,
ACTITEMN CHAR(14) NOT NULL,
ACTVDATE CHAR(2) NOT NULL,
ACTDESCR CHAR(7) NOT NULL,
ACTLTIME CHAR(4) NOT NULL)

IN DBITRK02.TSACTI01;

The table contains 510,000 rows that are retrieved sequentially. The
measurements were run on a G6 processor, 9672-ZZ7, with OS/390 V2R7 using
DB2 PM accounting trace.

Elapsed and CPU time in seconds for processing a large table are shown. For
this simple function, the buit-in function is marginally even more efficient. s
compared with writing your own code, you may want to consider that using the
LCASE function within the SQL call is easier to write, read, maintain, and it may
perform better

Built-in or application program

LCASE built-in function
EXEC SQL declare c1 cursor for
select LCASE(col1)
from table_name
while(SQLCODE==0
{

EXEC SQL fetch c1 into :hv
}

Code equivalent of LCASE
EXEC SQL declare c1 cursor for
select col1
from table_name
while(SQLCODE==0
{
EXEC SQL fetch c1 into :hv
for (count = 0; count < strlen(hv); count++

hv[count] = tolower(hv[count]);

}
invoke DB2 built-in function to
perform case translation in cursor get data back from DB2 and use

application logic to perform
case translation

Elapsed (sec) CPU (sec)
26.2 12.2

Elapsed (sec) CPU (sec)
32.9 13.5

DB2 built-in function marginally more efficient
16 DB2 UDB Server for OS/390 Version 6 Technical Update

.

2.2.2 External UDF or built-in function
Again, we are considering different ways in which you can perform string
translation from upper to lower case. On the left side, as before, we have called
the built-in DB2 function LCASE. On the right side, a call is made to an external
user-defined function.

To create your user-defined function, you need to do the following things:

1. Write application code which carries out your function and place the load
module into a library accessible to the WLM address space in which the
function executes.

Since the UDF is performing the same task as the application program, which
does the translation after receiving the raw data (see previous diagram), the
piece of C code that does the case conversion is identical to the way it was
written before. In both cases, the code is as follows.

void udfx1(char *parm1, char *result,

short *F_ind1, short *f_indr,

char *udf_sqlstate, char *udf_fname,

char *udf_specname, char *udf_msgtext,

struct sql_dbinfo *udf_dbinfo)

{

for (count = 0; count < strlen(hv); count++

hv[count] = tolower(hv[count]);

}

External UDF or built-in function

LCASE built-in function
EXEC SQL declare c1 cursor for

select LCASE(col1)

from table_name
while(SQLCODE==0

{

EXEC SQL fetch c1 into :hv

}

UDF equivalent of LCASE

EXEC SQL declare c1 cursor for

select ibmtest1.udfx1(col1)

from table_name

while(SQLCODE==0
{

EXEC SQL fetch c1 into :hv

}

invoke DB2 built-in function to
perform case translation in cursor call external user defined function

to perform case translation

Elapsed (sec) CPU (sec)
26.2 12.2

Type Elapsed (sec) CPU (sec)
subroutine 93.6 93.2
main 108.9 108.3

DB2 built-in function much more efficient
Chapter 2. Version 6 general news 17

2. Use the SQL create function statement to define the function and specify its
characteristics to DB2. The SQL statement we used to create the function as a
subroutine was as follows.

create function ibmtest1.udfx1 (char(14))

returns char(14)

external name udfx1

not null call

language c stay resident yes no sql

parameter style db2sql

deterministic fenced no scratchpad

no final call

wlm environment wlmenv1

program type sub

external security db2

no dbinfo;

In this case the program type was a subroutine; we also repeated the tests
specifying a program type of main.

3. In the calling application program, you invoke your UDF exactly as if it were a
built-in function.

The results show that the cost of using DB2’s built-in function is significantly
cheaper in terms of CPU time than invoking an external UDF. Also note that the
cost of invoking an external UDF as a sub-routine is more efficient than calling it
as a main program. This is because of differences in the way the language
environment handles main programs and sub-routines. It is also worth noting that
this comparison is a worst case scenario for the UDF because we have
implemented a very simple function. As functions become more complex the
percentage of overhead tends to decrease.
18 DB2 UDB Server for OS/390 Version 6 Technical Update

2.2.3 Maximizing UDF efficiency
The difference between the cost of DB2’s built-in functions and a user-defined
function can be understood when it is remembered that the UDF is fenced, by
definition. It does not execute within the DB2 address spaces. This protects the
integrity of DB2 from application code. Your external UDF executes under LE in a
WLM address space. Conversely, DB2 built-in functions are a component of the
data base engine. Therefore, overhead is necessarily associated with external
UDFs.

We have found, however, that there are several ways you can improve the
efficiency of external UDFs:

• You can avoid the cost of WLM address space creation if you use an existing
WLM address space. This may not always be possible, though, if you have a
requirement to isolate different workloads and applications.

• If you can, code your load module as reentrant. This will allow you to override
the default NO of the STAY RESIDENT option of the CREATE FUNCTION
statement. If you specify YES:

• The load module remains in storage after having been loaded.

• This one copy can then be shared across multiple invocations of the UDF.

The impact of STAY RESIDENT YES is very important if multiple instances of
a UDF are specified in the same SQL statement.

• There is overhead processing for each input parameter, so keep the number
to the minimum required.

Maximizing UDF efficiency

Eliminate WLM address space creation

choose currently existing WLM address space

Allow single copy of UDF code to be shared

multiple invocations of a UDF can share code (if reentrant)
STAY RESIDENT option of CREATE FUNCTION

default is NO
if load module is reentrant, specify STAY RESIDENT YES
load modules remain in storage after loading

Keep number of input parameters to the minimum

Tune SQL with UDFs: don't forget EXPLAIN

Ensure UDF code is efficient
invoke as subroutine

code pragmas correctly

Exploit DB2's functionality
Chapter 2. Version 6 general news 19

• Remember that, just as with built-in functions, or with any change to your
application, the access path chosen by DB2 can be affected by an external
UDF. A statement that is indexable without the function may become
non-indexable adding a non properly coded function. There are two obvious
cases in which the statement can become non-indexable:

• the UDF is returning a CHAR value with length different from the one that is
compared to.

• the UDF is returning a nullable result and the compared value is not
nullable.

We strongly recommend that you use EXPLAIN to determine whether the
access path is what you expect, and whether it is as efficient as it can be. If
you think the UDF is preventing DB2 from choosing an efficient access path,
experiment by coding the statement with and without the UDF. This will help
you understand the impact of the UDF on the access path.

UDFs have been fully integrated into the SQL language. This means that the
UDF call can appear anywhere in the statement. Also, a single SQL statement
can often be written in different ways and still achieve the same result. Use
this to:

• Ensure that the access path is efficient.

• Code the SQL statement such that the UDF processes the fewest rows.
This will reduce the cost of the statement.

• Exploit the fact that the architecture of LE makes processing subroutines more
efficient than main programs by defining the program type as SUB.

• It is evident that you should make your UDF application code as efficient as
possible. Two frequently overlooked opportunities to maximize efficiency are:

• Ensure that all variable types match. This ensures that additional overhead
is not incurred within LE performing unnecessary conversion.

• Ensure that pragmas are coded correctly. An example of the pragma
statement in a C program is shown in a full listing in Appendix B, “Sample
external user defined function” on page 265.

• Since the cost of DB2 built-in functions is low, exploit them wherever possible.
We will consider techniques to help you do this in the next section.
20 DB2 UDB Server for OS/390 Version 6 Technical Update

2.2.4 Use built-in functions
There are a large number of DB2 built-in functions which perform very well.
These functions can be used together. Built-in functions are also the basis for
sourced UDFs.

Casting can help perform translation between different DB2 and user-defined
data types. Before you start coding your own functions, evaluate what is supplied
with DB2 and understand how to use it. This allows you to:

• Maximize the efficiency of your application. Consider here not just the cost of
executing your external function compared to DB2’s built-in functions, but the
best access path that can be achieved with a UDF as compared to a DB2
built-in function. For instance, a UDF can be stage 2 when compared to an
equivalent stage 1 built-in function.

• Improve your productivity, as you do not need to develop and maintain your
own code.

Just as you would consider how to code SQL to get the best access path,
consider the best way to develop the UDFs you require.

The diagram above shows an example, albeit artificial, of how DB2 built-in
functions can be nested. Assume that you want to know the house number (as an
integer), but in your address table, you combined the house number with the first
part of the address in the address_line_1 column. The functions posstr, substr,
and int can be combined to isolate the house number.

Use built-in functions

existing built-in functions powerful

can be used together
create table paolor8.addr
(address_line_1 char(40) not null)
in paolor8.addr;

insert into addr values('112, Malvern Wells Road');
insert into addr values(' 97 , Church Street');
insert into addr values('1878, Eaton Road');
insert into addr values(' 11 , 1st Street');
create view paolor8.addr_details

(house_number, address_line_1)
as select int(

substr(address_line_1,1,
posstr(address_line_1,',')-1
)

), address_line_1
from addr ;

select * from addr_details;
---------+---------+---------+---------+-------
HOUSE_NUMBER ADDRESS_LINE_1
---------+---------+---------+---------+-------

112 112, Malvern Wells Road
97 97 , Church Street

1878 1878, Eaton Road
11 11 , 1st Street

DSNE610I NUMBER OF ROWS DISPLAYED IS 4

sample base table

house number found before comma
but format of data unpredictable

Results

use power of DB2 built-in functions
view can mask complexity

get position of ,
substring from 1 to that point
convert to integer
Chapter 2. Version 6 general news 21

The function posstr determines the location of string “,” within the address line.
Subtracting 1 from the value returned gives you the end of the house number.
You can then use substr to extract the house number starting at character 1 to
that point. To convert this string to a number, you can use the int function.

If you needed to code this select statement many times, you could “hide” the
complexity in a view. We have created a view called addr_details which includes
the column house_number. This column is derived from address_line_1 using the
posstr, substr, and int functions. On the right you can see the result of a select
statement from this view which shows both the raw data and the derived value.

The power of views in masking physical data structures from applications should
not be underestimated. Suppose you are converting from a non-DB2 data base
management system and you have a table created with the following definition:

create table region
(region_id integer not null,
region_name char(40) not null)
in region;

Also, suppose that the application calls a function CHARNSI that converts the
region_id column from integer to a character (perhaps for display purposes). Your
application will have code in it and would produce output as follows:

select charnsi(region_id),region_name from region;
REGION_ID REGION_NAME
---------+---------+---------+---------+---------+---------
1 North America
2 Europe
3 Australasia
4 Middle East
5 Africa
DSNE610I NUMBER OF ROWS DISPLAYED IS 5

If you were to rename the base table to tregion and create a view as follows:

create view region ("charnsi(region_id)",region_name)
as select char(region_id),region_name
from tregion;

Then a view would be created whose first column name was the string
"charnsi(region_id)". You could then select from the view as follows.

select "charnsi(region_id)" as region_id,region_name from vregion;
REGION_ID REGION_NAME
---------+---------+---------+
1 North America
2 Europe
3 Australasia
4 Middle East
5 Africa

This simulates the presence of a function CHARNSI operating on the region_id
column of the base table. This technique illustrates what can be achieved,
although we would not recommend its wide use because of these restrictions:

• The maximum column length is limited to 18 characters
• You would need to rename the base table
• And the application would need to put quotes around the column names
22 DB2 UDB Server for OS/390 Version 6 Technical Update

2.2.5 Consider sourced functions
When you want to determine the most efficient way to code your function,
consider whether you can source your function from the built-in DB2 functions.

Taking the example of a need to translate a smallint data type to a character for
some subsequent string-based manipulation, you have several options,
depending on your precise requirements:

• Write an external UDF.

This may appear a highly attractive option if, for example, you are converting
from another data base management system to DB2. The application might
extensively use a function that is called something different, or behaves
slightly differently from DB2’s version of the same function. Suppose, for
example, the function used by the application to convert smallint data to a
string is called CHARNSI. There is no function in DB2 with this name. To
reduce the need to alter application code, you could code your own external
UDF in a host language. The application will then run without change and
invoke your UDF.

The diagram above shows the line of C code that performs this functions. The
full source along with the CREATE FUNCTION SQL necessary is given in
Appendix B, “Sample external user defined function” on page 265.

Consider sourced functions

CHARNSI as sourced UDF
create function charnsi (decimal(6,0)) returns varchar(32)
source sysibm.smallint(decimal(6,0));

select charnsi(4899) from sysibm.sysdummy1;
---------+---------+---------+---------+---------+-------
4899

select substr(charnsi(4899),1,2) from sysibm.sysdummy1;
---------+---------+---------+---------+---------+-------
48

Sourced functions are as efficient as built-in functions
Convert smallint to string

External UDF
potentially attractive for conversions to DB2
C code to convert smallint to string sprintf(pOut, "%-d", *p1In);

Sourced UDF
superior performance compared to external UDFs
as attractive for conversions

Use the CAST function or built-in functions
excellent performance
less attractive for conversion - application changes required

select substr(cast(4898 as char(6)),1,2) from
sysibm.sysdummy1;
---------+---------+---------+---------+--------
48

CHARNSI using CAST

select substr(char(4889),1,2)
from sysibm.sysdummy1;

CHARNSI using built-in
Chapter 2. Version 6 general news 23

• Create a sourced UDF.

Since a sourced UDF is based on an internal DB2 built-in function, you can
expect comparable performance. There is no call to LE, and the UDF does not
need to execute under a WLM environment. In the diagram above, we show
how you might code the sourced UDF. It can be called CHARNSI, which would
satisfy your requirement that the application could be readily converted to
DB2.

• Use the CAST function or use DB2 built-in functions.

Both of these options are illustrated in the diagram above. You can expect
good and comparable performance from both. The disadvantage, if you are
converting from another data base management system, is that application
code will need to be changed.

If you need to change application code anyway or choose to do it for other
reasons, then we recommend switching to DB2 built-in functions.
24 DB2 UDB Server for OS/390 Version 6 Technical Update

2.2.6 UDF summary
UDFs are a very powerful extension to the SQL language, and they ease
considerably the task of migrating to DB2 from other data base management
systems.

We recommend reviewing all the techniques we have suggested, as this will help
you exploit this enhancement as efficiently as possible.

Common with the exploitation of any feature, if resources are constrained and/or
high performance is a critical success factor, we recommend that you carry out
your own benchmark tests before you move to production.

UDF summary

Considerably enhance power of SQL langage

Important tool to aid migration to DB2

Use them if they work for you

Understand and manage overheads
DB2 built-in functions cheaper than external UDFs
Sourced functions as cheap as built-in functions
Reduce WLM overheads if practicable in your environment
Code efficient UDFs
Always use EXPLAIN
UDFs as sub-routines are more efficient than as main programs

Make UDFs reentrant and specify STAY RESIDENT YES

Evaluate in your evironment pre-production
Chapter 2. Version 6 general news 25

2.3 Trigger performance considerations

Trigger functionality was introduced in the DB2 V6 base code. Refer to the
standard DB2 for OS/390 documentation for details. Triggers bring processing
logic into the database by automatically executing a set of SQL statements
whenever a specified SQL event occurs.

You can define triggers to validate and edit database changes, read and modify a
database, or invoke functions that perform operations both inside and outside the
database.

Their main benefits are:

• Enforce data integrity rules. No matter what application performs inserts,
updates, or deletes on a table, you will then be certain that the associated
business rules will be carried out. This is especially important with highly
distributed applications.

• Enables migration from other DBMSs which have trigger support.

• Faster application development. Because triggers are stored in the database,
the functionality coded in the trigger does not need to be coded in every
application.

• Code reusability. A trigger can be defined once on a table, and is used by
every application that accesses the table.

• Easier maintenance. If the business rules change, the applications do not
need to be changed.

Trigger performance considerations

Define a set of actions that are executed when a delete, insert
or update operation occurs on a specified table

Encapsulate logic into the database
To enforce data integrity rules
Assist migrations from other DBMS

Can be defined as BEFORE or AFTER triggers

Simple example:

CREATE TRIGGER ROW_UPT
AFTER UPDATE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO CHANGE_LOG
VALUES ('ROW_UPT INVOKED');

END
26 DB2 UDB Server for OS/390 Version 6 Technical Update

A trigger is defined on a table using the CREATE TRIGGER statement (a simple
example is given above). It specifies the condition on which the trigger is to be
activated, and whether the condition should be checked for each row modified by
the triggering statement, or just once for each statement execution.

You can specify BEFORE or AFTER to determine when the trigger is activated.
BEFORE triggers are activated prior to any updates being made to the triggering
table. BEFORE triggers cannot activate any other triggers. AFTER triggers are
activated after DB2 has made changes to the triggering table and can activate
other triggers.

The trigger body consists of the set of statements that should be executed when
the condition is met. It is delimited by BEGIN and END.

This section includes performance related advice on triggers. For detailed
information on how to create a trigger please, refer to the DB2 UDB for OS/390
Version 6 SQL Reference, SC26-9014.
Chapter 2. Version 6 general news 27

2.3.1 Trigger overview
This section gives an overview of how triggers work before discussing the
performance issues.

In the diagram above, the table ACCOUNT has an AFTER trigger defined on it.
This is designed to insert a row into the BAL_LOG table when the BALANCE
column is updated. The information logged will include the old balance (the
pre-updated) value.

In our example, the UPDATE statement updates a balance value from 123.89 to
23.89, which causes the trigger to be executed. The INSERT statement within the
trigger requires the pre-updated balance in order to insert it into the BAL_LOG
table. It is able to reference this, as the trigger includes the REFERENCING OLD
AS OLD_VALUE clause. This causes DB2 to store the pre-updated data in a
temporary table. It will populate it with only those rows that have been processed
by the update. DB2 uses this table as a work area and is able to use the values in
the SQL statements in the trigger body. The temporary table used for trigger
processing is created implicitly by DB2 using a workfile.

Trigger overview

Acc_no Cust_no Balance

111 00001 324.67
112 00001 23.89
113 00002 2787.34

ACCOUNT table

CREATE TRIGGER UPDT_BAL
AFTER UPDATE OF BALANCE ON ACCOUNT
REFERENCING OLD AS OLD_VALUE

FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO BAL_LOG
VALUES (ACC_NO,

OLD_VALUE.BALANCE,
CURRENT TIMESTAMP)

END!

ACC_NO OLD_BAL TIMESTAMP

112 123.89 2000/05/02..

BAL_LOG TABLE

Temp table (for
transition variables)
Acc_no Cust_no Balance

112 00001 123.89

UPDATE ACCOUNT
SET BALANCE = BALANCE - 100
WHERE ACC_NO = 112Updates from

123.89

Fires

Creates

Inserts
28 DB2 UDB Server for OS/390 Version 6 Technical Update

2.3.2 Transition variables
If you specify FOR EACH ROW, you can use transition variables to refer to the
values of columns in each updated row in the triggering table. You can do this by
specifying the REFERENCING clause in the CREATE TRIGGER statement.

OLD transition variables capture the value of the columns before the triggering
SQL statement updates them. NEW transition variables capture the values of the
columns after the triggering statement updates them.

For AFTER triggers, transition variables are processed using workfiles. A
temporary table is created to hold the transition variables. If you have NEW and
OLD transition variables, two temporary tables are created. These temporary
tables are similar to created temporary tables in their use of workfile space and
lack of logging. However, these tables are not defined in the DB2 catalog.

The layout of the temporary table is the same as that of the triggered table — the
image captured in the temporary table is the entire row, not just the transition
variables. This means that the longer the row length, the greater the overhead of
a trigger, regardless of the number and size of the transition variable(s) used.

Consequently, before implementing triggers on a large scale, you should review
the size allocations of your workfile data sets. You should note that the temporary
table is defined for the full row length, so it could be quite large if varchar columns
are defined on the triggering table.

Please note that workfiles are not required to process transition variables in
BEFORE triggers.

Transition variables
To refer to the value of columns of the row in the set of affected rows for
which the trigger is currently executing

OLD refers to original value, NEW refers to the value it will be updated to
CREATE TRIGGER BUDG_ADJ
AFTER UPDATE OF EMPSALARY ON EMPLOYEE
REFERENCING OLD AS OD_ROW

NEW AS NU_ROW
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE DEPT
SET DEPTBUDG = DEPTBUDG + (NU_ROW.EMPSALARY

- OD_ROW.EMPSALARY)
WHERE DEPTID = NU_ROW.EMPDPTID

END!

AFTER triggers use workfiles to process them
image of entire row captured in workfile transition table
one workfile for NEW another for OLD
Chapter 2. Version 6 general news 29

2.3.3 Transition tables
Transition tables can be used to refer to the entire set of rows that the triggering
statement modifies. In the same way as transition variables, you can define them
in the REFERENCING clause of the CREATE TRIGGER statement.

The performance overhead of invoking the trigger, and allocating/deallocating the
temporary table is similar between using transition variable and transition table,
but the cost of referencing the transition table depends on the amount of data
stored in the transition table. The new transition table contains the full set of the
updated or inserted rows, even it is referenced in a row trigger. For each row
triggered, DB2 scans the full set of the affected rows in the temporary transition
table: referencing a large temporary transition table can be costly.

Transition table is useful when it is necessary to refer to the whole set of affected
rows. For example, applying aggregations (MAX,MIN or AVG) of some column
values.

Like transition variables, the overhead will be doubled if you reference OLD and
NEW tables. Therefore, you should consider their use carefully and not reference
them unless really necessary.

Since transition tables are stored within temporary tables additional workfile will
be used if sort processing is required to satisfy the expression of a WHERE
clause.

Transition table

A trigger may refer to the set of affected rows by using a
transition table - OLD_TABLE & NEW_TABLE

Valid for row and statement triggers
CREATE TRIGGER BIG_SHOT
AFTER UPDATE ON EMPLOYEE
REFERENCING NEW_TABLE AS NU_TABLE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO BIG_SHOTS
SELECT NU_TABLE.EMPID FROM NU_TABLE
WHERE (NU_TABLE.EMPSALARY > 100000.00);

END!

Overhead is similar to that for a transition variable

Additional workfile will be used if there is sort processing
required in the expression of the where clause
30 DB2 UDB Server for OS/390 Version 6 Technical Update

2.3.4 Transition variable/table usage
The cost of a trigger is increased if transition tables or variables are used.
Acquiring locks on the workfile database, allocating space, performing any
required I/O, and deallocation of these resources represents a significant part of
the cost of a trigger. If you do not use transition variables/tables, the cost of your
trigger will be much less. Similarly, if the logic allows you to use BEFORE
triggers, most of the overhead will be avoided, as they do not require workfiles.

In addition to the processing overhead, the use of transition variables increases
the workfile requirements. DB2 allocates 24 pages of workfile space for each
temporary table and then allocates more if required. You will need to reassess
your workfile data set allocations to accommodate the maximum concurrent
trigger activity in addition to existing workfile usage. Note that the workfile space
used to manipulate transition variables and tables can span workfile data sets.

A general recommendation we have found to be successful is to have at least 5
workfile data sets of sufficient size to accommodate all workfile usage. This
includes space required for sorting, creating temporary tables, sysplex query
parallelism, and trigger processing.

Unlike other table spaces, secondary extents do not help the space management
of the data sets, as the data is temporary. A large sort could cause all secondary
extents to be allocated, and these extents will not be released unless the data
sets are redefined. The fact that there are many extents does not necessarily
indicate a space shortage. Consequently, we recommend that you set the primary
quantity large enough to accommodate the workload, and set the secondary
quantity to 0.

Consider their use carefully as they significantly impact the
trigger overhead

Overhead includes workfile allocation, use and deletion
Overhead doubles approximately if OLD and NEW variables are
referenced
Overhead is much less in BEFORE triggers

Ensure that you have enough workfile space
Transition variables and tables are processed using workfiles
Make sure you have enough space to accommodate all concurrent
trigger processing in addition to other created temporary table usage.
Make sure you have enough workfiles spread across DASD to avoid
contention problems

Transition variable/table usage
Chapter 2. Version 6 general news 31

You should also make sure that the workfile data sets are spread across disks to
avoid I/O contention, and if possible, do not place them on the same devices as
other critical system data sets, such as the active logs.
32 DB2 UDB Server for OS/390 Version 6 Technical Update

.

2.3.5 Row trigger or statement trigger
You can define the scope of a trigger as either a row trigger or statement trigger.

FOR EACH ROW: The trigger is activated once for each row that is modified in
the triggering table. If DB2 modifies no rows, the trigger is not activated.

FOR EACH STATEMENT: Applies only to AFTER triggers. The trigger is activated
once when the statement is executed, even if no rows are modified.

The primary factor that influences your decision as to which to use should be
based on your processing logic requirements. Where you have a choice between
implementing a row or statement trigger, consider the performance and resource
utilization of the two options. Three factors to be considered are:

• The access path of the SQL statements that will be executed.

It is likely that the SQL you need to code for a row and an equivalent
statement trigger will be different. Use EXPLAIN and/or the DB2 Estimator to
help you evaluate the relative costs of the SQL statements.

• The number of times the SQL in the trigger body is executed.

To execute a statement trigger, the trigger manager invokes SQL statements
in the trigger body once. Conversely, to execute a row trigger, the SQL
statements will be executed once for each row that satisfies the trigger
condition. Therefore, the cost of a statement trigger tends to be cheaper than
an equivalent row trigger.

Row trigger or statement trigger
Row trigger:

CREATE TRIGGER ROW_UPT
AFTER UPDATE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO CHANGE_LOG
VALUES ('ROW_UPT INVOKED');

END!

Statement trigger:
CREATE TRIGGER STM_UPT
AFTER UPDATE ON EMPLOYEE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

INSERT INTO CHANGE_LOG
VALUES ('STM_UPT INVOKED');

Generally statement triggers perform better
consider SQL statement execution and performance

EXPLAIN SQL statements executed
Chapter 2. Version 6 general news 33

• Whether transition variables or tables are required.

Processing transition variables and transition tables is expensive. If you can
code triggers to avoid them, you will improve performance and reduce the
resource required to execute your triggers considerably.
34 DB2 UDB Server for OS/390 Version 6 Technical Update

2.3.6 Trigger coding considerations
When an SQL statement in a trigger body is executed, it may cause another (or
even the same) trigger to be fired for AFTER triggers. This in turn could cause
another trigger to be activated. When we examined the performance implications
of the recursive calling of triggers, we found there were no costs above the
overhead of executing each of the triggers. DB2 will allow up to 16 levels of
nesting.

Please note the following rules to avoid an SQLCODE -746

• If a table is being modified by insert, update, or delete, it cannot be accessed
by a nested trigger below it.

• If any table is being accessed by a SELECT statement, no table can be
modified in any lower level nesting SQL statement.

Like referential integrity, triggered SQL statements do not show up when the
triggering SQL statement is explained. EXPLAIN will record the statement as
being in COST_CATEGORY ‘B’ with a REASON of ‘TRIGGERS’ in the
DSN_STATEMNT_TABLE. For the DB2 governor, the RLF_CATEGORY_B
predictive governor rules apply. This indicates that the predictive cost of the
statement is indeterminate.

When you create a trigger, DB2 automatically creates a trigger package with the
same name as the trigger name. The collection name of the trigger package is
the schema name of the trigger. Multiple versions of the trigger package are not
allowed. You can REBIND this trigger package with the EXPLAIN(YES) option to
obtain information about the access path.

Trigger coding considerations

Nesting triggers
up to 16 levels allowed
coding restrictions

if a table is being modified it cannot be referenced in a lower level nested
trigger
if any table is being accessed by a select statement, that table cannot be
modified in any lower level nesting SQL statement

Explain
create trigger creates a trigger package
COST_CATEGORY 'B' in DSN_STATEMNT_TABLE
predictive governor cost category B - cost indeterminate
REBIND trigger package with EXPLAIN(YES) to check access path

Rebind trigger packages when necessary
keep access path history
helps diagnose performance problems (access path change)
Chapter 2. Version 6 general news 35

Since the cost of the statement is indeterminant, it is easy to miss the cost of the
execution of a trigger unless you make a point of checking it when the trigger is
created and/or after a REBIND of the trigger package with EXPLAIN(YES).

We recommend that you treat trigger packages in the same way as standard
packages in that you REBIND them when you REBIND other types of package,
for example, when there are significant changes to the statistics. This will ensure
that access paths are based on accurate information.

We also recommend that you keep access path history information. That way,
you can see if any performance degradation can be correlated with a change in
access path.
36 DB2 UDB Server for OS/390 Version 6 Technical Update

2.3.7 Understanding trigger performance
Triggers enable you to encapsulate business logic into the database, and this has
many advantages. They are also helpful for customers considering migration
from other data base management systems that have triggers to DB2. Here we
review factors that influence the cost of triggers. Understanding these factors will
help you evaluate the likely cost of triggers and estimate their cost relative to an
application implementation of the logic.

• The base cost of a trigger (that is, excluding the execution of the triggered
SQL) is about equivalent to the cost of a fetch. Where a trigger is defined but
not fired, for example, if the trigger is defined as ON UPDATE OF column_1
and an update updates column_2, the trigger is not activated, and so the
overhead is normally negligible. However, very complicated and badly coded
WHEN clause in the trigger can still impact performance whether or not the
trigger is fired.

• The trigger package has to be loaded into the EDM pool. I/O will have to occur
if it is not already in the EDM pool. Options to alleviate problems in this area
include:

• Monitor and increase the size of the EDM pool.

• Consider REBIND of the trigger package with the RELEASE(DEALLOCATE)

option. Be aware, though, that RELEASE(DEALLOCATE) will result in more
resources being held — you face the same issue as binding application
packages with RELEASE(DEALLOCATE).

• The object descriptor (OBD) of the trigger package is a part of the table.
Therefore, be aware of the impact to the DBD size and its potential to impact
the EDM pool if you already have large DBDs.

Understanding trigger performance

Triggers overheads
Base cost to process a trigger is about same as a FETCH
Must load trigger package into the EDM pool
Creation, use and deletion of workfiles for transition variables/tables

So...
Monitor your EDM pool and DASD requests
Review release(deallocate) option - but consider implications
Avoid workfiles if possible - minimize use of transition variables/tables
Row length influences size of workfiles
Consider design

if trigger does not fire cost negligible
update trigger has negligible cost if most activity is insert

Compare trigger cost with application implementation

Consider stored procedure rather than multiple triggers

Use triggers for what they are designed - not a replacement for
DPROPR or constraints
Chapter 2. Version 6 general news 37

• As we have indicated, transition variables and transition tables in AFTER
triggers represent a significant proportion of the cost of such a trigger. Where
a trigger has to manipulate workfiles, contributions to the cost are:

• Creation, use, and deletion of workfiles

• Any I/O and/or GETPAGE requests necessary to process the data

• Base cost of trigger processing

The cost of a trigger that processes workfiles depends critically on the amount
of workfile processing required (including row length and whether you have
OLD and NEW transition variables). Transition tables need to be processed
with a table space scan for each row trigger because there are no indexes.
Trigger performance will also depend on whether there is contention for the
workfiles. You should anticipate the cost to be several times greater than the
base cost of the trigger, because significantly more work has to be carried out.

• There is no overhead for an SQL statement that is not the triggering action.
For example, if a INSERT trigger was defined on a table, it would have no
overhead on update or delete statements.

We recommend that you prototype your physical design first if you are
considering using triggers for tables that are heavily updated and/or fire SQL
statements that process significant quantities of data. You can then evaluate their
cost relative to the cost of equivalent functionality embedded in your applications.

When you begin physical design, you may find that you need several triggers
defined on a single table. When there are multiple triggers on the same table with
the same event and same execution time, they will be processed in the order that
they were created. You can determine what the order is by looking at the creation
timestamp in the catalog.

To avoid the overhead of multiple triggers, you can write a stored procedure to do
all the triggered processing logic. The body of the trigger could then simply
consist of a CALL stored-procedure-name.

Please note that triggers are not the best solution for all situations. If the triggered
logic is just for validation purposes, you can achieve better performance using
constraints or views with the CHECK option. In addition, although triggers can be
used for simple propagation (for example, to create an audit trail), they are not
not intended to be used as an alternative to or a replacement for Data Propagator.

Note: APAR PQ34506 provides an important performance improvement for
triggers with a WHERE clause and a subselect. A where clause in the subselect
can now be evaluated as a Stage 1 predicate.
38 DB2 UDB Server for OS/390 Version 6 Technical Update

2.4 LOBs performance considerations

Large objects (LOBs) are string data elements used to store binary data such as
documents and videos. They differ from CHAR and VARCHAR in that a single
object (that is, a single column of a table containing a LOB) can be up to 2 GB in
size. In this section we briefly introduce the topic, then we look at read and
update performance, and provide recommendations.

LOBs performance considerations

Overview

Processing

Read performance

Update performance

Summary
Chapter 2. Version 6 general news 39

2.4.1 LOBs overview
A LOB column is conceptually part of the base table, but it is physically stored in
a separate table. Because it is not part of the base table, it is termed an auxiliary
table. The auxiliary table resides in a separate LOB table space.

A base table may point to many LOB columns of different types and lengths. Each
auxiliary column is stored in its own auxiliary (LOB) table in its own LOB table
space. An auxiliary index must be created on every auxiliary table before it can
be used.

To create a base table that contains a LOB column, you must define a ROWID
column. The ROWID acts as a pointer to the LOB data associated with the
particular row. The auxiliary index, whose key is based on the ROWID, is used to
navigate to LOB data associated with the row.

If a base table that contains LOB data is partitioned, you create a separate LOB
table space and auxiliary table for each partition.

A LOB table space can have a page size of 4, 8, 16 or 32 KB. Since the length of
a LOB can exceed 32 KB it is clear that a LOB can span physical pages. To
reduce the volume of logging, you can specify LOG NO in your CREATE LOB

TABLESPACE statement. This suppresses redo records.

There are no UNDO records for LOB updates (except for system pages,
spacemap) even with LOG YES. LOBs always insert the new value at a different
place and delete the old one at commit marking the old space as free.

LOBs overview

Base table space

Key ROWID Column_2 LOB indicator

Key A prt to LOB 1 user data A LOB indicator 1
Key B ptr to LOB 2 user data B LOB indicator 2

Base table

Auxiliary index:
based on ROWID
used to navigate to LOB data

LOB table space

ROWID LOB data
LOB 1 ROWID LOB data for row user data A

LOB 2 ROWID LOB data for row user data B

Auxiliary table

Rows represent LOBs
LOBs stored outside base table in auxiliary table
Base table space may be partitioned
If so separate LOB table space for each part
40 DB2 UDB Server for OS/390 Version 6 Technical Update

2.4.2 LOBs processing
There are three data types that are used to store different large objects:

• Binary large objects (BLOBs) store binary data such as image, video and
sound data. They have no CCSID associated with them.

• Character large objects (CLOBs) store character data which is larger than 32
KB such as documents. CLOBs have the normal single byte and mixed CCSID
associated with them.

• Double-byte character string (DBCLOBs) store data that consists only of
DBCS data and have the graphic CCSID associated with them.

The maximum size of a LOB column is 2 GB. You can also use LOBs to store
data, for example, long characters, which does not fit entirely within DB2’s largest
page size of 32 KB.

Although you can manipulate LOB columns like any other data type, there are a
number of issues:

• They are subject to the same restrictions as long VARCHARs. Substrings of
LOBs which are less than 255 bytes can be CAST as CHAR to avoid these
restrictions.

• Acquiring buffers in a program to accommodate a large LOB can be difficult.

Since LOBs are essentially long strings, you can use string functions to
manipulate them and parts of them. For example, SUBSTR(LOB,1,200) will
retrieve the first 200 bytes of the LOB. This can more easily be managed in an
application program.

LOBs processing

V6 introduced BLOBs, CLOBs and DBCLOBs

To store data objects up to 2 GB in size
audio, documents, pictures
to store data that will not fit into 32 KB maximum page size

Programming with LOBs is challenging
Buffer requirements may exceed capacity

LOB locators introduced to process LOBs efficiently

Data manipulation
Process as though (very long) strings
Delete is a logical delete

Update is logical delete and insert
Chapter 2. Version 6 general news 41

LOBs are inserted, selected, deleted, and updated using standard SQL, although
there are some special considerations:

• A LOB locator, which is a 4-byte value stored in a host variable, can be used
to reference the LOB, and can be used wherever you would use a LOB. The
locator essentially acts as a pointer to the LOB. For full details, refer to DB2
UDB for OS/390 Version 6 Application Programming and SQL Guide,
SC26-9004-01.

• The LOB update operation does not update in place, it performs a LOB delete
followed by an insert.

• The LOB delete is a logical delete: it flags the space as available.
42 DB2 UDB Server for OS/390 Version 6 Technical Update

2.4.3 LOBs read performance
We have measured the efficiency of reading data from tables that contain LOB
data. We created 4 different tables. The first was our control and consisted of a
non-LOB 20 KB character column. The table space page size had to be 32 KB.
Operations performed on this table provided the baseline against which we could
compare the efficiency of LOB processing.

The second table was conceptually identical to the first except that the 20 KB
character column was defined as a CLOB. We created a LOB table space and
auxiliary table and index to support this. For our LOB table spaces, we used a
32 KB page size, so that comparisons with the non-LOB table were reasonable.

The third and fourth tables had LOB columns of 200 KB and 2 MB, respectively.

When we retrieved LOB data into the host application, we repeatedly called
SUBSTR to “walk” down the entire length of the column. We used the same
technique to process LOB data with and without the use of LOB locators. Any
differences in the performance of processing LOBs can, therefore, be attributed
solely to the use of locators or the processing of LOBs into host variables.

The diagram above shows the elapsed and CPU time taken to process non-LOB
and LOB data of different lengths and shows the following results:

LOBs read performance

NON-LOB 20 KB 20 KB 200 KB 2 MB

Select into :HV 0.025
(0.0006)

0.027
(0.0008)

0.117
(0.0023)

0.867
(0.0175)

KB/sec 800.0 740.7 1,709.4 2,306.8

Select into Locator 0.020
(0.0007)

0.029
(0.0007)

0.046
(0.0007)

All measurements in seconds
Elapsed time is on the top line, CPU time shown in brackets
Processor is LPAR of RX5

Large LOBs can be processed (KB/sec) more efficiently than small

LOB locators offer superior performance and lower CPU overhead
nearly 19 times faster elapsed
25 time less CPU required
we recommend you use LOB locators
Chapter 2. Version 6 general news 43

• LOB processing is more efficient for larger LOB columns.

The time taken to process a select of 20 KB worth of LOB data into a host
variable is 0.027s. In other words DB2 can process 740.7 KB LOB data per
second for a 20 KB LOB column. To select a 2 MB LOB into a host variable
(that is, 100 times more data) does not take 100 times longer; rather, DB2 can
process 2306.8 KB LOB data per second for a 2 MB LOB column.

• The efficiency by which large LOBs can be processed is increased
enormously by using LOB locators.

With 20 KB of LOB data, there is only a small improvement in performance
using LOB locators. At 2 MB we saw an it took nearly 19 times longer and
used 25 times more CPU to select a LOB into a host variable rather than into a
LOB locator.

• You get very consistent responses and CPU times reading LOB data using
locator variables regardless of the size of the LOB column.

These measurements lead us to recommend that you use LOB locators when
selecting LOB data.
44 DB2 UDB Server for OS/390 Version 6 Technical Update

2.4.4 LOBs write performance
We also measured the performance of update, delete, and insert operations
against LOB data. The scenario we used was the same as for LOB reads: one
non-LOB table with a 20 KB CHAR as a control for the 20 KB LOB table, and
tables with LOB sizes of 200 KB and 2 MB. The processor in a RX5 LPAR and
LOG NO was specified for the LOB runs.

We examined the cost of an insert operation using a host variable compared with
using a LOB locator with different sized LOBs. We also measured the cost of a
delete and an update.

2.4.4.1 LOB insert
It is more expensive to process 20 KB of LOB data, even if a LOB locator is used,
than processing an equivalent volume of non-LOB data. As with select
processing, the greater the LOB length, the greater the efficiency of insert
processing — to insert 100 times the data does not require 100 times the
resource. The relative improvement of insert efficiency with respect to LOB size
results, however, much less dramatic than for select processing. The reason is
that the cost of preformatting disk space to accomodate the newly inserted LOB
increases with the size of the LOB and it accounts for most of the elapsed time.

There is relatively little difference in insert performance if a LOB locator is used.

2.4.4.2 LOB update
Internally a LOB update is equivalent to a LOB insert and a LOB delete. Most of
the cost of a LOB update can, therefore, be attributed to the cost of the LOB
insert.

LOBs write performance

2 MB insert takes about 2 seconds
insert more efficient as length of LOB data increases

Delete is very quick - logical delete

Update is roughly the same as an insert
internally consists of insert+delete so this makes sense

NON-LOB 20 KB 20 KB 200 KB 2 MB

Insert with :hv 0.011
(0.0007)

0.025
(0.0012)

0.219
(0.0033)

2.029
(0.0194)

Insert with locator 0.028
(0.0012)

0.187
(0.0028)

2.08
(0.0199)

Update (see notes) 0.0036
(0.0008)

0.027
(0.0013)

0.223
(0.0033)

2.229
0.021)

Delete 0.03
(0.001)

0.024
(0.001)

0.035
(0.001)

0.045
(0.001)

All measurements in seconds
Elapsed time is on the top line, CPU time shown in brackets
Chapter 2. Version 6 general news 45

2.4.4.3 LOB delete
A LOB delete is a logical delete, and so is relatively cheap and gives consistently
good performance. The CPU cost was independent of the size of the LOB column
(to 2MB). The larger the LOB column, the greater the number of space map
pages that have to be updated to reflect the logically deleted row. There is,
therefore, a relationship between elapsed time and LOB size for deletes. The
larger the LOB column, the greater the efficiency of the delete operation. DB2 can
delete 833 KB per second if the LOB is 20 KB in length. With a 2 MB LOB, DB2
can delete 45,511 KB per second — more than 50 times faster.
46 DB2 UDB Server for OS/390 Version 6 Technical Update

2.4.5 LOBs recommendations
• Use LOBS for what they are intended — large (>32 KB) objects.

On balance, we observed that the larger the LOB, the greater the efficiency.
LOB insert (and therefore update) processing is expensive for small length
LOB columns. We recommend, therefore, that you use LOBs only for the
purpose for which they were intended — processing large objects over 32 KB
in size. You must take into account that there is only 1 LOB per page; if you
have specified a pagesize of 32 KB, and a row of 100 bytes, the overhead in
dealing with each row in terms of I/O and CPU cannot be negligible.

• Use locators to manipulate LOBs.

LOB locators process LOB data consistently and more efficiently than using
host variables and avoid application buffering problems.

• Do not use LOBS as a means of normalizing data.

When running a complex workload, we noticed a puzzling improvement in
overall throughput when we replaced the 20 KB VARCHAR column by a 20 KB
LOB.

To illustrate what was happening, consider an employee table with base data
of name, department number, employee identifier and so on. At the end of the
row is a VARCHAR(20 KB) containing the employees curriculum vitae. Most
applications did not read the curriculum vitae, but this long column contributes
to the row length and thus reduces the number of rows per page. Therefore,
the number of GETPAGE requests required to process the employee data was
quite large.

LOBs recommendations

Use them for what they are intended for - over 32 KB objects
(there is only one row per page with LOBs)

Use locators to process them

Do not use as a normalization technique

Do not use them as a technique to avoid logging

Expect Load utility overhead

Tune GRS for data sharing
Chapter 2. Version 6 general news 47

When the 20 KB curriculum vitae column was defined as a LOB, it was located
in a different table space that was rarely read. The hit rate for the frequently
accessed base data, therefore, increased improving overall performance.

We do not recommend, however, that you use LOBs as a technique to obtain
performance improvements that normalization and proper physical design can
achieve. Note that:

• Any improvements are entirely application dependent.
• At the physical design stage, you should have been able to identify that

the curriculum vitae column was infrequently accessed. There is a 1:1
relationship with the employee. Depending on the application, there
may be a net benefit in placing the curriculum vitae into its own base
table, keyed on employee number and holding the 20 KB VARCHAR
and possibly other infrequently accessed columns.

• Do not use LOBs as a means to deactivate REDO logging.

The additional cost, particularly when processing small LOBs, means you are
likely to create a different bottleneck from the perceived one of logging that
you were trying to solve. Use LOBs only for their intended purpose.

• Expect overhead when running LOAD

You should be aware that the LOAD utility processes LOBs using insert mode
processing. To estimate very roughly the elapsed time for LOAD, assume that
the cost to load each row is equivalent to the cost of randomly inserting every
row.

• Tune VSAM and GRS with data sharing

In data sharing environments, we observed some contention during drop LOB
table space and unusually high Coupling Facility (CF) CPU activity. We could
attribute this to VSAM making use of GRS. When we specified GRS=STAR,
these problems were eliminated. We recommend that you investigate the GRS
setting in data sharing environments if you are observing high CF CPU
activity.
48 DB2 UDB Server for OS/390 Version 6 Technical Update

2.5 ESS performance

The IBM 2501 Enterprise Storage Server (ESS, but often called by its code name
Shark) is a recent disk drive which can provide excellent performance in your
DB2 environments. No special setting is needed from the DB2 side to exploit the
new disk’s capabilities. Refer to the ESS official documentations for its set up and
management. For ESS performance management, you can refer to the redbook
IBM Enterprise Storage Server Performance Monitoring and Tuning Guide,
SG24-5656.

The measurements shown in this section show that the ESS disk offers a basic
raw power in reads and writes that allows the I/O time to be approximately cut in
half when compared with other IBM disk drives. For the DB2 applications and
utilities that are I/O bound (like Copy and Recover) you can expect meaningful
proportional improvements.

Other advantages can be expected from the Parallel Access Volume optional
ESS feature, if software enabled, for those non-finely tuned environments where
concurrent I/O processing is present. Common candidates for PAV can be the
volumes where the DB2 workfiles of DSNDB07 are allocated.

ESS is a recent device, the measurements mentioned here were taken at Santa
Teresa Lab in 4Q1999 and at the S/390 Terplex Center during the 1Q2000 on the
first release of the product. Larger cache, faster processors, and advanced copy
functions have been announced, more measurements are being implemented.

Click here for optional figure #

ESS performance

New disk with excellent performance for DB2
data
No special DB2 parameter to obtain
improvements
Two sets of measurements with DB2 are
referenced to show:

read performance (random and prefetch)
logging write rates

Larger cache and faster processors have been
announced

See white paper DB2 for OS/390 Performance on IBM Enterprise Storage Server at
http://www.software.ibm.com/data/db2/os390/pdf/db2ess.pdf
Chapter 2. Version 6 general news 49

2.5.1 ESS read performance
Performance measurements have been carried out at the S/390 Teraplex Center
comparing table space scan times on ESS and RVA. The table involved was
associated to a 10 GB table space with 200 partitions, and it is representative of a
data warehousing type of application. These measurements give a clear
indication of the ‘raw’ power of the new disk drives during sequential prefetch and
synchronous reads. The hardware configuration for the measurements consisted
of two RVA model 9393-T82 and one ESS model 2105-E20 attached to a
9672-YX6 system. The table space partitions were allocated as follows:

• Partitions distributed across 4 Logical Control Units (LCUs) of an ESS device.
Each LCU has 8 channel path identifiers (CHPIDs)

• Partitions distributed across 2 RVAs. Each RVA has 8 CHPIDs.

When the query was run with DEGREE 1, the I/O rate in MB per second improved
from 4.5 for the RVAs to 12 for the ESS.

When the query was run with DEGREE ANY the I/O rate improved from 12.4
MB/sec for the RVAs to 43.8 MB/sec for the ESS, showing a better improvement
with higher parallelism. The actual maximumum degree of parallelism was set to
50 by using the PARAMDEG installation parameter to control the contention from
the possible 200 concurrent I/O streams.

Click here for optional figure # YRDDPPPPUUU

ESS read performance

Performance measurements of table space scan
against a 200 partition 100 GB table
Comparison of RVA and ESS

Processing Disk Rate in
MB/sec

Parallel sequential prefetch
DEGREE 50

1 ESS
2 RVAs

148.50
43.80

Sequential prefetch
DEGREE 1

1 ESS
2 RVAs

12.40
4.50

Synchronous read
DEGREE 1 (VPSEQT=0)

1 ESS
2 RVAs

2.80
1.85
50 DB2 UDB Server for OS/390 Version 6 Technical Update

In these two tests VPSEQT was set to the default value of 80, which means that
sequentially accessed pages can take up to 80% of the virtual buffer pool. In the
third test, this parameter was set to 0; this disables prefetch. Prefetch disabled
means that instead of DB2 reading data into the buffer pool ahead of the program
requiring the data, DB2 had to do synchronous reads for each page. Using the
ESS device, the I/O rate was 2.8 Mb/sec, doubling the rate of the RVAs for a test
indicative of random read accesses.

More detailed results of performance measurements of a table space scan
against a 20 partition 10 GB table are also reported below.

When the query was run with sequential prefetch, without parallelism, the
elapsed time was reduced from 14.5, for the RVAs, to 5.1 minutes, for the ESS,
with the CPU time remaining constant.

In the case of single synchronous read (with VPSEQT set to 0) using the ESS
device, the read time was approximately 22.7 minutes, as opposed to 34 minutes
for the RVAs, showing the improvement indicative of random read accesses.

For information on the mission and activities of the Teraplex Center see the URL:

http://www.ibm.com/businessintelligence/teraplex/index.htm

Processing
DEGREE 1

Disk Drive Elapsed time
(min)

CPU time
(min:sec)

Other read I/O
(min:sec)

I/O rate
(MB/sec)

Prefetch
VSPQT=80

1 ESS 5.1 4:13 0:54 12.40

2 RVAs 14.5 4:12 10:18 4.50

Synchronous
read
VSPQT=0

1 ESS 22.7 5:26 15:50 2.80

2 RVAs 34.0 5:24 29:06 1.85
Chapter 2. Version 6 general news 51

2.5.2 DB2 logging rates by disk type
For some particularly large throughput, heavy update profile, DB2 installations
logging can became a bottleneck. As can be seen from these measurements,
extracted from the DB2 for OS/390 Performance on IBM Enterprise Storage
Server white paper, the ESS supports logging rates nearly double those possible
under the previous IBM disks.

The white paper is available from the Web site:

http://www.software.ibm.com/data/db2/os390/pdf/db2ess.pdf

or it can be linked to, as a redpaper, from the ITSO Web site:

•http://www.redbooks.ibm.com

The referenced documents also covers performance benefits from using ESS for
DB2 tables and indexes under the following headings:

• Query performance

• Utilities performance

• Transaction performance

• Distributed performance

DB2 logging rates by DASD type

DASD Subsystem Type Logging rate
(MB/sec)

3390, RAMAC 1, RAMAC 2 2.5
RVA2 Turbo 3.2
RAMAC 3 4.2
RVA X82 4.5
ESS 8.2

This table shows the maximum observed rate of writing to an
active log data set, when using dual logging, with different
storage disks and DB2 V6 under OS/390 V2R6.

The ESS offers the highest logging rate that can be sustained
by a single DB2.
52 DB2 UDB Server for OS/390 Version 6 Technical Update

2.6 Distributed functions performance

The following referenced white papers are all available from the Web site:

http://www.ibm.com/software/data/db2/performance/

• TCP/IP with Netfinity Escon Adapter

In a client/server environment there is currently no faster, more scalable way
to connect to DB2 for OS/390 other than with DB2 Connect, IBM’s Netfinity
adapter, and TCP/IP with MPC+ driver. TCP/IP performs better than SNA and
uses less CPU on OS/390 in a client/server environment. This topic is covered
in the white paper TCP/IP and SNA Performance Using IBM’s Netfinity Escon
Adapter.

• Connection pooling performance

Connection pooling, which was introduced with DB2 UDB for OS/390 V6,
makes inactive thread processing more efficient. Threads executing packages
bound with RELEASE(DEALLOCATE) can now become type 2 inactive
threads. This leads to CPU savings since there is no reason to acquire and
release intent locks after every commit. There is also less storage usage with
inactive threads as compared to active threads. Although the benefit of
connection pooling is less for long running inactive threads, there is better
performance than using active threads. This is documented in the white paper
Performance Analysis of Connection Pooling in DB2 UDB for OS/390 Version
6.

Distributed functions performance

Recent measurements:
TCP/IP with Netfinity Escon adapter
Connection pooling
Extra block query support

Referenced documentation at
http://www.ibm.com/software/data/db2/performance
Chapter 2. Version 6 general news 53

• Extra query block support performance

You can now retrieve large result sets of data during query processing due to
extra query block support in DB2 UDB for OS/390 V6. This is done by
specifying the number of rows to be returned on the optimize for n rows of the
declare cursor SQL statement. The response time and rows returned would be
affected by network limits (that is bandwidth, packet thresholds), processor
speed (both client and server), memory, and other unrelated work performed.

Althouh there are no costs to DB2 for using extra block query, network
bandwidth might be stressed. The anticipated performance benefits of extra
query block support may not be realized if the network bandwidth is the
limiting factor. This is documented in the white paper Performance Analysis of
Extra Query Block Support in DB2 UDB for OS/390 Version 6.
54 DB2 UDB Server for OS/390 Version 6 Technical Update

Chapter 3. Application enhancements

In this chapter we describe enhancements that have been made available
through the maintenance stream of DB2 V6, and have been rolled in the May
refresh. We look at functions that we have grouped under the heading application
enhancements since they can be beneficial when developing applications:

• Identity columns

• External savepoints

• Declared temporary tables

• Update with subselect

• Columns in order by not in select

• Global transaction

YRDDPPPPUUUClick here for optional figure #

Application enhancements

Identity columns

External savepoints

Declared temporary tables

Update with subselect

Columns in order by not in select

Global transaction
© Copyright IBM Corp. 2000 55

3.1 Identity columns

It is a common physical database design requirement to allocate a sequential
number as the primary key of a table. Common examples include customer
number, stock number, and order number. The primary key must be unique. If the
table participates in referential relationships with other tables, this primary key is
propagated to the dependent “child” tables as a foreign key.

When it comes to the implementation of your design, you have to decide how you
are going to generate the next sequential number in the series. Traditional
methods include having a single row DB2 table that holds the highest allocated
number, or using a CICS Temporary Storage (TS) queue.

This enhancement adds an additional method with several advantages over
existing techniques. It also assists with the migration of applications based on
other data base management systems to DB2.

You can now specify a new column attribute AS IDENTITY. Then DB2 will
automatically generate unique, sequential, and recoverable values for the column
for each row in the table. A column defined in this way is referred to as an identity
column. Identity columns are ideally suited for the task of generating unique
primary key values.

In this section we will cover the following topics:

• How to define identity columns and design considerations

• Performance improvements you can obtain

• How to code for identity columns within applications

Identity Columns

Cust_no First_name Last_name
1000 Patrick Vabre
1001 Charles Ludeman
1002 Gordon Bell

CREATE TABLE CUSTOMER
(CUST_NO INTEGER GENERATED BY DEFAULT AS IDENTITY

(START WITH 1000),
FIRST_NAME CHAR(18) NOT NULL,
LASTNAME CHAR(18) NOT NULL)...

INSERT INTO CUSTOMER
(CUST_NO, FIRST_NAME, LAST_NAME)
VALUES (DEFAULT, :hv_fname, :hv_lname)

Identity columns
Ideally suited for generating unique primary key values such as
employee numbers, order numbers, line item numbers

New method of generating sequential primary key values
traditional methods include next number table, CICS TS queues
56 DB2 UDB Server for OS/390 Version 6 Technical Update

• Data management issues you need to consider

• Reasons for using identity columns as compared to alternatives

Syntax

The syntax to define the new identity column is listed for reference.

| |--column-name--data-type--.----------------.----------| |
| '-column-options-' |
| COLUMN-OPTIONS: |
| <---< |
	---.---.----			
	-NOT NULL------------------------------------			
	-.-UNIQUE------.-----------------------------			
	'-PRIMARY KEY-'			
	-FIELDPROC--program-name--.----------------.-			
		<-,------<		
	'-(--constant--)-'			
	-references-clause---------------------------			
	-check-constraint----------------------------			
'-generated-column-spec-----------------------'				
GENERATED-COLUMN-SPEC:				
	-+--+-			
	+-WITH-+			
	-'------'--DEFAULT--.----------------.------------			
	'-default-clause-'			
+-GENERATED--.-ALWAYS-----.--.------------------.--+				
'-BY DEFAULT-' '-as-identity-spec-'				
AS-IDENTITY-SPEC:				
	-AS IDENTITY-+---------------------------------------+-			
	<-,-----------------------------<			
	+---1----+			
+-(---+-START WITH--+-nconst-+---+--+-)-+				
	+---1----+			
	-INCREMENT BY--+-nconst-+-+			
	+-CACHE 20------+			
+-+-NO CACHE------+--------+				
+-CACHE-integer-+				
LIKE-clause (CREATE TABLE)				
	-----LIKE--+--table-name--+------------------------>>			
+--view-name---+				
>>--+---+---				
	+-COLUMN ATTRIBUTES-+			
+--INCLUDING IDENTITY--+-------------------+--+				
+--+

• GENERATED: Specifies that DB2 generates values for the column. You must
specify GENERATED if the column is to be considered an identity column, or if
the data type of the column is a ROWID (or a distinct type that is based on a
ROWID).

• ALWAYS: Specifies that DB2 always generates a value for the column when a
row is inserted into the table.

• BY DEFAULT: Specifies that DB2 generates a value for the column when a
row is inserted into the table unless a value is specified. BY DEFAULT is the
recommended value only when you are using data propagation.

• AS IDENTITY: Specifies that the column is an identity column for the table. A
table can have only one identity column. AS IDENTITY can be specified only if
the data type for the column is an exact numeric type with a scale of zero
(SMALLINT, INTEGER, DECIMAL with a scale of zero, or a distinct type based
on one of these types). An identity column is implicitly NOT NULL.
Chapter 3. Application enhancements 57

• START WITH numeric-constant: Specifies the first value for the identity
column. The value can be a positive or negative value that could be assigned
to the column, as long as there are no non-zero digits to the right of the
decimal point. The default is 1.

• INCREMENT BY numeric-constant: Specifies the interval between
consecutive values of the identity column. This value can be any positive or
negative value that is not 0, does not exceed the value of a large integer
constant, and could be assigned to this column, as long as there are no
non-zero digits to the right of the decimal point. The default is 1. If the value is
positive, the sequence of values for the identity column ascends. If the value
is negative, the sequence of values for the identity column descends.

• CACHE or NO CACHE: Specifies whether to keep some preallocated values
in memory. Preallocating and storing values in the cache improves
performance for inserting rows into a table that has an identity column.

• CACHE integer: Specifies the number of values of the identity column
sequence that DB2 preallocates and keeps in memory. The minimum value
that can be specified is 2, and the maximum is the largest value that can be
represented as an integer. The default is 20. During a system failure, all
cached identity column values that are yet to be assigned are lost and, thus,
will never be used. Therefore, the value specified for CACHE also represents
the maximum number of values for the identity column that could be lost
during a system failure. In a data sharing environment, each member gets its
own range of <integer> consecutive values to assign. For example, if CACHE
20 is specified, DB2A might get values 1-20 for a particular sequence, and
DB2B might get values 21-40. Therefore, if transactions from different
members generate values for the same identity column, the values that are
assigned might not be in the order in which they are requested.

• NO CACHE: Specifies that caching is not to be used. In a data sharing
environment, use NO CACHE if you need to guarantee that the identity values
are generated in the order in which they are requested.

• LIKE-clause (for CREATE TABLE): Specifies that the columns of the table
have exactly the same name and description as the columns of the identified
table or view. However, for an identity column, the new table inherits only the
data type of the identity column; none of the other column attributes are
inherited unless the new INCLUDING IDENTITY clause is specified.

• INCLUDING IDENTITY COLUMN ATTRIBUTES: Specifies that the new table
inherits all of the column attributes of the identity column. If the table identified
by LIKE does not have an identity column, the INCLUDING IDENTITY clause
is ignored. If the identified object of LIKE is a view, INCLUDING IDENTITY
COLUMN ATTRIBUTES cannot be specified.
58 DB2 UDB Server for OS/390 Version 6 Technical Update

3.1.1 Existing techniques to create new keys
There are a number of implementation options open to you when considering how
to genererate unique key values.

The first decision is whether the number should be sequential. The main
advantage of a random number (which can be generated from a reverse
timestamp) is that the insert activity is spread across the index (and table space if
the index is defined as clustering). This avoids ‘hot spots’ and contention when
throughput is high, which is exacerbated in a data sharing environment.

However, in many cases it is a requirement that the values are allocated
sequentially for business or processing reasons. A full discussion on all the
design issues of sequential versus random keys is beyond the scope of this book.
However, you should note that if the sequential key is the first column in an index,
all insert activity is at the end of the index (and the end of the table space if it is
the clustering index). Consequently you should take into account your maximum
insert rate when designing indexes for the table to avoid hitting contention
problems.

The redbook DB2 for OS390 Application Design for High Performance,
GG24-2233 provides further information and will assist you in your decision.

We will assume here that a sequential number is required and discuss the
traditional implementation methods.

Click here for optional figure # YRDDPPPPUUU

Existing techniques to create new keys

Next number in single table
+ application controlled (very flexible but have to code it)
- serializes processing
- additional processing overhead
- data sharing concurrency risks
- must ensure everyone follows the rules

Timestamp
+ a reversed form is good for random keys
- not a sequential number and long field

CICS temporary storage queue
+good performance
- all insert activity must be via CICS
- data sharing and recovery issues
Chapter 3. Application enhancements 59

3.1.1.1 Next number in single row table
As part of the database design for the application that is required to generate the
next number, a table is created with a single row. This table holds the next
number to be used. When it comes to insert the next row, the application reads
for an update to obtain the value, creates the next row, and updates the counter
within the same unit of work.

The advantages of this technique are that you have control of the type of number
that is generated, and the processing can add check digits if necessary. In
addition, it is in a format that is acceptable for business and customer use.
Provided that every application process that performs inserts follows the rules to
generate the number, uniqueness is guaranteed.

The major problem with this technique is seen in high transaction rate
environments. Since every transaction acquires an exclusive lock on the counter
in order to increment it, serialization inhibits the transaction throughput of the
system. We have performance figures comparing the use of DB2’s identity
column with this technique. They demonstrate a significant improvement in the
transaction rates that can be achieved, as reported in 3.1.5, “Identity columns
performance” on page 67.

In data sharing environments, a significant consideration is the availability of the
table in the event of member failure. It is possible for locks held by the failing
member to be retained, thus preventing access to the shared counter by the
others members.

Another disadvantage with the next number table technique is that you have to
code and maintain the application logic to manage the generation of the next
number. You must also ensure that all applications performing insert processing
will follow the same procedure. Although you can use functions, triggers, and
procedures to minimize the overhead of application development and the risks
that an application will not adhere to the rules, it is still your responsibility to
develop this code.

3.1.1.2 Using a timestamp
In most cases, a timestamp format is not acceptable to the business, as the
number will be quoted and will appear on documents. Timestamps are most
useful for key generation when a random number is required. Then a reversed
form can be a simple way of generating a key.

Timestamps are also useful when you require rows to be inserted randomly
across partitions, but sequentially within each partition. A typical use would be
tables which are cleared out each night and start the day empty. If a completely
random key was used, DB2 would have the overhead of trying to maintain the
clustering sequence as the data built up. This could have a significant effect on
the performance of the system. Conversely, the insert arrival rate could be too
high for a sequential key, as there would be a bottleneck at the end of the table
space. An alternative would be to define a table space with 100 partitions and
generate the key from the last part of a timestamp, but with the last 2 digits at the
front. The table space would be partitioned on those 2 digits.
60 DB2 UDB Server for OS/390 Version 6 Technical Update

An example follows:

Set :hv = CURRENT TIMESTAMP.

2000-01-01 16:32:01 000001.

Use from the minutes onwards, that is, ‘3201000001’.

Move the last 2 digits to the front, that is, ‘0132010000’.

This key will be inserted at the end of partition 2 (00 going into partition 1).

This may avoid contention problems by spreading the insert activity across 100
‘hot spots’ rather than just one.

3.1.1.3 CICS temporary storage queue
Some CICS customers use a temporary storage queue to store the highest
number allocated for a key in memory. Although this can be a good solution, it
relies on all insert activity for the table being performed by CICS transactions.

Other considerations are how the number will be allocated in a parallel sysplex
environment, and how the value will be recovered in the event of a CICS failure.
Chapter 3. Application enhancements 61

3.1.2 Definition of identity columns
Below are some of the main points to consider when defining identity columns.
Refer to DB2 UDB for OS/390 SQL Reference, SG26-9014-01 for details.

3.1.2.1 Usage and restrictions
You can specify the AS IDENTITY clause for SMALLINT, INTEGER and
DECIMAL columns with a scale of zero. It is also valid for distinct types based on
any of these data types.

Please note the following restrictions when considering using identity columns:

• Identity columns are not updateable if defined with GENERATED ALWAYS.

This restriction has profound implications that you must consider when loading
or propagating data. Please see 3.1.9, “Managing tables with identity
columns” on page 74.

• There is a limit of one identity column per table.

• Identity columns do not allow nulls.

• An identity column cannot have a fieldproc.

• A table with an identity column cannot have an editproc.

• WITH DEFAULT is not allowed with an identity column specification.

• Created global temporary tables cannot have identity columns.

• The identity column attributes are not inherited unless the INCLUDING
IDENTITY COLUMN ATTRIBUTES is valid for and included in any statement
that clones a table using the LIKE clause.

Click here for optional figure # YRDDPPPPUUU

Definition of identity columns

Typical identity column definition:

CUSTNO INTEGER (Alternatives are SMALLINT and DEC(n,0))
NOT NULL

GENERATED ALWAYS (Unless propagating or loading data)
AS IDENTITY

(START WITH 1, (Use another value if converting)
INCREMENT BY 1, (Can be any specified value (+ or -))
CACHE 20) (For performance but be prepared to lose

those preallocated numbers)

CREATE LIKE tbname INCLUDING IDENTITY COLUMN ATTRIBUTES
- otherwise the identity attributes of the column will not be inherited
62 DB2 UDB Server for OS/390 Version 6 Technical Update

3.1.2.2 INCREMENT BY and the potential for gaps
The INCREMENT BY clause specifies the interval between consecutive values of
the identity column. If you specify a positive value, the sequence of values
ascends; and if the value is negative, the sequence descends.

The counter for an identity column is incremented (or decremented)
independently of the transaction. You can see gaps in the sequence for the
following reasons:

• A particular transaction might see a gap between two numbers that it
generated because other transactions have been concurrently incrementing
the same identity counter by inserting rows into the table. If a single
transaction must have a consecutive range of numbers, it should take an
exclusive lock on the table or table space that has the identity column.
Obviously, this must be weighed against concurrency requirements.

• If a transaction that generated a value for the identity column is rolled back,
the number allocated will be unused. DB2 will not reallocate it.

• If you recovered the table space to a previous point-in-time, allocation would
carry on from the highest number that had been allocated (unless you had
also recovered the catalog table SYSIBM.SYSSEQUENCES to the same
point-in-time.)

• A DB2 subsystem that cached a range of values crashed before all the cached
values were assigned. For considerations on the impact of caching, see 3.1.6,
“Impact of caching” on page 68.

3.1.2.3 Creating views on identity columns
Views can be created on tables with identity columns. A column of a view is
considered an identity column (in that insert follows the same rules as for the
base table column) if it maps directly or indirectly to an identity column of a base
table, except:

• If the select-list of the view definition includes multiple instances of the name
of the identity column.

• If the FROM clause of the view definition directly or indirectly includes a join.

• If a column in the view definition includes an expression that refers to an
identity column.
Chapter 3. Application enhancements 63

3.1.3 GENERATED options
You need to give careful consideration when deciding whether to use the
GENERATED ALWAYS or GENERATED BY DEFAULT option.

When GENERATED ALWAYS is specified, DB2 will always generate the value so
uniqueness is guaranteed. A unique index on the column is not required. This
would be a particular advantage if you would prefer the index to include other
columns, perhaps to enable index-only access for some common queries.

The GENERATED BY DEFAULT option allows you to supply values for the
identity column. DB2 will only generate a value when it has not been provided
with one. No checking is performed on the supplied value, so duplicates could
occur. To ensure uniqueness, you would need to define a unique index on the
identity column. Applications would then need to check all inserts for SQLCODE
-803 and retry if necessary. If the range of values DB2 is currently allocating has
already been inserted into the table by another application, transaction failures
will occur.

You must specify GENERATED BY DEFAULT if you are propagating data or
loading data from other sources.

Otherwise, you could specify GENERATED ALWAYS to avoid having an index to
ensure uniqueness and to avoid applications needing retry logic on the insert.
However, as the values cannot be updated, you would be unable to use the load
utility to reload the values. If you needed to drop and recreate the table, you
would need to change the definition to GENERATED BY DEFAULT and add a
unique index. You should also bear in mind the coding considerations
documented in 3.1.7, “Applications and identity columns” on page 70.

GENERATED options

Click here for optional figure # YRDDPPPPUUU

GENERATED ALWAYS
+ Guaranteed uniqueness
+ More index design options

- for example extra columns to enable index only access for some queries
- Would need to change definition to GENERATED BY DEFAULT to

drop table and reload data

- Cannot be used if propagating data

- BE CAREFUL!

- When coding an INSERT INTO... SELECT FROM

- When loading data

GENERATED BY DEFAULT
+ Can drop table and reload data

+ Allows propagation and loading from other sources

- Index required to ensure uniqueness and retry logic in applications

- Transactions will fail if range DB2 is using has been inserted by another
application
64 DB2 UDB Server for OS/390 Version 6 Technical Update

Consequently, you may decide to use GENERATED BY DEFAULT from the
beginning. However, please note that you can minimize the need to recreate
tables by using design standards for high availability. For example, rather than
changing a column definition, adding a new one and transferring the data across.
These considerations are documented in the redbook DB2 for OS/390 and
Continuous Availability, SG24-5486.

Refer to 3.1.7, “Applications and identity columns” on page 70 and 3.1.9,
“Managing tables with identity columns” on page 74 for more information. This
documentation warns that when GENERATED ALWAYS is defined, the following
actions will generate the identity values rather than populating them from the
source data:

• When you load a table and do not include the identity column in the field
specification

• When you INSERT INTO SELECT FROM.... omitting the identity column
from the VALUES clause
Chapter 3. Application enhancements 65

3.1.4 Identity columns in DB2 catalog
For the identity column support new DB2 catalog objects have been defined:

• table space SYSIBM.SYSSEQ

• table SYSYIBM.SYSSEQUENCES

• indexes DSNSQX01 and DSNSQX02

• table space SYSIBM.SYSSEQ2

• table SYSYIBM.SYSSEQUENCEDEP

• index DSNSRX01

Also new values have been added to the DEFAULT column of the
SYSIBM.SYSCOLUMNS catalog tables to reflect the identity column definition
options:

• I for GENERATED ALWAYS

• J for GENERATED BY DEFAULT

For details on the contents of the catalog tables refer to DB2 UDB for OS/390
Version 6 SQL Reference, SC26-9014-01.

Identity columns in DB2 catalog

New table space SYSIBM.SYSSEQ2 with table
SYSIBM.SYSEQUENCEDEP

one row for each identity column
release dependency and dependent table indicators

New values for DEFAULT column of SYSIBM.SYSCOLUMNS
table

I for AS IDENTITY and GENERATED ALWAYS
J for AS IDENTITY and GENERATED BY DEFAULT

New table space SYSIBM.SYSSEQ with table SYSIBM.SYSEQUENCES
one row for each identity column
identity column definition fields and last assigned value
66 DB2 UDB Server for OS/390 Version 6 Technical Update

3.1.5 Identity columns performance
Our performance measurements compare the throughput of an application
exploiting identity columns with one generating a unique number by updating a
next-number table. The application program to generate a unique number
selected from the one-row table, inserted the next number into the table, and
updated the counter before committing.

The table into which sequential unique numbers were being inserted was the
same in all tests apart from the primary key being defined as an identity column.
The primary key (identity) column was indexed in every test. The default value of
CACHE 20 was used.

The tests were carried out on a 9672-ZZ7 with 12 CPUs in a non-data-sharing
environment. The LPAR was capped at 25% of the total MIPS. We ran a TPNS
workload on OS/390 V2.6 and IMS V6 DCCTL.

The throughput achieved was106 transactions per second using the next number
table compared to 634 when identity columns were used.

Identity columns performance

634

106

0

100

200

300

400

500

600

700

T
ra

ns
ac

tio
ns

pe
r

se
co

nd

Application maintained unique
number
Identity columns
Chapter 3. Application enhancements 67

3.1.6 Impact of caching
You can tell DB2 whether to keep some preallocated values in memory using the
CACHE n / NO CACHE clauses. Storing values in memory improves performance
when inserting rows. The improvements are more significant in data sharing
environments.

The chart above, which is based on our IRWW workload in a data sharing
environment, shows a large increase in throughput when using CACHE 20 rather
than CACHE 1. In a data sharing environment there is a synchronous forced log
write each time the counter is updated. If you do this once every 20 times rather
than for every insert, the overhead is significantly reduced. Increasing this value
above the default of 20 gave negligible benefit.

For non-data-sharing systems, log writes for the updated counter are
asynchronous. We still recommend CACHE 20, but improvements compared to
CACHE 1 are less significant.

In the case of a system failure, any unassigned values in cache are lost and will
never be used. Therefore, when deciding on the number of values to cache,
consider how many values you would be prepared to lose.

Click here for optional figure # YRDDPPPPUUU

Impact of caching — data sharing

1 20 200

Cache value

0

100

200

300

400

500

600

700

800

900

T
ra

ns
/s

ec
68 DB2 UDB Server for OS/390 Version 6 Technical Update

Notes for data sharing users:

If you use the CACHE n option in data sharing, each member gets its own range
of n consecutive numbers to assign. For example, DB2A might get the values
1-20 for a particular column and DB2B gets values 21-40. Therefore, when
caching is used and transactions generate values for the same identity column
from different members, the values are not assigned in order of request. A
transaction can generate a value of ‘22’ from DB2B and then later in time,
another transaction can generate a value of ‘5’ from DB2A. It should be noted
that this is only important when the numbers must be in order of processing.

There is a high probability that you will see 50/50 splits of index pages in a data
sharing environment, particularly if you use a value of CACHE greater that 1,
because successive inserts from the data sharing members are unlikely to be in
numerical sequence.
Chapter 3. Application enhancements 69

3.1.7 Applications and identity columns
When you design your table to include an identity column, you can specify either
GENERATED ALWAYS or GENERATED BY DEFAULT. The diagram above
shows that your choice limits the application constructs you can use.

• If you tell DB2 to provide the value (SQL statement 1), either table definition is
valid.

• To specify your own host variable value (SQL statement 2), you cannot have
specified GENERATED ALWAYS.

• You can force DB2 to accept your value by coding OVERRIDING USER
VALUE in insert statement (SQL statement 3).

• The rules for an insert with a subselect are similar, in that a value may only be
specified if the identity column is specified as generated by default. Insert
(SQL statement 4) is logically equivalent to having specified all columns in the
values clause.

• If you want to propagate all non-identity columns from a table with the same
definition, you code SQL statement 5.

Applications and identity columns

SQL Statement
CUST_NO defined as identity column

GENERATED
ALWAYS

GENERATED BY
DEFAULT

1. INSERT INTO CUSTOMER
(CUST_NO, FIRST_NAME, LAST_NAME)
VALUES (default, :hv_fname, :hv_lname)

VALID VALID

2. INSERT INTO CUSTOMER
(CUST_NO, FIRST_NAME, LAST_NAME)
VALUES (:hv_custno, :hv_fname, :hv_lname)

INVALID VALID

3. INSERT INTO CUSTOMER
(CUST_NO, FIRST_NAME, LAST_NAME)
OVERRIDING USER VALUE
VALUES (:hvempno, :hv_fname, :hv_lname)

VALID
BUT NOT

RECOMMENDED

INVALID

4. INSERT INTO CUSTOMER
SELECT * FROM ALT_CUSTOMER

INVALID VALID

5. INSERT INTO CUSTOMER
(FIRST_NAME, LAST_NAME)
SELECT FIRST_NAME,LAST_NAME
FROM ALT_CUSTOMER

VALID VALID
70 DB2 UDB Server for OS/390 Version 6 Technical Update

Important notes:

• Because CUST_NO is not specified in the column list in SQL statement 5, it
will be populated with identity columns generated value. If you need to be able
to propagate the identity column, you need to define it with GENERATED BY
DEFAULT.

• If you ever have to change the table definition from GENERATED ALWAYS to
GENERATED BY DEFAULT and you have coded OVERRIDING USER VALUE
(SQL statement 3), the BIND to pick up the new table would fail. Application
changes would be required. The circumstances in which you may want to
change the GENERATED options are described in 3.1.9, “Managing tables
with identity columns” on page 74. We recommend against using the
OVERRIDING USER VALUE clause.
Chapter 3. Application enhancements 71

3.1.8 IDENTITY_VAL_LOCAL function
In many applications, you will need to know the value DB2 has generated for the
identity column. Most commonly this will be when tables in a referential set (either
application or DB2 maintained) are populated in one unit of work. An example
would be to create an order number and order lines for that order. The order
number would be required to create the order lines. This function is introduced by
APAR PQ36328.

3.1.8.1 Usage and restrictions
The IDENTITY_VAL_LOCAL() function returns the most recently assigned value
for an identity column that was populated by a single row insert. The value could
have been generated by DB2 or supplied by the user if the identity column is
defined as GENERATED BY DEFAULT. The result is a DECIMAL(31,0)
regardless of the actual data type of the identity column.

Null will be returned when a commit or rollback occurred since the most recent
insert that assigned a value. Rollback to savepoint does not affect the result.

The function will return the correct value only if the insert and the function call
occur while DB2 is at the same processing level. Therefore, in order to obtain the
value that DB2 inserted, we recommend that immediately after a successful
insert, you store the value that was inserted into the identity column in a host
variable with a statement such as SET :HV = IDENTITY_VAL_LOCAL() and check for
the returned SQL code.

Click here for optional figure # YRDDPPPPUUU

IDENTITY_VAL_LOCAL function

If you need to know the value DB2 inserted
code the following after a successful insert
SET :HV = IDENTITY_VAL_LOCAL()

Null will be returned if
Qualifying insert has not been performed at this level
Commit or Rollback has since been performed

Note: check SQLCODE from insert first

Think carefully before using the function in triggers
72 DB2 UDB Server for OS/390 Version 6 Technical Update

All other techniques, including coding the function in a predicate, invoking the
function within the select statement of a cursor, using the function in the VALUES
clause of an insert, inclusion in any SQL statement which is processed in parallel
or as part of a result set from view materialization, will give unpredictable results.

Note: If the insert failed, the result of the function will be unpredictable.
Consequently, before using the function, you should check the SQLCODE to
ensure that the insert completed successfully.

3.1.8.2 Considerations when using triggers
You should be aware of the following issues when considering using the
IDENTITY_VAL_LOCAL function within the body of a trigger:

• We do not recommend that you use this function within the body of a BEFORE
trigger, as unpredictable results or a null value will be returned.

• When the function is used within an AFTER insert trigger, the value returned
will be the value for the most recent single row insert within the body of the
trigger. If an insert with an identity column in the VALUES clause has not been
performed within the trigger, a null value will be returned. Consequently, you
cannot use the function to determine the value assigned in the insert that
caused the trigger to be actioned.

• You should not use the IDENTITY_VAL_LOCAL function across triggers. A
table may have a number of triggers defined on it, and the function cannot be
used to determine the value inserted by an insert statement in another trigger.
Chapter 3. Application enhancements 73

3.1.9 Managing tables with identity columns
In this section we describe how to go about loading, adding, converting to, and
copying tables with identity columns. We also include data propagation
considerations.

3.1.9.1 Load utility
An identity column that is defined as GENERATED ALWAYS cannot be included
in the field specification list, or be implied by a LOAD FORMAT UNLOAD or
LOAD with no field list.

Important note: Be careful when loading tables with identity columns that have
been defined as GENERATED ALWAYS. If you leave the identity column out of
the field specification, DB2 will regenerate the identity column values. It is likely
that each row would have a different key value from before, and relationships with
other tables wil be lost. If loading of the data is required, GENERATED BY
DEFAULT should be used. There is no way to go back to GENERATED ALWAYS.

Identity columns defined as GENERATED BY DEFAULT can either be set by the
load utility from input data, or generated by DB2 if the DEFAULT attribute is used.
The input values are of the numeric data type that is specified in the identity
column. No additional validation of the values is performed.

If, at design time, you think that you will have to unload and reload your table,
choose GENERATED BY DEFAULT for the identity column.

Click here for optional figure # YRDDPPPPUUU

Managing tables with identity columns

Load utility
Be careful loading data into identity columns defined as GENERATED ALWAYS

Adding an identity column to a table
ALTER TABLE AND REORG

Converting a table to use an identity column
Recreate table with GENERATED BY DEFAULT identity column and use START
WITH clause

Copying tables across subsystems
Stop source table and run catalog query to determine start value and increment for
target table

Data propagation considerations
Use GENERATED BY DEFAULT on target

For 2 way replication - INCREMENT BY 2 to avoid duplicates
74 DB2 UDB Server for OS/390 Version 6 Technical Update

3.1.9.2 Adding an identity column to an existing table
You can use ALTER TABLE ADD COLUMN to add an identity column to an
existing table. If the table is not empty, DB2 puts the table space into REORP
state. When the reorg is subsequently run, DB2 generates unique values for the
identity column and remove the REORGP state.

3.1.9.3 Converting a table to use an identity column
To alter the attributes of an existing column to be an identity column, you must
drop and recreate the table (using your normal procedures for conserving the
table data, indexes, authorities and other dependent objects).

When recreating the table, you should ensure that the START WITH value in the
CREATE TABLE is set to the next value that you want DB2 to start generating
after the table is reloaded with the previous data. In addition, as you will be using
the LOAD utility to reload the table after it is recreated, you must specify
GENERATED BY DEFAULT. This allows the load utility to reuse the previously
allocated identity column values. There is no way to go back to GENERATED
ALWAYS.

3.1.9.4 Copying tables between subsystems
Special consideration has to be given to avoid overlaps when copying tables with
identity columns between subsystems.

Consider the following procedure:

1. Stop the table space containing the table on the source system, to prevent any
new rows from being inserted.

2. Run the following catalog query to determine the START WITH and
INCREMENT BY values for the create table statement on the target system:

SELECT B.DCREATOR, B.DNAME,B.DCOLNAME, INCREMENT,
A.INCREMENT+A.MAXASSIGNEDVAL AS NEW_START_VALUE
FROM SYSIBM.SYSSEQUENCES A INNER JOIN
SYSIBM.SYSSEQUENCESDEP B
ON B.DCREATOR = table creator
AND B.DNAME = table name

3. Create the table on the target subsystem, using the start and increment values
determined from the previous step.

4. Stop the table space on the target system, to prevent rows from being inserted
until it is populated.

5. Copy the data from the source to the target (using DSN1COPY or similar).

6. Start the table on the target subsystem (and also the source if required).‘

3.1.9.5 Data definition changes
If a drop and recreate of the table is required in the future, perhaps for a schema
change, you would need to be recreated as GENERATED BY DEFAULT in order
to load the existing data back. Please refer to 3.1.3, “GENERATED options” on
page 64. You will also need to save the value in SYSIBM.SYSSEQUENCES
before the drop and recreate the table with the START WITH parameter.
Chapter 3. Application enhancements 75

3.1.9.6 Data propagation considerations
If a source table in a one-way data propagation environment contains an identity
column with the GENERATED ALWAYS attribute, you should define the
corresponding identity column on the target table with GENERATED BY
DEFAULT. This will allow the propagation process to explicitly supply a value for
the column.

For two-way replication, both source tables must use GENERATED BY DEFAULT
for the same reason. Also, if unique values are required, you should take care
when specifying the START WITH and INCREMENT BY values for the two tables.
To prevent the same value being generated at each site, we suggest you have
one table generating odd values (using START WITH 1, INCREMENT BY 2) and
one generating even values (using START WITH 2 INCREMENT BY 2.)
76 DB2 UDB Server for OS/390 Version 6 Technical Update

3.1.10 Advantages of identity columns
Having considered other techniques by which you can generate values for
primary key columns, we now can review the advantages of using identity
columns in context.

3.1.10.1 Improved performance and concurrency
Serialization on the next number table and the costs of retry are eliminated.
Because of this, significant (6-fold) increases in transaction throughput are
possible.

3.1.10.2 Can guarantee uniqueness
If you define an identity column as GENERATED ALWAYS AS IDENTITY, then
DB2 always generates the column value and guarantees that each value is
unique across the system. In this case a unique index is not required to ensure
uniqueness, although we do recommend that you create one (see 3.1.3,
“GENERATED options” on page 64 for details).

3.1.10.3 Recoverability in the event of failure
In the case of a system failure, recoverability will be provided by reconstructing
from the log the last value before the outage. This ensures that uniqueness is
maintained. No action on your part is necessary.

3.1.10.4 Enhanced data sharing availability
Should a member fail within a data sharing group, the other members will
continue to generate unique key values. No retained locks are held by the failing
member.

Click here for optional figure #

Advantages of identity columns

Better performance and concurrency than application
generated counters

Guaranteed uniqueness both within an individual subsystem
and a data sharing group

Recoverability in the event of a DB2 system failure

The failure of one data sharing member will not impact the
other members from generating key values

Simple implementation which is internal to DB2
Chapter 3. Application enhancements 77

3.1.10.5 Simple and flexible implementation
Identity columns are simple to implement and require no extra application logic.
Whenever an insert is processed, regardless of which application performs the
insert, a unique value will be generated. You choose what format the column
takes so you have more flexibility to choose something acceptable to the
business and customers.

Since the value is allocated by DB2 on insert, identity columns cannot be used
where you need to concatenate a check digit to the value.

You can override the value that DB2 would have generated and provide your own.
There are special circumstances when you need to do this, and important
considerations, which are discussed in more detail in 3.1.7, “Applications and
identity columns” on page 70, and 3.1.9, “Managing tables with identity
columns” on page 74.

Note: Identity columns are similar to ROWID in that DB2 automatically generates
a unique value for the column whenever a row is inserted into the table. ROWID
is a new SQL data type which returns a 40 byte varchar value which is not
regularly ascending or descending. It is the basis for direct row access and
accessing LOB data. Therefore, it is not usually suitable for columns such as
order number. In contrast, identity columns use existing numeric data types
whose range you control and are sequentially allocated.

The APAR identifier is as follows:

PQ30652, PQ30684, PQ36328, PQ36452.

APAR identifier
78 DB2 UDB Server for OS/390 Version 6 Technical Update

3.2 Savepoints

A savepoint represents the state of data and schema at a particular point-in-time.
An application may set named savepoints within a transaction, then as dictated
by application logic, rollback subsequent data and schema changes without
affecting the overall outcome of the transaction. The scope of a savepoint is the
DBMS on which it is set.

Savepoints enable the coding of contingency or what-if logic and could be useful
in the following scenarios:

• For programs with sophisticated error recovery.

• To undo stored procedure updates when an error is detected. A rollback after
a stored procedures will rollback the entire unit of recovery, including all work
done by the caller, and this could be beyond the wanted scope. Savepoints
could be used to make the logic surrounding them transparent to the caller.

You can set them by using the SAVEPOINT syntax documented in the DB2 UDB
for OS/390 Version 6 SQL Reference, SC26-9014-01. The savepoint name can
be up to 128 characters and we suggest that you use a meaningful name. You
can use the UNIQUE OPTION to assert that the savepoint name will not be
reused wthin the transaction. If you omit the UNIQUE option and reuse the
savepoint name, the old savepoint will be destroyed. Please note that this is
different from using the RELEASE SAVEPOINT statement, which will release all
savepoints set after up to the named savepoint.

© 2000 IBM CorporationClick here for optional figure # YRDDPPPPUUU

Savepoints

DB2A
PROGA
SAVEPOINT A UNIQUE ON
ROLLBACK RETAIN CURSORS;

SQL statements....

IF...
ROLLBACK TO SAVEPOINT

Data changes
Schema changes
Declared temporary tables
Created temporary tables
Other DBMS, CICS etc
Cursor activity
Lock activity
Caching

ELSE...
RELEASE SAVEPOINT

DRDA CONNECT

Private protocol or
DRDA using
aliases or 3 part
names
Chapter 3. Application enhancements 79

When you issue the SAVEPOINT statement, DB2 writes an external savepoint log
record. Savepoints that you create are often termed external as opposed to
internal, because DB2 already uses internal savepoints. Internal savepoints are
used by DB2 only, are a mechanism to back out elements smaller than a unit of
recovery, cannot be accessed through an application, and may be liable to
change in future releases or as a result of applying maintenance. In contrast, you
have full control over external savepoints.

To rollback to an external savepoint you have set, use the ROLLBACK TO
SAVEPOINT svptname statement. This will backout all data and schema changes
that were made after the savepoint. The following will not be backed out:

• Any updates outside of the local DBMS, such as remote DB2s, VSAM, CICS,
IMS

• Changes to created temporary tables (changes to declared temporary tables
are backed out)

• The opening and closing of cursors

• Changes in cursor positioning

• The acquisition and release of locks

• The caching of the rolled back statements

The use of ON ROLLBACK RETAIN CURSORS and ON ROLLBACK RETAIN
LOCKS clause will allow for cursors and locks not to be released upon rollback to
the savepoint.

3.2.1 Connecting to other DB2 systems
While there are outstanding savepoints, you cannot access a remote DBMS
using DB2 private protocol access or DRDA using aliases or three-part names.
For example, if there is a savepoint set at location A, location A cannot connect to
location B using either of these two ways to access data. This is due to the
consideration that the programmer using three-part names or aliases normally is
unaware of the remote sites involved.

DRDA access using a CONNECT statement is allowed; however, the savepoints
are local to their site and do not cross an explicit Connect. For example, location
A can connect to location B, but the savepoint set at A is unknown to B and does
not cover any operations performed at location B.You should note that a
savepoint set prior to a CONNECT is known only at the local site, and a savepoint
set after a connect is known only at the remote site. Consequently
application-directed connections are expected to manage the processing at the
alternate sites.

We recommend that you code the RELEASE SAVEPOINT savepoint name

statement to release savepoints that are no longer required for clarity and to
reenable the operation of SQL that resolves to remote locations.

3.2.2 Restrictions on using savepoints
You cannot use savepoints in global transactions, triggers, user-defined
functions, or in stored procedures, user-defined functions or triggers that are
nested within user-defined functions.
80 DB2 UDB Server for OS/390 Version 6 Technical Update

3.2.3 Savepoint performance
The overhead of maintaining a savepoint is minimal. The measurements
performed show that the cost of taking a savepoint is equivalent to a simple fetch.

The APAR identifier is as follows:

PQ30439.

APAR identifier
Chapter 3. Application enhancements 81

3.3 Declared temporary tables

Declared temporary tables (DTTs) are a way to temporarily hold or sort data
within a program. They could be used in the following scenarios:

• For Business Intelligence applications, when you want to process extracts of
the data and perform further result set processing on them, rather than the
original data including further joins.

• As a staging area for making IMS data accessible to ODBC. For example, a
client application program can call a stored procedure to access IMS data.
The IMS data can be inserted into a DTT. The data in the DTT may then be
processed by the client using standard SQL.

• To hold result sets in stored procedures as implemented in other RDBMSs.
Typically it is more efficient to exploit standard result set processing using
locator variables rather than using declared temporary tables, but you need to
weigh up ease of use and simplicity of conversion against your performance
and functional requirements.

A temporary table is defined by an application using the DECLARE GLOBAL
TEMPORARY TABLE statement. They are not held in the catalog and so cannot
be shared across application processes. In fact many processes running
concurrently can declare the same table name and each have their own table with
different structures.

The application must reference the table using the SESSION qualifier and may
create indexes on the table in addition to performing the full range of DML.

Declared temporary table

DECLARE GLOBAL TEMPORARY
TABLE SESSION.DTT
(CUSTNO,FIRSTNAME...)

ON COMMIT PRESERVE ROWS

CREATE INDEX
ON SESSION.DTT.....

TEMP DB

THREAD TERMINATION

INSERT INTO SESSION.DTT
SELECT FROM CUSTOMER
WHERE....
SELECT .. FROM
SESSION.DTT WHERE

...ANY DML statements...

ROLLBACK

DEFINES

IX

DROPS

PROGA

PROGB

DCL GLOBAL TEMPORARY
TABLE SESSION.DTT
AS subselect DEFINITION
ONLY (diff cols to PROGA)

DEFIN
ES

DTT

Note: table definitions
are not in the catalog

DTT

DTT
82 DB2 UDB Server for OS/390 Version 6 Technical Update

You can specify SESSION explicitly in the table name reference or you can use
the QUALIFIER BIND option to specify SESSION as the qualifier for all SQL
statement in your plan or package.

Rollback is supported whether it be to a savepoint or the last commit point. The
table exists until thread termination or thread reuse when it is implicitly dropped.

No row, page, or table locks are acquired on the table, although locks on the table
space and DBD may be taken. The table does not require an asociated cursor
declared with hold to keep rows across commits.
Chapter 3. Application enhancements 83

3.3.1 Main differences between table types
DB2 now recognizes three different types of tables. These are base tables (BT),
created temporary tables (CTT), and declared temporary tables (DTT). This
section compares the main attributes of the three types.

3.3.1.1 Table creation
When you create a base table or a CTT, the description is stored in the DB2
catalog. Consequently, the table definition is persistent and shareable across
application processes.

The description of a DTT is not stored in the catalog and is not shareable. It is
possible for concurrent processes to declare temporary tables of the same name
and with different structures. The table exists only until thread termination or
thread reuse, unless the program explicitly drops it earlier.

3.3.1.2 Data persistency and shareability
For base tables, one instance of the table is created by the CREATE TABLE, and
it is used by all applications.

CTTs and DTTs differ from base tables in that an application has its own instance
of the table, which is not persistent beyond thread termination.

3.3.1.3 Index and DML support
Base tables and declared temporary tables have index and full DML support.
Indexes, UPDATE (searched or positioned) and DELETE (positioned only) are
not supported for CTTs.

Base table Created
temporary table

Declared
temporary table

Table description in catalog
so shareable and persistent

YES YES NO

Data persistence and
shareability

YES NO NO

Indexable YES NO YES

Full DML YES NO YES

Locking YES NO Data - NO
TS & DBD - Share

Logging YES NO Undo records only

Recovery YES NO Rollback only

Table space management 3 types Work file DB Segmented table
space in TEMP DB

ROLLBACK to SAVEPOINT YES NO YES

Main differences between table types
84 DB2 UDB Server for OS/390 Version 6 Technical Update

3.3.1.4 Locking, logging and recovery
Full logging, locking, and recovery apply to base tables.

Locking, logging, and recovery do not apply for CTTs.

For DTTs, no row or table locks are acquired, although share level locks are
acquired on the table space and DBD. A segmented table lock is also acquired
when all the rows are deleted from a table or a table is dropped. Locks acquired
when declaring or processing DTTs do not affect concurrency.

DTTs log UNDO but not REDO records. Consequently, rolling back to a savepoint
or commit point is supported, although forward log recovery is not.

3.3.1.5 Table space requirements
Base tables can be stored in simple, segmented, or partitioned table spaces that
have been created in user-defined databases. They are limited in size by the
PRIQTY and SECQTY and possibly other tables if in a simple or segmented table
space.

CTTs are stored in table spaces in the workfile database. A CTT can span work
files and so do not reach size limitations easily. This may be undesirable if your
workfile database is constrained because other processes running sorts may run
out of space.

DTTs are stored in segmented table spaces in a database defined AS TEMP. As
with any segmented table space, the table cannot span table spaces and so is
limited by the PRIQTY and SECQTY and the shared usage of the table space
among multiple users (see 3.3.8, “Database and table space issues” on page 93
for details).

3.3.1.6 Support for ROOLBACK to SAVEPOINT
Base tables and global declared temporary tables allow to rollback the the
specified SAVEPOINT. Created temporary tables do not support this function.

3.3.2 Considerations when converting from CTTs
If you are using created temporary tables as they were introduced in DB2 Version
5 and you wish to create indexes on the tables and do positioned updates and
deletes, you may want to convert them to declared temporary tables. Here are
some considerations:

• You will see an increase in logging. UNDO records are written to support
rollback when using DTTs.

• There is a difference in the way in which space is managed. A single DTT is
limited to the space available within the TEMP table space in which DB2 has
placed it. CTTs are stored in the workfiles (typically DSNDB07) and can span
multiple workfiles.

• Since declared temporary tables are stored in their own database, you have
the option of preventing impact to other work using the workfiles. This might
be isolation of buffer pools, I/O or prevention of out-of-space conditions with
concurrently sorting processes.
Chapter 3. Application enhancements 85

3.3.3 Defining a declared temporary table
You can define the columns in any of the following ways:

• A column list. Normal rules for creating tables should be followed.

• LIKE a table, view, alias or synonym that exists at the current server. The
implicit definition includes all attributes of the columns as they are described in
SYSIBM.SYSCOLUMNS.

• AS subselect DEFINITION ONLY. This specifies that the columns are to have
the same name and attributes that would appear in the derived result table if
the subselect were executed. For result columns that are derived from
expressions, constants and functions, the subselect must include the AS
column name clause in the subselect. If you want to transfer the default and
identity attributes you need to explicitly code the INCLUDING IDENTITY
COLUMN ATTRIBUTES, INCLUDING COLUMN DEFAULTS or the USING
TYPE DEFAULTS clauses. Please note that a declare with subselect will not
populate the declared temporary table with the data. To do this, follow the
CREATE with an INSERT INTO using the same subselect statement.

The ON COMMIT DELETE/PRESERVE ROWS clause can be used to tell DB2
whether the rows will be deleted (if there is no WITH HOLD cursor open) or
preserved past commit.

Please note that if you use the ON COMMIT PRESERVE ROWS option, the
thread cannot be inactivated or reused unless the program explicitly drops the
table before the commit.

Defining a declared temporary table

How to define a declared temporary table

DECLARE GLOBAL TEMPORARY TABLE SPRESULT
(CUST_NO INTEGER GENERATED ALWAYS AS IDENTITY,
LAST_NAME CHAR(18) NOT NULL WITH DEFAULT...)

CCSID ASCII
ON COMMIT DELETE ROWS;

DECLARE GLOBAL TEMPORARY TABLE SPRESULT
LIKE CUSTOMER
INCLUDING IDENTITY COLUMN ATTRIBUTES

DECLARE GLOBAL TEMPORARY TABLE SPRESULT
AS (SELECT CUST_NO, SUM(ACC_BALANCE),....
FROM CUSTOMER GROUP BY BRANCH) DEFINITION ONLY
USING TYPE DEFAULTS

PUBLIC has implicit authority to create and access
86 DB2 UDB Server for OS/390 Version 6 Technical Update

3.3.4 Authorization
No authority is required to declare a temporary table unless the LIKE clause is
used when SELECT access is required on the base table or view specified.

PUBLIC implicitly has authority to create tables in the TEMP database and USE
authority on the table spaces. PUBLIC also has all table privileges on declared
temporary tables implicitly.

The PUBLIC privileges are not recorded in the catalog nor are they revokable.

Despite PUBLIC authority, there is no security exposure, as the table can only be
referenced by the application process that declared it.
Chapter 3. Application enhancements 87

3.3.5 Referencing declared temporary tables
To reference a declared temporary table you must qualify the table name with the
owner of SESSION. That is, declared temporary tables are called
SESSION.table_name. If in a program you refer to a table qualified by SESSION
that has not been previously declared, DB2 will assume you are referring to a
persistent table with a qualifier of SESSION and search the DB2 catalog.

If you already have base tables qualified by the owner SESSION, be aware of the
following results if you should create a declared temporary table with the same
name within a program:

• The DECLARE GLOBAL TEMPORARY TABLE statement will succeed. DB2
will not complain that the object already exists.

• The search sequence for objects owned by SESSION is:

a. Declared temporary table

b. Base or created temporary table defined in the catalog

You can use the complete SELECT, INSERT, UPDATE, DELETE SQL syntax
against a declared temporary table, including unions and joins. However, no locks
are acquired on temporary tables, so the WITH CS/RR/RS clause and FOR
UPDATE OF clauses are ignored.

Click here for optional figure # YRDDPPPPUUU

Referencing declared temporary tables
Must be qualified with SESSION

Full DML syntax allowed (but note no locking)

Static SQL referencing a table qualified with SESSION will be
incrementally bound at run-time

run-time cost equivalent to dynamic SQL statement

performance consideration if high transaction rate

DBPROTOCOL(DRDA) is required to access a remote declared temporary
table using a three part name

backward references are not allowed

Consider creating an index on the table
weigh up benefit vs cost of creating index

Beware of high volume DDL - increase in logging and GRS activity

Explicitly drop the table when no longer required
88 DB2 UDB Server for OS/390 Version 6 Technical Update

For static SQL at BIND time, declared temporary tables do not exist. Therefore,
any SQL statements in a static program that reference a table name qualified by
SESSION will be incrementally bound at run-time. Only at execution time DB2
can resolve whether the SQL is referring to a temporary or base table. If there are
no other errors the BIND will succeed and the catalog tables SYSSTMT or
SYSPACKSTMT will show the new value M for that SQL statement in the column
STATUS.

Please note that dynamic SQL statements that resolve to a declared temporary
table are not placed in the dynamic statement cache. This is because every
transaction that defines a declared temporary table, defines its own specific and
unique version of it — even if the layout is identical. Similarly, it is possible that
every transaction could define a table with the same name, but with a different
definition. If the SQL were cached, an incorrect version of the table could be
used.

Please note that plans and packages are not invalidated when a declared
temporary table or its table space is dropped.

You can reference a declared temporary table at a remote DB2 using a three part
name if DBPROTOCL(DRDA) BIND option is in effect. However, you cannot
make a backward reference — that is, if you declare a temporary table and
connect to another site, you cannot refer back to the DTT at the local site from the
remote site.

3.3.6 Creating indexes
You can use the CREATE INDEX statement to create an index on a declared
temporary table. If you do not specify a qualifier for the index name, DB2 uses the
keyword SESSION. The statement and indexing works in the normal way.
However, only the following clauses are supported:

• ON tablename — you must specify the qualifier SESSION

• Column names ASC/DESC

• CLUSTER

• CLOSE — however, DB2 will decide whether the data sets can be closed

• PIECESIZE

• UNIQUE with or without WHERE NOT NULL

• USING STOGROUP

In order to assist DB2’s access path selection for declared temporary tables,
some basic statistics are collected by DB2 and are maintained and used
dynamically for optimizing the access path as rows are processed, but not stored
in the catalog. If you are concerned about access path selection, you should use
EXPLAIN for SQL executed against declared temporary tables, analyze the
output in your PLAN_TABLE as you would for any other SQL and review your
indexing strategy. You cannot run RUNSTATS: since there is no catalog definition
for the temporary objects there are no statistics available for you to modify.

When considering whether to create an index on a declared temporary table,
bear in mind the overhead of creating it. In some cases it may be quicker to
simply scan the table than for DB2 to create an index and using that to access the
data.
Chapter 3. Application enhancements 89

You should also consider carefully the volume of create indexes that will be
performed. Normally DDL is avoided or kept to a minimum in an OLTP
environment. A large number of create index statements will have an impact on
system performance. You will see much more logging occurring. In addition, large
scale creation, opening and deletion of VSAM data sets for the indexes will
significantly increase global resource serialization (GRS) activity.

You may want to consider using the star form of GRS to improve the
performance. OS/390 R2 introduced the GRS STAR methodology of global
resource serialization which replaces the traditional ring mode protocol and
potential ring disruptions. The star configuration is built around a coupling facility,
which is where the global resource serialization lock structure resides. By using
the coupling facility, ENQ/DEQ service times will be measured in microseconds,
not milliseconds. This provides significant performance improvements.
Installations that currently use GRS ring-mode or a third party alternative and
host a fair number of OS/390 images should consider migrating to GRS STAR for
the improved performance, scale and availability it provides. For more
information on GRS you can start with the redbook Parallel Sysplex
Configuration: Cookbook, SG24-2076-00.

3.3.7 Usage considerations
Similar to following good practice of closing cursors when you no longer need
them, we recommend that you explicitly drop the table when it is no longer
required rather than leaving it to be dropped implicitly at thread termination. This
improves the likelihood of thread reuse and enables better DBD management.

Since rollback and savepoints are supported for declared temporary tables, you
may see an increase in the amount of logging activity compared to that expected
for created temporary tables. The same number of log records will be written as
for activity against a base table. However, the individual records will be shorter as
only UNDO information is recorded rather than UNDO/REDO.

Undo records are written for updates to DTTs to support rollback and savepoint
processing. It is therefore possible, just like normal table spaces, for the TEMP
table spaces to be added to the logical page list(LPL). The procedure to resolve
this is to issue the -start database(TEMP database name) space(TEMP space name)

access(RW) as you would for normal table spaces. DB2 will issue a reset (either
logical or a delete/define depending on circumstances) in response to this
command. If for any reason there are underlying problems, such as media failure,
catalog errors and so on, you should review messages in the DB2 MSTR address
space to solve the problem.

To simulate the sorts of messages you might see we performed the following test:

• Declare temporary table.

• Perform a series of updates to the table.

• Cancel IRLM.

• With DB2 down, rename the VSAM data sets underlying the TEMP database.
This simulates a failed DASD unit. The pagesets will be unavailable to DB2 on
restart.

• Restart DB2.
90 DB2 UDB Server for OS/390 Version 6 Technical Update

DB2 added pages to the LPL. If we had not renamed the VSAM data sets, restart
completed successfully. Normal restart is what you should expect to see. The
screen captured below shows you the messages that DB2 issues — there is no
difference between temporary table space pages being added to the LPL and
normal data pages. The -DISPLAY DATABASE(TEMP database name) SPACE(*) LPL will
indicate which pages are in the LPL.

.

• Without fixing the underlying problem (the rename in our case), we issued the
-start database command. This is to show you that in this particular case DB2
issued a VSAM delete and re-define to resolve the LPL errors for the
temporary tables. In some circumstances the RESET will be logical (just like a
REORG with the REUSE option — the physical data sets are not always
delete/defined). In any case you need to examine the DSNP prefixed messages
which identify the underlying problem. Sample error messages are shown
below.

DSNB250E =DB2Y DSNIIMPD A PAGE RANGE WAS ADDED TO THE
LOGICAL PAGE LIST

DATABASE NAME=TEMP
SPACE NAME=TEMP4K01
DATA SET NUMBER=1
PAGE RANGE X'00000074' TO X'00000074'
START LRSN=X'000009A48BEC'
END LRSN=X'000009C50F99'
START RBA=X'0000099A6733'

DSNI028I =DB2Y DSNIFLAF THE NUMBER OF QUALIFIED
LOG RECORDS READ DURING THE FAST LOG APPLY PROCESS IS 2063
AND THE NUMBER OF FAST LOG APPLY BUFFERS PROCESSED ARE 1
DSNR005I =DB2Y RESTART...COUNTS AFTER FORWARD
RECOVERY
IN COMMIT=0, INDOUBT=0

DSNP009I =DB2Y THE FOLLOWING ERROR MESSAGES WERE
RECEIVED FOR DELETE CLUSTER ON
DB2V610Y.DSNDBC.TEMP.TEMP4K01.I0001.A001
IDC3012I ENTRY DB2V610Y.DSNDBC.TEMP.TEMP4K01.I0001.A001 NOT FOUND
IDC3009I ** VSAM CATALOG RETURN CODE IS 8 - REASON CODE IS
IGG0CLA3-42
IDC0551I ** ENTRY DB2V610Y.DSNDBC.TEMP.TEMP4K01.I0001.A001 NOT
DELETED
DSNP010I =DB2Y END OF MESSAGES.

CONNECTION-ID=DB2Y
CORRELATION-ID=014.STARTCT
LUW-ID=*

DSNP004I =DB2Y DSNPDLT1 - DELETE FAILED FOR
DB2V610Y.DSNDBC.TEMP.TEMP4K01.I0001.A001.
RC=00D70025
CONNECTION-ID=DB2Y, CORRELATION-ID=014.STARTCT ,
LUW-ID=*
Chapter 3. Application enhancements 91

• After fixing the underlying problem, the -start database command should
resolve all pages in the LPL. Since you cannot use the RECOVER utility on table
spaces in the temporary database, the other option you have at your disposal
is to DROP and re-CREATE some or all of the temporary table spaces. If resolution
of the DASD problem is expected to take a long time, DROP/CREATE may be
quicker though we recommend that you try the -start database command first.
92 DB2 UDB Server for OS/390 Version 6 Technical Update

3.3.8 Database and table space issues
In order to be able to declare temporary tables, you must create a database AS
TEMP. It is similar to DSNDB07 in that you must define a single TEMP database
for each DB2 member in the data sharing group. The database is not shareable
across members. CCSID is not a valid option, as the database can contain a
mixture of encoding schemes.

Within the TEMP database, you should create a number of segmented table
spaces. DB2 will determine which tables get put in which table spaces. We
recommend that you use the same SEGSIZE and PRIQTY for each. As with the
workfile table spaces, if you specify SECQTY you are likely to find the secondary
extents are created at some point. Ensure that you have sufficient space to
accommodate growth if you specify it and that you allocate enough TEMP space
to meet your requirements for all concurrently executing threads. The normal
rules for segmented table space apply in that a table cannot span table spaces.
When considering the size and number of table spaces to allocate, you should
consider the following:

• The maximum size required for a DTT, as they cannot span table spaces.

• The maximum amount of space required for all the DTTs that could exist at a
particular point-in-time.

• You may want to have several smaller table spaces rather than a few large
ones to limit the amount of space any one DTT can use.

• Whether you need to spread the DTT I/O across a number of volumes

Click here for optional figure # YRDDPPPPUUU

Database and table space issues

CREATE DATABASE DBTEMP
AS TEMP FOR DB2A
BUFFERPOOL BPx STOGROUP SGTEMP

CREATE TABLESPACE TEMP4K01
IN DBTEMP BUFFERPOOL BP8 SEGSIZE n
USING STOGROUP SGTEMP
PRIQTY nnn SECQTY nnn
Chapter 3. Application enhancements 93

• You will need to have one or more table spaces for each pagesize that the
DTTs will need to use. That is, you need to create table spaces of 4 KB, 8 KB,
16 KB and 32 KB page sizes. When you declare a temporary table, DB2 will
select one of the table spaces with the appropriate page size. If one is not
available the declare will fail.

The standard CREATE TABLESPACE syntax applies, except that only the
following clauses are allowed:

• IN database name — must be the TEMP database

• BUFFERPOOL

• CLOSE — however, DB2 will ignore this and decide for itself

• LOCKMAX — DB2 will ignore this value

• MAXROWS

• SEGSIZE

• USING STOGROUP/VCAT

PUBLIC will implicitly have authority to declare temporary tables in these table
spaces.

You should bear in mind that the TEMP database could become quite large if the
usage of declared temporary tables is high. You may need to increase the size of
the EDM pool to cater for this extra database. The size of the DBD will be limited
to 25% of the EDM pool.

START, STOP and DISPLAY DB are the only supported commands against this
database. The standard command syntax should be used but please note the
following:

• You cannot start a TEMP database as RO.

• You cannot use the AT COMMIT option of the STOP DB command.

• You cannot stop and start any index spaces that the applications have
created.

Note: The only DB2 utility that is allowed against the TEMP database and table
spaces is REPAIR DBD.
94 DB2 UDB Server for OS/390 Version 6 Technical Update

3.3.9 Restrictions
Please note the following restrictions when using declared temporary tables:

• LOBS, ROWID, and user-defined data types (UDT) columns are not allowed.

• They cannot be specified in referential constraints.

• They cannot be specified in a TABLE LIKE parameter to a user defined
function (UDF) or stored procedure.

• They cannot be referenced using private protocol when BIND option
DBPROTOCOL(PRIVATE) is in effect. For further information see 3.3.5,
“Referencing declared temporary tables” on page 88.

• Multi-CEC parallelism is disabled for any query containg a declared temporary
table.

• Dynamic statement caching is not supported for any statement containing a
declared temporary table.

• ODBC and JDBC functons such as SQLTables and SQLColumns cannot be
used, as the information required does not exist in the catalog.

• Thread reuse with DTTs is allowed for CICS but not for DDF pool threads.

• Triggers cannot be defined on declared temporary tables.

• Currently, DTTs cannot be used within the body of a trigger. However, a trigger
can call a stored procedure or UDF that refers to a declared temporary table.

Click here for optional figure #

Restrictions

LOBS, ROWID and user defined types not allowed
Cannot be specified in referential constraints
Cannot be specified in a TABLE LIKE parameter
Cannot be referenced using private protocol
Multi-CEC parallelism disabled
No dynamic statement caching
ODBC and JDBC functions that rely on catalog definitions
not supported
Thread reuse not supported for DDF pool threads
Cannot be used within triggers (the trigger body SQL)
Some DDL restrictions (create view, alter table and so on)
Chapter 3. Application enhancements 95

The following statements are not allowed against a declared temporary table:

• CREATE VIEW

• ALTER TABLE

• ALTER INDEX

• RENAME TABLE

• LOCK TABLE

• GRANT/REVOKE table privileges

• CREATE ALIAS

• CREATE SYNONYM

• CREATE TRIGGER

• LABEL ON/COMMENT ON

The APAR identifier is as follows:

PQ32670, PQ35416.

APAR identifier
96 DB2 UDB Server for OS/390 Version 6 Technical Update

3.4 Update with subselect

This enhancement allows you to use a subselect which returns a single row in the
UPDATE SET clause.

3.4.1 Conditions for usage
The subselect can reference a table, view, synonym or alias or a join of any of
these. You must make sure the number of columns selected is equal to the
number of columns to be updated and the data types must be compatible.

You need to ensure that the subselect will not return more than one value, as the
statement would then fail with SQLCODE -811. You should also consider whether
it is possible for the statement to return no rows. In this case, the null value will be
assigned to the column to be updated. If the column does not accept null values
an SQLCODE -407 will be returned. Consequently, this function is ideally suited
when you want to update a column to the result of functions such as COUNT,
MAX, SUM or where the subselect is accessing data by its primary key.

As only one row must be returned from the subselect, you cannot use the
GROUP BY and HAVING clause in this situation.

Update with subselect

You can now use a subselect in the UPDATE SET CLAUSE

EXEC UPDATE DEPT
SET (DEPTSIZE) = (SELECT COUNT(*)

FROM EMPLOYEE
WHERE WORKDEPT = 'P222')

WHERE WORKDEPT = 'P222';

Allowed in both searched and positioned update

Number of columns selected must equal number updated

Subselect must return a single row
Chapter 3. Application enhancements 97

.

3.4.2 Self referencing considerations
When using a subselect in the SET clause of an UPDATE the object of the update
and the subselect must not be the same table.

However, for a searched update, you may reference a column in the table to be
updated within the subselect. You can do this using correlation names, as can be
seen in the example above.

Click here for optional figure #

Self referencing considerations

Self referencing is NOT allowed:
UPDATE EMPLOYEE

SET (DEPTSIZE) = (SELECT COUNT(*)

FROM EMPLOYEE

WHERE WORKDEPT = 'P222')

WHERE WORKDEPT = 'P222';

You CAN use correlation names in searched updates:
UPDATE EMPLOYEE T1

SET (DEPTSIZE) = (SELECT COUNT(*)

FROM DEPT T2

WHERE T2.DEPTNO = T1.WORKDEPT)

WHERE WORKDEPT = 'P222'

The APAR identifier is as follows:

PQ30383, PQ31272, PQ33028. Please note that a toleration APAR is also
required for this function: PQ31272.

APAR identifier
98 DB2 UDB Server for OS/390 Version 6 Technical Update

3.5 Columns in order by not in select

DB2 no longer requires columns which are referenced in the order by clause to
also be included in the select list. Prior to this enhancement the query above
would have returned an SQLCODE -208.

The following restrictions apply:

• There is no UNION or UNION ALL (SQLCODE -208).

• There is no GROUP BY clause (SQLCODE -122).

• There are no SET FUNCTION in the select list (SQLCODE -122).

• There is no DISTINCT the select list (new SQLCODE -214).

Please note that the column should be included in the sort data length, as well as
the sort key length, when calculating the amount of sort pool required for the
query.

© 2000 IBM CorporationClick here for optional figure #Click here for optional figure #

Columns in order by not in select

SELECT NAME
FROM SYSIBM.SYSTABLES
ORDER BY CREATOR

UNION or UNION ALL

GROUP BY clause

SET FUNCTION in the select list

DISTINCT in the select list

The query should not contain:

The APAR identifier is as follows:

PQ23778.

For QMF users, PQ34118 is the APAR for the associated design change for
QMF QBE

APAR identifier
Chapter 3. Application enhancements 99

3.6 Global transactions

The new global transaction support in DB2 V6 includes special lock processing
for the situation where there are multiple DB2 units of recovery that are actually
all part of one large, local or distributed, unit of work (called a global transaction).
In particular, locks can now be shared between multiple DB2 units of recovery in
a single DB2 subsystem when they all belong to the same global transaction.

There are a number of situations in which you may want to combine two or more
existing transactions into a single larger transaction. A frequent example occurs
in the course of putting an object-oriented interface in front of existing
transactions.

Global transaction support in DB2 provides a way to avoid deadlocks on DB2
resources that would otherwise occur when certain kinds of transactions are
combined in this way.

This support is not always in effect every time DB2 performs work that is part of a
distributed unit of work. It only comes into play when an optional new token
(called a global transaction ID, or XID) is supplied to DB2, either through DDF
from another DB2 for OS/390 subsystem, or through one of the attach facilities
that includes the ability to specify the token.

This support is currently provided for DB2 units of recovery that come into DB2
using the IMS attach facility, or the Recoverable Resource manager Services
Attachment Facility (RRSAF), or using DRDA through DDF.

The RRSAF support is documented in the DB2 manuals.

Global transaction support

Allows multiple DB2 units of recovery to share locks if they
are all part of one large unit of work

The large unit of work is called a global transaction

DB2 already supports distributed units of work
What is new is only the ability to share locks

We will use an example to show what it means

Supported for transactions from IMS, RRS and DDF
100 DB2 UDB Server for OS/390 Version 6 Technical Update

3.6.1 Funds transfer example
We now show a sample scenario.

Let us suppose that we have an existing business transaction to transfer money
from one bank account held by a customer to another bank account held by the
same customer.

There are two logical steps to this business transaction:

• Taking the funds from the first account, and

• Putting the funds into the second account.

A transfer of funds between two bank accounts belonging to the same customer
is logically broken down into 2 steps, such as:

withdraw $100 from account 1

deposit $100 in account 2

Funds transfer example

Account 1: $450 Account 1: $350

Account 2: $300 Account 2: $400
Chapter 3. Application enhancements 101

3.6.2 Existing designs: 1 or 2 units of work
We may have implemented the business transaction for the funds transfer in one
of two ways:

• Design A: as one system transaction, which performs both logical steps, or

• Design B: as two system transactions, executed one after the other, each of
which performs one of the two steps.

The new global transaction support in DB2 is intended to help the scenario where
we have used the second of these designs, and now want to be able to combine
the two transactions into one bigger transaction, while still allowing them to be
executed separately in other circumstances.

Existing designs: 1 or 2 units of work

Account 1: $450 Account 1: $350

Account 2: $300 Account 2: $400

Account 1: $450 Account 1: $350

Account 2: $300 Account 2: $400

One transfer transaction

One debit/credit transaction

Another debit/credit transaction

DESIGN A: 1 unit of work

DESIGN B: 2 units of work
102 DB2 UDB Server for OS/390 Version 6 Technical Update

3.6.3 Re-engineering design B
One of the issues we have with the original design B is that the first unit of work
has been committed before we start executing the second unit of work. If there is
a problem with the second unit of work, and it gets rolled back, we probably want
to roll back the first unit of work as well. We have to handle this at the application
level, by essentially executing another unit of work which undoes what our first
unit of work did.

If we combine the two transactions into one bigger transaction, we can benefit
from the two-phase commit protocol between the commit coordinator (outside of
DB2) and the agents (including the DB2 threads involved). This protocol will
cause the first transaction to be automatically aborted if the second transaction is
aborted, avoiding the need for some application logic that was previously
required.

This benefit is one of the motivating factors for re-engineering design B.

The sequence here is:

• A set of inserts / updates for debiting account 1 (DB2 thread 1),
• A set of inserts / updates for crediting account 2 (DB2 thread 2),
• A commit of the global transaction, which includes DB2 thread 1 and thread 2.

A key point is that the work done under thread 1 is not committed until after
thread 2 has successfully performed its inserts and updates.

In 3.6.4, “Step 1 — Updates are performed under DB2 thread 1” on page 104 and
3.6.5, “Step 2 — DB2 thread 2 update times out” on page 105 we illustrate a
problem that you can get implementing the re-engineered design.

Re-engineering design B

Account 1: $450 Account 1: $350

Account 2: $300 Account 2: $400

One debit/credit transaction

Another debit/credit transaction
DESIGN B: 2 units of work

Account 1: $450 Account 1: $350

Account 2: $300 Account 2: $400

One debit/credit transaction

Another debit/credit transaction
DESIGN B': 1 compound unit of work
Chapter 3. Application enhancements 103

3.6.4 Step 1 — Updates are performed under DB2 thread 1
DB2 thread 1 is processing the first transaction (debiting account 1).

We have assumed here that each transaction performs three SQL update
operations, in addition to some SQL retrieval operations (not shown):

• An INSERT of a row into an ENTRIES table for this debit or credit,

• An UPDATE of the row in an ACCTBAL (account balance) table for this
account, and

• An UPDATE of the row in a CUSTBAL (customer balance) table for this
customer. This row indicates the net balance across all the customer’s
accounts.

We have also assumed that row-level locking is being used on these tables.

X-locks are taken on the 3 rows affected by the INSERT or UPDATE statements,
in the usual way.

Remember that these statements are not committed until after transaction 2 has
successfully finished its SQL update statements, so these X-locks remain in
place for the time being.

Insert / updates OK from DB2 thread 1

ACCOUNT DATE TIME DOLLAR_
AMOUNT

ENTRY_
TYPE

...

ACCT1 2000:03:31 19:30:05 -100.00 atm
withdrawal

...

ACCT1 2000:04:01 13:00:56 -100.00 transfer
out

...

ACCT2 2000:03:30 00:10:11 +1.12 credit
interest

...

ENTRIES table

ACCOUNT DATE_LAST_
ENTRY

TIME_LAST
_ENTRY

DOLLAR_
BALANCE

...

ACCT1 2000:03:31
2000:04:01

19:30:05
13:00:56

450.00
350.00

...

ACCT2 2000:03:30 00:10:11 300.00 ...

ACCTBAL table

CUSTOMER DATE_LAST_
ENTRY

TIME_LAST
_ENTRY

DOLLAR_
BALANCE

...

CUST1 2000:03:31
2000:04:01

19:30:05
13:00:56

750.00
650.00

...

CUSTBAL table

INSERT INTO ENTRIES
VALUES(:acct,...);
(sqlcode=0, X-lock on row)

UPDATE ACCTBAL SET
AMOUNT=AMOUNT-:amt WHERE
ACCOUNT=:acct;
(sqlcode=0, X-lock on row)

UPDATE CUSTBAL SET
AMOUNT=AMOUNT-:amt WHERE
CUSTOMER=:cust;
(sqlcode=0, X-lock on row)

DB2 thread 1
104 DB2 UDB Server for OS/390 Version 6 Technical Update

3.6.5 Step 2 — DB2 thread 2 update times out
The same sequence is now executed for the second step, to credit account 2:

• INSERT the row into the ENTRIES table for the credit to account 2,

• UPDATE the row in the ACCTBAL table for account 2, and

• UPDATE the row in the CUSTBAL table for this customer. Here we hit a
problem. Thread 1 is still holding an X-lock on this row. We time out. We roll
back. The whole global transaction aborts, including the work done under
thread 1.

This is a solid problem which will occur every single time we try to run this global
transaction.

The next slide shows what happens with the solution in place.

DB2 thread 2 update times out

ACCOUNT DATE TIME DOLLAR_
AMOUNT

ENTRY_
TYPE

...

ACCT1 2000:03:31 19:30:05 -100.00 atm
withdrawal

...

ACCT1 2000:04:01 13:00:56 -100.00 transfer
out

...

ACCT2 2000:03:30 00:10:11 +1.12 credit
interest

...

ACCT2 2000:04:01 13:00:57 +100.00 transfer in ...

ENTRIES table

ACCOUNT DATE_LAST_
ENTRY

TIME_LAST
_ENTRY

DOLLAR_
BALANCE

...

ACCT1 2000:03:31
2000:04:01

19:30:05
13:00:56

+450.00
+350.00

...

ACCT2 2000:04:01
2000:04:01

00:10:11
13:00:57

+300.00
+400.00

...

ACCTBAL table

CUSTOMER DATE_LAST_
ENTRY

TIME_LAST
_ENTRY

DOLLAR_
BALANCE

...

CUST1 2000:03:31
2000:04:01

19:30:05
13:00:56

+750.00
+650.00

...

CUSTBAL table

INSERT INTO ENTRIES
VALUES(:acct,...);
(sqlcode=0, X-lock on row)

UPDATE ACCTBAL SET
AMOUNT=AMOUNT-:amt WHERE
ACCOUNT=:acct;
(sqlcode=0, X-lock on row)

UPDATE CUSTBAL SET
AMOUNT=AMOUNT-:amt WHERE
CUSTOMER=:cust;
(sqlcode=-911, thread 1
holds X-lock on row so
thread 2 can't get a U- or
X-lock on the same row)

DB2 thread 2

timeout !

(X-lock on row)

(X-lock on row)

(X-lock on row)

DB2 thread 1
Chapter 3. Application enhancements 105

3.6.6 Thread 2 in same global transaction — problem solved
The new DB2 V6 global transaction support provides a way for DB2 to be told
that the work done under thread 1 (call it unit of recovery 1) is part of the same
global transaction as the work done under thread 2 (call it unit of recovery 2).

In the case where DB2 has been told this, it will allow UR2 on thread 2 to share
locks taken by UR1 on thread 1.

There is support in both DB2 itself and the IRLM that enables this to happen.

It is achieved by use of a special token that represents the global transaction to
which a particular DB2 unit of recovery belongs (if any). The name of this token is
an XID (for X/Open Identifier). It is a standardized way of naming global
transactions. Currently, the only use of it in DB2 is as a mechanism for sharing
locks. It is not DB2’s main identifier for a distributed unit of work, for example.

Thread 2 in same global transaction

ACCOUNT DATE TIME DOLLAR_
AMOUNT

ENTRY_
TYPE

...

ACCT1 2000:03:31 19:30:05 -100.00 atm
withdrawal

...

ACCT1 2000:04:01 13:00:56 -100.00 transfer
out

...

ACCT2 2000:03:30 00:10:11 +1.12 credit
interest

...

ACCT2 2000:04:01 13:00:57 +100.00 transfer in ...

ENTRIES table

ACCOUNT DATE_LAST_
ENTRY

TIME_LAST
_ENTRY

DOLLAR_
BALANCE

...

ACCT1 2000:03:31
2000:04:01

19:30:05
13:00:56

+450.00
+350.00

...

ACCT2 2000:04:01
2000:04:01

00:10:11
13:00:57

+300.00
+400.00

...

ACCTBAL table

CUSTOMER DATE_LAST_
ENTRY

TIME_LAST
_ENTRY

DOLLAR_
BALANCE

...

CUST1 2000:03:31
2000:04:01
2000:04:01

19:30:05
13:00:56
13:00:57

+750.00
+650.00
+750.00

...

CUSTBAL table

INSERT INTO ENTRIES
VALUES(:acct,...);
(sqlcode=0, X-lock on row)

UPDATE ACCTBAL SET
AMOUNT=AMOUNT-:amt WHERE
ACCOUNT=:acct;
(sqlcode=0, X-lock on row)

UPDATE CUSTBAL SET
AMOUNT=AMOUNT-:amt WHERE
CUSTOMER=:cust;
(sqlcode=0, thread 2 is
allowed a U- and then
X-lock on the row even
though thread 1 already
has an X-lock on the same
row, this is allowed
because threads 1 and 2
are both part of the same
global transaction)

DB2 thread 2

no timeout !

(X-lock on row)

(X-lock on row)

(X-lock on row)

DB2 thread 1

The solution is the XID token
106 DB2 UDB Server for OS/390 Version 6 Technical Update

3.6.7 Where the XID is passed — example 1
Here is a simple example of the flow of the XID token in practice.

A). A resource manager such as component broker registers with RRS, and
begins a global transaction. It can either assign an XID itself for the global
transaction, or ask RRS to assign one on its behalf.

B). The XID is passed to DB2 on an RRSAF signon request.

C). Optionally, DB2 can check an XID value directly with RRS.

D.) When an SQL update is issued from this transaction, DB2 passes the IRLM a
token based on the XID to permit sharing of locks with other DB2 URs that have
the same associated token.

The reason APAR numbers are shown on this set of figures is to emphasize
where new support has been added. There are 3 elements of added support in
this example.

RRS

DB2RRSAF

Resource
manager

such as CB

A

B

C

Where the XID is passed - example 1

PQ28487
IRLM

PQ27022

D
OW38843 table update
Chapter 3. Application enhancements 107

3.6.8 Where the XID is passed — example 2
This is a slightly more complicated example where the difference is that the first
DB2 routes an update to a second DB2 using DDF.

Steps A-C are as before.

D). The application requester DDF routes the update to the application server
DDF.

E). The server DB2 passes the IRLM a token based on the XID to permit sharing
of locks with other DB2 URs that have the same associated token eliminating
locking problems.

There are four elements of added support in this example.

Where the XID is passed - example 2

RRS

DB2RRSAF

Resource
manager

such as CB

A

B

C

DDF

DDFDB2

D

PQ32387

OW38843

PQ32387PQ28487

PQ28487

IRLM

PQ27022

E

E table update
108 DB2 UDB Server for OS/390 Version 6 Technical Update

3.6.9 Where the XID is passed — example 3
This is a more complicated example where the difference from the first example
is that the work comes to DB2 from IMS.

1). A resource manager such as component broker registers with RRS, and
begins a global transaction. It can either assign an XID itself for the global
transaction, or ask RRS to assign one on its behalf.

2). The XID is passed to IMS via the OTMA interface (Open Transaction Manager
Access).

3). IMS passes the XID to DB2 via ESS (IMS’s External Subsystem Attach
Facility) and DB2’s IMS attach facility.

4.) When an SQL update is issued from this transaction, DB2 passes the IRLM a
token based on the XID to permit sharing of locks with other DB2 URs that have
the same associated token.

There are 5 elements of added support in this example.

The next two slides show a simplified version of the flow of control between the
participants in the global transaction where it is coordinated from a component
broker application that runs 2 IMS transactions which update DB2 tables:

• First, without the DB2 global transaction support

• Second, with the DB2 global transaction support.

Resource
manager

such as CB

RRS

IMSOTMA DB2
IMS

attach
ESS

1

2
3

Where the XID is passed - example 3

IRLM

4

OW38843

PQ27461 PQ28611 PQ28487 PQ27022

table update
Chapter 3. Application enhancements 109

3.6.10 Flow between participants
In this case, DB2 does not recognize that the work under thread 2 is part of the
same global transaction as the work under thread 1. The timeout occurs, and the
global transaction cannot run to successful completion.

Flow between participants

INSERT INTO ENTRIES
VALUES(:acct,...);

UPDATE ACCTBAL SET
AMOUNT=AMOUNT-:amt WHERE
ACCOUNT=:acct;

UPDATE CUSTBAL SET
AMOUNT=AMOUNT-:amt WHERE
CUSTOMER=:cust;

INSERT INTO ENTRIES
VALUES(:acct,...);

UPDATE ACCTBAL SET
AMOUNT=AMOUNT-:amt WHERE
ACCOUNT=:acct;

UPDATE CUSTBAL SET
AMOUNT=AMOUNT-:amt WHERE
CUSTOMER=:cust;

SIGNON

DEBIT acct1,
$100,cust1

SIGNON

IMS MPR 1 IMS MPR 2 DB2 thread 1 DB2 thread 2

DEBIT acct2,
-$100,cust1

IMS ctl
region

Component
broker
application

:
:
:
wait
:
:
:

:
:
:
wait
:
:
:

ROLLBACK

(ABORT)

SQLCODE -911 (timeout)

OK

NOT OK !!

(ABORT)

(ABORT)(ABORT)
110 DB2 UDB Server for OS/390 Version 6 Technical Update

3.6.11 Flow with global transaction support
In this case, DB2 is told, by a new parameter on the SIGNON request (that is part
of the External Subsystem interface used to get from IMS applications to DB2 via
the IMS attach facility), that:

• Transaction 1 is part of global transaction X1.

• Transaction 2 is part of the same global transaction, X1.

Flow with global transaction support

INSERT INTO ENTRIES
VALUES(:acct,...);

UPDATE ACCTBAL SET
AMOUNT=AMOUNT-:amt WHERE
ACCOUNT=:acct;

UPDATE CUSTBAL SET
AMOUNT=AMOUNT-:amt WHERE
CUSTOMER=:cust;

INSERT INTO ENTRIES
VALUES(:acct,...);

UPDATE ACCTBAL SET
AMOUNT=AMOUNT-:amt WHERE
ACCOUNT=:acct;

UPDATE CUSTBAL SET
AMOUNT=AMOUNT-:amt WHERE
CUSTOMER=:cust;

SIGNON, XID='X1'

DEBIT acct1,
$100,cust1

SIGNON, XID='X1'

IMS MPR 1 IMS MPR 2 DB2 thread 1 DB2 thread 2

DEBIT acct2,
-$100,cust1

IMS ctl
region

:
:
:
wait
:
:
:

:
:
:
wait
:
:
:

COMMIT
:
wait
:

Component
broker

application
Chapter 3. Application enhancements 111

3.6.12 Considerations
Each leg can see uncommitted updates from other legs. This is a natural
consequence of sharing locks. It may be an issue for re-engineering existing
applications whose design is dependent on an assumption that any data they can
see must have been committed.

All the DB2 URs within a single global transaction must run on the same DB2
subsystem. Component broker will send all the IMS/DB2 transactions belonging
to a single global transaction to a single IMS, from which the particular IMS
applications will always access the same DB2. For work coming in through DDF,
the originator must use the available facilities to ensure that all requests for a
given global transaction go to the same DB2 member.

You should consider the possible impact of any actions, that might be taken by
one leg of the global transaction, which take locks other than normal transaction
locks. Drain locks, or LOCK TABLE locks, for example cannot be shared across
different legs, and so, if taken, these could result in timeouts or deadlocks.

Therefore, before using global transaction support, you should evaluate whether
any of the SQL programs involved are exposed to these risks.

PTFs are required on several component products in order to make global
transaction support work properly end to end. There is some documentation on
global transaction support in the GA-level hardcopy manuals for DB2 V6, even
though these PTFs came out later.

Considerations
Each leg can see uncommitted updates from other legs

All the DB2 URs within a single global transaction must run on the
same DB2 subsystem

not anywhere in a data sharing group
the originator of the DB2 work must route all URs to the same DB2
subsystem

The sharing of locks is limited to normal transaction locks
claims & drains cannot be shared in the same way
CREATE, DROP, ALTER, GRANT, REVOKE in one leg could cause
timeouts or deadlocks across other legs
LOCK TABLE in one leg could cause timeouts or deadlocks across other
legs
Update of partitioning key in one leg could cause timeouts or deadlocks
across other legs (because of drain request)
112 DB2 UDB Server for OS/390 Version 6 Technical Update

APAR Identifier

The following table lists the APARs, not only related to DB2, that address the
various elements of support for global transactions. Check with the standard IBM
support channels for the latest list of fixes you need if you want to use this new
function and their applicability to your environment.

Component APARs

IRLM PQ27022

DB2 V6 (base support) PQ28487

DB2 V6 (IMS attach) PQ28611, PQ34849

DB2 V6 (DDF) PQ32387

OS/390 V2R5+ RRS OW38843

OS/390 V2R5+ APPC/MVS OW39220

IMS PQ27461
Chapter 3. Application enhancements 113

114 DB2 UDB Server for OS/390 Version 6 Technical Update

Chapter 4. Language support

These enhancements extend the number of languages that can access data on
DB2. Support has been provided for REXX programs to issue SQL statements;
and, in addition, stored procedures can be written in Java and SQL.

Language support

DB2 REXX support

SQL stored procedures

SQLJ, JDBC driver

Java stored procedures

7 00SJ6108001
© Copyright IBM Corp. 2000 115

4.1 DB2 REXX support

The REXX language is widely used to automate system administrative tasks. It is
powerful and relatively easy to learn. There are numerous interfaces to OS/390
environments. Added to DB2 V6 is support for the REXX to DB2 interface,
DSNREXX.

Although REXX support for DB2 may be familiar to DB2 V5 customers, and it has
been available for testing with V6 from the Web for some time, it has been
included in DB2 V6 with this code refresh.

Rather than repeat what is already in documentation elsewhere, we will refer you
to it. We concentrate here on providing some supplementary practical information
based on our experiences of installing REXX support and using REXX stored
procedures.

We document a sample REXX program and a REXX stored procedure called from
a COBOL stub program. We describe the Workload Manager requirements and
the method by which you can get diagnostic information from the called
procedure.

With the refresh availability, the only method of acquiring DB2 REXX support is to
specify the feature and the media when ordering DB2. Documentation is likely to
remain aaccessible from the Web.

To order DB2/REXX support on the media of your choice, you can choose from:

DB2 REXX support

Interface added to REXX to access DB2
REXX support for V6 was available as download
now it is included in the code refresh
Concentrate here on hints and tips
Can write stored procedures (SP) in REXX

invoked just like SP written in any other language
CALL procedure_name(parameters)

Environmentals needed to get REXX SPs working
116 DB2 UDB Server for OS/390 Version 6 Technical Update

When received as a feature, SMP support is included. Since the necessary load
modules are located in SDSNLOAD, we suggest you use SMP to manage this
software. When ordered as a feature, support for all the new DB2 V6 syntax is
provided and all the DB2 V5 DB2/REXX functionality is supported.

In our installation we downloaded the REXX support from the Web site:

http:www.ibm.com/software/data/db2/os390

Feature Media

5108 3480 Cart

5543 4mm DAT

5216 9/6250 Mag Tape
Chapter 4. Language support 117

.

4.1.1 Host environment and handling errors
In this section we describe how to interface to DB2 and handle errors from the
REXX program.

4.1.1.1 DSNREXX interface
The interface to DB2 from REXX is DSNREXX. This is a load module in the
SDSNLOAD library. Therefore, the SDSNLOAD library must be included in the
concatenation of your starting libraries. In your REXX program you need to
establish that environment. To do this we coded

SUBCOM DSNREXX /* set up host environment */
IF RC THEN /* is host command there */
x = RXSUBCOM('ADD','DSNREXX','DSNREXX') /* no: so create it */

4.1.1.2 Error handling and diagnostics
We recommend that whenever you issue an SQL call, you do the following:

• Set a diagnostic variable indicating what SQL call you are about to issue. This
means that you can also identify which call gave you the problem.

• Check the SQLCODE returned from the call to DB2 immediately after the SQL
statement.

• Code the check of the SQLCODE as a REXX function.

• Display the entire SQLCA and diagnostic variable identifying the SQL call that
you were attempting.

• Consider coding a ROLLBACK in your error handling routine if you receive a
bad SQL code.

Host environment and handling errors

Establish the host environment (DSNREXX)
Since it is established by DSNREXX module, it requires
DSNLOAD library in concatenation

Error handling and diagnostics
Know where you are when you get an error
Check SQLCODE
Display all SQLCA variables
Check SQLCODE after every SQL call
Rollback to return to point of consistency
118 DB2 UDB Server for OS/390 Version 6 Technical Update

Our SQL code checking function was invoked as follows:

ADDRESS DSNREXX 'CONNECT' ssid /* connect to DB2 */
sqlcall="Called from MAIN: Connect to DB2" /* what are re trying to do*/
rc=check_sqlcode(SQLCODE); /* check SQL return code */

This is the check we made after attempting the connection to DB2:

• ssid is a REXX variable (a PARSEd parameter) and contains the DB2 subsystem
name.

• sqlcall is the diagnostic variable that identifies the call being made, and from
which point in the REXX program.

• check_sqlcode is the REXX function name which takes the SQLCODE returned
by DB2 as a parameter.

We made this call after setting the sqlcall variables following every SQL call,
although we do not show it in the remaining examples.

Our check_sqlcode function is as follows:

/* check value of SQLCODE. If 0, fine just leave. Otherwise display
the error messages, issue a ROLLBACK and exit with the bad code */
check_sqlcode:
IF SQLCODE = 0 THEN RETURN 0;
SAY "Error detected at " sqlcall
SAY "SQLCODE = "SQLCODE
SAY "RETCODE = "RETCODE
SAY "SQLSTATE = "SQLSTATE
SAY "SQLERRMC = "SQLERRMC
SAY "SQLERRP = "SQLERRP
SAY "SQLERRD ="SQLERRD.1',',
||SQLERRD.2',',
||SQLERRD.3',',
||SQLERRD.4',',
||SQLERRD.5',',
||SQLERRD.6

SAY "SQLWARN ="SQLWARN.0',',
||SQLWARN.1',',
||SQLWARN.2',',
||SQLWARN.3',',
||SQLWARN.4',',
||SQLWARN.5',',
||SQLWARN.6',',
||SQLWARN.7',',
||SQLWARN.8',',
||SQLWARN.9',',
||SQLWARN.10

ADDRESS DSNREXX "EXECSQL ROLLBACK"
exit SQLCODE

Note: You do not need to code an INCLUDE SQLCA statement. The CONNECT

statement assigns values to the SQLCA variables we display in the example above.
If the sQLCODE is non-0, our return exits after issuing a ROLLBACK.
Chapter 4. Language support 119

4.1.2 Isolation level and coding conventions
In this section we suggest the appropriate isolation level and coding conventions.

4.1.2.1 Choose appropriate isolation level
During the installation the DSNREXX package is bound five times using different
isolation levels. Packages DSNREXX and DSNREXCS are both bound with
isolation level CS. You can change the isolation level within your REXX program
as follows:

ADDRESS DSNREXX "EXECSQL SET CURRENT PACKAGESET='DSNREXUR'"
sqlcall="Called from MAIN: Set packageset" /* select appropriate ISOLATION*/
rc=check_sqlcode(SQLCODE); /* check SQL return code */

4.1.2.2 Coding conventions
• Cursor and prepared statement names are not arbitrary, you must use a

predefined set.

• If you prepare an SQL statement from a REXX host variable, the host variable
name is preceded by a colon ":" and must be in capitals.

• You can use parameter markers in SQL where you want to substitute the value
of the host variable.

The following extract of code shows examples of these three principles. We have
removed error checking calls for clarity, but check SQLCODE after every DB2 call.
The full listing of our sample program can be found in Appendix C, “DB2 and
REXX” on page 269.

1. The SQL statement is put into a REXX variable called SQL_STMT. This statement
retrieves data for table space scans where the number of pages is greater

Isolation level and coding conventions

Set isolation level as appropriate
Improves concurrency and reduces overhead
Can be set and changed dynamically
SET CURRENT PACKAGESET

Coding conventions
Cursor and statement names are not arbitrary
Host variables must be in capitals and preceded by :
Do not declare host variables before use
Parameter markers (?) to substitute values at execution
120 DB2 UDB Server for OS/390 Version 6 Technical Update

than a specified number. NPAGES is a parameter marker. The owner of the plan
table is held in a REXX variable called creator.

SQL_STMT =,

"SELECT ' LARGE SCAN' , ",

" PLN.QUERYNO , ",

" PLN.BIND_TIME , ",

" PLN.APPLNAME , ",

" PLN.PROGNAME , ",

" TB.CREATOR , ",

" TB.NAME , ",

" TB.CARD , ",

" TB.NPAGES , ",

" TB.DBNAME , ",

" TB.TSNAME ",

"FROM SYSIBM.SYSTABLES TB, ",

creator".PLAN_TABLE PLN ", /* this is the owner of the */

"WHERE PLN.CREATOR = TB.CREATOR ", /* plan_table we set as a */

" AND PLN.TNAME = TB.NAME ", /* REXX variable */

" AND PLN.ACCESSTYPE='R' ",

" AND TB.NPAGES > ? " /* NOTE: parameter marker */

2. The next step is to declare a cursor and prepare the statement from the
SQL_STMT host variable. Statement and cursor names belong to the predefined
set of names. Note that :SQL_STMT is in capitals.

ADDRESS DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"

ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :SQL_STMT"

3. Set the value of the parameter marker and open the cursor using the host
variable. Note that :NPAGES is in capitals.

NPAGES=20

ADDRESS DSNREXX "EXECSQL OPEN C1 USING :NPAGES"

4. You do not declare host variables, so in the FETCH just use upper case host
variables which are then available to your REXX program. In this case we
fetch rows back from the cursor, perform some processing on them within the
code (not shown) and insert rows into an exception table.

ADDRESS DSNREXX "EXECSQL FETCH C1 INTO ",
":REASON, :QUERYNO, :BIND_TIME, :APPLICATION_NAME, ",
":PROGRAM_NAME, :TB_CREATOR, :TB_NAME, :CARD, :ACTUAL_PAGES,",
":DBNAME, :TSNAME"
IF SQLCODE < 0 THEN /* any SQL error - handle */
rc=check_sqlcode(SQLCODE); /* check SQL return code */
...
/* set up the insert statement into a REXX variable */
ISRT_STMT="INSERT INTO PAOLOR8.EXCPTION ",
"(QUERYNO, BIND_TIME, APPLNAME, PROGNAME, TB_CREATOR,",
"TB_NAME, TB_CARDINALITY, TB_NPAGES)",
" VALUES (?,?,?,?,?,?,?,?)"
/* prepare the insert statement */
ADDRESS DSNREXX "EXECSQL DECLARE C3 CURSOR FOR S3"
ADDRESS DSNREXX "EXECSQL PREPARE S3 FROM :ISRT_STMT"
/* execute the insert */
ADDRESS DSNREXX "EXECSQL EXECUTE S3 USING ",
":QUERYNO, :BIND_TIME, :APPLICATION_NAME, ",
":PROGRAM_NAME, :TB_CREATOR, :TB_NAME, :CARD, :ACTUAL_PAGES"
Chapter 4. Language support 121

4.1.3 REXX and stored procedures
If you want to use REXX to code your stored procedure (SP), since there is little
difference between a REXX program and REXX SP, we recommend that you first
code what you plan to be your SP as a REXX main program. You should include
the DSNREXX CONNECT statement to allow you to issue DB2 calls. This enables you
to test the logic of the program easily and quickly. Any problems executing the SP
can then be isolated to environmental problems rather than programming logic.

The arguments you plan to pass to your SP are defined in the PARSE ARG REXX
statement as for a main REXX program. You can, therefore, code the arguments
you intend to use exactly as you would in a main program and pass values in
when you invoke the REXX. For example, you could have a REXX subroutine
calls TESTREXX which has a PARSE ARG p1 p2 statement. It is expecting two
parameters, the values of which are assigned to REXX variables p1 and p2. You
could test your program as follows:

%TESTREXX parameter1 parameter2.

To convert you REXX program to a stored procedure, all you need to do is
remove the DSNREXX CONNECT, which is not valid in an SP.

You then need to define the procedure to DB2 using the create procedure

statement. The full create procedure statement we used is reported in Appendix
C, “DB2 and REXX” on page 269.

REXX and stored procedures

Code and test your REXX program
code program with arguments as necessary

code PARSE ARG var1 in REXX
test by executing %DB2REXX1 parm1

with CONNECT statement
ADDRESS DSNREXX CONNECT ssid
Valid in REXX program
Invalid in stored procedure

Convert to stored procedure
remove the CONNECT
create procedure (as REXX)

create procedure...
NOTE: WLM environment name,....

issue CALL from program passing parameter(s)

CALL SP_name(:hv)
122 DB2 UDB Server for OS/390 Version 6 Technical Update

The important parameters to note are:

• The procedure name

You will refer to the procedure name in the calling program. Note the owner.
You probably will not qualify the SP name, but use the BIND QUALIFIER
option of the calling program. In our case, we would use QUALIFIER(ADMF001).

• The parameters

These are the parameters and their types that the SP expects to be passed
(IN) and return (OUT). Note you are limited to a single output parameter.

• The EXTERNAL NAME

This is the name of the REXX program (the PDS member name) in your REXX
library.

• The WLM application environment name

The WLM ENVIRONMENT parameter in the create procedure statement should
correspond to that in the WLM stored procedures address space. We describe
next how to set the WLM stored procedures address space.

Your REXX SP is invoked from a calling program. We have used a stub COBOL
program to illustrate that the language of the SP is transparent to the caller. A
basic but full COBOL listing has been included in the Appendix C, “DB2 and
REXX” on page 269. The essential components are the definition of the
parameter and the call statement.

01 WS-INT1 PICTURE S9(9) COMP VALUE +0.

...
EXEC SQL

CALL ADMF001.SPA4(:WS-INT1)

END-EXEC.

We linked it with the DSNELI language interface and executed it under batch
TSO using the RUN PROGRAM sub-command of DSN.

The SP executes from within a WLM stored procedure address space. Therefore,
you must set up the WLM environment.
Chapter 4. Language support 123

4.1.4 Set up WLM environment
There are two parts to setting up the WLM environment:

• Create the started task JCL which will execute your REXX (and possibly other)
SPs.

• Define the workload manager application environment in which your WLM
stored procedure address space will run.

We suggest the following when creating your JCL procedure:

• Set up the JCL to match the WLM procedures considering a sufficient number
of TCBs to avoid creating an address space for each CALL, without exceeding
the 2 GB address space size.

• If you are running data sharing, consider specifying the group name DB2SSN.

• Do not use one WLM SP address space to manage the workload from multiple
DB2 subsystems, or if data sharing from multiple groups.

• Consider having multiple address spaces to process a large number of
concurrent stored procedures or to separate the workload.

• Give it a name that identifies the DB2 subsystem name. We used DB2YWLM
so that the started task had the same prefix as the other DB2 address spaces.

• The APPLENV parameter defines the application environment. This should
correspond to the WLM ENVIRONMENT parameter in your create procedure
statement.

If the number of TCBs is insufficient, another WLM adrress space with the same
name will be started.

Set up WLM environment

Create WLM stored procedures address space
DDNAME SYSEXEC identifies REXX library
DDNAME SYSTSPRT for diagnostics

Set up WLM application environment
APPLENV parameter matches that in create procedure statement
identifies DB2 subsystem

can run other SPs too (for example Java, C, COBOL and so on)

Useful commands
/d wlm,applenv=wlmenv2
/d wlm
/vary wlm,applenv=wlmenv2,quiesce
/vary wlm,applenv=wlmenv2,resume
/=db2y dis proc(*.*)
124 DB2 UDB Server for OS/390 Version 6 Technical Update

The DB2SSN is passed to the procedure by the invoker, if the start parametrs
specify &IWMSSNM (like in "DB2SSN=&IWMSSNM,NUMTCB=15,APPLENV=WLMENV2"),
different DB2 subsystems always get different WLM address spaces.

The SYSEXEC DDNAME specifies the library in which your REXX SP is located.

The SYSTSPRT DDNAME is for diagnostics and the output from SAY statements.

A full description of setting up WLM environments is beyond the scope of this
book. A step-by-step account is provided in the redbook DB2 UDB for OS/390
Version 6 Management Tools Package, SG24-5759.

From the WLM ISPF dialog we set up a service definition for db2yrexx, an
application environment called WLMENV2, and we identified the JCL procedure
name to use. See Appendix C.7, “WLM configuration” on page 277 for screen
prints of our WLM configuration.

Output from some useful commands we used to manipulate SPs in a WLM
environment is shown in Appendix C.8, “Commands to manipulate WLM and SP”
on page 278. The commands are summarized below:

Command Purpose

D WLM Display WLM settings

D WLM,APPLENV=WLMENV2 Display status of WLM application environment

VARY WLM,APPLENV=WLMENV2,QUIESCE Will stop the WLM SP address space. Use this if
you wish to incorporate JCL changes, such as
adding DDNAME SYSTSPRT.
For goal mode only.

VARY WLM,APPLENV=WLMENV2,RESUME Will restart the WLM SP address space.
For goal mode only.

-DISPLAY PROC(*.*) DB2 command to display status of all your stored
procedures

P DB2YWLM
S DB2YWLM

Stop and start WLM address space.
Compatibility mode only.

The APAR identifier is as follows:

PQ30219, PQ33133.

APAR identifier
Chapter 4. Language support 125

4.2 SQL Procedure language

In this section we give an overview of SQL stored procedures (SPs), including the
new language statements introduced with the code refresh.

On the basis of recent experience using SQL SPs we provide some usage
recommendations and resolutions to commonly encountered problems.

DB2 offers a new stored procedure programming language which enables you to
write stored procedures in a standard, portable language. Users need not know,
as in regular languages, how to embed SQL statements and how to prepare the
source code for use in conjunction with DB2. Instead, the SQL language has
been extended to include procedural support, so that stored procedures can be
written entirely in SQL statements.

The SQL Procedure language is based on SQL extensions as defined by the
SQL/PSM (Persistent Stored Modules) standard. SQL/PSM, an ISO/ANSI
standard for SQL3, is a high-level language, similar to other RDBMS languages
such as Transact SQL from Sybase and PL/SQL from Oracle — that extends SQL
to procedural support.

SQL Stored Procedure language

SQL Procedures are DB2 stored procedures written entirely in
SQL/PSM

SQL/PSM is an ISO standard for procedural language
extensions for SQL

PSM - Persistent Stored Modules
Similar to Oracle's PL/SQL and Sybase's Transact SQL

SQL Call

Results1

Results2

New statements: GOTO, GET DIAGNOSTICS
and optional label on SET statement

Client application SQL STMT1
SQL STMT2
126 DB2 UDB Server for OS/390 Version 6 Technical Update

You write your SQL SP by using SQL. It is not executed in this form, however;
you need to process the source code to generate a load module and a data base
request module (DBRM). The load module must be located in a library accessible
to the workload manager stored procedures address space from which it
executes and the DBRM must be bound. This program preparation process is the
same as that for the other supported languages except there is an additional first
step. The SQL SP source is first translated into a C source code program. It is
this code that is pre-compiled, compiled and link edited to form the load module
and DBRM.

Note: Since SQL procedures are processed into C code, which is then
pre-compiled and compiled, a C compiler is a prerequisite for SQL stored
procedures.

IBM provides the Stored Procedure Builder tool. Not only does this tool perform
the complete program preparation process, but will also assist with creation and
testing of your stored procedure. This productivity aid is particularly useful in a
development environment.

This chapter will give an overview of the language and information on how to
prepare SQL stored procedures. For detailed information, please refer to
Developing Cross-Platform DB2 Stored procedures: SQL Procedures and the
DB2 Stored Procedure Builder, SG24-5485. Additional information on SQL/PSM
can be found in the reference book, Understanding SQL’s Stored Procedures: A
Complete Guide to SQL/PSM, Jim Melton, Morgan Kaufmann Publishers, Inc.,
ISBN 1-55860-461-8.

SQL stored procedures may already be familiar to you, as they were introduced
to DB2 V5 prior to V6. Changes to the V6 implementation is that the following
statements are also supported:

• GOTO statement

• GET DIAGNOSTICS statement

• Optional label on SET statement

More details in 4.2.4, “Example of a compound statement” on page 132.
Chapter 4. Language support 127

4.2.1 Reasons for using SQL stored procedures
A full discussion on the reasons for using them can be found in the redbook
Developing Cross-Platform DB2 Stored procedures: SQL Procedures and the
DB2 Stored Procedure Builder, SG24-5485. However, a brief outline of why and
when you should use SQL stored procedures is reported here.

One of the main advantages of stored procedures is that they help portability
across the DB2 family. Practically all of the procedural language is valid on all
platforms of the DB2 family.

SQL stored procedures are based on industry standards, and the language is
similar to the proprietary procedural languages of Oracle, Sybase, and Microsoft.

SQL SPs are easy and fast to code, particularly if you use the Stored Procedure
Builder. The SQL Procedure language is an extension to SQL and
straightforward. Programmers do no need to understand another language such
as C or COBOL, nor do they need access to any resources outside of DB2.
Although the SQL/PSM language is relatively easy to understand, one difficulty
you are likely to face are is that errors encountered while building the procedure
are sometimes not reported very clearly. Consequently we recommend good
programming practices such as:

• Consider how you will handle errors encountered during the execution of the
stored procedure.

• Ensure that sufficient diagnostic information is passed back to the caller in the
event of an error.

Reasons for using SQL SPs

May be ported across the DB2 family

Easy and fast to code
still need to follow good programming practice

performance considerations
error handling

Useful in highly distributed environment

General SP advantages including
sensitive business logic on server
business logic can be coded once and called many times
faster execution
security/shield mechanism
network traffic reduction

No use of specific system services or resources
128 DB2 UDB Server for OS/390 Version 6 Technical Update

SQL SPs give the benefits common to all stored procedures, including improved
performance over the client executing individual SQL statements, reduction in
network traffic, ability for logic to be coded once and called by many applications
(particularly for client applications that may be written in many different
languages) and sensitive business logic that can be held on the server unknown
to the clients that call it.

Considerations when using SQL stored procedures are

• You are unable to access system services or external resources. If your
procedures need to do this, you will need to write them in another
programming language (C, PL/1, Assembler, COBOL, REXX, and so on).

• Be aware of any special performance requirements. SQL procedures are not
interpreted, but are translated into C, which is then compiled and the DBRM
bound. While this is efficient, generated code is unlikely to be as efficient as a
hand-crafted, optimized code written by an experienced programmer. The
difference is likely to be insignificant in most cases, but may be a factor for
procedures with a high performance requirement.
Chapter 4. Language support 129

4.2.2 Creating SQL stored procedures
An SQL procedure consists of the CREATE statement to define the procedure,
together with a simple statement (as shown above) or a compound statement
which is a group of SQL statements.

The statement types are:

• Local variable and condition declarations

• Local cursor declarations

• Handler declarations of the type CONTINUE and EXIT

• Procedural statements

• Traditional DML and DDL

• Flow control, for example, IF, CASE, LOOP, WHILE, CALL, RETURN

• Assignment statements, for example, SET

• Signal and resignal conditions

Although the procedure name can be up to 18 characters, we recommend that
you limit it to 8 characters, so that it ties up with the loadlib member name of your
generated C code and the DBRM.

Creating SQL procedures

An SQL Procedure consists of
a CREATE statement to define the procedure
a procedure body which is made up of

a single simple statement
or a single compound statement

A simple example:

CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))

LANGUAGE SQL
MODIFIES SQL DATA
UPDATE EMP

SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

input parameters

SQL statement executed
130 DB2 UDB Server for OS/390 Version 6 Technical Update

4.2.3 Compound statements
A compound statement is a group of SQL statements to be executed sequentially.
All statements between the BEGIN and END clause belong to the same block or
compound statement. In the example on the next foil, the compound statement
does not have a label, but DB2 will define an implicit label.

The order of statements within a compound statement is as follows:

1. SQL variable and condition declarations

2. Cursor declarations

3. Handler declarations

4. Assignment statements, control-flow statements, SQL statements

Variables, cursors, conditions, and condition handlers declared inside a
compound statement have the scope and lifetime of the containing compound
statement. The name of a variable cannot be the same as another SQL statement
within the same compound statement and cannot be the same as a parameter
name or SQL reserved word.

Please note that the ATOMIC keyword is not yet supported on DB2 UDB for
OS/390.

Compound statements can be nested. Hence, normal scope rules apply. That is,
declarations in an inner compound statement occlude the declarations with the
same name in an outer compound statement.

Compound statements

A compound statement is delimited by a BEGIN and an END
statement

Compound statements can contain
SQL variables and condition declarations
local cursor declarations
condition handler declarations
procedural statements

assignment statements
flow control
signal and resignal conditions
DDL (CREATE, ALTER, GRANT, REVOKE...)

DML (SELECT, INSERT, UPDATE, DELETE)
Chapter 4. Language support 131

4.2.4 Example of a compound statement
An example of a stored procedure using a compound statement is shown above.
It gives examples of how to declare variables, assign values to them, and declare
condition handlers and signal logic.

Note: This example of a stored procedure is for illustration only. It is vital that you
consider in your design how you will handle errors and debug problems. We
consider this in detail below.

Below is a list of the control statements that can be used within a stored
procedure:

• SET — for assignment

• LEAVE — terminates execution of labelled statements

• IF, THEN, ELSE — controls conditional execution of statements

• CASE — determines which execution path to follow

• LOOP — repeats statements until LEAVE

• WHILE — repeats statements until termination test fails

• REPEAT — repeats statements until termination test is true

• CALL — calls a stored procedure

• RETURN — stops procedure

• SIGNAL and RESIGNAL — can be used to explicitly raise conditions

Example of a compound statement

CREATE PROCEDURE mysp (IN v_empno CHAR(6), IN rating INT) ...
BEGIN

DECLARE new_salary DECIMAL(9,2);
DECLARE max_sal CONDITION;
DECLARE CONTINUE HANDLER FOR max_sal ;
SET new_salary =

(SELECT salary FROM emp WHERE empno = v_empno);
IF rating = 1 THEN

SET new_salary = new_salary * 1.10;
ELSEIF rating = 2 THEN

SET new_salary = new_salary * 1.05;
ENDIF;
IF new_salary > 500000 THEN

SIGNAL max_sal;
ELSE

UPDATE emp SET salary = new_salary
WHERE empno = v_empno;

ENDIF;
END
132 DB2 UDB Server for OS/390 Version 6 Technical Update

The new language elements introduced in this code refresh are:

• Optional label on the SET statement. For example:

emplbl1: set empdtl=’Investigate timekeeping’;

This allows set statements to be the target of a GOTO statement.

• GOTO label

This new statement gives you greater flexibility coding SQL SPs. The target of
the GOTO is a labelwhich identifies a labelled statement where processing is
to continue. There are some rules that you should follow using GOTO
statements:

• If the GOTO statement is defined in a compound statement, the label must
be defined inside the same compound statement, excluding a nested
compound statement.

• If the GOTO statement is defined in a handler, the label must be defined in
the same handler, following the other scope rules.

• If the GOTO statement is defined outside of a handler, the label must not
be defined within a handler.

• GET DIAGNOSTICS meets a requirement to obtain information about the
number of rows associated with the previous SQL statement.

An example of the use of this new feature is as follows

update emp set salary = salary * 1.25 where empid > ’028290’;
get diagnostics numupdt = ROW_COUNT;

ROW_COUNT will be set to the number of rows updated by update emp...

The syntax of the new statement is GET DIAGNOSTICS SQL-variable-name =

ROW_COUNT;

SQL-variable-name identifies the variable that is the assignment target. The
variable must be an integer variable. SQL variables can be defined in a
compound statement.

ROW_COUNT identifies the number of rows associated with the previous SQL
statement. If the previous SQL statement is a DELETE, INSERT, or UPDATE,
ROW_COUNT identifies the number of rows deleted, inserted, or updated,
excluding rows affected by either triggers or referential integrity constraints. If
the previous statement is a PREPARE, ROW_COUNT identifies the estimated
number of result rows in the prepared statement.
Chapter 4. Language support 133

4.2.5 Handling errors
There are three things you need to consider when handling errors encountered
within any stored procedure:

• Detect that an error condition has occurred.

• Perform error recovery.

• Pass information back to the caller that the error occurred and where the
problem was encountered. The caller then needs to make a decision as to the
appropriate response.

4.2.5.1 Condition handlers
The WHENEVER statement is not valid in an SQL stored procedure; instead,
condition handlers are used to trap errors. The main function of condition
handlers is error processing, such as an SQL statement resulting in a negative
SQL code, or the processing of a user condition. A condition handler gets
executed automatically when the condition it is prepared to handle is detected
during the execution of the containing compound statement. Condition handlers
satisfy the first two requirements: detecting errors and error recovery.

The general form of a condition handler is:

DECLARE handler type HANDLER FOR condition SQL-procedure-statement;

Handler type can be one of these:

• CONTINUE — to resume the execution with the statement following the one
that raised the condition

Handling errors

Condition handlers
detect error has occurred
perform some action
determine what happens next (CONTINUE or EXIT)

Specify set of conditions it will handle
SQLSTATE, SQLEXCEPTION, SQLWARNING or NOT FOUND
condition name that is user defined
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN...

Action to perform
any SQL statement including a compound statement (BEGIN... END)

Passing error information back to the caller
134 DB2 UDB Server for OS/390 Version 6 Technical Update

• EXIT — to resume the execution with the statement following the compound
statement

Conditions you can specify are:

• A particular SQLSTATE value

• A condition name, which is user-defined

• SQLEXCEPTION, that is, all SQLSTATE values with class other than 00, 01,
or 02

• SQLWARNING, that is, all SQLSTATE values with class 01

• NOT FOUND, that is, all SQLSTATE values with class 02

The SQL-procedure-statement can be any SQL statement, including a compound
statement. You probably will want to use either BEGIN or use the new GOTO

statement. This allows a series of actions to be carried out in response to the
error.

A compound statement may contain any number of condition handlers.

4.2.5.2 Passing diagnostics back to the caller
It is essential that you consider how you will pass back to the caller sufficient
diagnostic information to enable the point of failure and nature of the error.

In the redbook Developing Cross-Platform DB2 Stored Procedures: SQL
Procedures and the DB2 Stored Procedures Builder , SG24-5485 a technique is
introduced in some sample code. You create a DB2 table with, at least, two string
columns. You may also wish to add SQLID and CURRENT TIMESTAMP for
example. The first column stores an eye catcher set in the procedure to identify
the SQL statement being attempted. The second describes the nature of the
problem. For example:

DECLARE EXIT HANDLER FOR SQLEXCEPTION
insert into error_log values (‘Procedure your_proc_name processing SQL call
003’,’EXIT HANDLER FIRED: SQLSTATE=’||SQLSTATE||’ SQLCODE=’||CHAR(SQLCODE));

The handler will ensure control returns to the caller. You can pass back SQLCODE or
SQLSTATE anyway (see 4.2.6, “Debugging SQL stored procedures” on page 136).
In this case, the first thing the caller should do is to check the contents of the
error_log table. The exact location of the failure can then be determined.

We recommend that you exploit declared temporary table or created temporary
table support rather than a persistent table, because you will not encounter
locking problems, and in any case, the data is required only for the caller to read
and display.

It is possible to imagine some circumstances in which the insert to the error_log
table will fail, such as problems with the work or temporary databases, at the
same time that the SP was encountering an application error. In this case,
although you will see console messages from DB2’s MSTR address space, the
underlying problem and point of failure will not get reported back to the SQL SPs
calling program.
Chapter 4. Language support 135

4.2.6 Debugging SQL stored procedures
In order to assist you with debugging your SQL stored procedure we recommend
the following:

Always define a return variable for either the SQLCODE CHAR(6) or SQLSTATE CHAR(8).
Make sure that the error handler passes back the SQLCODE or SQLSTATE to the
program. If you specify EXIT for the error handler, you are only allowed to do one
thing. You could specify CONTINUE, which allows you to do more, but it is not as
straightforward.

If you are familiar with C, in a development environment you can add printf
statements to assist with debugging.

You can also use the IBM Distributed Debugger tool to debug the generated C
code.

Debugging SQL stored procedures

When debugging your SQL stored procedure:
define a return variable for SQLCODE or SQLSTATE
if you specify EXIT you can only do one thing - make sure it's setting up
the return parameter list with the SQLCODE
if you specify CONTINUE you can do more but it is not as clean
in debugging mode have something tell you where you are in the
program

Can use Debugger to debug the generated C code
136 DB2 UDB Server for OS/390 Version 6 Technical Update

4.2.7 Preparing SQL stored procedures
There are three main methods for developing SQL stored procedures on DB2 for
OS/390:

• Using the Stored Procedure Builder (SPB) tool, which runs on all current
Windows platforms. It provides an easy-to-use development environment for
creating, installing, and testing stored procedures. With the DB2 SPB you can
focus on creating the stored procedure logic rather than on the details of
registering, building, and installing stored procedures on a DB2 server. Once
you have created or modified the stored procedure it invokes the OS/390
Procedure Processor (DSNTPSMP) to perform all the steps on the right hand
side of the diagram. For information on how to use the SPB, please refer to
the redbook DB2 UDB for OS/390 Version 6 Management Tools Package,
SG24-5759.

• Using the OS/390 SQL Procedure Processor directly. You can code a client
program to invoke DSNTPSMP to generate and build your stored procedure.
You may choose this option over the SPB if you want to standardize the bind,
link and compile options within a project. You could limit which parameters the
developers can specify. Information on how to invoke DSNTPSMP can be
found in the SQL procedures redbook.

• Using JCL or CLIST to manually perform all the steps on the right-hand side of
the diagram. Unlike the other two options, this does not require you install
DB2 REXX support or create a Workload Manager environment and stored
procedures address space in which to run DSNTPSMP.

Invoke

DSNTPSMP

DSNTPSMP:

OS/390 SQL

Procedure

Processor

- a Rexx Stored

procedure

PROCEDURE

Definition

SQL Precompile

(1) Stored
Procedure
Builder Tool

(Windows/*
then Unix)

(2) Sample
client code to

invoke
DSNTPSMP

(3) JCL or
CLIST to

prepare a SQL
procedure

Preparing SQL Procedures

Invoke

DSNTPSMP

C Precompile

C Compile and

Prelink

Link

Bind

Run

Invoke

steps

Invoke

steps
Chapter 4. Language support 137

In a development environment, we recommend that you use the SPB tool, as it
helps you in coding, testing and debugging, thereby improving the development
process.

To install stored procedures into production you will probably want to use the
batch option, invoking the JCL procedure DSNHSQL (or a modified version
thereof) as part of your change control process.

The steps involved in the creation of the SQL stored procedure are as follows:

1. The user creates the SQL procedure logic source (manually or using SPB).

2. The SQL procedure source is precompiled by DSNHPSM resulting in a C
language program complete with SQL and logic.

3. The SQLC source is precompiled by the normal DB2 precompiler like any
other C program.

4. The modified C source is compiled and link edited.

5. The DBRM is bound into the chosen collection.

6. The procedure must be defined to DB2 using the CREATE PROCEDURE
statement.

Regardless of the method you use to build your stored procedure, you can invoke
the Debugger tool to debug it if you have the Distributed Debugger client code on
your workstation. This is shipped with the DB2 Software Developers Kit (SDK).
138 DB2 UDB Server for OS/390 Version 6 Technical Update

4.2.8 Preparation using DSNTPSMP
The OS/390 Procedure Processor (DSNTPSMP) automates and performs all the
steps required to generate and build your SQL stored procedure. You can use it
either from the SPB or by writing a client program to invoke it.

DSNTPSMP is a DB2 supplied stored procedure written in REXX that performs all
the steps required to prepare an SQL procedure. As well as building and defining
the procedure, it populates and makes use of a new catalog table called
SYSIBM.SYSPSM. This table contain information such as the CREATE
PROCEDURE statement.

DSNTPSMP can be invoked to perform three major functions:

• Build/rebuild a procedure

• Destroy a procedure

• Rebind

Output from the OS/390 SQL procedure processor includes the PSM state
indicating how far the process got, the SQLCODEs for PSM CREATE and Bind.

DSNTPSMP:

OS/390 SQL

Procedure

Processor

- a Rexx Stored

procedure

Preparation using DSNTPSMP

Update SYSPSM

C Precompile,

Compile & Prelink

CREATE PROCEDURE

psmsusan READS SQLDATA

LANGUAGE SQL

WLM ENVIRONMENT

thomas

PROGRAM TYPE MAIN

PARAMETER STYLE

GENERAL WITH NULLS

RESULT SETS 3

bruce: BEGIN

SELECT * FROM marion

WITH RETURNS;

END bruce

DB2 Catalog

SYSROUTINES

SYSPARMS

SQL Precompile

DB2 Catalog

SYSIBM.SYSPSM

Link & Bind

Issue Procedure

Defn

Store annotated

#LINE listing

Partitioned

Dataset for

debugger listings
Chapter 4. Language support 139

4.2.8.1 WLM requirements
DSNTSMP should be set up in a WLM environment of its own. It is recommended
that no other stored procedure should be defined in this environment. The
OS/390 Procedure Processor requires that the NUMTCB in the WLM region be 1.
The main consequence is that only one SQL stored procedure can be built in
each WLM environment at one time. However, it is possible to have more than
one WLM environment, each running its own version of DSNTPSMP. You may
want to set up multiple WLM environments for different projects or testing levels,
each referencing different sets of libraries.

Sample JCL can be found in DSN8WLMP.

4.2.8.2 REXX requirements
Because the DSNTSMP stored procedure builder is written in REXX, you must
install REXX support for DB2.
140 DB2 UDB Server for OS/390 Version 6 Technical Update

4.2.9 Preparation without DSNTPSMP
This method uses JCL which invokes the procedure DSNHSQL to prepare the
SQL Procedure. DSNHSQL is installed by member DSNTIJSQ in your
SDSNSAMP library. As part of the Installation Verification Process (IVP) you will
run job DSNTEJ63 which prepares an SQL stored procedure by invoking
DSNHSQL in batch. The IVP job performs the following steps:

1. Uses DSNTEP2 or DSNTIAD to drop the procedure in case it already exists

2. Calls DSNHSQL which performs the following:

• DSNHPC is called with PARM=’HOST(SQL)’. This converts the SQL
procedures source into an equivalent C language program.

• DSNHPC is called for a second time with PARM =’HOST(C)’ to precompile the
C source to process the embedded SQL calls.

• C compile and link edit

3. Uses DSNTIAD to run the CREATE PROCEDURE statement. This will insert
rows into SYSIBM.SYSROUTINES and SYSIBM.SYSPARMS

4. Bind the DBRM

Please note that Workload Manager and REXX support are not required for
preparation of stored procedures using JCL.

PROCEDURE

Definition

Mechanism

(SPUFI, TEP2,

Static or Dynamic

SQL)

Preparation without DSNTPSMP

Input

C Precompile

CREATE PROCEDURE

psmsusan READS

SQLDATA LANGUAGE

SQL PARAMETER

STYLE GENERAL WITH

NULLS

NO WLM

ENVIRONMENT

PROGRAM TYPE MAIN

RESULT SETS 20

label: BEGIN

SELECT * FROM

employee WITH

RETURNS;

END label

Input

SQL precompile

listing

with messages

C source with

SQL and #line

statements

DB2 Catalog

 SYSROUTINES, SYSPARMS

C Compile and

Link

C source

C precompile

listing

with messages

DBRM

(1)

(2)

(3)
Bind and Run

(4)

SQL

Precompile

The APAR identifier is as follows:

PQ29782, PQ30467, PQ30492, PQ33026, PQ33560, PQ24199.

APAR identifier
Chapter 4. Language support 141

4.3 SQLJ/JDBC driver support

DB2 introduced Java support initially in V5 with JDBC type 1 driver support.
JDBC is an API that Java applications use to access any relational database. It
implements a series of methods (like ODBC) that permit dynamic SQL
statements to DB2. Since the JDBC methods are generic, there is a translation
process carried out by a JDBC driver to interface to DB2. The type 1 driver acts
as a JDBC ODBC bridge and translates all JDBC calls to ODBC.

DB2 V6 provided support for SQLJ Part 0, which is an ANSI standard set of
extensions that enable Java applications to include embedded static SQL.

The enhancement in this code refresh is that support is now provided for the
SQL/JDBC driver. It was also added to DB2 V5, so it may be familiar to you. The
new driver enables you to write a Java program that consists of both static and
dynamic SQL. The same application can execute SQLJ clauses and invoke JDBC
methods.

It has been implemented as a type 2 driver, one of four types of JDBC drivers
defined by Javasoft. The type 2 driver translates JDBC calls into native
programming requests. Consequently, this will perform better than the JDBC type
1 driver that it replaces.

Click here for optional figure #

SQLJ/JDBC driver support

Optimized JDBC type 2 driver (replaces type 1 driver)
Translates calls into native programming requests
Performance improvement

One common runtime environment for both SQLJ and JDBC
Establish interoperability to combine SQLJ and JDBC
Can process JDBC result sets using SQLJ locators

Support for SQLJ/JDBC JVM applications under CICS
142 DB2 UDB Server for OS/390 Version 6 Technical Update

Support is also provided for Java Virtual Machine (JVM) applications to now run
under CICS. Currently, Java applications running on the OS/390 platform must be
compiled by the High Performance Java (HPJ) compiler (part of the Enterprise
Toolkit for OS/390). However, this new driver support together with CICS
Transaction Server for OS/390 1.3 and CICS APAR PQ34321, gives you the
option of running CICS/DB2 applications using JVM. The JVM is a complete
software microprocessor with its own instruction set and operation codes. It
provides automatic memory management, garbage collection, and other
functions for the programmer.

Please note that this section includes an overview of Java enhancements since
V6 GA. For detailed information on Java in general, please refer to the redbook
How to Build Java Stored Procedures: DB2 UDB Gets Wired With SQLJ and
JDBC, SG24-5945, due to be published soon, and the manual Application
Programming Guide and Reference for Java, SC26-9018-01.
Chapter 4. Language support 143

4.3.1 Using the new driver
A Java application identifies the target data source it wants to connect to by
passing a database Uniform Resource Locator (URL) to the DriverManager. For a
DB2 for OS/390 data source, you can specify either:

• jdbc:db2os390:<location name>

• jdbc:db2os390sqlj:<location name>

There are two new special URL values for the SQLJ/JDBC driver:

• “jdbc:db2os390:” — The JDBC application does not need to know the location
name of the local DB2 subsystem that the driver is using

• jdbc:default:connection — SQLJ specification to connect the application to the
local site without knowing the location name.

Several packages are included with the DB2 for OS/390 SQLJ/JDBC driver.
These packages represent the DB2 for OS/390 implementation of the java.sql
JDBC API. The driver packages include all of the JDBC classes, interfaces, and
exceptions that comply with the JDBC 1.2 specification.

The DB2 for OS/390 SQLJ/JDBC driver is available under two different Java
class names. The preferred driver name is:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver.

The ibm.sql.DB2Driver is also supported, but just for compatibility reasons.

Click here for optional figure # YRDDPPPPUUU

Using the new driver

Identifying target data source - URLs
jdbc:db2os390:<location name>

jdbc:db2os390sqlj:<location name>

New special URLs - application does not need to know DB2
location name

"jdbc:db2os390:" for JDBC

jdbc:default:connection for SQLJ

Driver class name
COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver
144 DB2 UDB Server for OS/390 Version 6 Technical Update

4.3.2 Combining SQLJ and JDBC
In order to enable programmers to write Java programs that use both JDBC and
SQLJ, you must carry out the following setup tasks:

• Set environmental variables

• Set parameter in the sqlj/jdbc run-time properties file

Information on setting the parameters can be found in the Java Application
Programming Guide and Reference for Java, SC26-9018-01.

You must also establish interoperability by doing the following:

• When you bind a plan for SQLJ, include the JDBC packages in the PKLIST of
that SQLJ plan. The default names of the JDBC packages are:

DSNJDBC.DSNJDBC1
DSNJDBC.DSNJDBC2
DSNJDBC.DSNJDBC3
DSNJDBC.DSNJDBC4
DSNJDBC.DSNJDBC5

• Make sure that the JDBC profile is accessible in a directory specified in the
CLASSPATH environmental variable.

This new support means that you can use JDBC result sets in SQLJ applications.
This enables you to take advantage of the flexibility of JDBC and the type
checking of SQLJ.

Click here for optional figure # YRDDPPPPUUU

Combining SQLJ and JDBC

Can combine SQL and JDBC in a single program

Set environmental variables and properties in SQLJ/JDBC
run-time

Establish interoperablity
By binding JDBC packages in SQLJ plan
Make sure JDBC profile is accessible

Particularly useful processing JDBC results sets using SQLJ
iterators

Columns and data types must match
Use getResultSet to generate JDBc result set from SQLJ iterator
Chapter 4. Language support 145

The APAR identifier is as follows:

PQ36011.

APAR identifier
146 DB2 UDB Server for OS/390 Version 6 Technical Update

.

4.4 Java stored procedures

Stored procedures can be written in the following languages

• C
• COBOL
• Assembler
• PL/1
• REXX
• Persistent Stored Modules (an ISO standard procedural SQL language)
• Java

Java is a new member of this list. You can call a Java stored procedure exactly as
you would call a procedure written in any other language.

JVM is not required for Java stored procedures. They are compiled using the
High Performance Java (HPJ) compiler, which is part of VisualAge for Java
Enterprise Edition for OS/390. This gives better performance than if they were
interpreted.

This section will provide an overview of the issues involved when writing Java
stored procedures and an outline of how to prepare them. For detailed
instructions and advice refer to the redbook How to Build Java Stored
Procedures: DB2 UDB Gets Wired With SQLJ and JDBC, SG24-5945.

Please note that this functionality is not included as part of the May Refresh (or
PUT03). However it will soon be available through additional PTFs. Check the
Web site http://www.ibm.com/software/data/db2/os390/ for availability.

Click here for optional figure #

Java stored procedures

You can call a Java stored procedure in the same way as for
other languages

JVM is not required. Use HPJ (part of Visualage for Java) to
compile the SP

Can include JDBC and SQLJ

Must run as a subprogram

Note: Available June 30, 2000 as a follow on to the refresh
level
Chapter 4. Language support 147

4.4.1 Defining a Java stored procedure
You define a Java stored procedure to DB2 using the CREATE PROCEDURE
statement in the same way as for stored procedures written in other languages.
However, the following parameters have different meanings for Java stored
procedures:

EXTERNAL specifies the program that runs when the procedure name is
specified in a CALL statement. For Java stored procedures, the form is
EXTERNAL NAME ‘class-name.method-name’ which is the name of the Java
executable code that is created by the HPJ compiler. If the class is defined in a
package, it is prefixed with the package name.

The following parameters must be specified:

• LANGUAGE COMPJAVA

• PARAMETER STYLE JAVA — required so that DB2 uses a parameter passing
convention that conforms to the Java language and SQLJ specifications.

• WLM ENVIRONMENT — Java has to run in a workload managed
environment.

• PROGRAM TYPE SUB — Java SPs cannot run as MAIN routines

RUN OPTIONS will be ignored if you specify any. Because the Java Virtual
Machine (JVM) is not destroyed between executions, language environment
options cannot be specified for an individual stored procedure.

Click here for optional figure # YRDDPPPPUUU

Defining a Java stored procedure

CREATE PROCEDURE JSPTEST
(CHAR(10) IN, DECIMAL(31,2) OUT)
FENCED
READS SQL DATA
LANGUAGE COMPJAVA
EXTERNAL NAME(classname.methodname)
PARAMETER STYLE JAVA
WLM ENVIRONMENT WLMCJAV
RESULT SETS 1
PROGRAM TYPE SUB;
148 DB2 UDB Server for OS/390 Version 6 Technical Update

4.4.2 Java SP coding considerations
The Java stored procedure must have PACKAGE as the first statement in the
source. This refers to a Java package, rather than a DB2 one, and is
subsequently mapped to the load module produced by the HPJ.

You can group stored procedures into Java packages. A Java package equates to
a single HPJ executable module. When deciding on the groupings, bear in mind
that the entire module will be loaded in at run-time; therefore, it is worthwhile
clustering small often-used packages together and keeping large less-used
procedures separate.

Java stored procedures must be defined as static and public. Consequently, they
provide no return codes. You should define output parameters to pass back
information, including return codes, to the caller.

The following should also be noted:

• Parameters must be mappable to base SQL data types.
• Nulls require special handling
• Results set issues

Please note the following restrictions:

• As in other stored procedures, you cannot include COMMIT, SET CURRENT
SQLID.

• In addition, like any Java program, you cannot include connect, release, or set
connection.

• A Java SP cannot make IFI calls
• LOBS are not supported

Click here for optional figure #

Java SP coding considerations

Must have PACKAGE as first statement
bear in mind performance when grouping the procedures

Must be declared as static and public
pass return codes back as parameters

Parameters must be mapped to base SQL types

Note that nulls require special handling

Cannot include the following statements
Call,Commit,Set current sqlid
Connect,Release,Set connection

Cannot make IFI calls

LOBS not supported
Chapter 4. Language support 149

4.4.3 Returning results set
Stored procedures written in other languages would use the WITH RETURN
clause on the DECLARE CURSOR clause to return the result set from a stored
procedure.

An equivalent in Java would be to specify the "with returnability" clause in an
SQLJ iterator declaration clause. However, this is not enough to return the results
set.

For each result set, your stored procedure must:

• Include an object type Resulter in the parameter list for the stored procedure
method, but not in the parameter list of the stored procedure definition.

• Execute a SELECT statement to obtain the contents of the result set.

• Retrieve any rows that you do not want to return to the client.

• Assign the contents of the result set to the ResultSet object that is in the
parameter list.

Your stored procedure can return multiple query result sets to a DRDA client if:

• The client supports the DRDA code used to return query result sets.

• The value of RESULT_SETS in the stored procedure definition is greater than
one.

Click here for optional figure #

Returning results set

Other languages simply use WITH RETURN clause

In Java you must do the following:
use the "with returnability" clause
include an object type Resulter in the parameter for the SP method
SELECT to obtain contents of result set
retrieve any rows you do not want to return to client
assign contents to the ResultSet object
150 DB2 UDB Server for OS/390 Version 6 Technical Update

4.4.4 Preparing Java stored procedures
Preparing a Java stored procedure is similar to preparing any other Java DB2
program. However, there is one extra step. Java programs must run as compiled
Java programs so you must use the VisualAge for Java Enterprise Edition for
OS/390 (ET/390) binder.

To use Java stored procedures in an OS/390 environment you need

• OS/390 V2R6 or above

• UNIX System Services must be enabled

• DB2 UDB for OS/390 Version 6 with APARs PQ36011 and PQ31846

• Enterprise Toolkit for OS/390 which provides the High Performance Java
(HPJ) compiler. This is part of VisualAge for Java, Enterprise Edition.

• OS/390 Recoverable Resource Services (RRS) and Workload Manager
(WLM) are mandatory for running the Java stored procedures.

For more information refer to the redbook Java Programming Guide for OS/390,
SG24-5619.

If the program contains only JDBC calls and no SQLJ statements:

1. Issue the javac command to compile the Java program

2. Bind the Java bytecode file produced into a Java DLL using the ET/390 HPJ.

If the program contains SQLJ clauses, there are some additional steps, as shown
in the next section.

Click here for optional figure #

Preparing Java stored procedures

Similar to preparing other Java programs - but one extra step

Need to compile SP using ET/390 binder

Java
source

Java
byte
code

Java
byte
code S390

DLL

Development system
Deployment system

Java
compile

HPJ
(Visualage for

Java)
Chapter 4. Language support 151

4.4.5 Preparing Java SPs using SQLJ
The diagram above shows the process of preparing a Java stored procedure
which contains SQLJ clauses:

1. Issue the sqlj command to translate the source code into modified Java source
code and serialized profiles.

2. Issue the db2profc command on USS to customize the serialized profiles to
produce DBRMs.

3. Issue the javac command to compile the Java program.

4. Bind the Java bytecode files for the stored procedure and any packages it
uses into Java DLLs in a PDSE using the ET/390 binder. Create an external
link to the PDSE member.

5. Bind the DBRMs into packages and plans.

Click here for optional figure #

Preparing Java SPs containing SQLJ

SQLJ
source

Serialized
profiles

DB2
Plans or

packages

Bind

Modified
Java

source

Java
byte
code

Java
compiler

S390 DLL
HPJ
152 DB2 UDB Server for OS/390 Version 6 Technical Update

4.4.6 Running Java stored procedures
A Java stored procedure does not establish its own connection to the local data
source like a standard Java program would. Instead, the stored procedure uses
the default RRS connection to the data source that processes the CALL
statement.

A Java stored procedure must run in a WLM-established stored procedure
address space. The startup procedure requires extra DD statements not required
by other stored procedures. These are:

• JAVAENV — This holds the Java environmental variables that specify system
properties for the ET/390 Java execution environment. The CLASSPATH
variable must be set to include the directories for user external links, compiled
SQLJ/JDBC external links and the ET/390 links. LIBPATH must include the
path for the ET/390 code and the path for the SQLJ/JDBC driver code.

• JSPDEBUG — This is an optional DD statement that will help you debug your
stored procedure.

The steplib concatenation should include the PDSE that contains the Java
program objects for the stored procedures and Java classes used by those
procedures. It should also include the PDSE that contain the VisualAge for Java
compiler and run-time library.

Click here for optional figure #

Running Java stored procedures

Uses default RRS connection to the local data source

Extra DD cards statements required for Java SPAS

Must set environmental variables using JAVAENV DD card
Must set CLASSPATH and LIBPATH

Include JSPDEBUG DD card
Chapter 4. Language support 153

The APAR identifier is as follows:

PQ36011 and PQ31846 (open at the time of writing).

APAR identifier
154 DB2 UDB Server for OS/390 Version 6 Technical Update

Chapter 5. Operational enhancements

In this chapter we describe enhancements that will help you with DB2’s
operations:

• Suspend update activity

New commands allow to temporary freeze logging activity so that a consistent,
almost instantaneous copy of your data can be taken.

• Defer defining data sets

Option to delay the VSAM definition of your DB2 objects to when they are
really utilized for the first time.

• DDF suspend

Option to SUSPEND DDF in case high priority DDL needs executing.

• Faster cancel thread

Faster termination of a DB2 local thread even when it is not within DB2.

• Data sharing enhancements and a new EDM pool parameter

These provide performance and virtual storage constraint relief.

• The new CHECKPAGE option for the Copy utility

This performs enhanced integrity checking of your data without the need for
running a separate DSN1COPY CHECK utility.

• Better statistics provided by Runstats

O p e ra tio n a l e n h a n c e m e n ts

S u s p e n d u p d a te a ctiv ity

D e fe r d e fin in g d ata s e ts

D D F su s p e n d

F a s te r ca n c e l th re a d

D a ta sh ar in g e n h a n c e m e n ts

N e w E D M p o o l p a ra m ete r

C o p y e n h a n c e d in te g rity c h e c k in g o p tio n

R u n s ta ts en h a n c e m e n ts

8 00S J61 080 01
© Copyright IBM Corp. 2000 155

5.1 Suspend update activity

This new feature enables you to suspend all updates to a DB2 subsystem. This
allows you to take a snapshot of the system for local or remote site recovery with
minimal impact on the availability of the system and restart with a consistent copy
of your DB2 data..

It is designed to be used in conjunction with external copy of DB2 data such as
provided by RVA SnapShot or Enterprise Storage Server (ESS) FlashCopy
technology. Prior to this enhancement, these techniques alone could not be used
to take a copy suitable for recovery while DB2 was active. The reasons for this
are discussed in 5.1.2, “Use of SET LOG SUSPEND command” on page 158.

Should a disaster occur, the snapshot (here used to mean either of the two
techniques mentioned) can be used to recover the system to a point of
consistency simply by starting DB2. Offsite recovery is as fast as a normal DB2
restart following a crash at the local site.

The snapshot can also be used to provide a fast, consistent copy of your data for
reasons different from recovery; one example is to periodically snap an entire
system to enable point in time query with minimal operational impact.

Click here for optional figure #

Suspend update activty

Temporarily "freezes" all updates to a DB2 subsystem

Intended for use with RVA SnapShot or ESS FlashCopy

Minimal disruption to take backup for disaster recovery
Suspend updates for a brief period while the system is 'snapped'

Straightforward and rapid restart at a secondary site
When DB2 is started forward and backward recovery completes as
normal
As fast as DB2 restart following a crash at the local site

Can be useful as testing tool
development only
freezes activity so you can simulate problems (how applications
respond to deadlock and time-out and so on)
156 DB2 UDB Server for OS/390 Version 6 Technical Update

5.1.1 Deciding whether to use this method for disaster recovery
There are numerous techniques whereby offsite recovery can be achieved in the
event of a disaster. The option you choose will depend on various factors,
including:

• The permitted outage to the production system and data

• How quickly you need to reestablish the service at the recovery site

• How current you require the data to be

• Cost considerations

This new feature means that you can now take advantage of the speed of RVA
Snapshot or ESS Flashcopy to create an offsite recovery backup. Suspending
updates for just a minute or two should be enough to obtain the backup.

To explain why these facilities are so fast at backups, here is a brief outline of
how RVA Snapshot works. For further details, please refer to Using RVA and
SnapShot for Business Intelligence Applications with OS/390 and DB2,
SG24-5333.

Within the RVA, the Functional Track Directory table (FTD) maps tracks as
understood by DB2 to their physical location on disk. When a SnapShot copy is
made, the RVA copies the pointers so that there are two sets: the original
pointers and the copies. This is why the SnapShot process is so fast — no data is
physically copied or moved, only the pointers are copied. To begin with, both the
copy pointers and the original pointers address the same physical location. After
an update, the copy pointers continue to address the old location, but the original
points to the new location of the updated data.

ESS FlashCopy works by establishing a relationship between the source and
target volumes. This means that disk space capacity for the target must exist at
the time the copy is made. ESS initiates a background task to copy tracks from
the source to the target volume. DB2 read requests will be satisfied from data
sets on the source volume even if the background copy operation has not yet
completed. If DB2 needs to update a track that has not yet been copied, ESS
copies the tracks from source to target before allowing the update to the source.
The integrity of the copy is therefore maintained. If you begin dumping to tape
data from the target volume that has not yet been copied, ESS satisfies the read
(dump) requests from the source volume.

Whichever of these is used, recovery from these backups is very fast and simple,
as it just requires a start of the system which will resolve inflight units of recovery.

For more information on using ESS FlashCopy in a disaster recovery solution
refer to the white paper SAP R/3 Storage Management Split Mirror Backup and
Recovery on IBM's Enterprise Storage Server on DB2 OS/390 available from the
Web site http://www.storage.ibm.com/hardsoft/diskdrls/technology.htm.
Chapter 5. Operational enhancements 157

5.1.2 Use of SET LOG SUSPEND command
Prior to this enhancement, it was essential to stop DB2 before taking a SnapShot
copy suitable for offsite recovery. The following sequence of steps illustrates why
without the log suspend feature, we could not recommend use of SnapShot or
other copy techniques while DB2 is running.

1. The logs and BSDS data sets are copied. Remember that the copy process,
although fast, is asynchronous with respect to DB2 activity which continues as
normal.

2. DB2 updates continue. Log records are externalized and log buffers written.

3. Pending writes are externalized by the buffer manager. The RBA at which
these writes complete is greater than the maximum RBA on the copy of the
logs obtained in step 1.

4. Updated pagesets are copied from disk.

5. Copies are taken offsite for disaster recovery purposes.

The copies of the pagesets contain RBA ranges not represented in the copy of
the log. You have introduced a hole in the offsite copies of your log.

DB2 always writes the log record before making an update. Consequently by
flushing the log buffers and preventing further writes to the logs, DB2 will not be
able to make any updates to the data until logging is resumed.

Use of SET LOG SUSPEND command

Essential to issue a log suspension before taking a SnapShot
suitable for offsite recovery

Recommended backup procedure
Issue -SET LOG SUSPEND command
Copy all data, logs and BSDS data sets using RVA SnapShot or ESS
FlashCopy
Resume update activity
Send backup copies offsite

Peer-Peer Remote Copy (PPRC) - synchronous mirroring
Extended Remote Copy (XRC) - asnychronous mirroring
copy target volumes to tape
158 DB2 UDB Server for OS/390 Version 6 Technical Update

5.1.2.1 Recommended backup procedure
We recommend that you use the following procedure:

1. Issue the -set log suspend command and wait for confirmation message
DSNJ372I which indicates update activity has been suspended. This command
is synchronous, so there should be no delay between command and
suspension. For a data sharing group, the command should be issued for
each member.

2. Invoke RVA Snapshot or ESS FlashCopy to backup the entire DB2 subsystem.
This should include the following and be virtually instantaneous:

• Active logs

• Bootstrap data sets

• Catalog, directory

• All DB2 application data

• DB2 system libraries

• Archive logs

3. As soon as this has completed, re-instate DB2 update activity with the -set

log resume command.

4. Copy the snapped data offsite (for example, using Peer-to-Peer Remote Copy,
or a manual procedure such as dumping the copied volumes to tape, which
may then be taken offsite).

We recommend that you take copies of the archive logs in your SnapShot.
However, you could decide against this if you can guarantee that there will be no
very long-running units of recovery inflight at the time of the SnapShot. On
restart, DB2 has to back out inflight URs, and this involves reading all the UNDO
records. If some are on the archive logs and DB2 cannot access them, restart will
terminate. You would then be forced to conditionally restart, and this would
introduce data inconsistencies. Another option is to specify LBACKOUT as
mentioned in 5.1.5, “Offsite recovery considerations” on page 164.

Please note that we do not recommend using log suspension to take backups
using facilities other than RVA Snapshot and ESS Flashcopy. Although you could
use a backup method such as DFDSS DUMP specifying the
TOLERATE(ENQFAILURE) option, this method is significantly slower than
snapshot technology. The prolonged suspension is likely to severely impact your
production service. Please see 5.1.4, “Suspend updates recommendations” on
page 162 for further information on this.
Chapter 5. Operational enhancements 159

5.1.3 Effects of commands
We provide a description of the DB2 actions and messages when issuing the log
suspension commands.

Effects of SET LOG SUSPEND
The -set log suspend command performs the following actions:

• All unwritten log buffers are externalized to the log.

The -set log suspend command flushes only the log buffers. Pending writes
from the bufferpools are not externalized.

• A system checkpoint is taken.

• The BSDS is updated with highest written RBA. This guarantees that
PGLOGRBA (which records the RBA or LRSN of the last page update) in all
the pagesets is no higher than the highest written RBA on the log when
copied.

• A log write latch is taken which prevents further log records from being written
until either the -stop db2 or -set log resume commands are issued. If DB2
terminates abnormally, the latch is lost and update activity is permitted on
restart.

SET LOG SUSPEND command
Log buffers are externalized
A system checkpoint is taken
BSDS is updated with highest written RBA
A log write latch is taken which prevents updates
Note : Pending writes from the bufferpool are NOT externalised

SET LOG RESUME command
The write latch is released to enable logging and update activity
Held message DSNJ372I is cleared

Effects of commands
160 DB2 UDB Server for OS/390 Version 6 Technical Update

• The following message will be issued to identify the subsystem name and the
RBA at which log activity has been suspended. The message is held until
update activity is resumed.

Effect of SET LOG RESUME
The following actions are performed when the -set log resume command is
issued:

• The write latch is released to enable logging and update activity

• Held message DSNJ372I is cleared

• The following output is issued:

=DB2Y SET LOG SUSPEND
*DSNJ372I =DB2Y DSNJC09A UPDATE ACTIVITY HAS BEEN 030
SUSPENDED FOR DB2Y AT RBA 000007BC6D18
DSN9022I =DB2Y DSNJC001 '-SET LOG' NORMAL COMPLETION

=DB2Y SET LOG RESUME
DSN9022I =DB2Y DSNJC001 '-SET LOG' NORMAL COMPLETION
DSNJ373I =DB2Y DSNJC09A UPDATE ACTIVITY HAS BEEN RESUMED FOR DB2Y
Chapter 5. Operational enhancements 161

5.1.4 Suspend updates recommendations
We recommend the following guidelines are observed when using the -set log

suspend to take a snapshot of the data for offsite recovery.

5.1.4.1 Suspend updates for the minimum time
While the log suspension is in effect, all applications which perform updates, all
DB2 utilities and many commands will freeze. This includes utilities running with
LOG NO which will halt because they update the DSNDB01.SYSUTILX table
space.

All locks and claims held by hanging updating threads will continue to be held. If
the period of suspension is greater than the lock timeout interval, you will see
timeouts and deadlocks. The longer you suspend update activity and the more
work inflight, the greater the likelihood and number of timeouts and deadlocks.

In addition, if there is a prolonged suspension, you may see DB2 and IRLM
diagnostic dumps. This is more likely in a data sharing environment, where
non-suspended members cannot get a response from a suspended member.

In general, read-only processing, both static and dynamic, will continue.
However, there are some circumstances which mean that a system update is
required to satisfy a read request. One possible cause is during lock avoidance,
when the possibly uncommitted (PUNC) bit is set, but the page (or row) lock is
successfully acquired. DB2 would then attempt to reset the PUNC bit. Another
example is auto-rebinds, which cause updates to the catalog. Please bear in
mind that, although updates during read only processing are rare, when they do
occur, the suspension may cause other locks to be held longer than normal,
causing contention within the system.

Suspend updates recommendations

Suspend updates for the minimum time
Locks and claims are retained while all updaters are frozen
Increased chance of timeouts, deadlocks and abends
May see IRLM and DB2 diagnostic dumps
Ideally suspend for less than lock time-out interval
Read-only work may also be impacted

Avoid using during heavy update activity
It will take longer for you to get access to all your data

pending writes are not externalized
restart is equivalent to crash recovery
in-flight URs must be rolled back

RVA SnapShot will require additional capacity
while copy and target identical, no space required
create offsite copy before significant updates

Use extra care with 32 KB pages
162 DB2 UDB Server for OS/390 Version 6 Technical Update

After issuing the -set log resume command, you will have to restart all abnormally
terminated jobs and redo failed transactions. Since this impacts availability and
requires intervention, we recommend suspending updates at a quiet time for the
minimum period.

5.1.4.2 Do not use during heavy update activity
In addition to affecting more users and therefore increasing the likelihood of
timeouts and contention, there are two adverse consequences of taking a
snapshot at a time of heavy update activity:

It will take you longer to get access to all your data
Since pending writes from the bufferpools are not externalized, the table and
index spaces on the offsite copy are not guaranteed to be in a consistent state.
DB2 restart processing at the recovery site resolves all inconsistencies during the
normal phases of forward and backward recovery. You can envisage the restart
process following the restore at the remote site as being precisely equivalent to
the restart processing at the local site after a system crash.

RVA SnapShot will require additional capacity
An RVA SnapShot copy takes no physical space within the RVA provided there is
no difference between the original and the copy of the data. The more updates
made before the copy can be backed up to tape or sent offsite with Peer-to-Peer
Remote Copy, the more spare physical storage is needed onsite.

5.1.4.3 Extra care with 32 KB pages
There is a small exposure when dealing with 32 KB pages if the write is
suspended when writing the extents of a 32 KB page, or when crossing the
volume boundaries. If the snapshot happens between the two I/Os the page will
be inconsistent. Issuing a SET LOG LOGLOAD(0) to force a checkpoint, say 10
minutes before suspending the updates, will further reduce the exposure because
it will externalize all updates. Howevere, it would be safer to run a DSN1COPY
CHECK to exclude inconsistencies in the volumes backup, or recover the page
from a DB2 data set based backup.
Chapter 5. Operational enhancements 163

5.1.5 Offsite recovery considerations
There are a number of things to consider when you use your snapshot copy to
recover the system at the remote site.

5.1.5.1 DB2 start-up considerations
If there were long units of recovery inflight at the point you suspended activity and
took the snapshot, they must be rolled back at DB2 restart. You can reduce the
time taken for DB2 to restart by setting the DSNZPARM LBACKOUT parameter
(limit backout processing) to YES or AUTO. We recommend that you choose
AUTO. If URs are not backed out within the specified backout duration
(DSNZPARM parameter BACKODUR) page sets will be placed in the restart
pending (RESTP) status. If any pageset remains in restart pending you then need
to manually complete backout processing after DB2 restart with the -recover

postponed command to enable read/write access to that data.

5.1.5.2 Offsite copy is log consistent (only)
Following restore of your offsite copies at the disaster recovery site, DB2 will
perform normal restart processing. After completion of forward and backward
recovery, the data will be consistent in that there are no outstanding units of
recovery.

Off-site recovery considerations

Backout processing considerations
LBACKOUT and BACKODUR parameters

Off-site copy is log-consistent (only)
DB2 restart equivalent to crash recovery
Application data is not necessarily at a logical point of consistency
Need procedures to

resume from point of failure
recover to application point of consistency

Consider this when choosing your moment to copy

Reestablish recoverability off-site
EITHER include image copies in your SnapShot
OR take image copies after restart
Watch for PCLOSEN & PCLOSET if using RECOVER with LOGONLY
164 DB2 UDB Server for OS/390 Version 6 Technical Update

It could be that batch processing was occurring at the time of the snapshot and
DB2 restart rolls the data back to the last commit point. If the batch program
commits regularly, the data will reflect the position midway through the batch job
or suite. To take your applications to a point of logical consistency, you may need
to:

• Recover to a previous point in time at which you know the application data to
be consistent.

• Design your applications and JCL to support restart processing. Ensure that
you back up any non-DB2 data required to restart incomplete jobs (sequential
data sets, VSAM files, and so on).

• Ensure that there is no work inflight at the point you suspend update activity
that you cannot resolve at the disaster recovery site after DB2 restart.

Online transactional update activity typically presents less of a challenge to
resolve than batch processing because it will be rolled back during backward log
recovery. The updates made by these transactions are “lost” and need to be
re-done. Although this requires re-work, obtaining a point of application
consistency is more straightforward. Although this is also true of batch
applications that do not commit, we recommend strongly against this approach
which can compromise the operability and availability of your production system.

5.1.6 Re-establish recoverability offsite
After DB2 has restarted at the disaster recovery site, you need to protect yourself
against media or application failure. There are three ways you can achieve this:

• Take full image copies of the DB2 catalog, directory, and application data
when DB2 has been restarted.

• When you take the snapshot of your DB2 system, include snapshot copies of
your image copy data sets.

• Take no extra backups and if a recovery is required, re-restore the table
spaces to the snapshot copy and use the RECOVER utility with the LOGONLY
option.

We recommend the first option so that your production image copies do not need
to be on disk during the Snapshot and to minimize the volume of data to be sent
offsite. However between the time of the start-up and image copy completion the
data is unrecoverable.

If you intend to rely on recovery with LOGONLY we recommend that you review
the DSNZPARM parameters PCLOSEN and PCLOSET and consider how they
may influence offsite recovery time. Values of these parameters affect when the
header page HPGRBRBA (recover base RBA or LRSN) field is updated which is
the starting point for LOGONLY recovery. Since pending writes in the bufferpools
are not externalized by -set log suspend, when the copies of pagesets are taken
HPGRBRBA could be very old. This may increase substantially the time taken to
recover, as well as increase the likelihood of requiring archive logs.
Chapter 5. Operational enhancements 165

5.1.7 Operational considerations
You should be aware that -set log suspend will fail if an -archive log

mode(quiesce) or -stop DB2 is in progress.

The -set log suspend command is not logged or recorded in the BSDS. The
console and messages in the MSTR address space indicate that update activity
was suspended.

5.1.7.1 Data sharing considerations
The scope of the -set log suspend command is the member of the data sharing
group to whom the command is addressed.

To snapshot-copy an entire data sharing group, you need to:

• Issue -set log suspend on each member of the data sharing group

• Snapshot copy all members logs, BSDS and system data sets as well as
the data.

• Resume update activity on all members

We recommend that you use automation to achieve this.

5.1.7.2 Understand how to diagnose problems
You need to be aware of the impact of the -set log suspend command on
executing jobs, transactions, commands and utilities. You may be called upon to
diagnose an apparent system hang caused by a prolonged suspension of log
updates. The following are all symptoms:

Operational considerations

Scope of the command is member, not group
Recommend automation

Suspend will fail if -archive log mode(quiesce) or -stop DB2 in
progress

Suspend not reported in BSDS or DB2 log

Understand how to diagnose effects
frozen CPU and I/O counts
no response to ATTN from TSO users
highlighted message DSNJ372I
STOP DB2 needs to log
166 DB2 UDB Server for OS/390 Version 6 Technical Update

• DB2 utilities and batch jobs freeze. CPU and I/O counters stop increasing, but
the jobs will not appear to be swapped out.

• Highlighted message DSNJ372I is displayed on the console, indicating that
logging is suspended. You should check the console if you suspect a problem
due to a suspension of logging activity.

• If you try to cancel a thread that has performed updates, it will need to roll
back. However, this cannot occur while log activity is suspended, so the job
will appear to be swapped out until either you issue the -set log resume

command or -stop db2. After a -stop db2 you will receive DSNY002I by way of
confirmation that the subsystem is stopping, then immediately afterwards, you
will receive DSNJ373I, indicating that update activity is resumed. Resumption of
logging activity must occur, as log updates are required to achieve the
shutdown checkpoint. Only then will the cancel command take effect.

• Jobs may abend with S322 because the TIME parameter on the job card or for
their execution class is exceeded. You should also anticipate timeouts,
deadlocks, and utility abends, as shown below:

.

• TSO users performing DB2 updates see the system clock waiting for a
response from DB2. ATTN (which initiates abort processing) will not give
control back to the user. Attempts to cancel the TSO user with the /c

u=<userid> command will fail;
the cancel cannot take effect until logging is resumed.

• If you use RMF Monitor III to diagnose delays, you will see that the DB2
subsystem started tasks and frozen jobs are delayed as shown below:

.

• If you use an online monitor such as DB2 PM to diagnose performance and
system problems, you need to remember to activate required traces before
you suspend log activity, because the -start trace command will be
suspended. Threads will appear to be in-DB2. The output below shows thread
activity after a -set log suspend has frozen their update activity at two times
approximately 25 seconds apart. Accounting time for classes 1 and 2 (also
class 3 — not shown) continues to accumulate, as you can see below:

QUIESCE TABLESPACE PAOLOR8.CHCKPAGE
DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = PAOLOR8P.S0080
DSNU099I =DB2Y DSNUGASU - IRLM LOCK REQUEST FAILED,

IRLM RETURN CODE = X'00000008'
IRLM REASON CODE = X'2000'

Service WFL USG DLY IDL UKN ------- % Delayed for ------- Primary
Name C Class % % % % % PROC DEV STOR SUBS OPER ENQ Reason
DB2YDBM1 S SYSSTC 0 0 0 100 0 0 0 0 0 0
DB2YMSTR S SYSSTC 0 0 0 100 0 0 0 0 0 0
DB2YIRLM S SYSSTC 0 0 0 100 0 0 0 0 0 0
DB2YDIST S SYSSTC 0 0 0 100 0 0 0 0 0 0
DB2YSPAS S SYSSTC 0 0 0 100 0 0 0 0 0 0

Sample image copy job...
Job: PAOLOR8I Primary delay: Job is in an unknown state.

Job: DB2YMSTR Primary delay: Job is in an unknown state.
Chapter 5. Operational enhancements 167

• Usually those DB2 commands which do not update will function normally but
this will depend on circumstances. This includes -display thread, -display
database, -display util and so on. Output from the -display thread(*)

command is shown below and indicates that the threads are active in DB2:

The -dis log command should function normally, and indicates whether
logging has been suspended (see sample output below). Commands such as
-start database, -stop database, -cancel thread, -term util cannot be
processed. Commands, including for example -dis util(*), may hang where
there are locking conflicts on the directory:

Program Connection ------- Elapsed -------
Primauth Planname name ID Status Class 1 Class 2

_ PAOLOR8 DSNUTIL N/P UTILITY LOCK 2:04.24755 2:04.18673
_ PAOLOR8 DSNUTIL N/P UTILITY LOCK 1:35.30055 1:35.25117
_ PAOLOR8 N/P BATCH DB2 2:01.96169 2:01.96157

25 seconds later...
Program Connection ------- Elapsed -------

Primauth Planname name ID Status Class 1 Class 2
_ PAOLOR8 DSNUTIL N/P UTILITY LOCK 2:30.20922 2:30.14840
_ PAOLOR8 DSNUTIL N/P UTILITY LOCK 2:01.26222 2:01.21284
_ PAOLOR8 N/P BATCH DB2 2:27.92336 2:27.92324

-DIS THD(*)
DSNV401I =DB2Y DISPLAY THREAD REPORT FOLLOWS -
DSNV402I =DB2Y ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 206 spbzeta2.exe PAOLOR7 DISTSERV 003F 80
V437-WORKSTATION=N00E97F8, USERID=paolor7,

APPLICATION NAME=spbzeta2.exe
V445-G90196D5.O704.01C427170305=80 ACCESSING DATA FOR 9.1.150.213
BATCH T * 3 PAOLOR8T PAOLOR8 0033 106
BATCH T * 3 PAOLOR8C PAOLOR8 0030 102
UTILITY T * 4 PAOLOR8I PAOLOR8 DSNUTIL 0031 104
UTILITY T * 4 PAOLOR8Q PAOLOR8 DSNUTIL 0032 105
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I =DB2Y DSNVDT '-DIS THD' NORMAL COMPLETION

=DB2Y DIS LOG
DSNJ370I =DB2Y DSNJC00A LOG DISPLAY 055
CURRENT COPY1 LOG = DB2V610Y.LOGCOPY1.DS03 IS 4% FULL
CURRENT COPY2 LOG = DB2V610Y.LOGCOPY2.DS03 IS 4% FULL
H/W RBA = 000007BC6D18, LOGLOAD = 50000
FULL LOGS TO OFFLOAD = 0 OF 6, OFFLOAD TASK IS (AVAILABLE)
DSNJ371I =DB2Y DB2 RESTARTED 13:56:51 MAR 16, 2000 056
RESTART RBA 0000055FD000
DSNJ372I =DB2Y DSNJC00A UPDATE ACTIVITY HAS BEEN SUSPENDED FOR DB2Y
057
AT RBA 000007BC6D18
DSN9022I =DB2Y DSNJC001 '-DIS LOG' NORMAL COMPLETION
168 DB2 UDB Server for OS/390 Version 6 Technical Update

The APAR identifier is as follows:

PQ31492.

APAR identifier
Chapter 5. Operational enhancements 169

5.2 Defer defining data sets

VSAM data sets underly table spaces and indexes. For STOGROUP implicitly
defined table and index spaces, the VSAM define is performed automatically on
behalf of DB2 when the DB2 object is created. It takes approximately 0.5 - 0.6
seconds for each define to be processed. If your application has a large number
of objects, the overhead of VSAM define processing can be significant. In
addition, if you use only a subset of the functions of a packaged application, you
may find you have to create large numbers of objects that you do not use.

The enhancement introduced with this refresh allows you to defer the physical
definition of the underlying VSAM data set until first use.

5.2.1 Effect of deferring DEFINE of VSAM data sets
The CREATE TABLESPACE and CREATE INDEX statement syntax has been
changed. The option DEFINE YES is the default and works as today. DEFINE NO
has the following effects.

• The VSAM data set are not created. There are no Integrated Catalog Facility
(ICF) entries made. The data sets are not defined in the VVDS or VTOC.

• DB2 catalog entries are added for the new objects. The catalog tables,
SYSIBM.SYSTABLEPART, SYSIBM.SYSTABLESPACE and so on are
populated to record the definition of the objects. The actual status of the
object, undefined if you specify DEFINE NO, is recorded as a value of -1 in the
SPACE column of SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART.

Defer defining data sets

Ability to defer definition of underlying VSAM data sets
For table spaces and index spaces (DEFINE NO)
From CREATE TABLESPACE or INDEX to INSERT

Good for large applications which create empty tables

Simpler space management

Saves DASD

Faster install of ERP products
170 DB2 UDB Server for OS/390 Version 6 Technical Update

• You can find out all the objects for which define is deferred by searching for
the value -1 in the SPACE column of SYSIBM.SYSTABLEPART for table
spaces or SYSIBM.SYSINDEXPART for indexes.

• You can issue ALTER TABLESPACE (or INDEX) after creation and before the
VSAM data set is defined, in which case the definitions as specified in the
catalog are updated by the ALTER as normal. This does not apply to the
DEFINE attribute that cannot be changed with ALTER.

• Applications which attempt to access data in undefined objects receive return
codes as for an empty table, no special error is returned. A qualified SELECT
will receive SQLCODE 100, a SELECT COUNT(*) will return SQLCODE 0 and
a value of 0.

• The STOSPACE utility tolerates undefined objects. The value of SPACE -1
results in the object being skipped by STOSPACE.

• At the first write (insert or LOAD specifying either RESUME or REPLACE),
DB2 resets the undefined status in the catalog by updating the SPACE column
and creates the underlying VSAM data sets.
Chapter 5. Operational enhancements 171

5.2.2 Impact on DDL performance
To assess the performance improvements you may expect with this
enhancement, we measured the elapsed time to create 100 table spaces, tables
and indexes comparing DEFINE YES and DEFINE NO. The time spent in VSAM
is shown separately.

This analysis shows that:

• VSAM activity represents a significant part of the cost of the create table
space and create index statements.

• DEFINE NO improves elapsed time by 68 times.

• The create table statement is significantly faster with DEFINE NO because
there is no VSAM open and DB2 does not need to access the header page.
Although the elapsed time improvement is small for our test of only 100 tables,
when you need to create many thousands, the performance improvements
might be significant. Reducing the elapsed time may also help improve
concurrency, as the duration of locks will be reduced.

Impact on DDL performance

DDL operation DEFINE NO
Elapsed Time

DEFINE NO
VSAM time

DEFINE YES
Elapsed time

DEFINE YES
VSAM time

Create table space 0.60 0.01 53.74 51.8

Create table 0.55 6.06

Create Index 0.61 0.01 60.12 57.8

Total elapsed (sec) 1.76 119.92

All time measurements are in seconds
Shows time taken to create 100 table spaces, tables and indexes (Elapsed)
For create table space and create index separate figure is shown for the VSAM
component (VSAM time)
VSAM element for DEFINE YES is large proportion of the total elapsed time
Improvement in create - 68 times faster elapsed

NOTE: elapsed time for first insert increased
172 DB2 UDB Server for OS/390 Version 6 Technical Update

5.2.3 Where define no helps
The most apparent benefit from this enhancement is the performance
improvement to DDL processing, particularly if you are creating large numbers of
objects. The diagram above shows the number of pagesets required for SAP R/3
for various releases. There are some additional benefits introduced by this
enhancement that you may be able to exploit.

• Some generalized vendor products, including SAP R/3 and PeopleSoft, can
create many more DB2 objects than you intend to use. This is most apparent
when you are using a small subset of the features or modules the product
provides. If you specify DEFINE NO:

• Installation of the product is faster.

• You will realize a saving on the amount of disk required, because only
those data sets you use are physically defined.

• The size of your ICF catalog is reduced, because there are entries only for
those data sets which contain data rather than every DB2 object in the DB2
catalog.

• Since the DEFINE NO does not create or open the VSAM data set until data is
written, you will see some relief for DBM1 storage in circumstances where you
are creating many thousands of data sets and you are close to hitting the
maximum number of open data sets.

• Since the data sets are not created until first use, you can create all the DB2
objects you will need for an application ahead of your acquisition of the disk
storage necessary to physically support the data. This enables you to carry
out the tasks required to build your applications in parallel.

Where DEFINE NO helps

3.0 3.1 4.0 4.5 4.6

SAP R/3 Release

0

5

10

15

20

25

T
ho

us
an

ds
N

um
be

r
of

da
ta

se
ts

Tables
Indexes typically half of pagesets empty

DEFINE NO
+ much faster installation
+ simpler DBA operations
+ better DASD utilization
- utility considerations
- housekeeping issues
Chapter 5. Operational enhancements 173

5.2.4 Restrictions
• If you create an index on a table which is already populated with data, DEFINE

NO is ignored and the VSAM data sets are created, opened and DB2
populates the index.

• You may not use the DEFINE NO option on the work database. The create will
fail with SQLCODE -620.

• The DEFINE NO is valid only for STOGROUP defined objects. If you specify
both VCAT and DEFINE NO options together you will not see an error but the
DEFINE NO will be ignored.

• DEFINE NO is not supported for LOBs or indexes on auxillary tables.

• DEFINE NO is not supported for temporary databases.

• DB2 online utilities that access the underlying VSAM data set will tolerate the
absence of the VSAM data set. The service aids such as DSN1PRNT and
DSN1COPY that access the data set cannot process undefined objects. They
will fail with an allocation error identifying the missing data set name.

• For partitioned table spaces the DEFINE option applies to the entire table
space. You cannot specify a mixture of DEFINE YES and DEFINE NO for
different partitions.

• When you perform an insert or LOAD into a single partition of a partitioned
table space, VSAM data sets for all underlying partitions are created, not just
the one affected by the write operation.
174 DB2 UDB Server for OS/390 Version 6 Technical Update

5.2.5 Things to watch out for
You need to be aware that the use of DEFINE NO might cause some operational
issues. They are caused by the change in the way your installation behaves when
exploiting the feature:

• Since you are deferring the physical definition of the data set until write, you
will find that some errors you currently associate with create are now deferred
until the first insert or LOAD.

• A consequence of deferring an error to first use means that problems you
would have encountered at the time you were creating your database (ahead
of production implementation) could now become run-time production failures.
You will not see an error you would have not had before but it might be more
urgent.

• We recommend that you inform your storage administrators that you are using
this feature and ensure they are aware of any latent demand for disk from
undefined DB2 objects. It is possible to imagine a scenario where, by
post-installation of an application, a capacity planner observes the actual
space requirement to be considerably less than expected. If capacity was
required elsewhere, you might find that storage managers have moved what
appeared to be free capacity to another SMS storage group. When the DB2
application using the undefined objects comes to use them, you might see:

• Run-time failures.

• Sudden and dramatic changes in disk utilization that are apparently
unrelated to the implementation of an application.

Things to watch out for
Impact and possible problems with create are deferred to first
write time (insert or load)

installation problem may become production failure

Storage administrators may interpret free disk as unused
be aware of latent demand
sudden unpredictable demand for disk
they may deploy it elsewhere

First insert pays price of define and open

Downlevel DB2 or member cannot access undefined object

Automated housekeeping might need adjustments

ISV utilities
must be aware of SPACE
must not get DB2 and VSAM out of synchronization
Chapter 5. Operational enhancements 175

• The first time your application performs inserts, especially if to a large number
of undefined physical objects, you could see an initial but transitory
performance problem. The work formerly done by DB2 at create is deferred
until write. The application, rather than the installation process, must pay for at
least the cost of physical define (and open).

• If any of the members of a datasharing group are downlevel or if you fallback
to a prior release, an attempt to access an undefined object results in
SQLCODE -904.

• If you have a highly automated housekeeping environment in which utility
execution is determined dynamically based on catalog queries, you might
need to interrogate the SPACE column and skip undefined objects. Most
online utilities, however, will tolerate table spaces and indexes without
underlying data sets and will not generate non-zero return codes. The
restrictions apply to offline utilities and COPY with a list of objects.

• In some situations, the DEFINE NO option is not applicable. You need to be
aware of these so that you have sufficient disk. APAR PQ34029 introduces the
SQLCODE warning +20122 DEFINE NO OPTION IS NOT APPLICABLE IN THE CONTEXT

to indicate that you request of DEFINE NO has been ignored and the physical
define has occurred. DEFINE NO is ignored in the following circumstances

• CREATE INDEX statement that included the VCAT clause

• A CREATE TABLESPACE statement that included the VCAT clause

• CREATE INDEX statement for a non-empty table

• CREATE INDEX statement for an auxiliary table

• CREATE LOB TABLESPACE statement

• If you use independent software vendors (ISV) products that directly access
VSAM data sets, there are two important considerations:

• Utilities may fail with missing VSAM data set errors if the product vendor
does not check for undefined objects.

• If an ISV utility such as load creates and loads data directly into an
underlying VSAM data set, there will be a mismatch between what DB2
expects (no VSAM data set) and reality. If DB2 detects a VSAM data set
that should not be there according to its catalog definition, reason code
00D70043 is returned to the calling application.

The APAR identifier is as follows:

PQ30999, PQ34029, PQ34386, PQ34592, PQ34030.

APAR identifier
176 DB2 UDB Server for OS/390 Version 6 Technical Update

5.3 DDF suspend

When performing data definition language (DDL) statements such as create, alter
and drop, exclusive locks on catalog and directory objects must be acquired.
Applications accessing data from tables in the same database as those against
which you want to perform DDL may hold incompatible locks and prevent the
execution of DDL.

5.3.1 Applications may retain incompatible locks
If you only have a small window to perform some database maintenance, you
would need to cancel threads holding incompatible locks in some way. If you
operate in a distributed environment, these problems can occur:

• Because DB2 is capable of supporting a very large number of remote
connections (up to 150,000), you will probably find -cancel thread is a poor
option. It could take longer than your maintenance slot to identify all the
connections blocking your DDL operation, and it is possible for new threads to
connect and continue to thwart progress.

00SJ61080011

DDF suspend

DB2 UDB for
OS/390 V6

TCPIP

DB2 CONNECT

AIX
DB2 UDB V6

PERSONAL EDITION

Timed-out waiting
for lock

release(deallocate) type 2 inactive
threads retain locks

active threads hold locks
cancel thread: takes too long
stop ddf

force disruptive
quiesce waits: may take too long

Alter
index ?
Chapter 5. Operational enhancements 177

• It is not unusual for client applications to be connected but inactive. It is
possible that locks are retained while threads are connected. This is
particularly true for packages bound with RELEASE(DEALLOCATE) and
where thread pooling for inactive DDF connections (type 2 inactive threads) is
enabled. You determine whether DDF threads can become inactive in the DDF
THREADS field of the installation panel DSNTIPR. If you choose the
recommended value INACTIVE, remote threads can become ‘inactive’ after
successful commit or rollback (provided no cursors are held). The associated
pool thread can then be reused by other database access threads. However,
in the mean time, the pool thread still holds allocation duration locks that may
prevent DDL operations.

• Although a -stop ddf command will successfully terminate inactive threads,
DDF will not stop until all the active remote connections have terminated. This
is one reason why we recommend that you choose INACTIVE for DDF
THREADS. Stopping DDF can be quite disruptive — all threads, even those
accessing databases you are not trying to apply maintenance to, are affected.
Since you must wait until active DDF threads have disconnected, the outage
can be considerable.

• The command -stop ddf mode(force) is highly undesirable, because you may
be forced to recycle the requesting DDF address space(s) with -stop ddf and
-start ddf to re-establish the conversation. If this DDF is a system which you
do not administer, or which operates on a different time zone, it could be very
difficult to negotiate a mutually agreeable maintenance slot. If there are many
DDF connections, re-establishing access to your DB2 system could require
significant effort.
178 DB2 UDB Server for OS/390 Version 6 Technical Update

5.3.2 STOP DDF MODE(SUSPEND)
The STOP DDF command has been extended by adding a new SUSPEND mode
option. DDF server processing is suspended without terminating remote
connections. The effect of this suspend option is to quiesce DDF activity as
follows:

• Inactive DDF threads remain inactive; they cannot become active until a
subsequent -start ddf command is issued.

• DDF pool threads are terminated.

• Requests for new server connections are queued. Inbound DDF work (other
than re-synchronization activity to resolve in-doubt threads) cannot be
initiated.

• Outbound DDF threads are unaffected.

Suspension of DDF activity will clear inactive threads, so resources held by
packages bound with DEALLOCATE will be released. However, since active
threads remain, it is possible that your DDL operations will still fail because active
threads may hold locks you need. At this point, you will typically need to consider
two options:

• Abandon the maintenance slot altogether and reschedule.

• Cancel all those active threads holding incompatible locks that continue to
frustrate your DDL statements. At least with DDF suspended, no new
connections can be made while you remove the active threads.

Two optional parameters to the -stop ddf mode(suspend) command help ease the
manual intervention required to effect your decision.

Click here for optional figure # YRDDPPPPUUU

STOP DDF MODE(SUSPEND)
DSNL069I =DB2Y DSNLSSRS DDF IS SUSPENDING
DSNL066I =DB2Y DSNLSSRS STOP DDF MODE(SUSPEND)
COMPLETE

STOP DDF MODE(SUSPEND)

DB2
SERVER

INACTIVE THREAD

ACTIVE THREAD

WAIT

NEW THREAD

Connection
requests
queued
Chapter 5. Operational enhancements 179

• CANCEL(n) option cancels all active threads when suspend processing has
not completed successfully in n seconds. Cancel has a range of 0 - 9999
seconds.

• WAIT(n) resumes DDF processing again if suspend processing has not
completed successfully in n seconds. Wait has a range of 0 - 9999 seconds.

It is an operational decision as to whether you manually issue -cancel ddf thread

commands (or use VTAM commands) or use the new options of the -stop ddf

mode(suspend) command. Using -cancel ddf thread requires manual intervention
and can be time consuming, particularly if there are many threads frustrating your
maintenance work. It has the advantage, though, that if only a few of the active
threads are holding incompatible locks, the majority of inflight distributed work
can continue unaffected.

If it is unacceptable to cancel active threads, you could use the WAIT keyword
and if threads did not terminate by the end of the time period specified, DDF is
restarted automatically. You would then have to reschedule your maintenance
work.

If there are many connections to be cancelled and it is acceptable to cancel
active remote threads, it may be better to disconnect all the active threads using
the CANCEL option.
180 DB2 UDB Server for OS/390 Version 6 Technical Update

5.3.3 STOP DDF MODE(SUSPEND) WAIT(n)
The diagram shows DB2’s response to use of MODE(SUSPEND) with the WAIT
keyword. A distributed thread attempts to connect to DB2 after the stop command
has been issued. It waits until DB2 determines the suspend time has been
exceeded. Message DSNL072I indicates that this has occurred. The situation then
is just as if you had issued a -start ddf, and the connection can now be made.

Click here for optional figure # YRDDPPPPUUU

STOP DDF MODE(SUSPEND) WAIT (120)

DB2
SERVERWAIT (n)

ACTIVITY RESUMED - CONNECT

=DB2Y STOP DDF MODE(SUSPEND) WAIT(120)

DSNL069I =DB2Y DSNLSSRS DDF IS SUSPENDING

DSNL072I =DB2Y DSNLSSRS WAIT TIME EXPIRED, DDF RESUME
PROCESSING INITIATED

DSNL070I =DB2Y DSNLSSRS DDF IS RESUMING DSNL068I =DB2Y
DSNLSSRS START DDF (RESUME PROCESSING) COMPLETE

Note: as if you had issued START DDF
Chapter 5. Operational enhancements 181

5.3.4 STOP DDF MODE(SUSPEND) CANCEL(n)
The diagram shows DB2’s response to use of MODE(SUSPEND) with the
CANCEL keyword. Inactive threads are disconnected immediately. Active threads
remain connected for the specified time and are then cancelled. Applications
receive ABEND S04E with reason code 00D3001A. Subsequent SQL calls result in an
error with message SQL30081N (communication error) returned.

Console messages identify DDF threads abnormally terminated as a result of the
CANCEL option.

Click here for optional figure # YRDDPPPPUUU

DSNL069I =DB2Y DSNLSSRS DDF IS SUSPENDING

DSNL073I =DB2Y DSNLSSRS CANCEL TIME EXPIRED, CANCEL

ACTIVE DBAT PROCESSING HAS BEEN INITIATED

DSNL066I =DB2Y DSNLSSRS STOP DDF MODE(SUSPEND) COMPLETE

DSNL027I =DB2Y SERVER DISTRIBUTED AGENT WITH

LUWID=G9019648.PA06.000331182130=546

THREAD-INFO=PAOLOR1:N00EE3EB:paolor1:db2ccs.exe

RECEIVED ABEND=04E

FOR REASON=00D3001A

DSNL028I =DB2Y G9019648.PA06.000331182130=546

ACCESSING DATA FOR

LOCATION

IPADDR 19.21.150.172

STOP DDF MODE(SUSPEND) CANCEL(60)

INACTIVE THREAD

ACTIVE THREAD

DB2
SERVER

remains active
for n seconds
182 DB2 UDB Server for OS/390 Version 6 Technical Update

5.3.5 DDF command options
The table above shows what combinations of START DDF and STOP DDF are
valid depending on the state of the DDF. You can issue the STOP DDF
MODE(SUSPEND) command only when DDF is started. All other combinations
result in an error.

We recommend that you avoid use of the -stop ddf mode(suspend) command with
the cancel option if it would result in the cancellation of a large number of active
threads, particularly if this will result in prolonged rollback activity. You will have to
wait for rollback to complete before the locks are released and it will result in
unnecessary logging activity. The work lost will then have to be re-done.

We also recommend that you do not suspend activity for too long, particularly if
this results in extensive queues. This could cause problems for DDF requesters
and when activity is resumed you may see a spike of abnormally high activity on
your server.

Command -

DDF STATUS

START
(DB2 or DDF)

STOP
(DB2 or DDF)

STOP FORCE
(DB2 or DDF)

STOP DDF
MODE(SUSPEND)

Starting Error Error Error Error

Started Error OK(stop) OK(stop) OK(suspend)

Stopping Error Error Error Error

Stopped OK(start) Error Error Error

Suspending OK(resume) OK(stop) OK(stop) Error

DDF command options

avoid cancelling many long running units of work
avoid suspending activity for long periods of time

Recommendations

The APAR identifier is as follows:

PQ27123.

APAR identifier
Chapter 5. Operational enhancements 183

5.4 Faster cancel thread

Prior to this enhancement, the point at which the cancel thread command was
effective depended on the threads status. If the thread was active in DB2, it was
terminated at the next awaited internal event such as a wait for a synchronous I/O
or a lock.

If the thread was not in DB2, because inactive or suspended, the cancel was not
effective until the next time the thread was resumed in DB2. This caused a variety
of problems:

• It could take a long time for the cancel command to be honored. This is
especially true for inactive or suspended threads where the user may no
longer be at the workstation.

• The resources acquired by the thread were retained which could cause
locking problems for other applications or utilities.

• A scheduled -stop db2 would wait until the thread terminated. This extends a
planned outage of DB2 for maintenance and reduces the DB2 down time
available for support personnel.

• In extreme cases, it might even be necessary to cancel the allied task or shut
down DB2 with the force option to disconnect the thread.

This enhancement improves operability because now, even if the thread is not
active in DB2, it undergoes termination processing. Thread termination is now
independent of application activity.

Faster cancel thread

Previously the effect depended on status of thread:
no effect until inactive or suspend thread resumed in DB2

end users
persistent threads awaiting work

locks would be retained, a -stop DB2 would wait

Thread termination will now occur even if thread is inactive in
DB2

Application will find out about disconnection at next DB2
request

Applies only to local threads

Still no effect during "must complete" functions like commit,
rollback
184 DB2 UDB Server for OS/390 Version 6 Technical Update

5.4.1 Cancel thread example
The improvement introduced by this enhancement is illustrated in the diagram
above. A thread is connected to a DB2 subsystem from a TSO session (such as
QMF or SPUFI) and is running a query against the catalog. Output from -display

thread(*) and -display database(dsndb06) space(*) locks only is shown. The
thread’s token is 15. The output indicates that the thread is connected, but is
processing within the application outside DB2 (shown by the active indicator
being set to blank) in the display thread report rather than an asterisk. See the
DB2 UDB for OS/390 Version 6 Messages and Codes, SC26-9011-01 for details
about how to interpret information from these commands.

The accounting time line shows the time spent in-DB2 (class 2) and the total time
since first connection to DB2 and thread termination (class 1). As is often typical
of TSO attached threads, the class 1 accounting time is significantly larger than
class 2 time. The points A and B are different points where the cancel thread
command is issued. At point A, the thread is active, but not in DB2; whereas at
point B, the thread is in DB2 accumulating class 2 accounting time.

Prior to the enhancement -cancel thread(15) at point A results in message
DSNV426I confirming cancellation but the resources remain allocated. Subsequent
-display thread(*) commands show the thread is still connected to DB2 and all
its locks retained. Only at the next DB2 request (point C) is the thread actually
cancelled and resources freed. The application receives abend S04E with reason
code 00E50013. If the thread is cancelled at point B, the cancel occurs at the next
internal awaited event at point D. Although there is a wait, this will appear more or
less instantaneous to the operator who issued the cancel command, and DB2
resources will have been freed.

Cancel thread example - QMF user

=DB2Y DIS THD(*)
DSNV401I =DB2Y DISPLAY THREAD REPORT FOLLOWS -
DSNV402I =DB2Y ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
TSO T 171 PAOLOR8 PAOLOR8 DSNESPCS 0042 15
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I =DB2Y DSNVDT '-DIS THD' NORMAL COMPLETION

=DB2Y DIS DATABASE(DSNDB06) SPACE(*) LOCKS ONLY
NAME TYPE STATUS CONNID CORRID LOCKINFO
SYSDBASE TS RW TSO PAOLOR8 H-IS,S,C
SYSDBAUT TS RW TSO PAOLOR8 H-IS,S,C
SYSUSER TS RW TSO PAOLOR8 H-IS,S,C
******* DISPLAY OF DATABASE DSNDB06 ENDED **********************

Class 1 time

Class 2 time

A B-cancel thread(15)

c d
Chapter 5. Operational enhancements 185

5.4.2 Operational improvement
So, in the diagram above, the cancel issued at point A occurs at A and DB2
resources are freed immediately.

The application finds out about its disconnection at the next DB2 request. The
error returned to the application depends on the precise timing of the cancel
command relative to the point at which the thread attempts to reconnect to DB2.
If the reconnect occurs at the point at which the cancel is issued you may see
S04E with reason code 00E50013. Normally though, termination processing will
occur before the next DB2 call and so you will see SQLCODE -924 at the next
attempted SQL call to indicate a connection failure.

You can still request a dump by specifying the DUMP keyword on the cancel
thread command.

5.4.3 Restrictions
The enhancements to the cancel thread command apply only to local threads. If
you need to cancel a distributed thread that is active in DB2 you should issue the
-cancel ddf thread command. If the DDF thread is inactive hanging in VTAM then
you can use VTAM commands to cause VTAM to return processing to DB2 which
will result in thread termination. Refer to DB2 UDB for OS/390 Version 6
Command Reference, SC26-9006-01.

To protect integrity, it is still true that the cancel has no effect during “must
complete” functions such as commit and rollback.

The APAR identifier is as follows:

PQ34465, PQ34466, PQ36702.

APAR identifier
186 DB2 UDB Server for OS/390 Version 6 Technical Update

5.5 Data sharing enhancements

Three enhancements in this code refresh bring operational improvements in a
data sharing environment. These are improved shutdown performance, a new
IMMEDWRITE BIND option, PH1, to help order dependent processing, and
enhancements to the Instrumentation Facility Interface (IFI) which extend the
scope of some commands to the group rather than member.

Data sharing enhancements

Improved shutdown performance

CASTOUT(NO) option

New IMMEDWRITE(PH1) BIND option

IFI and commands with group scope
data sharing group view
Chapter 5. Operational enhancements 187

.

5.5.1 Faster data sharing member shutdown
The normal shutdown process of a data sharing member includes castout
processing. If the member is the castout owner of updated pages in the group
buffer pool (GBP), it will determine whether it can transfer castout ownership to
another member. However, if it is the only member in the group updating the
pageset/partition, it will write the updated pages out to disk during shutdown.
Since there is no physical connection between the group buffer pool and disk,
these writes are performed by the closing member’s DBM1 address space. This
process can be time consuming.

In most situations, DB2 shutdown is required simply to recycle DB2 to apply
maintenance, pick up a changed DSNZPARM or free up any unused storage.
Even with Name Class Queue support which was introduced with Coupling
Facility Level 7 and is discussed in 6.5, “Data sharing improvements” on page
247, shutdown takes longer than desired.

To speed up the process, the CASTOUT(NO) option has been added to the -stop

db2 command. In a non-data sharing environment, the castout option is ignored.
In a data sharing environment, the member shutting down bypasses castout and
delete name processing.

The consequences are that:

• The -display group command will show member(s) of the group that were shut
down with CASTOUT(NO) in ‘QC’ status - quiesced but with some castout
work incomplete.

1

Faster data sharing member shutdown

-STOP DB2 CASTOUT(NO)
castout of member pages from GBP to DASD not performed
members P-locks are retained
GBP connection enters 'failed-persistent' state for member
display group shows member in QC status

performance improvements
do not shut down all members using CASTOUT(NO) - group recovery required at
restart

0 20 40 60 80 100 120

shutdown time (seconds)

CASTOUT(YES)
CASTOUT(NO)

Shudown time to stop one member after running in a 2
way data sharing system at 57 commits/second for at
least 10 minutes with CASTOUT(YES) against CASTOUT(NO)

44% reduction in elapsed time
no increased restart time
188 DB2 UDB Server for OS/390 Version 6 Technical Update

• For those member(s) shut down with CASTOUT(NO), P-locks will be retained
in IX mode for those objects for which the member was the last updater. These
IX locks will enable other members to update the object, but will prevent
utilities from running against the object until the member is restarted.

• Since castout does not occur, group buffer pool connections from member(s)
shut down with CASTOUT(NO) enter the ‘failed-persistent’ state.

DB2 restart converts retained P-locks to active and drives a special open to
perform pseudo close for those objects for which the member was the last
updater. This closes off the log range for the pageset.

Performance improvements with CASTOUT(NO)
The shutdown time for a member of a data sharing group is significantly faster.
The average reduction in elapsed time was 44% (ranging from a 13-85%
improvement) when CASTOUT(NO) is specified. Similar improvements are
observed if multiple members of a group are shut down simultaneously with the
CASTOUT(NO) option. We observed no increase in member restart time.

Consideration
If you are shutting down members to obtain a consistent copy of the databases,
you should avoid using CASTOUT(NO) for all members on shutdown since the
latest version of the data might still be in the GBP. Even though all members are
inactive, the data may not be consistent until the latest copy of the data is
retrieved from the structure during restart.

The APAR identifier is as follows:

PQ29907 and PQ35845.

APAR identifier
Chapter 5. Operational enhancements 189

5.5.2 New IMMEDWRITE(PH1) bind option
The IMMEDWRITE bind option determines when DB2 writes an updated page to
the GBP. If you specify IMMEDWRITE(YES), the page is written to the GBP as
soon as the buffer update completes. This option is useful for order dependent
transactions being processed in a data sharing environment.

This can be illustrated by the following scenario. Imagine you have a data sharing
group with two members. An IMS transaction T1 makes a change to a data page
on the first member of the group. A second transaction, T2 bound with anything
other than repeatable read (RR) and therefore capable of exploiting lock
avoidance, is spawned before phase 2 commit processing. Both T1 and T2 are
bound with IMMEDWRITE(NO). Assume T2 depends on the data base changes
made by T1. Since phase 2 commit has not completed it is possible that
cross-invalidation and the update to the group buffer pool will not have been
completed. Therefore, T2 will not see T1’s update. This only happens if T2 runs
on a different member from T1.

Today, ways of ensuring T1’s update is visible to T2 include

• Execute the two transactions on the same member

• Bind with IMMEDWRITE(YES) which as an effect on performance

• Bind with RR which impacts concurrency

The new IMMEDWRITE(PH1) option writes GBP dependent pages at phase one
commit so allows T2 to see T1s updates. There is almost no overhead with this
option compared to IMMEDWRITE(NO) unless transactions abort after commit of
phase 1. This is because each updated GBP-dependent page would be written
twice — once during the phase 1 commit and again at the end of the abort.

IMMEDWRITE(PH1) BIND option

Added to current IMMEDWRITE BIND options
YES, page written to GBP at buffer update
NO, page written asynchronously

IMMEDWRITE(PH1) new option to allow sequence of updates with
minimal impact
190 DB2 UDB Server for OS/390 Version 6 Technical Update

There is a new DSNZPARM parameter IMMEDWRITE in macro DSN6GRP which
takes values of NO, PH1 or YES.

Here are the new IMMEDWRITE bind options for plans/packages:

Here are the new IMMEDWRITE system parameter bind option:

IMMEDWRITE Explanation

NO Normal write activity is done. Group buffer pool (GBP) dependent buffers
are written to the coupling facility at or before the end of the commit or
rollback.

YES IMMEDWRITE writes are done for the buffers that are updated that
contain pages that belong to GBP dependent page sets or partitions.
This may have some performance impact because a page may be
written out to the CF multiple times, once for each row update. Updated
pages are also immediately written for buffer updates of a rollback.

PH1 The updated GBP-dependent pages are written to the coupling facility at
or before phase 1 of commit.

IMMEDWRITE Explanation

NO Writes of GBP-dependent pages are done according to the
IMMEDWRITE option that is specified a plan or package level.

PH1 All plans or packages running on this DB2 member use
IMMEDWRITE(PH1), except those that are bound with
IMMEDWRITE(YES).

YES All plans and packages that are run on this member use
IMMEDWRITE(YES) to write updated GBP-dependent pages.

The APAR identifier is as follows:

PQ25337.

APAR identifier
Chapter 5. Operational enhancements 191

5.5.3 IFI and commands with group scope
Operational enhancements to DB2 data sharing introduce the extension of group
scope to:

• Instrumentation Facility Interface (IFI)

• Selected DB2 commands

5.5.3.1 Data sharing IFI consolidation
The IFI enhancement allows you to collect group-wide instrumentation data from
a single member of a data sharing group. This means that rather than running
monitoring programs (for example, DB2 PM) against every member of a data
sharing group and manually collating the data to get a group perspective,
group-wide reporting will be possible by running DB2 PM against a single
member. DB2 PM will provide the corresponding enhancement through
maintenance.

IFI and commands with group scope

Data sharing instrumentation enhancements
IFI data has group scope
single interface to gather instrumentation from all members
DB2PM will support this

Data sharing - some commands have group scope
scope(local) is the default - works as now
trace, procedure, function and display commands
operator can enter single command that affects all members
192 DB2 UDB Server for OS/390 Version 6 Technical Update

5.5.3.2 Data sharing commands with group scope
The following DB2 commands now take an optional scope parameter. The valid
values are scope(group) and scope(local). The default is local.

•Start trace scope(group)
•Display trace scope(group)
•Stop trace scope(group)
•Display thread scope(group)
•Start procedure scope(group)
•Display procedure scope(group)
•Stop procedure scope(group)
•Start function specific scope(group)
•Display function specific scope(group)
•Stop function specific scope(group)

An operator can enter a single command from one DB2 terminal and it will take
effect on all members of a data sharing group.

The APAR identifier is as follows:

PQ29031 and PQ25094.

APAR identifier
Chapter 5. Operational enhancements 193

5.6 New EDM pool parameter

A new system parameter, EDMBFIT, has been introduced to assist customers
who are constrained on virtual storage. In a busy EDM pool, resource failures
may occur as large objects cannot be loaded into the pool. Some customers are
unable to increase the size of the pool as the DB2 address space is reaching its
2 GB limit.

The EDMBFIT parameter gives you the option of a new free chain search
algorithm for EDM pools greater than 40 MB.

When EDMBFIT is set to NO, DB2 will search for free space using a first fit
algorithm as before. It places objects in the first available free space where they
will fit.

When YES is specified, DB2 will use a better fit algorithm. To make optimum use
of the storage, it will search the EDM pool free space chain looking for the best
place for the object. This improved storage management will provide virtual
storage relief when large objects need to be loaded. However, it may cause an
increase in latch suspension times (class 24).

Unless you have virtual storage constraints, we recommend using EDMBFIT=NO,
as it avoids long free-chain searches which can cause latch contention.

Click here for optional figure # YRDDPPPPUUU

New EDM pool parameter

EDMBFIT - New DSNZPARM
helps if virtual storage constrained
affects EDM pools > 40 Mb
adjusts free chain search algorithm
provides relief when loading large objects

EDMBFIT= YES
uses better fit algorithm
better storage management
increase in latches

EDMBFIT= NO (default)
uses a first fit algorithm
better EDM pool latch management
194 DB2 UDB Server for OS/390 Version 6 Technical Update

The APAR identifier is as follows:

PQ31969.

APAR identifier
Chapter 5. Operational enhancements 195

5.7 New CHECKPAGE option for COPY

The COPY utility already performs integrity checking on DB2 pages as the image
copy is taken. If you wish to perform additional validity checking, you run the
DSN1COPY utility using the CHECK option, either against the underlying DB2
VSAM datasets or the image copies.

The image copy utility has been enhanced to enable you to perform extra validity
checking when image copying table spaces and indexes, rather than having to
invoke DSN1COPY in a separate step.

5.7.1 How to activate page checking
To activate page checking you invoke the COPY utility with the CHECKPAGE
option. The CHECKPAGE option is not valid if the CONCURRENT keyword is
specified. This is because page checking is performed by DB2 and concurrent
copy calls upon DFDSS to perform physical copy of the data sets. The default is
that additional page checking is not performed.

As each index or data page is processed, it is validated. If multiple objects are
specified in the COPY statement (including a mix of index and table spaces),
each object is checked. The scope of the CHECKPAGE applies to all objects in
the list. All table space page sizes are supported.

New CHECKPAGE option for COPY

Table space and index space pages
support for 4 KB, 8 KB, 16 KB, 32 KB page sizes
no impact on elapsed time, negligible increase in CPU time

Copy checks every index and
table space data and space
map page

COPY
TABLESPACE PAOLOR8.CHCKPAGE
FULL YES
COPYDDN (COPYL1)
INDEXSPACE PAOLOR8.CHCK1V$I
COPYDDN (IXCPL1)

CHECKPAGE
PARALLEL(2)
SHRLEVEL REFERENCE

image copy
not checked
return code=0

image copy
checked
return code=8

time
recover
return code=0

contingency
copy

A B C D

repair or
recover

Hardware error
- undetected corruption

page 3 page 4page 1 page 2
196 DB2 UDB Server for OS/390 Version 6 Technical Update

5.7.2 Exploitation of CHECKPAGE
Although the risk is low when taking image copies containing some sort of
corruption that prevents recovery is low, the impact of finding out later that you
cannot recover is high. To avoid this scenario, some users run DSN1COPY with
the CHECK option on some or all of their image copies. The new CHECKPAGE
option of COPY means you can now do this in one step. Any error reported gives
you the opportunity to immediately resolve the underlying problem.

The time line in the diagram above shows how you can use CHECKPAGE to
validate your copies. Suppose a defect is introduced into a page by some
hardware failure which is undetected by applications and routine image copies.
Although undetected hardware errors and logical corruptions are rare, it is
possible to create a defective copy (for example, at point A). If this went
undetected for longer than your backup cycle, you could end up in the position
where none of your image copies were valid for recovery.

A periodic COPY with the CHECKPAGE option reports the error (at point B) and
is identified by the abnormal completion code. This gives you an opportunity to
rectify the error either by using REPAIR or by falling back to a previous good
image copy. After recovery or repair, you can then take a good contigency copy
(C). This allows a subsequent recover (D) to complete normally.

The validation performed when you use the CHECKPAGE option is equivalent to
that performed by DSN1COPY with CHECK.

Consider how frequently within your backup cycle you wish to use the
CHECKPAGE option, as there is a trade-off between a potentially increased
recovery time against extending the elapsed times of your image copy jobs.

5.7.3 How to detect and resolve errors
In the case where invalid pages are detected:

• The COPY utility identifies the page(s) as broken.

• If the page is a data page message DSNU518I is issued.

• If the page is a space map page message DSNU441I is issued.

• COPY completes with return code 8 and an error code is issued as shown
below:

• The pageset is marked copy pending (COPY or ICOPY)

• If there are many errors on a single page only the first is reported but the
COPY utility continues to check remaining pages in the pageset

You should resolve any errors immediately by using recover page (using the page
number identified in the DSNU518I or DSNU441I message), recover or repair utilities.

DSNU518I =DB2Y DSNUBASA - TABLESPACE PAOLOR8.CHCKPAGE DSNUM 1 CONTAINS
BROKEN PAGE X'00000008', ERROR CODE X'0C13'
DSNU381I =DB2Y DSNUGSRX - TABLESPACE PAOLOR8.CHCKPAGE IS IN COPY PENDING
DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8
Chapter 5. Operational enhancements 197

5.7.4 CHECKPAGE performance
In order to verify the impact of the extra checking that takes place during the
Image Copy execution some measurements have been taken with and without
activating the option.

The results show that the elapsed time is not impacted, and the CPU time
increases between 5% for the index, and 15% for the table space. A negligible
percentage for an I/O bound utility.

5.7.5 Usage and recommendations
Running the COPY utility with CHECKPAGE option increases the level of
consistency checking performed on your image copies. If you intend to exploit
this feature, we recommend that you include a copy with CHECKPAGE at least
once per backup cycle. So if you keep 7 generations of image copies, perform at
least 1 copy with CHECKPAGE every 7 days.

This enhancement simplifies the manual process of checking image copies
consistency for those customers who currently choose to run DSN1COPY with
the CHECK option on some or all of their image copies.

One difference between running COPY with CHECKPAGE, as compared to
running DSN1COPY with CHECK against your image copies, is that a failure of
COPY results in a COPY PENDING status whereas DSN1COPY does not. The
COPY PENDING flag protects the integrity of your data — you are forced to
secure a good copy. The disadvantage is that you may experience some loss of
service as you cannot perform any updates until the COPY PENDING status is
resolved. DSN1COPY against the image copy has the advantage that you will be
alerted to the problem without being denied access to the table space. However,
you must be vigilant about detecting and responding to any errors found before
all your copies in your backup cycle become invalid.

5.8 Runstats improvements

In this section we look at two minor improvements in Runstats.

DB2 V6 with
PQ25084 and
PQ34972

Number of
pages

without CHECKPAGE with CHECKPAGE

CPU time
(sec)

Elapsed time
(sec)

CPU time
(sec)

Elapsed time
(sec)

TABLESPACE 147090 2.80 238 3.20 236

INDEX 32440 0.65 58 0.68 57

The APAR identifier is as follows:

PQ25084 and PQ34972.

APAR identifier
198 DB2 UDB Server for OS/390 Version 6 Technical Update

5.8.1 Non uniform statistics for SYSCOLDIST
Runstats will now collect statistics for SYSIBM.SYSCOLDIST when the data is
uniform. This extra information may provide better access paths for some
queries.

You should bear in mind that this may increase the size of the catalog table.

5.8.2 Additional space statistics
Runstats now collects data which allows you to estimate the number of extents.
You can then run sample queries which you will find in SDSNSAMP(DSNTEPS)
to determine the number of extents used.

The APAR identifier is as follows:

PQ21014.

APAR identifier

The APAR identifier is as follows:

PQ25091.

APAR identifier
Chapter 5. Operational enhancements 199

200 DB2 UDB Server for OS/390 Version 6 Technical Update

Chapter 6. Performance

Performance

Star join

Volatile tables to use indexes

Parallelism performance improvements

Active log I/O performance improvement

Data sharing improvements
© Copyright IBM Corp. 2000 201

6.1 Star join

This section covers the following topics:

• What star schemas are

• A summary of how DB2 V6 can better support joins in star schemas

• Examples of star join processing with DB2 V6

• Performance measurements of scenarios where star join helps

Star join

Introduction to star schema design

Introduction to star join support in DB2 V6

More about DB2 V6 star join using sample scenario

Performance measurements
202 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.1 Introduction to star schema design
Many customers recognize the distinction between a central data warehouse and
one or more data marts oriented to a particular subject area, often dependent on
the central data warehouse.

Typically, the central data warehouse needs to support several data marts, which
each look at a subset of the data in their own way.

An insurance company, for instance, may have separate data marts for:

• Sales analysis
• Marketing
• Claims analysis
• Risk analysis

These are all fed from a single data warehouse.

Often, the data warehouse will use a classical entity-relationship data model,
while the predominant model for the data marts will be a star schema, with the
fact tables differing from one data mart to another.

Earlier data marts may have been implemented using a simple database design
that mimics a flat file design, with the data heavily denormalized into one or two
tables.

This section compares such a denormalized design for a data mart with a star
schema design, and a snowflake design, which goes one step further.

Introduction to star schema design

Introduction to star schema design
Data warehouses, data marts and OLAP
Example of flat file design for sales data mart
Example of star schema design for sales data mart
Example of snowflake schema design for sales data mart

Introduction to star join support in DB2 V6

More about DB2 V6 star join using sample scenario

Performance measurements
Chapter 6. Performance 203

6.1.1.1 Example 1: sales table like a flat file
This denormalized design has the advantage of being simple.

On the other hand, there is a huge amount of wasted storage by holding full
details of each dimensional attribute within this denormalized sales table.

In order to make this table useful, you would also need to devote a very large
amount of space to indexing the table.

Although this design may provide good performance for the queries that were
expected at the time of the design, at the cost of a significant amount of storage,
it has the disadvantage that it lacks flexibility. For instance, if another attribute of
the location becomes relevant, this involves adding an extra column to the very
large denormalized sales table. In contrast, with the star schema design shown
on the next page, this requirement can be accomodated much more easily by
adding an extra column to the location table, which has only 1,000 rows.

month qtr year city region country item class department title firstname lastname seller name ...

Jan 1 1997 New York East USA stereo audio audio-visual Mr Fred Smith Joe
Feb 1 1997 Seattle West USA cd player audio audio-visual Mrs Hilary Clinton Lynn
Feb 1 1997 Boston East USA cd player audio audio-visual Ms Julia Roberts Herb
Feb 1 1997 Boston East USA stereo audio audio-visual Mr Ryan Giggs Mary
Mar 1 1997 Chicago East USA television video audio-visual Ms Liza Minelli Joseph
Mar 1 1997 Los Angeles West USA cd player audio audio-visual Mr Bill Clinton Alice

Example 1: sales table like a flat file

customertime location product seller

Denormalized sales table: 150 billion rows of 200+ bytes each

For: simple
Against: Inflexible, much redundant data
204 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.1.2 Example 2: sales data in star schema
With a star schema design, both the data and any desirable indexes can be much
more compact.

Note that this is one example of a star schema design. Do not assume that all
star schema designs look like this. The thing that characterizes a design as a star
schema is having a number of dimension tables around a fact table. That leaves
a lot of room for differences between one star schema design and another,
including:

• The degree of normalization

• Whether a dimension table contains rows from only one domain

From this you can already imagine that the applicability of the new star join
support in DB2 V6 will vary between different design styles within the star
schema design family.

Example 2: sales data in star schema

id month qtr year
1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time locn prod customer seller ...
1 1 1 123 22
2 5 2 345 56
2 2 2 246 67
2 2 1 432 12
3 3 3 999 88
3 6 2 348 60

id title firstname lastname
123 Mr Fred Smith
345 Mrs Hilary Clinton
246 Ms Julia Roberts
432 Mr Ryan Giggs
999 Ms Liza Minelli
348 Mr Bill Clinton

id seller name
22 Joe
56 Lynn
67 Herb
12 Mary
88 Joseph
60 Alice

time (dimension)
39 rows

sales (fact)
150 billion rows of <50 bytes each

location (dimension)
1,000 rows

product (dimension)
60,000 rows

customer (dimension)
10 million rows

seller (dimension)
5,000 rows

For: flexible, redundant data reduced
Against: more complicated
Chapter 6. Performance 205

6.1.1.3 Example 3: sales data in snowflake schema
The snowflake schema takes the star schema concept to the next level, with
further normalization within the dimensions.

Probably the majority of star schema implementations include snowflakes in at
least some of their dimensions.

Note that an alternative design might take different levels within what is shown
here as a single dimension (for instance, time) and implement them as separate
dimensions. Such a design would still qualify as a star schema, although its
capabilities for performance and flexibility are likely to be different from the
design shown here.

Example 3: sales in snowflake schema

seller (dimension)
5,000 rows

id month qtr year
1 1 1 1

id city region country
1 1 1 1

id item class department

1 1 1 1

time geo prod customer seller ...

1 1 1 123 22
2 5 2 345 56
2 2 2 246 67
2 2 1 432 12
3 3 3 999 88
3 6 2 348 60

id title firstname lastname

123 Mr Fred Smith
345 Mrs Hilary Clinton
246 Ms Julia Roberts
432 Mr Ryan Giggs
999 Ms Liza Minelli
348 Mr Bill Clinton

id seller name
22 Joe
56 Lynn
67 Herb
12 Mary
88 Joseph
60 Alice

time (dimension/fact)
60 rows

sales (fact)
150 billion rows of <50 bytes each

location (dimension/fact)
1,000 rows

product (dimension/fact)
60,000 rows

customer (dimension)
10 million rows

For: even more flexible, redundant data eliminated
Against: even more complicated (15 tables to join in this simple example)

id month qtr
1 Jan 1

id qtr
1 1

id year
1 1997

id city country
1 New York 1

id region
1 East

id country
1 USA

id class dept
1 audio 1

id dept
1 AV

id item class
1 stereo 1

region (dimension) 10 rows

country (dimension) 8 rows

qtr (dimension) 4 rows

year (dimension) 5 rows

class 100 rows dept 10 rowsitem 60,000 rowsmonth (dimension) 12 rows city (dimension) 1000 rows
206 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.2 Introduction to star join support in DB2 V6
A new way of processing multiple-table joins has been added as an option to DB2
Version 6. This is known as star join because it is oriented to joins of several
(dimension) tables to a single central (fact) table using the table design pattern
known as star schema. It also covers joins of tables using the snowflake schema
design which involves one or more extra levels of dimension tables around the
first level of dimension tables.

DB2 V6 star join processing is disabled by default, and can be enabled by a new
DB2 system parameter for the subsystems that specifically need this function.
Star join support is delivered by the fixes to APARs PQ28813 and PQ36206. As
always, check on the latest list of any other fixes that may be advisable. This
support provides very good performance improvements for a specific class of
query against a set of tables which have specific characteristics. The star join
enhancement addresses the CPU time reduction at run time for very selective
queries by applying the enhanced index repositioning technique, rather than the
traditional cartesian join. Queries with low filtering or of I/O bound nature will not
benefit from it.

In order to allow customers, whose queries and tables fully meet the required
characteristics, to realize these benefits as soon as possible, this support has
been made available to DB2 V6 customers through the service stream. An
alternative approach would have been to delay delivering the new function until a
more generalized solution had been developed, and this would almost certainly
have meant that the function would have come in a future release of DB2 beyond
V6.

Introduction to star schema designs

Introduction to star join support in DB2 V6
Optional feature, disabled by default

Apply the fix to PQ36206 even if you don't intend to use star join
Fast recognition of conditions for star join access path
Faster execution of certain query types with suitable data and index
Good for queries that are highly selective on high order index columns
Only enable it if you are sure you will get an overall benefit

More about DB2 V6 star join using sample scenario

Performance measurements

DB2 V6 star join support
Chapter 6. Performance 207

The implications are that you should carefully evaluate whether DB2 star join
support will benefit you, before turning it on, and that this is certainly a first stage
delivery with more to come in the future. For queries outside the type that
currently benefits from the new star join support, there is a possibility that
performance will decrease when the support is enabled.

This new star join support is designed in a way that sidesteps potential issues at
run time and bind time that have arisen with existing join support:

Run time: Existing join methods are generalized to execute queries well at run
time in a wide variety of circumstances.This means there is a fair
degree of CPU overhead at run time in testing the environment to
make sure the most appropriate code path is taken, from the various
options available. Adding further possible options using this technique
has the potential to further add to the CPU overhead of executing the
query.

Bind time: Existing join support is limited to a maximum of 15 tables in a join
because an excessive amount of resource, including CPU and virtual
storage, would have been needed to choose the best access path for
a join of more tables using existing techniques.

The new star join support addresses these issues as follows.

If you enable star join, the DB2 optimizer uses a set of rules to assess whether
the star join appears to be the appropriate technique to use for a join, and, if so, it
will use a star join access path without further evaluating all the other possible
access paths. These rules are documented later in this chapter.

The optimizer also has a set of rules to choose a fact table index which then
drives the actual star join access path. These rules are also outlined later in this
chapter.

The star join access path is driven by the order of columns in the chosen index,
and is designed for optimal execution as stage 1 rather than by the more flexible,
but more CPU intensive, stage 2 level.

This has the following implications:

• If a join qualifies as a star join, the resource used for access path selection is
less, making this process more manageable for joins of more than 15 tables
when a star join is chosen.

• While the processing costs are, in many cases, lower for a star join than for
the prior alternatives, this is not always the case. This depends on how close
the query and the tables are to the design point for the star join support.

Because the DB2 optimizer has made the tradeoff to cut the cost of access path
selection by choosing star join if the rules are met (without actually estimating the
cost of all possible alternatives for the access path) there is no internal check that
the star join rules are likely to have the desired effect in a particular case.

The full benefits of the new star join processing can only be realized with both of
the following conditions:

• The join columns are included in a multi-column index on the fact table.
208 DB2 UDB Server for OS/390 Version 6 Technical Update

• The order of the columns in the index of the fact table is chosen to exploit both
relative densities of different column combinations and also the type of queries
which are predominantly executed.

• Certain highly selected queries. Only certain types of query are able to benefit
from the star join processing. One of the requirements for good exploitation is
that the query should be highly selective, starting from the first column in the
chosen index of the fact table.

Note that currently star join support can only be enabled, and disabled, at the
level of a whole DB2 subsystem.

Currently, star join supports CPU query parallelism, but only within a single DB2
subsystem, not across multiple members of a data sharing group.

Given all these considerations:

• You should only enable star join processing if there are definite indications
that it is reasonable to expect a significant net benefit from it, for your specific
queries and tables.

• If you enable star join processing for a DB2 subsystem, try to closely monitor
whether you are getting the sort of reductions in CPU and elapsed times for
queries that meet those reasonable expectations.

Note that the fix to PQ36206 is even more important to you if your
circumstances are such that you should disable star join.

Clearly, the more unpredictable your query workload is, the harder it will be for
you to set your expectations of star join performance benefits for your workload,
and to make representative measurements of any star join performance savings.

There may be circumstances where you could benefit by moving a self-contained
group of tables to a new and separate DB2 subsystem, for which star join is
enabled, if queries against these tables will perform better with the star join
support but queries against other tables will perform worse. In this scenario, the
existing DB2 subsystem, in which these other tables remain, should have star join
disabled. As outlined in section 6.1.3.7, there is a new subsystem parameter that
can be used to specify a minimum ratio of fact table cardinality to dimension table
cardinality from which star join should take effect. In some cases, this could
provide an alternative method of enabling star join only for some fact tables and
not for others, without necessarily having to split them across 2 DB2 subsystems.
This would only be possible if the fact tables that would benefit from star join
happen to be the ones with the highest cardinalities relative to their dimension
tables.
Chapter 6. Performance 209

6.1.3 More about DB2 V6 star join
This section will go into more detail about star join, using a sample scenario as an
example. We will illustrate how the star join technique works, and discuss the
circumstances in which it is most applicable.

Having a suitable index on the fact table is an absolute prerequisite for having a
chance of getting good performance with star join, so we will take time to review
how to proceed to get a good index.

Because star join is enabled or disabled at the DB2 subsystem level, you need to
make sure you have good indexes for all fact tables in your system before you
enable star join at all. You may have tables you don’t even think of as being part
of a star schema at all, but which the DB2 optimizer may well recognize as such.

With this in mind, we will review the 9 conditions the optimizer tests before
choosing a star join access path; they may be met more often than you think!

This entire section will give you the required background to make more sense of
the performance results which are presented in the following section.

More about DB2 V6 star join

Introduction to star schema designs

Introduction to star join support in DB2 V6

More about DB2 V6 star join
sample query
what the access path looks like
how it works
the 9 conditions for star join
fact table index design - key to performance
how good performance can be achieved
missing key predicate optimization
using explain on star join queries

Performance measurements
210 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.1 Typical query with star schema
Here is a sample query against a sample set of tables.

SELECT * FROM SALES S, TIME T, LOCATION L, PRODUCT P
WHERE S.TIME = T.ID
AND S.LOCATION = L.ID
AND S.PRODUCT = P.ID
AND T.YEAR = 1997
AND T.QTR = 1
AND L.CITY IN ('Boston','Seattle')
AND P.ITEM = 'stereo';

Let us now see how DB2 services this query with a star join, assuming that star
join processing has been enabled, and the qualifying conditions have been met.

Typical query with star schema
id month qtr year

1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time locn prod customer seller ...
1 1 1 123 22
2 5 2 345 56
2 2 2 246 67
2 2 1 432 12
3 3 3 999 88
3 6 2 348 60
2 6 1 101 23

time (dimension)
39 rows

sales (fact) 150 billion rows

location (dimension)
1,000 rows

product (dimension)
60,000 rows

SELECT * FROM SALES S, TIME T,
LOCATION L, PRODUCT P
WHERE S.TIME = T.ID
AND S.LOCATION = L.ID
AND S.PRODUCT = P.ID
AND T.YEAR = 1997
AND T.QTR = 1
AND L.CITY IN ('Boston','Seattle')
AND P.ITEM = 'stereo';

Suppose that this stereo is very expensive and is one of 20,000 products that are only ever sold
in 600 of the locations, including Boston but not Seattle, and these 600 locations have a 1 in 3
month rota for a single sale. For 1Q97, suppose February was Boston's month.
Chapter 6. Performance 211

6.1.3.2 DB2 star join for this query (full index)
If the fact table has an index containing all the join columns, then DB2 can
perform an efficient star join processed entirely as stage 1.

The example above shows this case. The steps are performed in the order of the
multi-column index that contains all the join columns. A nested loop join is used
for each step.

We will later examine how you might choose the order of columns in the fact table
index that you create to support this kind of efficient processing.

This figure includes an extract of some of the relevant columns from the plan
table to give you an example of how a star join query looks when you explain it.

Note that an ‘S’ appears in the JOIN_TYPE column for the star join.

DB2 star join for this query (full index)

id month qtr year
1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time (dimension)
39 rows

location (dimension)
1,000 rows

product (dimension)
60,000 rows

index sales (fact) 150 billion rows
(fact table indexed on all joined columns)

queryno qblockno method tname join_
type

sortn
_join

planno matchcols

1 1 0 product s y 1 0
1 1 1 time s y 2 0
1 1 1 location s y 3 0
1 1 1 sales s n 4 3

method = 1 (nested loop join)

In this example all the join steps have been
efficiently pushed down to data manager

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

time locn prod customer seller ...
1 1 1 123 22
2 5 2 345 56
2 2 2 246 67
2 2 1 432 12
3 3 3 999 88
3 6 2 348 60
2 6 1 101 23

prod time locn
1 1 1
1 2 2
1 2 6
2 2 2
2 2 5

SELECT * FROM SALES S, TIME T,
LOCATION L, PRODUCT P
WHERE S.TIME = T.ID
AND S.LOCATION = L.ID
AND S.PRODUCT = P.ID
AND T.YEAR = 1997
AND T.QTR = 1
AND L.CITY IN ('Boston','Seattle')
AND P.ITEM = 'stereo';

plan_table
212 DB2 UDB Server for OS/390 Version 6 Technical Update

For reference, we have included below some aspects of how the access path
varies between having star join enabled (queryno=1) and having star join
disabled (queryno=10) for this same query.

Star join enabled:

Star join disabled:

queryno qblockno method tname join_
type

sortn_
join

planno matchcols accesstype

1 1 0 product s y 1 0 I

1 1 1 time s y 2 0 R

1 1 1 location s y 3 0 R

1 1 1 sales s n 4 3 I

queryno qblockno method tname join_
type

sortn_
join

planno matchcols accesstype

10 1 0 time n 1 0 R

10 1 1 product n 2 0 R

10 1 1 location n 3 0 R

10 1 1 sales n 4 3 I
Chapter 6. Performance 213

Visual Explain access path graph for this star join query
The following figure shows a Freelance approximation of the access path graph
that Visual Explain produces for this query, with star join enabled.

SELECT
1ms

NLJoin

IXScanNLJoin

PAOLOR6
LOCN

TBScanPRODIX

PAOLOR6
TIME

PAOLOR6
PROD

PAOLOR6
SALES

TBScanIXScan Sort

NLJoin Sort SALESI
214 DB2 UDB Server for OS/390 Version 6 Technical Update

Visual Explain access path report for this star join query
The report produced by Visual Explain for this query notes explicitly that star join
is being used and that DB2 is executing the steps as stage 1 (bold type):

ACCESS PATH REPORT
__
IDENTIFICATION

Subsystem: DB2Y
Report generation time: (4/5/00 3:48:44 PM)
__
PLAN

Plan name:
Program name (DBRM): SQLLF000
Plan owner:
Last bind time: 2000-04-05-18.41.02.160000
__
STATEMENT INFORMATION

Statement number: 1

Statement Cost:

Cost Category: A
Cost in milliseconds: 1
Cost in service units: 5
Reason:

SQL Text:

SELECT *
FROM PAOLOR6.SALES S, PAOLOR6.TIME T, PAOLOR6.LOCN L, PAOLOR6.PROD P
WHERE S.TIME = T.ID AND S.LOCN = L.ID AND S.PROD = P.ID AND T.YEAR = 1997 AND T.QTR = 1 AND
L.CITY IN ('BOSTON','SEATTLE')AND P.ITEM = 'STEREO' WITH UR

Access Path Description:

Select Statement

PAOLOR6.PROD (13)
| PAOLOR6.PRODIX (12)
| Non-matching Index Scan (11)
PAOLOR6.TIME (17)
| Table space scan (16)
| Sort (15)
Nested Loop Join (14)
PAOLOR6.LOCN (111)
| Table space scan (110)
| Sort (19)
Nested Loop Join (18)
PAOLOR6.SALES (115)
| PAOLOR6.SALESIX (114)
| Matching Index Scan (113)
Nested Loop Join (112)
Return (116)

Access path step information:

Non-matching Index Scan (11)

Matching index keys used: 0
Index only access: No
Prefetch: Sequential
Access type: I
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Table space scan (16)

Prefetch: Sequential
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution
Chapter 6. Performance 215

Sort (15)

Column function evaluation: Not applicable or to be decided at execution
Reason for sort: The new table is sorted during a join operation to make the join more

efficient.

Nested Loop Join (14)

Join type: Star Join
Stage Stage 1

Table space scan (110)

Prefetch: Sequential
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Sort (19)

Column function evaluation: Not applicable or to be decided at execution
Reason for sort: The new table is sorted during a join operation to make the join more

efficient.

Nested Loop Join (18)

Join type: Star Join
Stage Stage 1

Matching Index Scan (113)

Matching index keys used: 3
Index only access: No
Prefetch: Unknown at bind time
Access type: I
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Nested Loop Join (112)

Join type: Star Join
Stage Stage 1

Select Statement (116)

When optimize: Access path was determined at bind time using default filter
factors for any host variables, parameter markers, or special registers.
Group member: Explain not executed in a data sharing environment
Remarks from plan table:
Primary accesstype:
Cost Category: A
Cost in milliseconds: 1
Cost in service units: 5
Reason:

Note: The nested loop joins (14), (18), and (112) are the three steps of the star
join; the thee steps are not really a simple nested loop join (NLJ): they now
‘include the enhanced repositioning technique that is the characteristic of star
join.
216 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.3 How it works
For each key column in the multicolumn index of the fact table, a workfile is
generated to store the qualifying column values of the corresponding dimension
table, after the local predicates have been applied.

In our example we get:

• One qualifying value for the first column, prod

• Three qualifying values for the second column, time

• Two qualifying values for the third and last column, locn

This is a good case for star join, because:

• We get good selectivity on the first column.

• The number of column values in our workfiles is small.

DB2 uses these column values in the workfiles to make a series of probes into
the index, as shown in the diagram above. Extra support has been added to DB2
to provide feedback on the next highest column combination that exists in the
index. This saves DB2 from having to make a number of fruitless requests for
intervening column combinations which do not actually exist in the index.

How it works
id month qtr year

1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time locn prod customer seller ...
1 1 1 123 22
2 5 2 345 56
2 2 2 246 67
2 2 1 432 12
3 3 3 999 88
3 6 2 348 60
2 6 1 101 23

prod time locn
1 1 1
1 2 2
1 2 6
2 2 2
2 2 5

time (dimension)
39 rows

location (dimension) 1,000 rows

product (dimension)
60,000 rows

index sales (fact) 150 billion rows
(fact table indexed on all joined columns)

prod
1

time
1
2
3

locn
2
5

A workfile is used to list the qualifying
key values for each dimension.

A series of index probes are made, and index manager gives next key feedback:
1. P=1 T=1 L=2; result: not found, next index key P=1 T=2 L=2 (so we can skip a probe for P=1 T=1 L=5)
2. P=1 T=2 L=2; result: 1 index entry found, 1 data row accessed, next index key P=1 T=2 L=6 (so we skip P=1 T=2 L=5)
3. P=1 T=3 L=2; result: not found, next index key P=2 T=2 L=2 (so we are done)

Without next key feedback, we would need 6 index probes to get all qualifying rows.
With next key feedback, we are able to retrieve all qualifying rows with just 3 index probes.
Chapter 6. Performance 217

This table shows how the internal feedback allows DB2 to potentially avoid
making several unproductive index probe requests.

You can begin to see from this how the order of the columns in the index will
affect the number of index probe requests that have to be made to find all the
qualifying rows.

We will explore this aspect further in the next two figures.

Request Response
1. found or not?

Response
2. next key found

Notes

P=1 T=1 L=2 not found P=1 T=2 L=2 This tells us that
P=1 T=1 L=5
is missing.

P=1 T=2 L=2 found P=1 T=2 L=6 This tells us that
P=1 T=2 L=5
is missing.

P=1 T=3 L=2 not found P=2 T=2 L=2 This tells us that
P=1 T=3 L=2 &
P=1 T=3 L=5
are missing.
218 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.4 Star join use of fact table index — 1
This example, and the one in the next figure, uses different sample fact tables
and dimension tables from the previous example.

Here is an example of high efficiency in the way star join processing uses the
workfiles to access the fact table via the chosen index.

The first request to DB2 asks for K3=50, K2=250, K1=1000.

DB2 returns "not found", next key is K3=50, K2=270, K1=0.

DB2 has been able to skip checking the other 999 possible qualifying column
value combinations beginning with K3=50 (from K3=50, K2=250, K1=1001 to
K3=50, K2=259, K1=1099 inclusive).

The second request to DB2 asks for K3=51, K2=250, K1=1000.

DB2 returns "not found", next key is K3=51, K2=289, K1=1.

From our first to our second index probe, we have skipped 3000 index entries.

This type of efficiency is possible because of the next key internal feedback, in
combination with the correlation between the first and second key columns in the
index for the target set of rows.

Star join use of fact table index - 1

K3 K2 K1

50 250 1000

50 270 0

51 250 1000

51 289 1

52 250 1000

52 426 1

53 250 1000

...

56 250 1000

56 258 1

56 258 1000

56 258 1001

56 258 1001

56 258 1003

56 258 1003

56 258 1005

56 258 1005

...

...

56 258 1099

56 258 1101

56 259 1000

56 269 0

57 250 1000

...

50

51

52

53

54

55

56

57

58

59

250

251

252

253

254

255

256

257

258

259

1000

1001

...

1050

1051

...

1096

1097

1098

1099

workfiles

D1.K1

100/2000

K3 K1K2

D3.K1

10/100

D2.K1

10/500

10 10 100

50 50 51 52

...

56 56 56 56 ... 56 56 56

76 270 289 426 ... 258 258 258 258 ... 258 258 269

0 0 1 1 ... 1 1001 1003 1005 ... 1099 1101 0

K3

K1

K2

Key 1,2,... ...,1m

3000 8000 ...?

of keys skipped

000 ?

Fact Ix (K3,K2,K1)

 SELECT SUM(FACT.M1), AVG(FACT.M1), COUNT(*)

 FROM FACT, D1X, D2X, D3X

 WHERE ...

 D1X.K3 = 10 AND

 D2X.K2 = 25 AND

 D3X.K2 = 5 ;

Example of exploiting correlated index. Efficient repositioning.
Taking relatively few probes to skip over many index entries that do not qualify.
Chapter 6. Performance 219

6.1.3.5 Star join use of fact table index — 2
Here is an example of lower efficiency in the way star join processing uses the
workfiles to access the fact table through the chosen index, because there is less
correlation of our qualifying column values in the index.

The first request to DB2 asks for K1=1000, K3=50, K2=250.

DB2 returns "not found", next key is K1=1000, K3=50, K2=270.

DB2 has been able to skip checking internally about the other 9 possible
qualifying column value combinations starting K1=1000, K3=50 (from K1=1000,
K3=50, K2=251 to K1=1000, K3=50, K2=259 inclusive).

The second request to DB2 asks for K1=1000, K3=51, K2=250.

DB2 returns "not found", next key is K1=1000, K3=51, K2=329.

From our first to our second index probe, we have skipped only 1 index entry in
this example.

This case is not so efficient,s because the key columns that are closely correlated
for the target set of rows are now the second and third key columns in the index.

Star join use of fact table index - 2
Example of less correlated index. Less efficient repositioning.
Taking more probes to skip over the index entries that don't qualify.

K1 K3 K2

1000 50 250

1000 50 270

1000 51 250

1000 51 329

1000 52 250

1000 52 443

1000 53 250

...

1000 56 250

1000 56 269

1000 57 250

1000 57 340

1000 58 250

1000 58 474

1000 59 250

...

...

1001 56 258

1001 56 282

1001 57 250

1001 57 277

1001 58 250

1001 58 284

...

1003 56 258

...

50

51

52

53

54

55

56

57

58

59

250

251

252

253

254

255

256

257

258

259

1000

1001

...

1050

1051

...

1096

1097

1098

1099

workfiles

D2.K1

10/500

K1 K2K3

D1.K1

100/2000

D3.K1

10/100

100 10 10

1000 1000 1000 1000 1000 ... 1000 1000 1000 1000 ... 1001 1001

50 50 51 52 53 ... 56 56 57 58 ... 56 56

76 27

0

32

9

44

3

427 ... 33 269 340 474 ... 258 282

K1

K2

K3

Key 1,2,... ...,1m

1 7 3?

of keys skipped

0

1001 1001 ... 1003 ... 1005 ... 1099 ... 1099 ...

57 58 ... 56 ... 56 ... 56 ... 56 ...

27

7

28

4

... 25

8

... 258 ... 258 ... 282 ...

K1

K2

K3

?100100?

Fact Ix (K1,K3,K2)
220 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.6 Good environment for star join
The considerations listed on this figure come from a combination of the theory
behind the design of DB2 V6 star join support and practical experience gained
through actual performance measurements in a variety of situations.

You will be able to see from these considerations that it is important to have all of
the following conditions:

• Suitable queries that provide good filtering of the fact table, and ideally the
dimension tables as well, unless they are extremely small.

• An index that matches these queries very closely, and no queries that don’t
match the index.

• If there are many combinations of column values which qualify from dimension
tables but do not appear in the fact table, these need to be combinations that,
when ordered in the sequence of the fact table index, all fit within a small
number of gaps in the index.

Good environment for star join

Good selectivity on the first column of the chosen index
set of qualifying column value combinations needs to be highly selective
AND most of the filtering has to happen on the first index column
next most filtering on the second index column, and so on

Small number of column values in workfiles
the number of qualifying values needs to be low in absolute terms, not just
in proportion to the number of possible values
each probe into the index incurs significant overhead
want to get the most benefit from the least number of probes

No missing predicate for index columns
to avoid the impact due to stage 2 predicate

If there are combinations of qualifying column values that do
not actually occur in the fact table index and data, it is best if
these combinations are clustered together

again, reduces the number of probes needed
Chapter 6. Performance 221

6.1.3.7 Conditions to qualify for star join
Star join support was introduced to DB2 V6 with the fix for APAR PQ28813 (PTF
UQ33085). With this initial support, a query will be processed as a star join if and
only if all the current 9 conditions listed above are met. The fix for APAR
PQ36206 is needed to vary the value N in the last condition from the default of
25.

Subsequent to this initial support, two significant changes have been made:

• The increase in the maximum number of tables in a join (from 15 up to 225)
has been changed to apply only to the star join case,

• More control has been provided over when star join is used.

These changes have been made available through the following APARs/PTFs:

• The fix for APAR PQ31326 (V6 PTF UQ39733 or V5 PTF UQ39732)
re-instates the 15 table limit for all joins in V5 and V6 except those that qualify
as star joins in V6. The reason for this is the excessive amount of storage
needed for access path selection for joins of many tables that do not qualify as
star joins. Star joins of up to 225 tables are still allowed.

• The fix for APAR PQ36206 (PTFs UQ42008, UQ42009) adds a new DB2
system parameter for star join. This provides the way to enable or disable star
join, and introduces a new option for when star join is selected once it is
enabled. This new option affects just the last of the 9 conditions for star join
(ratio of fact table cardinality to largest dimension table cardinality). The
qualifying ratio of fact table cardinality to largest dimension table cardinality
can be adjusted from the default value (currently 25) to any positive integer.

• Note that access path hints cannot be used to force star join processing.

Conditions to qualify for star join

The query references at least two dimensions.
All join predicates are between the fact table and the dimension tables,
or within tables of the same dimension.
All join predicates between the fact table and dimension tables must be
equi-join predicates.
All join predicates between the fact table and dimension tables must be
Boolean term predicates.
No correlated subqueries cross dimensions.
A single fact table column cannot be joined to columns of different
dimension tables in join predicates. For example, fact table column F1
cannot be joined to column D1 of dimension table T1 and also joined to
column D2 of dimension table T2.
After DB2 simplifies join operations, no outer join operations can exist.
The data type and length of both sides of a join predicate are the same.
The fact table contains at least N times the number of rows in the
largest dimension table. Integer N is 25 by default but can be changed.
222 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.8 Fact table index design
It will be clear to you by now that it is critical for star join to have a good index to
use in order to achieve good performance. It is also critical that all the significant
queries closely match this index.

In the next few figures, we will walk through a methodology for deriving a likely
candidate to be the best choice for this index on the assumption that you know
nothing about the queries likely to be run against the data.

The methodology use the concept of the density of a fact table column (or
combination of columns) with respect to the matching dimension table (or
combination of tables). The density is the cardinality of the combination of
columns in the fact table divided by the product of the cardinalities of the
matching dimension tables.

The example which follows will show how this works.

The reasoning behind this methodology is that the queries are likely to sample
the fact table data in a way such that the numbers of values qualifying from each
dimension are still in roughly the same proportion to one another.

Intuitively, we can see that a reasonable first estimate of the shape of the likely
queries is that they will follow the shape of the data.

If you actually have better knowledge of the shape of the queries, it is critical that
you apply that knowledge when deciding whether there is an index that will make
star join viable.

Fact table index design

Good indexing of the fact table is key to performance benefit

Assuming the query workload is not well understood, start
with the index that gives best exploitation of the correlations
in the data, for most of a random distribution of queries

based on density of different column combinations in the fact table
example follows

When/if query workload is better understood, factor in this
guidance:

Put columns that are accessed more selectively by typical queries at
the beginning of the index
If typical queries often do not reference a dimension, put the column for
that dimension at the end of the index
Chapter 6. Performance 223

6.1.3.9 How to index for efficient star joins — 1
This figure shows the first step of choosing a likely index in the absence of any
better information about the queries. This example has 3 dimensions, and starts
by examining column combinations in pairs. The more general approach, for N
dimensions, will start by examining column combinations (N-1) at a time.

The method determines which combination has the lowest density, and then
chooses the column not included in that combination to be the low-order column
in the index.

You can see that this method will come up with an N-column index on the fact
table covering all N dimensions. The design point for star join is that it will use a
single multi-column index on the fact table, and that it is best for this to cover all
dimensions in a particular preferred order to match the queries.

This technique is documented in the updated DB2 V6 manuals available at:

http://www.ibm.com.software/data/db2/os390/v6books.html

here we provide a graphical example.

How to index for efficient star joins - 1

Simple example with just 3 dimensions (n=3)
id month qtr year

1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time locn prod ...
1 1 1
2 5 2
2 2 2
2 2 1
3 3 3
3 6 2
2 6 1

time (dimension)
39 rows

sales (fact)
150 billion rows

location (dimension)
1,000 rows

product (dimension)
60,000 rows

Step 1: Examine all combinations of 2 of the 3 columns,
and calculate "density" as number of actual column
value combinations in fact table divided by product of
corresponding dimension table cardinalities.

A=cardinality from
dimension tables

B=cardinality
from fact table

C=density
=B/A

time,locn 39*1,000=39,000 39,000 1.0000
time,prod 39*60,000=2,340,000 1,799,772 0.7691
locn,prod 1,000*60,000=60,000,000 51,994,000 0.8666

Find the combination with the lowest density (here it is
(time,prod)), and choose the column NOT in that
combination (here it is locn) as the rightmost column in
the index.

locn

index
224 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.10 How to index for efficient star joins — 2
The next step looks at combinations of N-2 columns, and selects the column not
in the combination with the lowest density as the next column from the right in the
index. For N=3, this is a pretty trivial step, as shown in this figure.

How to index for efficient star joins - 2

id month qtr year
1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time locn prod ...
1 1 1
2 5 2
2 2 2
2 2 1
3 3 3
3 6 2
2 6 1

time (dimension)
39 rows

sales (fact)
150 billion rows

location (dimension)
1,000 rows

product (dimension)
60,000 rows

Step 2: Examine the 2 remaining columns individually,
and calculate "density".

A=cardinality from
dimension tables

B=cardinality
from fact

C=density
=B/A

time 39 39 1.0000
prod 60,000 59,994 0.9999

Find the column with the lowest density (here it is
prod, just), and choose the OTHER column (time)
as the next column from the right in the index.

time locn

index
Chapter 6. Performance 225

6.1.3.11 How to index for efficient star joins — 3
For N=3, the next and final step is even more trivial. Since there is only one
column left, this must be our high-order column for our index.

How to index for efficient star joins - 3

id month qtr year
1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time locn prod ...
1 1 1
2 5 2
2 2 2
2 2 1
3 3 3
3 6 2
2 6 1

time (dimension)
39 rows

sales (fact)
150 billion rows

location (dimension)
1,000 rows

product (dimension)
60,000 rows

Step 3: Take the remaining column as the high-order
column for the index. Here it is prod.

prod time locn

index
226 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.12 Characteristics for good performance
Up until now, we have concentrated most on the use of the workfiles to drive
requests to the chosen fact table index, and the need to keep down the number of
index probes. The other side of the coin is to get as much value as possible from
each index probe. This is where features like index sequential prefetch and data
sequential prefetch can help us get back very efficiently all the required columns
of all rows that match the index probe.

You can see that the design point for star join is to cluster the data by the index
that you have set up to support the star join. This increases the chances of
getting value from sequential prefetch. It also increases the chances of getting
value from query parallelism.

As we shall see in the performance results section later, parallelism is an area
where star join may derive more benefit than the non star join alternative.

Characteristics for good performance

Use of index:
Want to get the answer set with the smallest number of probes to
the index, so want qualifying key combinations to be grouped in a
small number of sets of contiguous index entries. This also
increases chance of index sequential prefetch.

Data access:
Want to be able to exploit features like data sequential prefetch.
Want good clustering of data with respect to index.

Parallelism:
If much of the access can be satisfied well via one index, use this
as a partitioning index to facilitate parallelism.
Chapter 6. Performance 227

6.1.3.13 Missing key predicate optimization
Consider the following SQL statement:

SELECT * FROM SALES S, LOCATION L, PRODUCT P
WHERE S.LOCATION = L.ID
AND S.PRODUCT = P.ID
AND L.CITY IN ('Boston','Seattle')
AND P.ITEM = 'stereo';

This query has no predicates on the time dimension table, which corresponds to
the second of the three columns in the fact table index.

In this case, DB2 effectively simulates a predicate on the dimension that is
missing from the query, and which does not provide any filtering.

You can see that the value of MATCHCOLS in the plan table for the explain of this
query is 2, referring to the first column (prod) and the third column (locn).

This technique allows star joins in queries like this to still be serviced fully by the
DB2 as stage 1.

For reference, we have included below the important aspects of how the access
path varies between having star join enabled (queryno=2) and having star join
disabled (queryno=20) for this same query.

Missing key predicate optimization

Example: there is no predicate on the 2nd of 3 cols in index
DB2 simulates a predicate (that does no filtering) on the missing column

allows MATCHCOLS=2 to be achieved rather than MATCHCOLS=1

SELECT * FROM SALES S, LOCATION L, PRODUCT P WHERE
S.LOCATION = L.ID AND S.PRODUCT = P.ID AND L.CITY IN
('Boston','Seattle') AND P.ITEM = 'stereo';

id month qtr year
1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

39 Mar 1 2000

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

time locn prod customer seller ...
1 1 1 123 22
2 5 2 345 56
2 2 2 246 67
2 2 1 432 12
3 3 3 999 88
3 6 2 348 60
2 6 1 101 23

prod time locn
1 1 1
1 2 2
1 2 6
2 2 2
2 2 5

time (dimension)
39 rows

location (dimension)
1,000 rows

product (dimension)
60,000 rows

index sales (fact) 150 billion rows
(fact table indexed on all joined columns)

prod
1

time
1
2
:

39

locn
2
5

A workfile is used to list the qualifying
key values for each dimension.
228 DB2 UDB Server for OS/390 Version 6 Technical Update

Star join enabled:

Star join disabled:

queryno qblockno method tname join_
type

sortn_
join

planno matchcols accesstype

2 1 0 product s y 1 0 I

2 1 1 location s y 2 0 R

2 1 1 sales s n 3 2 I

queryno qblockno method tname join_
type

sortn_
join

planno matchcols accesstype

20 1 0 product n 1 0 I

20 1 1 sales n 2 1 I

20 1 1 location n 3 1 R
Chapter 6. Performance 229

6.1.3.14 Star join with missing index column — 1
Where there is a predicate in the query for a dimension that is missing from the
index, the performance impact is more severe, since this means that the
predicate is a type 2 predicate.

This figure and the next one show a specific example of this case.

The query has local predicates on the time, location and product dimension
tables, but the chosen fact table index is a two-column index on (locn,prod).

In this example, the time dimension table has no index at all.

DB2 uses stage 1 star join processing for the dimensions which are included in
the index, creating an intermediate work table.

Star join with missing index column - 1

id city region country
1 New York East USA
2 Boston East USA
3 Chicago East USA
4 San Jose West USA
5 Seattle West USA
6 Los Angeles West USA

id item class department
1 stereo audio audio-visual
2 cd player audio audio-visual
3 television video audio-visual

location (dimension) 1,000
rows

product (dimension)
50,000 rows

time locn prod customer seller ...
1 1 1 123 22
2 5 2 345 56
2 2 2 246 67
2 2 1 432 12
3 3 3 999 88
3 6 2 348 60
1 1 1 101 23

sales (fact) 150 billion rows

method = 1 (nested loop join)

The standard stage 1 star
join technique is used for
the dimensions covered
by the fact table index to
produce an intermediate
results table.

prod
1

locn
2
5workfiles

queryno qblockno method tname join_
type

sortn
_join

matchcols

1 1 0 time s y 0
1 1 2 dsnwfqb(02) s y 0
1 2 0 product s y 0
1 2 1 location s y 0
1 2 1 sales s n 2

prod locn
1 1
1 2
1 6
2 2
2 5
2 6
3 3

sales index
(prod,locn)

time locn prod customer seller ...
2 2 1 432 12

SELECT * FROM SALES S, TIME T,
LOCATION L, PRODUCT P
WHERE S.TIME = T.ID
AND S.LOCATION = L.ID
AND S.PRODUCT = P.ID
AND T.YEAR = 1997
AND T.QTR = 1
AND L.CITY IN ('Boston','Seattle')
AND P.ITEM = 'stereo';;

temporary table dsnwfqb(02) plan_table

Suppose time is not in the chosen fact table index
230 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.3.15 Star join with missing index column — 2
DB2 the uses a merge scan join to join the time dimension table to the
intermediate work table. This is a stage 2 part of the star join process.

This processing for this kind of star join example will be significantly more costly
than the cases we examined earlier, where all the dimensions with local
predicates in the query were covered by the chosen fact table index.

The following three pages show the access path graph and report produced for
this example by Visual Explain.

Star join with missing index column - 2
id month qtr year

1 Jan 1 1997
2 Feb 1 1997
3 Mar 1 1997
4 Apr 2 1997
5 May 2 1997
6 Jun 2 1997

42 Jun 2 2000

time (dimension) 60 rows

queryno qblockno method tname join_
type

sortn
_join

matchcols

1 1 0 time s y 0
1 1 2 dsnwfqb(02) s y 0
1 2 0 product s y 0
1 2 1 location s y 0
1 2 1 sales s n 2

merge scan join by RDS on sorted temporary table

method = 2 (merge scan join)

SELECT * FROM SALES S, TIME T,
LOCATION L, PRODUCT P
WHERE S.TIME = T.ID
AND S.LOCATION = L.ID
AND S.PRODUCT = P.ID
AND T.YEAR = 1997
AND T.QTR = 1
AND L.CITY IN ('Boston','Seattle')
AND P.ITEM = 'stereo';;

time locn prod customer seller ...
2 2 1 432 12

temporary table dsnwfqb(02)

time locn prod customer seller ...
2 2 1 432 12

plan_table
Chapter 6. Performance 231

Visual Explain access path graph for deficient index example
The following figure shows a Freelance approximation of the access path graph
that Visual Explain produces for this query, with star join enabled.

SELECT
1ms

MSJoin

PAOLOR6

TIME

TBScan

IXScanNLJoin

SortTBScan

TEMP

NLJoin

SALESISortTBScan

PAOLOR6
SALES2

PAOLOR6
PROD

TBScan

PAOLOR6
LOCN
232 DB2 UDB Server for OS/390 Version 6 Technical Update

Visual Explain access path report for missing index example

ACCESS PATH REPORT
__
IDENTIFICATION

Subsystem: DB2Y
Report generation time: (4/6/00 11:04:53 AM)
__
PLAN

Plan name:
Program name (DBRM): SQLLF000
Plan owner:
Last bind time: 2000-04-06-13.56.57.950000
__
STATEMENT INFORMATION

Statement number: 1

Statement Cost:

Cost Category: A
Cost in milliseconds: 1
Cost in service units: 5
Reason:

SQL Text:

SELECT *
FROM PAOLOR6.SALES2 S, PAOLOR6.TIME T, PAOLOR6.LOCN L, PAOLOR6.PROD P
WHERE S.TIME = T.ID AND S.LOCN = L.ID AND S.PROD = P.ID AND T.YEAR = 1997 AND T.QTR = 1 AND
L.CITY IN ('BOSTON','SEATTLE')AND P.ITEM = 'STEREO' WITH UR

Access Path Description:

Select Statement

PAOLOR6.TIME (12)
| Table space scan (11)
PAOLOR6.PROD (22)
| Table space scan (21)
PAOLOR6.LOCN (26)
| Table space scan (25)
| Sort (24)
Nested Loop Join (23)
PAOLOR6.SALES2 (210)
| PAOLOR6.SALESIX2 (29)
| Matching Index Scan (28)
Nested Loop Join (27)
| Temporary Work File (16)
| Table space scan (15)
| Sort (14)
Merge Scan Join (13)
Return (17)

Access path step information:

Table space scan (11)

Prefetch: Sequential
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Table space scan (21)

Prefetch: Sequential
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Table space scan (25)

Prefetch: Sequential
Chapter 6. Performance 233

Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Sort (24)

Column function evaluation: Not applicable or to be decided at execution
Reason for sort: The new table is sorted during a join operation to make the join more

efficient.

Nested Loop Join (23)

Join type: Star Join
Stage Stage 1

Matching Index Scan (28)

Matching index keys used: 2
Index only access: No
Prefetch: Sequential
Access type: I
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Nested Loop Join (27)

Join type: Star Join
Stage Stage 1

Table space scan (15)

Prefetch: Unknown at bind time
Page range screening: No
Column function evaluation: Not applicable or to be decided at execution

Sort (14)

Column function evaluation: Not applicable or to be decided at execution
Reason for sort: The new table is sorted to give the correct ordering for the join

operation.

Merge Scan Join (13)

Join type: Star Join
Number of columns joined: 1
Stage Stage 2

Select Statement (17)

When optimize: Access path was determined at bind time using default filter
factors for any host variables, parameter markers, or special registers.
Group member: Explain not executed in a data sharing environment
Remarks from plan table:
Primary accesstype:
Cost Category: A
Cost in milliseconds: 1
Cost in service units: 5
Reason:
234 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.4 Performance results
This section shows examples of some major performance improvements that can
be achieved with star join.

However, it is very important for you to realize that there are other circumstances
where non star join will perform better, whether with lower elapsed time or lower
CPU time, or both.

For a given set of tables and indexes that support the kind of performance
improvements for certain queries with star join that are shown here, it will always
be possible to construct other queries for which non star join is faster.

This is why you should be very careful to ensure that you will get net performance
benefits for the query workload against the tables and indexes in your DB2
subsystem, before you enable star join for that DB2.

Performance results

In selected circumstances, star join performs much better than
non-star join, especially with:

multi-column fact table index with high clusterratio covering all dimensions

queries that are selective in qualifying column values and fact table rows,
especially for high-order columns of the index

snowflakes in the table design, that are referenced in the query

Remember that star join performance is highly dependent on the
circumstances, and the following examples suit star join well

Your mileage will vary !
Chapter 6. Performance 235

6.1.4.1 Performance results for serial query
The fact table in these performance measurements had a density of only 0.56%
with respect to the dimension tables. There were only 26.4 million rows in the fact
table but there were 4.7 billion possible combinations of the values that occurred
in the 7 dimension tables.

Cardinalities of the dimension and fact tables:

The set of fact table rows that qualified had an even lower density, at 0.02%.
There were only 384 rows of the fact table that qualified, even though there were
1.69 million possible combinations of the column values that qualified from the
dimension tables.

Cardinalities of the qualifying subsets of the dimension and fact tables:

This is the sort of situation which is likely to suit the star join, and not suit the
non-star join, and so it proved in this case.

dim1 dim2 dim3 dim4 dim5 dim6 dim7 product of
the 7 dims

fact

1 36 1 5032 2180 12 1 4.7 billion 26.4 million

dim1 dim2 dim3 dim4 dim5 dim6 dim7 product of
the 7 dims

fact

1 1 1 5032 28 12 1 1.69 million 384

Performance results - serial query

Characteristics of tables and sample query:
7 dimensions, 7-column index on fact table (26.4 million rows)

local predicates on dimensions for 1st, 2nd and 5th index columns
snowflake reference on 1 dimension

384 qualifying rows
12 groups returned

Non Star
Join
elapsed

Non Star
Join CPU

Star Join
elapsed

Star Join
CPU

% elapsed
saved by SJ

% CPU saved
by SJ

3007.82 sec 126.41 sec 5.10 sec 4.34 sec 99.8% 96.6%
236 DB2 UDB Server for OS/390 Version 6 Technical Update

6.1.4.2 Performance results for parallel query
This example shows a different kind of performance improvement that may be
achievable with star join. The tables and indexes are the same as in the previous
example. This time, we do not have selective local predicates on the dimension
tables. All rows from the fact table qualify. With serial execution, the savings in
elapsed time and CPU time are much less dramatic than in the previous query,
because we don’t have any selectivity. Nevertheless, star join almost gets down
to half of the elapsed and CPU time of non star join for the serial case.

The bigger benefit is the extra saving in elapsed time that can be seen when
query parallelism is used with star join compared to when it is used with non star
join. The problem with non star join in this case is that the parallelism was driven
from a dimension table that had only 1 row, and so the benefit of DEGREE=ANY
was very limited (although there was some benefit). With star join, parallelism is
driven from the fact table, which in this case had 36 partitions, so there is much
more chance of getting a big elapsed time reduction, as shown here. A 5-way
processor was used for the measurements shown here.

For query parallelism with star join, the dimension tables are replicated across
the individual parallel tasks as necessary. The degree of parallelism actually
chosen depends on whether the chosen index of the fact table is partitioned.

• If the index is partitioned, the degree is taken to be the number of partitions.

• If not, the degree is the number of CPUs in the machine.

Performance results - parallel query

Parallel
degree

Non Star
Join
elapsed

Non Star
Join
CPU

Star Join
elapsed

Star
Join
CPU

% elapsed
saved by
SJ

% CPU
saved by
SJ

1 4079 sec 4047 sec 2343 sec 2277 sec 43% 44%
ANY 3782 sec 4259 sec 545 sec 2481 sec 86% 42%
% saved by
parallelism

7% -5% 77% -9%

Star join case exploited parallelism much better than non star join
star join case drove parallelism from the fact table

non star join case drove parallelism from a dimension table with only one
qualifying value, so very little overlap was achieved

Characteristics of tables and sample query:
7 dimensions, 7-column index on fact table (26.4 million rows)
local predicates on dimensions for 1st column only

no snowflake references
26.4 million qualifying rows (all rows)

15,000 groups returned
Chapter 6. Performance 237

6.1.4.3 DB2 V6 star join summary
This figure repeats a summary of some of the key points about star join support in
DB2 V6.

It has the potential for major performance improvements in certain
circumstances. However, it also has the potential for performance regression if
used without great care. This section has covered the major considerations to
take into account when deciding whether to use it.

The two most important points are:

• Apply the fix to PQ36206 even if you do not intend to use star join, since this is
the fix that gives you the ability to enable, disable, and otherwise adjust it, and

• Only enable it if you are sure you will get an overall benefit.

Once you are using star join remember that normal tuning of your configuration
still applies:

• star join tends to make heavy usage of workfile when there is low filtering on
the dimension tables,

• physical separation of fact and dimension tables may improve the I/O
• association of data to different buffer pools helps when investigating

Apply the fix to PQ36206 even if you don't intend to use star join

Star join becomes an optional feature, disabled by default

Fast recognition of conditions for star join access path

Faster execution of certain query types with suitable data and index

Good for queries that are highly selective on high order index columns

Only enable it if you are sure you will get an overall benefit

Configuration tuning is important: watch your workfiles and buffer pools

DB2 V6 star join summary

The APAR identifier is as follows:

PQ28813, PQ33666, PQ31326, PQ36206.

APAR identifier
238 DB2 UDB Server for OS/390 Version 6 Technical Update

6.2 Volatile tables to use indexes

There can be performance problems for volatile tables which are small or empty
when runstats is run but which have grown larger when accessed by applications.
When the catalog statistics indicate an empty or very small table (NPAGES <10),
DB2 chooses a table space scan as this is more efficient than an index scan for
this size of table. However, if the catalog statistics do not reflect the true table
size and it has grown much larger this can lead to unacceptable performance.

A solution to this is to manually update the catalog statistics but this increases
operational complexity and causes locks on the catalog tables. In addition, it may
be difficult to identify which tables in the system are volatile.

This enhancement provides a new installation system parameter NPGTHRSH
which will cause the DB2 optimizer to favor index access for tables whose
statistics indicate less than a given number of pages and a matching index scan
is possible.

For example, setting the NPGTHRSH value to 200 will cause all tables with
NPAGES<200 to favor index access over a table space scan.

For table where statistics have not been collected (NPAGES = -1) DB2 will
assume 501 as the default value for NPAGES, so the NPGTHRSH should be set
to a value less than 502.

The NPGTHRSH default is 0 and the DB2 optimizer will then select the access
path based on cost as it normally does.

Click here for optional figure # YRDDPPPPUUU

At runstats
SQL

NPAGES=0
or
NPAGES<10

At execution

Volatile tables to use indexes

For tables that are small or empty at runstats time but large
at execution time
Table space scan chosen when index access may be faster
New system parameter NPGTHRSH

0 standard cost optimization (default)
n if npages < n then prefer index access
-1 always prefer index access (not recommended)

scan
Chapter 6. Performance 239

This solution is efficient and easy to implement. The disadvantage is that it could
be less efficient than standard optimization in some cases. For example, if the
small table was being accessed many times in a join, a table space scan may be
more efficient. Consequently, this parameter should be used with care so that
performance is not degraded.

The APAR identifier is as follows:

PQ33429.

APAR identifier
240 DB2 UDB Server for OS/390 Version 6 Technical Update

6.3 Query parallelism enhancements

In this section we describe two enhancements related to query parallelism.

6.3.1 New feature to limit degree of parallelism
A new DSNZPARM, PARAMDEG, has been introduced; with this parameter,
which can be set in the DSNTIP4 panel of the installation procedure, you can
control the upper limit of the degree of parallelism for a parallel group. The value
can be set between 0 and 254 where 0 means that there is no upper limit.

You should consider setting this parameter if you need to contain the usage of
resources when running highly parallel queries. This function can be very useful
when the DB2 environment is virtual storage constrained or you are encountering
large increases in virtual storage when running parallelism.

6.3.2 Short running static SQL running with parallelism
There have been performance enhancements for short-running static SQL
queries that run in an environment with parallelism enabled.

Click here for optional figure # YRDDPPPPUUU

Query parallelism enhancements

Ability to limit degree of parallelism
new DSNZPARM PARAMDEG
consider if need to control virtual stored

Short static SQL running with parallelism
performance improvements

The APAR identifier is as follows:

PQ28414.

APAR identifier
Chapter 6. Performance 241

The overhead of switching to sequential processing at run time once the host
variable values are known has been reduced.

The APAR identifier is as follows:

PQ25135.

APAR identifier
242 DB2 UDB Server for OS/390 Version 6 Technical Update

6.4 Active log I/O performance

In the past, the main log read usage, apart from during DB2 system restart, was
for recovering table spaces after media failure. Log read activity increased with
data sharing, because we add the need to recover from logs after loss of a group
buffer pool, if the new DB2 V6 function group buffer pool duplexing is not being
used.

However, in recent years, there has been a significant increase in the level of
read activity against the active log in many DB2 systems attributed to normal
operational running. Specific examples of this include:

• Use of DPropR for data propagation
• Use of online reorganization
• Use of ISV products that read the logs for recovery or auditing purposes

DB2 support for reading the active log was not originally designed for this diverse
and frequent usage. Several further improvements have been made to DB2 V6
logging, read and write activity, to cope with the evolution in the way in which the
log has come to be used.

• Direct read requests to secondary rather than just the primary active log copy
• Improved log CI write processing
• Additional instrumentation
• Reduced log write latch time

We discuss these improvements in detail below.

Active log I/O performance

More than three concurrent active log readers
DB2 assigns some to secondary copy
I/O response time for read and write improved
Another reason for dual logging

More efficient log writes
Increase number of CIs written together
Parallel CI writes

Improved instrumentation for log writes

Reducing contention for internal log write latch
Chapter 6. Performance 243

6.4.1 Reducing contention from log readers
The diagram above shows how DB2 used to satisfy read and write requests to
and from the active log in a dual logging environment (upper half of diagram). All
readers used to be assigned to the primary copy of the active log. Writes were
made to both log sets.

Log I/O contention has now been alleviated in circumstances when there are
more than three concurrent readers of the DB2 active log. DB2 will satisfy some
of the requests from the secondary copy of the active log (lower half of diagram).
This improves read time and balances I/O. The response time of log writes
should also therefore be improved.

We strongly recommend that you adopt dual logging for availability reasons, even
if you are exploiting RAID devices. The logs are absolutely vital and protect the
integrity of the entire subsystem and all of your data. The log pairs should be on
different physical devices and use different I/O paths. These performance
enhancements leverage the investment you have made in your dual logging
infrastructure.

Reducing contention from log readers

DB2 log writing Primary

SecondaryDB2 log reading

Before

DB2 log writing Primary

SecondaryDB2 log reading

After
When there are more than 3 concurrent readers of the log, DB2
starts assigning some of the readers to the secondary copy.

The APAR identifier is as follows:

PQ25745.

APAR identifier
244 DB2 UDB Server for OS/390 Version 6 Technical Update

6.4.2 DB2 log write improvements
In this section we have put together several log write enhancements. APAR
PQ28857 improves log write performance and adds new instrumentation.

6.4.2.1 Log CI writes combined
The log write threshold provides a way to ensure that log records get externalized
after a certain number of log control intervals (CIs) are placed into the log buffers.
The default value of 20 is recommended. Previously, this number of CIs was
always written as one start I/O. Now, these CIs will be combined with others into
a single start I/O at times of high logging, up to a limit of 128 CIs per start I/O.

6.4.2.2 Log CI write parallelism
With dual logging, there is now less serialization between writing to the primary
and writing to the secondary. Typically, only the first CI in a list to be written will
be written serially, the rest will be written in parallel.

6.4.2.3 Instrumentation
There is more instrumentation in the logging statistics record. An addition six
counters are recorded as follows.

QJSTLSUS
The number of times that a log manager request results in a suspend for a log
record that is being written out to the log data sets. This is the sum of the waits
recorded by IFCID 32 and IFCID 33 pairs.

DB2 log write improvements

Log writes of CIs combined
Based on log write threshold
Default value of 20 recommended
Increase from 20 to 128 CIs per start I/O

Reduced serialization writing to primary and secondary
only first CI written serially

Additional log write instrumentation

The log-write latch (class 19) is now held for less time.
Chapter 6. Performance 245

QJSTLOGW
The total number of log write I/O requests (media manager calls). This is the sum
of the waits recorded by IFCID 38 and IFCID 39 pairs. This value includes waits
for copy1 and copy2 active log data set writes. This value should correspond to
the active log write I/O activity in an RMF report.

QJSTCIWR
The total number of log CIs written. This value includes CI rewrites and copy1
and copy2 active log data set writes. If a given CI is rewritten five times, this
counter is incremented by five. This counter, multiplied by 4 KB and divided by
the statistics interval in seconds, represents the number of bytes per second of
log data written to the active log data sets. When this value exceeds 1 MB/sec
per log copy, attention should be paid to log data set I/O tuning.

QJSTSERW
The number of serial log write I/O requests. A serial log write I/O request occurs
when DB2 rewrites a log CI that was previously written as a partial CI, In a dual
logging environment, this value includes copy1 and copy2 active log data set
writes. The difference between QJSTLOGW and QJSTSERW represents the
number of parallel log write I/O requests. Typically, the first CI in a list of CIs to be
written in one start I/O is written serially, and the remaining CIs are written in
parallel to both copy1 and copy2 active log data sets. This value is meaningful
only when DB2 runs in dual active log mode.

QJSTTHRW
The number of times that an asynchronous log write request was scheduled
because the log write threshold was reached. This counter is provided primarily
for an internal check. We recommend you use the default write threshold of 20
buffers.

QJSTBPAG
The number of times that a log output buffer was paged in before it could be
initialized. The log write latch is held while a log buffer is being initialized. A
nonzero value could indicate that the log output buffer size is too large or there is
insufficient real storage to back the log output buffer size.

6.4.2.4 Log write latch improvements
The code that moves log records into the log output buffer has been optimized to
reduce the amount of time that the log-write latch (class 19) is held thus
alleviating a potential bottleneck.

The APAR identifier is as follows:

PQ28857.

APAR identifier

The APAR identifier is as follows:

PQ30461.

APAR identifier
246 DB2 UDB Server for OS/390 Version 6 Technical Update

6.5 Data sharing improvements

In this section we describe the performance improvements related to data
sharing.

6.5.1 Insert performance
A number of changes have been made to improve the performance of an
insert-intensive workload running in a data sharing environment.

The number of times that the index page P-lock needs to be transferred back and
forth between members has been reduced. Before being released, it will wait for
a short time to see if there are any further latch requests for it.

To avoid repeated write I/O for pages that are frequently modified such as space
map pages, the following changes have been made:

• For non-GBP-dependent objects, the vertical deferred write queue will be
maintained in LRU rather than by clean-to-dirty LRSN.

• Where the VDWQ is set to zero, a write for 32 pages will not be scheduled
until there are 40 pages on the queue

For member cluster table spaces, P-locks on data pages will be held past commit
in the anticipation that the same member will modify them again.

Data sharing improvements

Insert performance
Remove CLOSE YES requirement
Name class queue support
Improved trace for synchronous requests
Chapter 6. Performance 247

o

6.5.2 Remove CLOSE YES as requirement for data set physical close
DB2 dynamically tracks inter-system read write interest in group buffer pool
dependent objects. Based on some criteria it will make the pageset or partitioning
non group-buffer pool dependent by physically closing the data set which drops
the P-lock. DB2 no longer requires the pageset or partition to be defined as
CLOSE YES for this to happen.

Update for ALL users regarding the close rule
Over time, various recommendations have been made regarding the CLOSE rule
for DB2 table spaces and indexes. Various changes within DB2 mean that the
close rule no longer has as much of an impact as before. The only case where it
does make a difference is when the maximum number of open data sets for the
subsystem (DSMAX) is close to being reached. In this case DB2 will start closing
the CLOSE YES data sets in least recently used sequence. If it needs to continue
to close more data sets it will close the CLOSE NO data sets also in least recently
used sequence.

6.5.3 Name class queue support
With this function DB2 will make use of the name class queue support introduced
with Coupling Facility Level 7. The Coupling Facility Control Code (CFCC) will
organize the elements in the GBP into 'queues' based on DBID, PSID and
partition number. This organization allows locating and purging these elements in
a more efficient manner during pseudo-close or DB2 shutdown.

For those planning on installing or migrating the coupling facility to CFLEVEL= 7
or 8, please see APAR PQ35919, if using DB2 V6 with data sharing and APAR
PQ23043/UQ35798 is installed. In this case you must ensure that the correct
CFCC service levels are applied for CFLEVEL=7 or 8. For CFLEVEL=7, you need
to ensure that CFCC service level 1.06 or above is applied. For CFLEVEL=8, you
need to ensure that CFCC service level 1.03 or above is applied. If DB2 V6 data
sharing and APAR PQ23043/UQ35798 runs with group buffer pools allocated in a
CFLEVEL=7 coupling facility with a service level prior to 1.06, or CFLEVEL=8
with a service level prior to 1.03, then severe DB2 data integrity problems can be
encountered. APAR PQ35919 contains ++HOLD data with further instructions.

The APAR identifier is as follows:

PQ22910.

APAR identifier

The APAR identifier is as follows:

PQ27637.

APAR identifier
248 DB2 UDB Server for OS/390 Version 6 Technical Update

6.5.4 Improved trace for asynchronous requests
IFCID 329 is being added to track the wait time associated with GBP requests
converted from synchronous to asynchronous. In addition castout trace IFCID
263 is being enhanced for CFLEVEL 7 functionality (Name Class Queues).

IFCID 329 quantifies the time spent while waiting on a GBP asynchronous CF
request. IFCID 329 was added to accounting class 3, monitor class 3 and
performance class 21. Additionally new Group Buffer Pool (GBP) counters were
added to count the number of occurrences of these asynchronous requests.

The APAR identifier is as follows:

PQ23043, PQ32199, PQ35919.

APAR identifier

The APAR identifier is as follows:

PQ28722.

APAR identifier
Chapter 6. Performance 249

250 DB2 UDB Server for OS/390 Version 6 Technical Update

Chapter 7. Additional functional enhancements

Additional functional enhancements

Unicode client toleration support

IEEE float toleration

Controlling updates to partitoning key

Toleration of separator differences

New LANGUAGE bind option

New operator for NOT

DBPROTCL default change

Instrumentation enhancements

00SJ61080019
© Copyright IBM Corp. 2000 251

7.1 Unicode client toleration support
All DB2 string data that is not defined FOR BIT DATA has an encoding scheme
and is associated with a coded character set identifier (CCSID). Typically this is
transparent to you because when you select string data from a table, the selected
data follows the same encoding scheme as the table. DB2 support for character
set conversions is defined in SYSIBM.SYSSTRINGS. The nature of the
translation is specified by the TRANSTYPE column and available conversions
include, EBCDIC to ASCII and ASCII to EBCDIC. Recent additions include
provision support for the EURO symbol and the extended code page 300.

There is a requirement for client Unicode support. Language Environment (LE)
for OS/390 Version 2 Release 9 has been enhanced to handle UNICODE
conversions and DB2 uses this to support Unicode. Rather than providing a
translation table in SYSIBM.SYSSTRINGS, DB2 has been enhanced to
externalize the conversion request to LE. This brings UNICODE support for DB2
today and leverages facilities provided by LE so the probability of handling
conversion requests has increased. To determine which extra conversions are
supported, please refer to OS/390 V2R9 C/C++ Programming Guide ,
SC09-2362-05 under “Code set converters supplied” or "Universal coded
character set converters".

Click here for optional figure # YRDDPPPPUUU

Unicode client toleration support

Requires Language Environment for OS/390 V2 R9

DB2 used to just search SYSSTRINGS for a translation table to do
the required character conversion

However now DB2
searches cache
searches SYSIBM.SYSSTRINGS
searches LE

If no success, returns SQLCODE -322

Also provides support for other conversions supported by LE but
not in SYSSTRINGS
252 DB2 UDB Server for OS/390 Version 6 Technical Update

For character conversions, provided that you have the right version of Language
Environment, DB2 performs the following steps:

1. Searches the cache

2. Searches SYSIBM.SYSSTRINGS

3. Searches LE (provided all pre-requisites are satisfied)

4. If no success, return SQLCODE -332 (as before)

The prerequisites for UNICODE support in DB2 are OS/390 V2R9 for the required
Language Environment and the following APARs.

The APAR identifier is as follows:

PQ32782 and PQ32803.

APAR identifier
Chapter 7. Additional functional enhancements 253

7.2 IEEE float toleration
DB2 stores floating point numbers in the S/390 Hexadecimal Floating Point (HFP)
format. Prior to this enhancement, SQL statements containing IEEE (Institute of
Electrical and Electronics Engineers) Binary Floating Point (BFP) host variables
receive an SQLCODE -20107 and the LOAD utility issues message DSNT501I with
reason code 00E73005 because machine instructions must be available to DB2 to
manipulate the variable.

DB2 toleration for BFP has been added. Applications written in ASM, C or C++
can now send and receive BFP data. The LOAD utility can also handle BFP
numbers. DB2 continues to store its floating point numbers in HFP format but you
can handle BFP numbers as follows

• To precompile/compile ASM, C or C++ programs that use BFP numbers,
specify the FLOAT(IEEE) option. If the value of HOST is anything other that one
of those three languages, DB2 ignores the value of FLOAT. DB2 will convert
BFP numbers to HFP numbers before storing the data. FLOAT(S390) is the
default. DB2 will not check that the host variable definition matches the
pre-compiler option you have chosen so you will to make sure the option you
choose is appropriate for the program you have written.

• The LOAD utility has the new option FLOAT(IEEE). DB2 expects floating point
numbers to be in BFP format and will convert them to HFP as the data is
loaded. If a conversion error occurs the record will be discarded. You cannot
use the FORMAT option with FLOAT(IEEE). The default is FLOAT(S390).

• BFP host variables are not supported in user defined functions or triggers.

Click here for optional figure # YRDDPPPPUUU

IEEE Float toleration

DB2 stores floating point numbers in S/390 HFP format

Toleration provides for IEEE Binary Floating Point (BFP) host
variables

For ASM, C, C++ only

Specify the FLOAT(IEEE) option on the precompile/compile

DB2 converts and stores the value as HFP format
254 DB2 UDB Server for OS/390 Version 6 Technical Update

The APAR identifier is as follows:

PQ30062, PQ30063, PQ28623.

APAR identifier
Chapter 7. Additional functional enhancements 255

7.3 Controlling updates to partitioning key
The DB2 restriction on updating values in partitioning key columns was lifted in
DB2 Version 5 with the functional enhancement introduced with maintenance
(APAR PQ16946). In this refresh of Version 6, additional control over use of this
facility has been introduced.

If an update of a key column results in the movement of the row, say from
partition 3 to partition 52 of a 64 partition table space, DB2 performs the following
step:

• Drains data partitions 3 to 52 inclusive

• Drains partitioning key partitions 3 to 52 inclusive

• Drains all non-partitioning indexes

• Updates what is needed to move data from partition 3 to partition 52

Clearly, these drains are highly disruptive for anything other than occasional
updates of partitioning keys and unsuitable for high volume transaction workloads
that resulted in the frequent movement of data to a new partition. Please refer to
the DB2 manuals or to DB2 Server for OS/390 Version 5 Recent Enhancements,
SG24-5421for a description of this function.

You now can have control, at subsystem level, as to whether you want to enable
update of partitioning keys and, if so, what updates are permitted. The behavior
of partitioned key updates is controlled by DSNZPARM parameter PARTKEYU in
panel DSNTIP4. The table below shows the range of valid values of PARTKEYU
and the effect of each.

Click here for optional figure # YRDDPPPPUUU

Controlling updates to partitioning key

Restriction on updating partitioning key columns lifted in V5

Performance overhead if row moves across partitions
drains data and index partitions and all NPIS

highly disruptive

New DSNZPARM PARTKEYU
YES - Updates permitted without restriction

SAME - Updates permitted as long as row is not relocated to another partition

NO - Updates are not permitted

Recommendations
use YES only where you are sure updates are very low volume and the drains
will not disrupt other transactions

Use SAME if you have applications that need to update the key - rows cannot
move across partitions

Use NO to ensure possible failures are identfied in testing
256 DB2 UDB Server for OS/390 Version 6 Technical Update

We recommend that you do not use YES unless you can be certain that updates
of partitioning keys will be very low volume within the subsystem and the drains
will not impact the workload.

The decision between SAME and NO depends on your applications. NO is the
most straightforward and will work the same as prior to V5. The first time a
program containing an update to a partitioning key is bound in development, the
issue will be raised by a bind failure. The programmer will then change the
update to a delete followed by an insert.

When SAME is specified, the issue will not be raised until the first time an update
causes a row to change partitions. Depending on the set up of test tables and
data this may not be until production or stress testing when the program fails with
a -904. This needs to be weighed up against the flexibility that the SAME option
provides. If you know your application will not update values causing the row to
change partitions, the SAME option could be useful. It may mean that you can
avoid changes to an application ported from another DBMS.

Please note that if you revert to disabling updates to partitioning keys, you need
to check that there have been no programs implemented since V5 which update
them. Otherwise they will fail with the resource unavailable SQLCODE.

PARTKEYU Effect of setting

YES Update of partitioned key columns permitted without restriction. DB2
will request drains necessary to complete the update. Applications
will be completely unaware that the table is in a partitioned table
space.

SAME Update of partitioned key columns is permitted if and only if the
update does not require the updated row to relocate to another
partition. An attempt to relocate a row will result in SQLCODE -904
and message DSNT501Iwith unavailable resource CODE, resource
type X’3000’ and reason code 00C900C7.

NO Update of partitioned key columns is not permitted. Applications will
receive SQLCODE -151.

The APAR identifier is as follows:

PQ22653.

APAR identifier
Chapter 7. Additional functional enhancements 257

7.4 Toleration of separator differences
Support has been provided to allow a DB2 for OS/390 system which has been
installed with comma as the default separator, to allow dynamic SQL which uses
period as its separator.

7.5 New LANGUAGE bind option

A new DRDA generic bind option called LANGUAGE has been introduced to help
in the conversion of private protocol programs to DRDA access. It will enable you
to remotely bind COBOL programs that use hyphens in cursor names, for
example CURSOR-1.

Valid values for the new option are COBOL, COBOL2 and IBMCOBOL. The
DRDA requester passes this information to the server at bind time so that it
recognizes this value as valid.

Additional enhancements

Toleration of separator differences
DB2 accepts decimal point separator in dynamic SQL

New LANGUAGE bind option
enables remote binds of COBOL programs containing hyphens

New operator for NOT
! has been added to ¬ and <> as sympbols for NOT

DBPROTCL default change
changed from DRDA to PRIVATE

Instrumentation enhancements
additional dynamic statement cache statistics

utility sub task count information

10 00SJ6108001

The APAR identifier is as follows:

PQ32872.

APAR identifier
258 DB2 UDB Server for OS/390 Version 6 Technical Update

7.6 New operator for NOT
Three new operators!=,!> and !< have been added to the DB2 syntax for NOT
EQUAL, NOT GREATER THAN, and NOT LESS THAN respectively. These have
been added for compatibility with other databases.

This supplements the existing not operators which are ¬ , <> and NOT.

Consideration for triggers

All triggers created before applying this APAR with ! used as the terminator in the
trigger body will have to be dropped and recreated.

7.7 DBPROTCL default change
Please note that the default for the DBPROTCL, a new V6 DSNZPARM, has
changed from DRDA to PRIVATE. This parameter was introduced as part of the
DRDA support for three part name statements and provides a default for when
the protocol is not specified at bind time. This change is to prevent customers
inadvertently changing the remote access method specified by a package during
migration. The previous default may also have led to packages becoming frozen
during coexistence in a data sharing environment.

The APAR identifier is as follows:

PQ31209 and PQ29507.

APAR identifier

The APAR identifier is as follows:

PQ27558.

APAR identifier

The APAR identifier is as follows:

PQ25966.

APAR identifier
Chapter 7. Additional functional enhancements 259

7.8 Instrumentation enhancements

Dynamic statement cache statistics
IFCID 316 provides information and statistics for every statement in the cache. It
has been enhanced to collect the following extra information which could be
useful during tuning:

• Accumulated CPU and wait time values

• Indication of when the statistics interval began

• Indication that a RID list failure (statement reverted to table space scan)
occurred

Detailed layout information can be found in SDSNSAMP(DSNDQW04)

Instrumentation of utility sub task counts
The utility IFCID records QW0023 (utility start), QW0024 (utility phase change)
and QW0025 (utility end) are modified to include sub task count information.

For IFCID 23, issued at start of utility, the QW0023R1 field will contain 0, or, for
utilities that support a keyword to allow the user to control the number of sub
tasks started (COPY and RECOVER), it will contain the number of sub tasks
requested (for COPY and RECOVER this is twice the value specified by the
PARALLEL keyword).

For IFCID 24, issued at utility phase changes, the QW0024R1 field will contain a
count of all sub tasks started at the time the IFCID 24 is issued. This is a
cumulative count.

For IFCID 25, issued at utility end, the QW0025R1 field will contain the total
count of all sub tasks started during the utility execution.

The APAR identifier is as follows:

PQ25652.

APAR identifier

The APAR identifier is as follows:

PQ29243.

APAR identifier
260 DB2 UDB Server for OS/390 Version 6 Technical Update

Appendix A. DB2 APARs cross references

In this appendix we provide two tables that represent a reference summary of
maintenance that has been made available since GA in two areas: functional
enhancements (described in the redbook) and performance related fixes (mostly
regression avoidance). For details on the PTFs that comprise the RML, please
refer to RETAIN, Information APAR II12343. Also always check RETAIN for the
latest information on pre- or post-requisites: the following list, even if it has been
carefully compiled, will not be accurate by the time you read it.

A.1 Functional enhancements

This table shows the APARs and PTFs for the enhancements that we have
described in the redbook.

Function APARs PTFs Access
ability

Avail-
ability

Exten-
sibility

Manag
eability

Perfor
mance

Scala-
bility

Cancel local threads
faster outside DB2

PQ34465
PQ34466
PQ36702

UQ40219
UQ40220
UQ41780

X X

Catmaint - made
optional

PQ30313 UQ34284 X X

Checkpage for copy PQ25084 UQ38365 X X

Columns in order by not
in select

PQ23778 UQ31707 X

Data sharing - CF sync
requests

PQ28722
PQ34764

UQ34769
UQ40107

X

Data sharing - insert
performance

PQ22910 UQ40244 X

Data sharing - name
class queue support

PQ23043
PQ32199
PQ35919

UQ35798
UQ38517
UQ40956

X

Data sharing - new
IMMEDWRITE option

PQ25337 UQ38882 X X

Data sharing -physical
close rule

PQ27637 UQ32363 X X

DBPROTOCOL BIND
default change

PQ25966 UQ34216 X

DDF Suspend/Resume
for DDL

PQ27123
PQ32920

UQ33969
UQ37904

X X

Decimal point
enhancement

PQ32872 UQ38554 X

Declared temporary
tables

PQ32670
PQ35416

UQ39712
UQ40368

X

© Copyright IBM Corp. 2000 261

Defer defining data sets PQ30999
PQ34029
PQ34386
PQ34592
PQ34030

UQ38326
UQ41817
UQ40812
UQ39738
UQ40811

X

Dynamic statement
cache statistics

PQ25652 UQ39893 X X

EDM pool - new ZPARM PQ31969 UQ40687 X

External savepoints PQ30439 UQ35648 X

Extra block query DRDA PQ30947 UQ36328 X

Faster data sharing
member shutdown

PQ29907
PQ35845

UQ39752
UQ41226

X

Global transaction
support

PQ28487
PQ28611

UQ34479
UQ34478

X

Identity column support PQ30652
PQ30684
PQ36328
PQ36452

UQ38405
UQ36940
UQ43454
UQ42445

X

IEEE float toleration PQ30062
PQ30063
PQ28623

UQ34602
UQ34603
UQ33662

X

IFI consolidation for
data sharing

PQ29031
PQ25094

UQ35451
UQ40638

X

Java stored procedures PQ36011
PQ31846

UQ41672 X

Langage bind option PQ31209
PQ29507

UQ36980
UQ35735

X

Log suspend/resume PQ31492 UQ36695 X

Logging - new write
statistics

PQ28857 UQ33397 X

Logging - read
performance

PQ25745 UQ29949 X

Logging - write
performance

PQ30461 UQ34847 X

Operators for not equal PQ27558 UQ34625 X

Parallelism - subtask
count statistics

PQ29243 UQ33565 X

Query parallelism
ZPARM controller

PQ28414 UQ33443 X

REXX stored
procedures

PQ30219
PQ33133

UQ35973
UQ38510

X

RML indicator PQ34870 UQ41223 X

Function APARs PTFs Access
ability

Avail-
ability

Exten-
sibility

Manag
eability

Perfor
mance

Scala-
bility
262 DB2 UDB Server for OS/390 Version 6 Technical Update

Runstats - collection of
uniform statistics

PQ21014 UQ28842 X

Runstats - extra space
statistics

PQ25091 UQ30738 X

Volatile tables to use
indexes

PQ33429 UQ38867 X X

SQL procedures
support

PQ29782
PQ30467
PQ30492
PQ33026
PQ33560
PQ24199

UQ34840
UQ34841
UQ39824
UQ40331
UQ40332
UQ38439

X

SQLJ/JDBC driver PQ36011 UQ41672 X X

Star join support PQ28813
PQ33666
PQ31326
PQ36206

UQ33085
UQ40281
UQ39733
UQ42008

X X

Static SQL perf ZPARM PQ25135 UQ33757 X

Trigger performance PQ34506 UQ40181 X

Timestamp functions PQ33564 UQ39444 X

Unicode toleration PQ32782
PQ32803

UQ37508
UQ37509

X

Update partitioning keys
ZPARM

PQ22653 UQ34417 X X

Update with subselect PQ30383
PQ31272

UQ37262
UQ37245

X

Function APARs PTFs Access
ability

Avail-
ability

Exten-
sibility

Manag
eability

Perfor
mance

Scala-
bility
Appendix A. DB2 APARs cross references 263

A.2 Performance related maintenance

The following list of APAR/PTFs is related to maintenance of interest for
performance functions.

APAR PTF Description

PQ34126 UQ38884 Performance improvement for set function table space
scan path.

PQ32018 UQ37373 Excessive synchronous read I/O for workfiles when
prefetch disabled due to too many concurrent logical
workfiles.

PQ25135 UQ33757 Static SQL queries involving host variables can see
significant performance degradation when running
with DEGREE(ANY) if DB2 decides to execute the
query sequentially.

PQ22497 UQ27840 An inefficient access path may be selected by DB2 for
queries that involve the materialization of a table
expression, view or workfile.

PQ22381 UQ26354 Inefficient access path selected for a query with a
LIKE predicate on a VARCHAR column.

PQ24146 UQ31786 Enable parallelism for non-partitioning index (NPI)
access to the first base table in a parallel group.

PQ29601 UQ34528 V6 RUNSTATS TABLESPACE utility shows an
increase in CPU time usage when compared to V5.

PQ31735 UQ36271 Performance degradation during insert on large
segmented tables.

PQ27838 UQ31619 Performance of index screening may be degraded
when most of the keys do not qualify during the scan.

PQ27500 UQ34601 Performance improvement for the CALL statement
USING DESCRIPTOR.

PQ32690 UQ39727 ABEND04E RC00C90105 and excess of getpages for
the root index page uring an SQL update statement
after a ALTER VARCHAR was done on a partition
table space.

PQ35329 UQ41099 Performance degradation of the CALL statement
when the stored procedure name is specified in a host
variable.

PQ29600
PQ32937

UQ35205
UQ38019

Online Reorg fixes for reducing data unavailability for
applications during the end of the LOG phase (UTRO)
and the beginning of the SWITCH phase (UTUT).
264 DB2 UDB Server for OS/390 Version 6 Technical Update

Appendix B. Sample external user defined function

This sample external UDF converts a smallint into a variable length character.

Create function statement
CREATE FUNCTION CHAR_N (SMALLINT)
RETURNS VARCHAR(32)
SPECIFIC CHAR_N_SI
LANGUAGE C
DETERMINISTIC
NO SQL
EXTERNAL NAME CHARNSI
PARAMETER STYLE DB2SQL
NULL CALL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL
NO COLLID
ASUTIME LIMIT 5
STAY RESIDENT YES
PROGRAM TYPE SUB
WLM ENVIRONMENT DB2YENV1
EXTERNAL SECURITY DB2
NO DBINFO;
C program listing
/***
* Module name = CHARNSI *
* *
* DESCRIPTIVE NAME = Convert small integer number to a string *
* *
* *
* LICENSED MATERIALS - PROPERTY OF IBM *
* 5645-DB2 *
* (C) COPYRIGHT 1999 IBM CORP. ALL RIGHTS RESERVED. *
* *
* STATUS = VERSION 6 *
* *
* *
* Example invocations: *
* 1) EXEC SQL SET :String = CHARN(number) ; *
* ==> converts the small integer number to a string *
* Notes: *
* Dependencies: Requires IBM C/C++ for OS/390 V1R3 or higher *
* *
* Restrictions: *
* *
* Module type: C program *
* Processor: IBM C/C++ for OS/390 V1R3 or higher *
* Module size: See linkedit output *
* Attributes: Re-entrant and re-usable *
* *
* Entry Point: CHARNSI *
* Purpose: See Function *
* Linkage: DB2SQL *
* Invoked via SQL UDF call *
© Copyright IBM Corp. 2000 265

* *
* *
* Input: Parameters explicitly passed to this function: *
* - *number : a pointer to a small inteher number *
* to convert to a string *
* *
* Output: Parameters explicitly passed by this function: *
* - *numString : pointer to a char[32], null-termi- *
* nated string to receive the refor- *
* matted number. *
* - *nullNumString : pointer to a short integer to re- *
* ceive the null indicator variable *
* for *numString. *
* - *sqlstate : pointer to a char[06], null-termin-*
* ated string to receive the SQLSTATE*
* - *message : pointer to a char[70], null-termin-*
* ated string to receive a diagnostic*
* message if one is generated by this*
* function. *
* *
* Normal Exit: Return Code: SQLSTATE = 00000 *
* - Message: none *
* *
* *
* Error Exit: None *
* *
* External References: *
* - Routines/Services: None *
* - Data areas : None *
* - Control blocks : None *
* *
* *
* Pseudocode: *
* CHARNSI: *
* 1) If input number is NULL, then return NULL,exit *
* 2) Translate the small integer number to a string *
* 3) Return output string *
* *
***/
/***
* Module name = CHARNSI *
* *
* DESCRIPTIVE NAME = Convert small integer number to a string *
* *
***/
/********************** C library definitions ***********************/
#pragma linkage(CHARNSI,fetchable)
#pragma runopts(POSIX(ON))
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <decimal.h>
#include <ctype.h>
/***************************** Equates ******************************/
#define NULLCHAR '\0'
/*********************** GREATN functions ***************************/
void CHARNSI /* main routine */
(

266 DB2 UDB Server for OS/390 Version 6 Technical Update

short int *p1In, /* First parameter address */
char *pOut, /* Output address */
short int *null1In, /* in: indic var for null1In */
short int *nullpOut, /* out: indic var for pOut */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/
char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */
);
/***/
/************************** main routine ***************************/
/***/
void CHARNSI /* main routine */
(
short int *p1In, /* in: timestp1 */
char *pOut, /* out: timestp */
short int *null1In, /* in: indic var for null1In */
short int *nullpOut, /* out: indic var for pOut */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/
char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */
)
{
#define DEF_OUTPUT_LENGTH 32

/************************ Local variables *************************/
char strret??(100 ??); /* string reciever */
/***
* Initialize SQLSTATE to 00000 and MESSAGE to "" *
***/
message[0] = NULLCHAR;
nullpOut = 0; / -1 if Null value returned */
memcpy(sqlstate,"00000",6);
memset(pOut, NULLCHAR, DEF_OUTPUT_LENGTH);

/***
* Return NULL if at least one input parameter is NULL *
***/
if (*null1In |= 0)
{
*nullpOut = -1;
return;
}

/***
* Convert an integer to a string *
***/

sprintf(pOut, "%-d", *p1In);

return;
} /* end of CHARNSI */
Appendix B. Sample external user defined function 267

268 DB2 UDB Server for OS/390 Version 6 Technical Update

Appendix C. DB2 and REXX

C.1 Sample main program REXX code
/* rexx */
/* trace i */ /* uncomment to activate REXX tracing */

/* Sample REXX program that interrogates PLAN_TABLE and SYSIBM.SYSTABLES
to add to an exception table table space scans of greater than a
specified number of pages

Input parameters ssid = DB2 subsystem to connect to
creator = PLAN_TABLE owner
NPAGES = number of pages we are prepared to

tolerate scanning

Output is to one of two tables
A) for table space scans of greater than NPAGES
Rows found are written to exception table with definition as
follows
CREATE TABLE EXCPTION

(
QUERYNO INTEGER NOT NULL,
BIND_TIME TIMESTAMP NOT NULL,
APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
PROGNAME CHAR(8) NOT NULL WITH DEFAULT,
TB_CREATOR CHAR(8) NOT NULL,
TB_NAME CHAR(18) NOT NULL,
TB_CARDINALITY INTEGER NOT NULL,
TB_NPAGES INTEGER NOT NULL,
DATETIME_DETECTED TIMESTAMP NOT NULL WITH DEFAULT,
CREATED_BY CHAR(8) NOT NULL WITH DEFAULT

CURRENT SQLID)
IN <DBNAME>.<TSNAME>
;
B) for those scans for which there are no RUNSTATS
rows are written to a control table which specifies the RUNSTATS
statement required to collect STATS.
create table runstats

(control_stmt varchar(254) not null,
datetime timestamp not null with default,
created_by char(8) not null with default

current sqlid)
in <dbname>.<tsname>
; */

PARSE ARG ssid creator npages /* read arguments */

/* check values of supplied arguments: supply defaults if none passed */
/* this parameter checking is rudimentary, designed to show you how to

handle host variables in REXX procedures and REXX code when talking
to DB2 than do anything too serious */

IF ssid = ‘’ THEN ssid = “DB2Y”; /* our default subsystem */

IF creator = ‘’ THEN creator = ‘PAOLOR8’; /* this parameter represents
© Copyright IBM Corp. 2000 269

the owner of the plan
table we are using to
interrogate */

/* integer host variable */
IF npages = ‘’ THEN NPAGES = -20; /* when interrogate catalog

what’s the maximum no.
of pages we are prepared
to table space scan */

CALL set_sqlstmt /* call REXX subroutine */
/* to build SQL statement */

/* OK, now ready to do the DB2 stuff */
SUBCOM DSNREXX /* set up host environment */
IF RC THEN /* is host command there */

x = RXSUBCOM(‘ADD’,’DSNREXX’,’DSNREXX’) /* no: so create it */

ADDRESS DSNREXX ‘CONNECT’ ssid /* connect to DB2 */
sqlcall=”Called from MAIN: Connect to DB2” /* what are re trying to do*/
rc=check_sqlcode(SQLCODE); /* check SQL return code */

/* this routine accesses the catalog for which we are content to use
uncommitted read. Set the isolation level as required */

ADDRESS DSNREXX “EXECSQL SET CURRENT PACKAGESET=’DSNREXUR’”
sqlcall=”Called from MAIN: Set packageset” /* diagnostics */
rc=check_sqlcode(SQLCODE); /* check SQL return code */

/* first declare that we are to use a cursor. The choice of the cursor
name is NOT random. You MUST use predefined cursor and statement
names. See REXX Language Support manual */

ADDRESS DSNREXX “EXECSQL DECLARE C1 CURSOR FOR S1”
sqlcall=”Called from MAIN: Declare C1 for S1”
rc=check_sqlcode(SQLCODE);

/* prepare the SQL statement stored in the sql_stmt host variable.
The choice of S1 is not a random one. You MUST use predefined
cursor and statement names. See REXX Language Support (rexxv6.pdf)*/

ADDRESS DSNREXX “EXECSQL PREPARE S1 FROM :SQL_STMT”
sqlcall=”Called from MAIN: Prepare S1 using “||SQL_STMT
rc=check_sqlcode(SQLCODE);

/* the host variable NPAGES has been set, so execute the prepared
statement substituting the value in NPAGES for the ? parameter
marker in the S1 statement referred to by cursor C1 */

ADDRESS DSNREXX “EXECSQL OPEN C1 USING :NPAGES”
sqlcall=”Called from MAIN: Open S1 using “||NPAGES
rc=check_sqlcode(SQLCODE); /* check SQL return code */

DO UNTIL (SQLCODE = 100)
/* start fetching the data - note UPPER case variables critical */
sqlcall=”Called from MAIN: Fetch C1”
ADDRESS DSNREXX “EXECSQL FETCH C1 INTO “,

“:REASON, :QUERYNO, :BIND_TIME, :APPLICATION_NAME, “,
“:PROGRAM_NAME, :TB_CREATOR, :TB_NAME, :CARD, :ACTUAL_PAGES,”,
“:DBNAME, :TSNAME”

IF SQLCODE < 0 THEN /* any SQL error - handle */
270 DB2 UDB Server for OS/390 Version 6 Technical Update

rc=check_sqlcode(SQLCODE); /* check SQL return code */

/* the particular reason we’ve got rows back from the plan_table
and the catalog is either:
a) stats not collected (REASON=’NO STATISTICS’)
b) ts-scan of more than :NPAGES (REASON=’ LARGE SCAN’)
We’re going to check the value of the reason and where
- no statistics, generate RUNSTATS statements
- LARGE SCAN put data into an exception table */

IF SQLCODE ^= 100 THEN DO;
IF REASON = ‘NO STATISTICS’ THEN

CALL generate_runstats

IF REASON = ‘ LARGE SCAN’ THEN
CALL create_exceptions

END;

END;

EXIT rc;

/* put the SQL statement we are to execute into a REXX variable */
/* it uses a REXX variable “creator” and will use a host variable */
/* npages - defined as a parameter marker(?) in the SQL statement */
/* NOTE: the SQL_STMT variable name must be UPPER case */
set_sqlstmt:
SQL_STMT =,
“SELECT ‘ LARGE SCAN’ , “,
“ PLN.QUERYNO , “,
“ PLN.BIND_TIME , “,
“ PLN.APPLNAME , “,
“ PLN.PROGNAME , “,
“ TB.CREATOR , “,
“ TB.NAME , “,
“ TB.CARD , “,
“ TB.NPAGES , “,
“ TB.DBNAME , “,
“ TB.TSNAME “,
“FROM SYSIBM.SYSTABLES TB, “, /* creator - */

creator”.PLAN_TABLE PLN “, /* this is the owner of the */
“WHERE PLN.CREATOR = TB.CREATOR “, /* plan_table we set as a */
“ AND PLN.TNAME = TB.NAME “, /* REXX variable - passed as */
“ AND PLN.ACCESSTYPE=’R’ “, /* parameter */
“ AND TB.NPAGES > ? “, /* NOTE: parameter marker */
“UNION ALL “,
“SELECT ‘NO STATISTICS’ , “,
“ PLN.QUERYNO , “,
“ PLN.BIND_TIME , “,
“ PLN.APPLNAME , “,
“ PLN.PROGNAME , “,
“ TB.CREATOR , “,
“ TB.NAME , “,
“ TB.CARD , “,
“ TB.NPAGES , “,
“ TB.DBNAME , “,
“ TB.TSNAME “,
“FROM SYSIBM.SYSTABLES TB, “,
Appendix C. DB2 and REXX 271

creator”.PLAN_TABLE PLN “,
“WHERE PLN.CREATOR = TB.CREATOR “,
“ AND PLN.TNAME = TB.NAME “,
“ AND PLN.ACCESSTYPE=’R’ “,
“ AND TB.NPAGES < 0 “;
RETURN;

/* rexx subroutine to generate the RUNSTATS statement required and
then we’ll insert this into a control table */

generate_runstats:
/* generate the control statement required */
CTL_STMT=”RUNSTATS TABLESPACE “ DBNAME”.”TSNAME” TABLE(“TB_CREATOR”.”,

TB_NAME”) COLUMN(ALL) INDEX(ALL) SHRLEVEL REFERENCE REPORT YES “,
“UPDATE ALL”

/* build the SQL statement */
ISRT_STMT=”INSERT INTO RUNSTATS (CONTROL_STMT) VALUES(?)”

/* now even though we are executing a singleton insert must declare
a cursor - othersise the prepare gives SQLCODE -504 */

sqlcall=”Called from generate runstats: declare C4 for S4”
ADDRESS DSNREXX “EXECSQL DECLARE C4 CURSOR FOR S4”
rc=check_sqlcode(SQLCODE); /* check SQL return code */

/* get DB2 ready to execute this SQL statement */
ADDRESS DSNREXX “EXECSQL PREPARE S4 FROM :ISRT_STMT”
sqlcall=”Called from generate runstats: prepare S4 from “||ISRT_STMT
rc=check_sqlcode(SQLCODE); /* check SQL return code */

/* and go using the CTL_STMT host variable set above */
ADDRESS DSNREXX “EXECSQL EXECUTE S4 USING :CTL_STMT”
sqlcall=”Called from generate runstats: execute S4 using “||CTL_STMT
IF SQLCODE < 0 THEN

rc=check_sqlcode(SQLCODE); /* check SQL return code */

RETURN;

create_exceptions:
/* generate the required insert statement */
ISRT_STMT=”INSERT INTO PAOLOR8.EXCPTION “,

“(QUERYNO, BIND_TIME, APPLNAME, PROGNAME, TB_CREATOR,”,
“TB_NAME, TB_CARDINALITY, TB_NPAGES)”,
“ VALUES (?,?,?,?,?,?,?,?)”

/* declare a cursor for this */
sqlcall=”Called from generate runstats: declare C3 for S3”
ADDRESS DSNREXX “EXECSQL DECLARE C3 CURSOR FOR S3”
rc=check_sqlcode(SQLCODE); /* check SQL return code */

/* get DB2 ready to execute this SQL statement */
ADDRESS DSNREXX “EXECSQL PREPARE S3 FROM :ISRT_STMT”
sqlcall=”Called from generate runstats: prepare S3 from “||ISRT_STMT
rc=check_sqlcode(SQLCODE); /* check SQL return code */

/* and go using the host variables set above */
ADDRESS DSNREXX “EXECSQL EXECUTE S3 USING “,

“:QUERYNO, :BIND_TIME, :APPLICATION_NAME, “,
“:PROGRAM_NAME, :TB_CREATOR, :TB_NAME, :CARD, :ACTUAL_PAGES,”

sqlcall=”Called from generate excption: execute S3 using host variables”
272 DB2 UDB Server for OS/390 Version 6 Technical Update

IF SQLCODE < 0 THEN
rc=check_sqlcode(SQLCODE); /* check SQL return code */

RETURN;

/* check value of SQLCODE. If 0, fine just leave. Otherwise display
the error messages, issue a ROLLBACK and exit with the bad code */

check_sqlcode:
IF SQLCODE = 0 THEN RETURN 0;
SAY “Error detected at “ sqlcall
SAY “SQLCODE = “SQLCODE
SAY “RETCODE = “RETCODE
SAY “SQLSTATE = “SQLSTATE
SAY “SQLERRMC = “SQLERRMC
SAY “SQLERRP = “SQLERRP
SAY “SQLERRD =”SQLERRD.1’,’,

||SQLERRD.2’,’,
||SQLERRD.3’,’,
||SQLERRD.4’,’,
||SQLERRD.5’,’,
||SQLERRD.6

SAY “SQLWARN =”SQLWARN.0’,’,
||SQLWARN.1’,’,
||SQLWARN.2’,’,
||SQLWARN.3’,’,
||SQLWARN.4’,’,
||SQLWARN.5’,’,
||SQLWARN.6’,’,
||SQLWARN.7’,’,
||SQLWARN.8’,’,
||SQLWARN.9’,’,
||SQLWARN.10

ADDRESS DSNREXX “EXECSQL ROLLBACK”
exit SQLCODE

C.2 JCL to invoke REXX main program
//*
//* EMPTY TABLES BEFORE WE START. THIS PROVES REXX CODE IS
//* POPULATING THEM WITH DATA
//*
//S0010 EXEC PGM=IKJEFT01
//STEPLIB DD DSN=DSN610.SDSNEXIT,DISP=SHR
// DD DSN=DSN610.SDSNLOAD,DISP=SHR
// DD DSN=DB2V610Y.RUNLIB.LOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB2Y)
RUN PROGRAM(DSNTEP2) PLAN(DSNTEP61)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
DELETE FROM RUNSTATS;
DELETE FROM EXCPTION;
//*
Appendix C. DB2 and REXX 273

//* RUN REXX PROGRAM - NOTE SDSNLOAD IS IN STEPLIB
//*
//S0020 EXEC PGM=IKJEFT1B,PARM=’%DB2REXXM’
//STEPLIB DD DSN=DSN610.SDSNLOAD,DISP=SHR << NEED THIS FOR DSNREXX
//SYSEXEC DD DSN=PAOLOR8.DB2.EXEC,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//*
//* SELECT FROM TABLES
//*
//S0030 EXEC PGM=IKJEFT01
//STEPLIB DD DSN=DSN610.SDSNEXIT,DISP=SHR
// DD DSN=DSN610.SDSNLOAD,DISP=SHR
// DD DSN=DB2V610Y.RUNLIB.LOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB2Y)
RUN PROGRAM(DSNTEP2) PLAN(DSNTEP61)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
SELECT * FROM RUNSTATS;
SELECT * FROM EXCPTION;

C.3 REXX stored procedure
/* rexx */

trace i

SAY 'hi there'

SUBCOM DSNREXX /* set up host environment */

IF RC THEN /* is host command there */

x = RXSUBCOM('ADD','DSNREXX','DSNREXX') /* no: so create it */

ISRT_STMT="INSERT INTO PAOLOR8.RUNSTATS (CONTROL_STMT) VALUES(?)"

ADDRESS DSNREXX "EXECSQL DECLARE C2 CURSOR FOR S2"

s="Called from DB2REXXR: declare C2 for S2"

rc=check_sqlcode(SQLCODE); /* bad - return to caller */

/* get DB2 ready to execute this SQL statement */

ADDRESS DSNREXX "EXECSQL PREPARE S2 FROM :ISRT_STMT"

s="Called from DB2REXXR: prepare S2 from "||ISRT_STMT
274 DB2 UDB Server for OS/390 Version 6 Technical Update

rc=check_sqlcode(SQLCODE); /* bad - return to caller */

/* and go using the CTL_STMT host variable set above */

CTL_STMT='what a fine day we are having 0001'

ADDRESS DSNREXX "EXECSQL EXECUTE S2 USING :CTL_STMT"

s="Called from DB2REXXR: execute S2 using "||CTL_STMT

rc=check_sqlcode(SQLCODE); /* bad - return to caller */

EXIT SQLCODE;

/* subroutine to check SQLCODE and if bad pass control to caller */

check_sqlcode:

trace i

IF SQLCODE = 0 THEN RETURN 0; /* all ok then o back */

SAY "Error detected at " s /* where did it go wrong */

SAY "Passing control back to CALLER..."

EXIT SQLCODE /* leave this stored proc*/

RETURN SQLCODE /* don't forget */

C.4 Create procedure statement for REXX SP
CREATE PROCEDURE ADMF001.SPA4
(INOUT RETCODE INTEGER)
FENCED
RESULT SET 0
EXTERNAL NAME TESTREXX
LANGUAGE REXX
NOT DETERMINISTIC
MODIFIES SQL DATA
NO DBINFO
NO COLLID
WLM ENVIRONMENT WLMENV2
PARAMETER STYLE GENERAL WITH NULLS
ASUTIME NO LIMIT
STAY RESIDENT NO
PROGRAM TYPE MAIN
SECURITY DB2
COMMIT ON RETURN NO
RUN OPTIONS 'STACK(128K,128K,ANY,KEEP),ALL31(ON),HEAP(,,ANY)';

C.5 COBOL program calling REXX SP
IDENTIFICATION DIVISION.
Appendix C. DB2 and REXX 275

PROGRAM-ID. TESTPGM.

AUTHOR. Neil Toussaint.

DATE-WRITTEN. 4/11/2000.

* REMARKS: CALLING STUB PROGRAM TO INVOKE REXX STORED PROCEDURE

* ILLUSTRATIVE PURPOSES ONLY!!

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 WS-INT1 PICTURE S9(9) COMP VALUE +0.

01 WS-EYE-CATCHER PICTURE X(60) VALUE SPACES.

01 WS-OUTPUT-SQLCODE.

03 WS-INT2 PICTURE +(16).

PROCEDURE DIVISION.

A100-START.

MOVE 'IN A100-START' TO WS-EYE-CATCHER.

EXEC SQL

CALL ADMF001.SPA4(:WS-INT1)

END-EXEC.

MOVE SQLCODE TO WS-INT2

DISPLAY 'SQLCODE=' WS-INT2

MOVE WS-INT1 TO WS-INT2

DISPLAY 'WS-INT1 (RETURN VALUE) =' WS-INT2
276 DB2 UDB Server for OS/390 Version 6 Technical Update

GOBACK.

EXIT.

The program was prepared using the sample JCL procedure DSNHICOB
provided as part of the Installation Verification Procedure jobs and bound as a
package. The COBOL program was executed under TSO as follows

DSN SYSTEM(DB2Y)
RUN PROGRAM(TESTPGM) PLAN(TESTPGM)

C.6 WLM SP started task source JCL
//DB2YWLM PROC RGN=0K,APPLENV=WLMENV2,DB2SSN=DB2Y,NUMTCB=8

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM='&DB2SSN,&NUMTCB,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=DB2V610Y.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSN610.SDSNLOAD
//SYSEXEC DD DSN=DB2V610Y.SRCLIB.DATA,DISP=SHR
//DSSPRINT DD SYSOUT=A
//UTPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUDUMP DD SYSOUT=A
//SYSTSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A

Output from REXX SAY statements and trace diagnostics is routed to SYSTSPRNT.
Sample output from DB2YWLM SYSTSPRT after running our our REXX SP follows.

3 *-* SAY 'hi there'
>L> "hi there"
hi there
5 *-* SUBCOM DSNREXX
>L> "SUBCOM"
>L> "DSNREXX"
>O> "SUBCOM DSNREXX"
+++ RC(1) +++
6 *-* IF RC
>V> "1"
- THEN
7 *-* x = RXSUBCOM('ADD','DSNREXX','DSNREXX')
>L> "ADD"
>L> "DSNREXX"
>L> "DSNREXX"
>F> "0"
....

C.7 WLM configuration
Extract from couple data set
Definition data set . . : none
Definition name db2yrexx (Required)
Description Stored procedures for DB2Y
Select one of the
Appendix C. DB2 and REXX 277

following options. 9__ 1. Policies
2. Workloads
...
9. Application Environments
10. Scheduling Environments

Selecting option 9

9. Application Environments

Appl Environment Name . . WLMENV2
Description Stored procedures for DB2
Subsystem type DB2
Procedure name DB2YWLM
Start parameters DB2SSN=DB2Y,NUMTCB=8,APPLENV='WLMENV2'
Limit on starting server address spaces for a subsystem instance:
No limit

C.8 Commands to manipulate WLM and SP

In this section we list the most common WLM commands and related output:

/d wlm

RESPONSE=SC63
IWM025I 01.38.15 WLM DISPLAY 135
ACTIVE WORKLOAD MANAGEMENT SERVICE POLICY NAME: DAYTIME
ACTIVATED: 2000/03/28 AT: 15:42:57 BY: PAOLOR8 FROM: SC63
DESCRIPTION: from 8 till 8
RELATED SERVICE DEFINITION NAME: db2yrexx
INSTALLED: 2000/03/28 AT: 15:42:03 BY: PAOLOR8 FROM: SC63
WLM VERSION LEVEL: LEVEL008
WLM FUNCTIONALITY LEVEL: LEVEL003
WLM CDS FORMAT LEVEL: FORMAT 3
STRUCTURE SYSZWLM_WORKUNIT STATUS: DISCONNECTED

/d wlm,applenv=wlmenv2
RESPONSE=SC63
IWM029I 01.37.34 WLM DISPLAY 131
APPLICATION ENVIRONMENT NAME STATE STATE DATA
WLMENV2 AVAILABLE
ATTRIBUTES: PROC=DB2YWLM SUBSYSTEM TYPE: DB2

/=db2y dis proc(*.*)
DSNX940I =DB2Y DSNX9DIS DISPLAY PROCEDURE REPORT FOLLOWS -
------- SCHEMA=ADMF001

And don't forget to activate the chosen service policy using Utilities from main
WLM screen. Ours is called DAYTIME (8-8).

Having done that check SYSLOG for confirmation message

IWM001I WORKLOAD MANAGEMENT POLICY DAYTIME NOW IN EFFECT

Note:
278 DB2 UDB Server for OS/390 Version 6 Technical Update

PROCEDURE STATUS ACTIVE QUEUED MAXQUE TIMEOUT WLM_ENV
SPA3 STARTED 0 0 0 0 WLMENV2
SPA4 STARTED 0 0 1 0 WLMENV2

------- SCHEMA=PAOLOR7
PROCEDURE STATUS ACTIVE QUEUED MAXQUE TIMEOUT WLM_ENV
TESTSPA3 STARTED 0 0 0 0 WLMENV2

------- SCHEMA=SYSPROC
PROCEDURE STATUS ACTIVE QUEUED MAXQUE TIMEOUT WLM_ENV
DSNACCMD STARTED 0 0 0 0
DSNWZP STARTED 0 0 0 0
DSNX9DIS DISPLAY PROCEDURE REPORT COMPLETE
DSN9022I =DB2Y DSNX9COM '-DISPLAY PROC' NORMAL COMPLETION
Appendix C. DB2 and REXX 279

280 DB2 UDB Server for OS/390 Version 6 Technical Update

Appendix D. Special notices

This publication is intended to help system programmers, database
administrators, and application developers in understanding, assessing, and
utilizing the new functions of DB2 UDB Server for OS/390 Version 6. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by DB2 UDB Server for OS/390 Version
6. See the PUBLICATIONS section of the IBM Programming Announcement for
DB2 UDB Server for OS/390 Version 6 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
© Copyright IBM Corp. 2000 281

environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples contain the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In Denmark,
Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned
by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

IBM �
282 DB2 UDB Server for OS/390 Version 6 Technical Update

Appendix D. Special notices 283

284 DB2 UDB Server for OS/390 Version 6 Technical Update

Appendix E. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 IBM Redbooks
For information on ordering these publications see “How to get IBM Redbooks” on
page 289.

• How to Build Java Stored Procedures: DB2 UDB Gets Wired With SQLJ and
JDBC, SG24-5945

• DB2 UDB for OS/390 Version 6 Performance Topics, SG24-5351

• DB2 UDB for OS/390 Version 6 Management Tools Package, SG24-5759

• DB2 Server for OS/390 Version 5 Recent Enhancements - Reference Guide,
SG24-5421

• DB2 for OS/390 Capacity Planning, SG24-2244

• Getting Started with DB2 Stored Procedures: Give Them a Call through the
Network, SG24-4693-01

• Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the
DB2 Stored procedure Builder, SG24-5485

• The Integration of Java and DB2 UDB by Example, SG24-5945

• DB2 for OS/390 and Continuous Availability, SG24-5486

• Parallel Sysplex Configuation: Cookbook, SG24-2076-00

• DB2 for OS390 Application Design for High Performance, GG24-2233

• Using RVA and SnapShot for Business Intelligence Applications with OS/390
and DB2, SG24-5333

• IBM Enterprise Storage Server Performance Monitoring and Tuning Guide,
SG24-5656

• Java Programming Guide for OS/390, SG24-5619.

E.2 IBM Redbooks collections
Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 2000 285

http://www.redbooks.ibm.com/

E.3 Other resources

These publications are also relevant as further information sources:

• DB2 UDB for OS/390 Version 6 What’s New, GC26-9017-02

• DB2 UDB for OS/390 Version 6 Application Programming and SQL Guide,
SC26-9004

• DB2 UDB for OS/390 Version 6 SQL Reference, SC26-9014-01

• DB2 UDB for OS/390 Version 6 Administration Guide, SC26-9003-01

• DB2 UDB for OS/390 Version 6 Installation Guide, SC26-9008-01

• DB2 UDB for OS/390 Version 6 Command Reference, SC26-9006-01

• DB2 UDB for OS/390 Version 6 Utility Guide and Reference, SC26-9015-01

• DB2 UDB for OS/390 Version 6 ODBC Guide and Reference, SC26-9005-01

• DB2 UDB for OS/390 Version 6 Application Programming and SQL Guide,
SC26-9004-01

• DB2 UDB for OS/390 Version 6 Messages and Codes, SC26-9011-01

• DB2 UDB Version 6 Application Development Guide, SC09-2845

• OS/390 V2R8.0 MVS Planning: Workload Management, GC28-1761-09

• OS/390 V2R8 MVS Programming: Resource Recovery, GC28-1739-05

• DB2 Performance Monitor for OS/390 Version 6 Using the Workstation On-line
Monitor, SC26-9170

• DB2 Performance Monitor for OS/390 Version 6 Installation and
Customization, SC26-9171

• DB2 UDB Installation and Configuration Supplement V6, GC09-2857

• Java Application Programming Guide and Reference for Java, SC26-9018-01

• OS/390 V2R8.0 MVS Programming: Assembler Services Guide,
GC28-1762-06

• OS/390 V2R9 C/C++ Programming Guide , SC09-2362-05

• Understanding SQL’s Stored Procedures: A Complete Guide to SQL/PSM, Jim
Melton, Morgan Kaufmann Publishers, Inc., ISBN 1-55860-461-8

E.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.ibm.com/s390/corner/ Java on S/390

• http://www.software.ibm.com/data/db2/ DB2 Family

• http://www.software.ibm.com/data/db2/os390/ DB2 for OS/390

• http://www.ibm.com/software/db2os390/downloads.html DB2 downloads

IBM Enterprise Storage and Systems Management Solutions SK3T-3694

CD-ROM Title Collection Kit
Number
286 DB2 UDB Server for OS/390 Version 6 Technical Update

• http://www.ibm.com/solutions/businessintelligence/teraplex/index.htm Terap
lex Center
Appendix E. Related publications 287

288 DB2 UDB Server for OS/390 Version 6 Technical Update

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 289

http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
290 DB2 UDB Server for OS/390 Version 6 Technical Update

Abbreviations and acronyms

AIX Advanced Interactive
eXecutive from IBM

APAR authorized program analysis
report

ARM automatic restart manager

ASCII American National Standard
Code for Information
Interchange

BLOB binary large objects

CCSID coded character set
identifier

CCA client configuration assistant

CFCC coupling facility control code

CTT created temporary table

CEC central electronics complex

CD compact disk

CF coupling facility

CFRM coupling facility resource
management

CLI call level interface

CLP command line processor

CPU central processing unit

CSA common storage area

DASD direct access storage device

DB2 PM DB2 performance monitor

DBAT database access thread

DBD database descriptor

DBID database identifier

DBRM database request module

DCL data control language

DDCS distributed database
connection services

DDF distributed data facility

DDL data definition language

DLL dynamic load library
manipulation language

DML data manipulation language

DNS domain name server

DRDA distributed relational database
architecture

DTT declared temporary tables

EA extended addressability
© Copyright IBM Corp. 2000
EBCDIC extended binary coded
decimal interchange code

ECS enhanced catalog sharing

ECSA extended common storage
area

EDM environment descriptor
management

ERP enterprise resource planning

ESA Enterprise Systems
Architecture

FDT functional track directory

FTP File Transfer Program

GB gigabyte (1,073,741,824
bytes)

GBP group buffer pool

GRS global resource serialization

GUI graphical user interface

HPJ high performance Java

IBM International Business
Machines Corporation

ICF integrated catalog facility

ICF integrated coupling facility

ICMF internal coupling migration
facility

IFCID instrumentation facility
component identifier

IFI instrumentation facility
interface

IRLM internal resource lock
manager

ISPF interactive system productivity
facility

ISV independent software vendor

I/O input/output

ITSO International Technical
Support Organization

IVP installation verification
process

JDBC Java Database Connectivity

JFS journaled file systems

JVM Java Virtual Machine

KB kilobyte (1,024 bytes)

LPAR logically partitioned mode

LOB large object
291

LPL logical page list

LRSN log record sequence number

LSFM xxxxxxx

LVM logical volume manager

MB megabyte (1,048,576 bytes)

OBD object descriptor in DBD

ODBC Open Data Base Connectivity

OS/390 Operating System/390

PAV parallel access volume

PDS partioned data set

PSID pageset identifier

PSP preventive service planning

PTF program temporary fix

PUNC possibly uncommitted

QMF Query Management Facility

RACF Resource Access Control
Facility

RBA relative byte address

RID record identifier

RRS resource recovery services

RRSAF resource recovery services
attach facility

RS read stability

RR repeatable read

SDK software developers kit

SMIT System Management
Interface Tool

SP stored procedure

SRB system resource block

TCB task control block

WLM workload manager
292 DB2 UDB Server for OS/390 Version 6 Technical Update

Index

Numerics
-1 171
15 tables in a join 208
225 222
25 222
9 222

A
additional space statistics 199
APARs cross reference 261
AS IDENTITY 56
ATOMIC 131
ATTN 167
auxiliary table 40

B
BACKODUR 164
backup procedure 159
bind time 208
built-in function exploitation 21
built-in function or application program 16
built-in function or UDF 17
built-in functions 14

C
CALL 132
cancel thread 185
CANCEL(n) 180
cardinality 223
CASE 132
CAST function 24
CASTOUT(NO) 188

considerations 189
performance 189

check_sqlcode 119
CHECKPAGE 196

message 197
recommendations 198
scope 196
why using it 197

CICS 61, 95, 143
CLASSPATH 145
COBOL program 123
colon 12
columns in order by 99
combining SQLJ and JDBC 145
compound statement

example 132
compound statements 131
connection pooling 53
CONTINUE 134
COPY 196
CREATE PROCEDURE 138
CREATE TRIGGER 27
creator 121
© Copyright IBM Corp. 2000
D
data warehouse 203
DB2 PM 3, 192
DB2 REXX support 116
DDF 95
DDF command options 183
DDF suspend 177
DDL operation 177
defer defining data sets 170

benefits 173
performance 172
restrictions 174

DEFINE NO 170
operational issues 175
performance 172
restrictions 174

denormalized 204
density 223
DFDSS DUMP 159
dimension table 205
distributed functions

performance 53
DSMAX 248
DSN1COPY 174, 196
DSN1PRNT 174
DSN8WLMP 140
DSNELI 123
DSNHSQL 141
DSNREXCS 120
DSNREXX 118
DSNREXX CONNECT 122
DSNTEJ63 141
DSNTIJSQ 141
DSNTIP4 241
DSNTIPR 178
DSNTPSM 139
DSNTPSMP 137
DSNZPARM 241

E
EDM pool 194
EDMBFIT 194
ELSE 132
ESS 156

performance 49
read performance 50

ET/390 151
EXIT 135
EXPLAIN 33
Extra Query Block support 54

F
fact table 205, 219
faster cancel thread 184
faster data sharing member shutdown 188
FlashCopy 156
293

flat file 204
functional enhancement

areas 4
functional enhancements

summary 4

G
GENERATED 77
GET DIAGNOSTICS 133
global transactions 100

considerations 112
flow between participants 110
passing the XID 108
problem solved 106
sample scenario 101
XID token 107

GOTO 133
group scope 193
GRS 48

H
High Performance Java 143
host variables preceded with a colon 13
HPGRBRBA 165

I
identity columns 56

advantages 77
availability 77
concurrency 77
recoverability 77
uniqueness 77

IF 132
IFI consolidation 192
II12100 12
INACTIVE THREADS 178
INCLUDE SQLCA 119

J
Java stored procedures 147

coding considerations 149
definition 148
preparing 151
restrictions 149
results set 150
running 153
using SQLJ 152

Java Virtual Machine 143
JAVAENV 153
JDBC 142
JSPDEBUG 153

L
language support 115
LBACKOUT 164
LCASE(string) 15
LEAVE 132

LOBs
auxiliary table 40
delete 46
insert 45
overview 40
performance considerations 39
processing 41
read performance 43
recommendations 47
update 45
write performance 45

log I/O performance 243
log instrumentation 245
log rates 52, 247
log read 244
log write 245
log write latch 246
LOGONLY 165
LOOP 132

M
maximum number of tables in a join 222
migraton 10
missing colons

sample program 13

N
next number 60
non uniform statistics 199
normalization 205
normalizing data 47
NPAGES 121, 239
NPGTHRSH 239
NPI 264

O
objective 1
offsite recovery 156
operational enhancements 155
OW38843 113
OW39220 113

P
PARAMDEG 241
PARSE ARG REXX 122
PCLOSEN 165
PCLOSET 165
performance 201
performance measurements

sources 7
P-locks 189
PQ17740 11
PQ21014 199
PQ23043 248, 249
PQ23778 99
PQ24199 141
PQ25084 198
PQ25091 199
294 DB2 UDB Server for OS/390 Version 6 Technical Update

PQ25094 193
PQ25135 242
PQ25745 244
PQ26922 12
PQ27022 113
PQ27123 183
PQ27461 113
PQ28414 241
PQ28487 113
PQ28611 113
PQ28813 207, 222, 238
PQ28857 246
PQ29031 193
PQ29782 141
PQ29907 189
PQ30219 125
PQ30383 98
PQ30390 12
PQ30439 81
PQ30461 246
PQ30467 141
PQ30492 141
PQ30652 11, 78
PQ30684 11, 78
PQ30999 176
PQ31272 98
PQ31326 222, 238
PQ31492 169
PQ31846 154
PQ31969 195
PQ32199 249
PQ32387 113
PQ32670 96
PQ32782 253
PQ33026 141
PQ33028 98
PQ33133 125
PQ33429 240
PQ33560 141
PQ33666 238
PQ34029 176
PQ34030 176
PQ34118 99
PQ34199 11
PQ34321 143
PQ34386 176
PQ34465 186
PQ34466 186
PQ34506 38
PQ34592 176
PQ34849 113
PQ34972 198
PQ35416 96
PQ35845 189
PQ35919 248, 249
PQ36011 146, 154
PQ36206 207, 209, 222, 238
PQ36328 72, 78
PQ36405 11
PQ36452 78

PQ36702 186
PQ36815 11
PSM 126
PUNC 162

Q
query parallelism 241

R
recoverability offsite 165
recovery 164
REDO logging 48
REFERENCING clause 30
refresh 2
release incompatibilities checklist 11
REPEAT 132
RESIGNAL 132
RESTP 164
RETURN 132
REXX and DB2

sample program 269
REXX and stored procedures 122
REXX procedure 13
REXX program

coding conventions 120
handling errors 118
host environment 118
isolation level 120

RMF 167
ROLLBACK 118
ROW_COUNT 133
ROWID 40, 78
RRSAF 100
run time 208
Runstats 199
RVA 50, 156

S
SDSNLOAD 118
SDSNSAMP(DSNTEPS) 199
SET 132
SET LOG RESUME

actions and messages 161
SET LOG SUSPEND

actions and messages 160
diagnose problems 166
messages 161
recommendations 162

set log suspend
operational considerations 166

Shark 49
SIGNAL 132
SnapShot 156, 163
snowflake schema 206
SPACE column 171
SQL stored procedure

allowed control staments 132
eye catcher 135
295

SQL Stored Procedure language 126
SQL stored procedures

considerations 129
creation 130
debugging 136
handling errors 134
preparing 137
reasons for using them 128

SQL_STMT 120
SQLCA 118
sqlcall 119
SQLCODE 118
SQLJ 142
SQLJ/JDBC driver

using it 144
SQLJ/JDBC driver support 142
ssid 119
STAR 48
star join 202

access path 213, 228
characteristics for good performance 227
efficient indexes 224
fact table index design 223
good environment 221
how it works 217
missing index column 230
missing key predicate 228
performance results 235
query parallelism 209
sample scenario 210
support 207
the 9 conditions 222
the conditions 219
visual explain 214, 232

star schema 203
static SQL 241, 243
STOP DDF MODE(SUSPEND) 179
STOP DDF MODE(SUSPEND) CANCEL(n) 182
STOP DDF MODE(SUSPEND) WAIT(n) 181
Stored Procedure Builder 127
STOSPACE 171
SUBSTR 43
SUBSTR(LOB,1,200) 41
suspend updates 156
SYSIBM.SYSCOLDIST 199
SYSIBM.SYSINDEXPART 170
SYSIBM.SYSTABLEPART 170
SYSIBM.SYSTABLESPACE 170

T
TCP/IP 53
team vii
techniques to create new key 59
Temporary Storage Queue 61
TESTREXX 122
THEN 132
thread pooling 178
thread termination processing 184
time out 105
timestamp 60

transition tables 30, 31
transition variables 29, 31
trigger

coding considerations 33
triggers

AFTER 27
BEFORE 27
coding considerations 35
overview 28
performance 37
performance considerations 26
row trigger 33
scope of a trigger 33
statement trigger 33
transition tables 30
transition variables 29

type 1 driver 142
type 2 driver 142

U
UDF 25

based on buit-in functions 21
efficiency 19
options 23
performance considerations 14
sourced 24

UDF or bult-in function
17

UNDO 159
UPDATE SET 97
update with subselect 97

conditions 97
self referencing 98

user defined function
sample 265

V
VDWQ 247
Volatile tables 239
VSAM 170

W
WAIT(n) 180
WHENEVER 134
WHILE 132
WLM 19
WLM commands 125
WLM environment 124, 140
WLM ENVIRONMENT parameter 123
296 DB2 UDB Server for OS/390 Version 6 Technical Update

© Copyright IBM Corp. 2000 297

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook
"made the difference" in a task or problem you encountered. Using one of the following methods, please review the
Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

• Use the online Contact us review redbook form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6108-00
DB2 UDB Server for OS/390 Version 6 Technical Update

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the following
groups:

O Customer
O Business Partner
O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may be
used to provide you with information
from IBM or our business partners
about our products, services or
activities.

O Please do not use the information collected here for future marketing or
promotional contacts or other communications beyond the scope of this
transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
http://www.ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

SG24-6108-00

Printed in the U.S.A.

D
B

2
U

D
B

Server
for

O
S/390

V
ersion

6
T

echnicalU
pdate

SG
24-6108-00

®

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 DB2 UDB for OS/390 Version 6 refresh
	1.2 Functional enhancement areas
	1.3 Performance measurements

	Chapter 2. Version 6 general news
	2.1 Migration considerations
	2.1.1 Release incompatibilities
	2.1.2 Host variables must be preceded by a colon ":"

	2.2 UDF performance considerations
	2.2.1 Built-in or application program
	2.2.2 External UDF or built-in function
	2.2.3 Maximizing UDF efficiency
	2.2.4 Use built-in functions
	2.2.5 Consider sourced functions
	2.2.6 UDF summary

	2.3 Trigger performance considerations
	2.3.1 Trigger overview
	2.3.2 Transition variables
	2.3.3 Transition tables
	2.3.4 Transition variable/table usage
	2.3.5 Row trigger or statement trigger
	2.3.6 Trigger coding considerations
	2.3.7 Understanding trigger performance

	2.4 LOBs performance considerations
	2.4.1 LOBs overview
	2.4.2 LOBs processing
	2.4.3 LOBs read performance
	2.4.4 LOBs write performance
	2.4.5 LOBs recommendations

	2.5 ESS performance
	2.5.1 ESS read performance
	2.5.2 DB2 logging rates by disk type

	2.6 Distributed functions performance

	Chapter 3. Application enhancements
	3.1 Identity columns
	3.1.1 Existing techniques to create new keys
	3.1.2 Definition of identity columns
	3.1.3 GENERATED options
	3.1.4 Identity columns in DB2 catalog
	3.1.5 Identity columns performance
	3.1.6 Impact of caching
	3.1.7 Applications and identity columns
	3.1.8 IDENTITY_VAL_LOCAL function
	3.1.9 Managing tables with identity columns
	3.1.10 Advantages of identity columns

	3.2 Savepoints
	3.2.1 Connecting to other DB2 systems
	3.2.2 Restrictions on using savepoints
	3.2.3 Savepoint performance

	3.3 Declared temporary tables
	3.3.1 Main differences between table types
	3.3.2 Considerations when converting from CTTs
	3.3.3 Defining a declared temporary table
	3.3.4 Authorization
	3.3.5 Referencing declared temporary tables
	3.3.6 Creating indexes
	3.3.7 Usage considerations
	3.3.8 Database and table space issues
	3.3.9 Restrictions

	3.4 Update with subselect
	3.4.1 Conditions for usage
	3.4.2 Self referencing considerations

	3.5 Columns in order by not in select
	3.6 Global transactions
	3.6.1 Funds transfer example
	3.6.2 Existing designs: 1 or 2 units of work
	3.6.3 Re-engineering design B
	3.6.4 Step 1 — Updates are performed under DB2 thread 1
	3.6.5 Step 2 — DB2 thread 2 update times out
	3.6.6 Thread 2 in same global transaction — problem solved
	3.6.7 Where the XID is passed — example 1
	3.6.8 Where the XID is passed — example 2
	3.6.9 Where the XID is passed — example 3
	3.6.10 Flow between participants
	3.6.11 Flow with global transaction support
	3.6.12 Considerations

	Chapter 4. Language support
	4.1 DB2 REXX support
	4.1.1 Host environment and handling errors
	4.1.2 Isolation level and coding conventions
	4.1.3 REXX and stored procedures
	4.1.4 Set up WLM environment

	4.2 SQL Procedure language
	4.2.1 Reasons for using SQL stored procedures
	4.2.2 Creating SQL stored procedures
	4.2.3 Compound statements
	4.2.4 Example of a compound statement
	4.2.5 Handling errors
	4.2.6 Debugging SQL stored procedures
	4.2.7 Preparing SQL stored procedures
	4.2.8 Preparation using DSNTPSMP
	4.2.9 Preparation without DSNTPSMP

	4.3 SQLJ/JDBC driver support
	4.3.1 Using the new driver
	4.3.2 Combining SQLJ and JDBC

	4.4 Java stored procedures
	4.4.1 Defining a Java stored procedure
	4.4.2 Java SP coding considerations
	4.4.3 Returning results set
	4.4.4 Preparing Java stored procedures
	4.4.5 Preparing Java SPs using SQLJ
	4.4.6 Running Java stored procedures

	Chapter 5. Operational enhancements
	5.1 Suspend update activity
	5.1.1 Deciding whether to use this method for disaster recovery
	5.1.2 Use of SET LOG SUSPEND command
	5.1.3 Effects of commands
	5.1.4 Suspend updates recommendations
	5.1.5 Offsite recovery considerations
	5.1.6 Re-establish recoverability offsite
	5.1.7 Operational considerations

	5.2 Defer defining data sets
	5.2.1 Effect of deferring DEFINE of VSAM data sets
	5.2.2 Impact on DDL performance
	5.2.3 Where define no helps
	5.2.4 Restrictions
	5.2.5 Things to watch out for

	5.3 DDF suspend
	5.3.1 Applications may retain incompatible locks
	5.3.2 STOP DDF MODE(SUSPEND)
	5.3.3 STOP DDF MODE(SUSPEND) WAIT(n)
	5.3.4 STOP DDF MODE(SUSPEND) CANCEL(n)
	5.3.5 DDF command options

	5.4 Faster cancel thread
	5.4.1 Cancel thread example
	5.4.2 Operational improvement
	5.4.3 Restrictions

	5.5 Data sharing enhancements
	5.5.1 Faster data sharing member shutdown
	5.5.2 New IMMEDWRITE(PH1) bind option
	5.5.3 IFI and commands with group scope

	5.6 New EDM pool parameter
	5.7 New CHECKPAGE option for COPY
	5.7.1 How to activate page checking
	5.7.2 Exploitation of CHECKPAGE
	5.7.3 How to detect and resolve errors
	5.7.4 CHECKPAGE performance
	5.7.5 Usage and recommendations

	5.8 Runstats improvements
	5.8.1 Non uniform statistics for SYSCOLDIST
	5.8.2 Additional space statistics

	Chapter 6. Performance
	6.1 Star join
	6.1.1 Introduction to star schema design
	6.1.2 Introduction to star join support in DB2 V6
	6.1.3 More about DB2 V6 star join
	6.1.4 Performance results

	6.2 Volatile tables to use indexes
	6.3 Query parallelism enhancements
	6.3.1 New feature to limit degree of parallelism
	6.3.2 Short running static SQL running with parallelism

	6.4 Active log I/O performance
	6.4.1 Reducing contention from log readers
	6.4.2 DB2 log write improvements

	6.5 Data sharing improvements
	6.5.1 Insert performance
	6.5.2 Remove CLOSE YES as requirement for data set physical close
	6.5.3 Name class queue support
	6.5.4 Improved trace for asynchronous requests

	Chapter 7. Additional functional enhancements
	7.1 Unicode client toleration support
	7.2 IEEE float toleration
	7.3 Controlling updates to partitioning key
	7.4 Toleration of separator differences
	7.5 New LANGUAGE bind option
	7.6 New operator for NOT
	7.7 DBPROTCL default change
	7.8 Instrumentation enhancements

	Appendix A. DB2 APARs cross references
	A.1 Functional enhancements
	A.2 Performance related maintenance

	Appendix B. Sample external user defined function
	Appendix C. DB2 and REXX
	C.1 Sample main program REXX code
	C.2 JCL to invoke REXX main program
	C.3 REXX stored procedure
	C.4 Create procedure statement for REXX SP
	C.5 COBOL program calling REXX SP
	C.6 WLM SP started task source JCL
	C.7 WLM configuration
	C.8 Commands to manipulate WLM and SP

	Appendix D. Special notices
	Appendix E. Related publications
	E.1 IBM Redbooks
	E.2 IBM Redbooks collections
	E.3 Other resources
	E.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Abbreviations and acronyms
	Index
	IBM Redbooks review

