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Distributed Sensor Networks for Detection of Mobile
Radioactive Sources

Robert J. Nemzek, Jared S. Dreicer, David C. Torney, and Tony T. Warnock

Abstract—The ability to track illicit radioactive transport
through an urban environment has obvious national security
applications. This goal may be achieved by means of individual
portal monitors, or by a network of distributed sensors. We
have examined the distributed sensing problem by modeling a
network of scintillation detectors measuring a Cesium-137 source.
We examine signal-to-noise behavior that arises in the simple
combination of data from networked radiation sensors. We find
that, in the ideal case, large increases in signal-to-noise compared
to an individual detector can be achieved, even for a moving
source. We also discuss statistical techniques for localizing and
tracking single and multiple radioactive sources.

Index Terms—Bayes procedures, coherent addition, counter-ter-
rorism, signal detection and estimation, velocity measurement.

I. INTRODUCTION

THE distributed sensor network project at Los Alamos
National Laboratory is investigating the use of net-

worked detection for various applications, including tracking
of radioactive materials. Currently proposed solutions to the
detection of radioactive materials in an urban setting typically
involve the use of individual, large, portal-monitor-style de-
tectors positioned at choke points. This may not ultimately be
acceptable in an urban environment, given the large number of
transport avenues to be covered and the potential objections
to large detection packages; a more discreet solution may
be required. We therefore are investigating the use of large
numbers of small detectors. We are not attempting here to
answer the question of whether detection limits, for example,
are better or worse in such a situation, compared to a large-de-
tector scenario. We are only examining the characteristics,
specifically signal-to-noise ratio (SNR), to be expected in a
distributed network. We assume that the detectors in our system
are stand-alone and wirelessly networked to allow immediate
data sharing with freedom from the need for an infrastructure
(e.g., external power, cables, and internet connections). We fur-
thermore assume that such a sensor network would be devised
as an independent and fully distributed entity, not requiring
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a centralized processing station. This is achievable by using
microcontrollers built into the individual sensing nodes or by
incorporating dedicated processing nodes into the network, in
cases where more processing power is required than can be
conveniently fitted into the sensors themselves. The Distributed
Sensor Network (DSN) then consists of a large number of
small, simple, detector/processor nodes with the capability of
sharing either raw or partially processed data. The data are
autonomously analyzed by the network. This is done either by
individual nodes collecting data (through some combination
of automatic publishing and requesting) or through the use
of a software agent traveling through the network, collecting
relevant data, and calculating partial results in situ.

In addition to the radiation detectors themselves, the sensor
nodes on the network would probably be equipped with GPS
receivers for time synchronization and position information. A
complete detection package could be built with sufficiently low
power requirements to allow long-term operation on battery
power. The addition of a solar recharge system would permit
a system capable of long-term autonomous monitoring to be
fielded on short notice, for example, at special events or in
response to particular threats. Such a system would require
ad hoc networking capabilities, as are being researched at a
number of institutions. Finally, any deployed system would
need mechanisms for tagging suspect vehicles (e.g., a triggered
video system) and alerting authorities to a potential threat.

In this paper, we characterize the signal-to-noise envelope
for this application of distributed networks. We also develop
Bayesian methods for the estimation of radioactive source pa-
rameters, revealing trajectory and activity.

II. SNR FOR A SINGLE DETECTOR

Our chosen scenario: a radioactive source is traveling at con-
stant speed parallel to a line of evenly spaced identical detec-
tors. This is a simple setup, but it does represent an urban or
roadside situation. We take the source to be a small quantity of
Cesium-137; this isotope was chosen because its availability in
industrial sources and its typical powdered form (as CsCl) make
it a potential element of a radiological dispersal device (“dirty
bomb”). The source is described by its speed, distance of closest
approach to any particular detector, and activity. Any actual de-
vice being transported would have both intentional and intrinsic
shielding; for convenience, we define the activity of the source
to be its equivalent (in terms of number of gammas/s escaping
the vehicle) in an unshielded condition. We choose as our de-
tectors the ubiquitous 75-mm NaI scintillator. The source-to-de-
tector response function in the model includes the inverse square
fall-off, atmospheric attenuation, and factors for the capture and
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Fig. 1. SNR for a single detector; the distance of the closest approach is 20 m, the effective source activity is 0.01 C. Shading represents SNR, according to the
color scale at right. Contour lines (solid) are at SNR values of 25, 20, 15, 12.5, 10, and 7.5 (left to right). The dotted line defines the (hyperbolic) locus of optimal
integration times.

conversion in the NaI of gammas into pulses within the Cs-137
photopeak (662 keV). Edge effects, angular response, and any
sources of electronic noise are ignored for the present, as we
are most concerned with discovering the overall features of the
SNR, rather than with calculating the exact SNR for a specific
sensor. At the outset, we assume an array of 25 detectors in a
straight, level line, with constant 10-m separation between indi-
vidual detectors. Our interest here is not to determine the ulti-
mate sensitivity of a fully realistic sensor network, but to learn
the characteristics of a network in the presence of a moving
source.

To calculate the SNR for a single detector, we start by calcu-
lating an “interaction length”: the product of the source speed
and the detector’s integration time. We consider this interac-
tion length to be centered on the detector. The source is then
propagated from one end of the interaction length to the other
at the chosen speed, and count rates are calculated and inte-
grated in 10-ms bins for the duration of the integration time. We
also include a constant background level of 7 counts/s under
the photopeak, a value derived from published natural back-
ground spectra [1]. SNR is then calculated as ,
where represents the integrated count rate from the source
and the integrated counts due to background. If background
levels are varying, it may be appropriate to calculate SNR as
simply [2], [3]. We have retained the standard
definition, the difference being minor for the situations we are
considering.

Ordinarily, the SNR would increase with the square root of
the detector integration time. But this is not the case when con-
sidering a moving source. As the integration time increases, the
source spends more and more time increasingly far from the de-
tector, reducing the average count rate; the situation worsens as
the speed of the source increases. Fig. 1, depicting the results of
one set of our calculations, bears this out. In Fig. 1, shading indi-
cates calculated SNR: white represents high SNR. As the speed

of the source (horizontal axis) increases, the SNR always drops.
As the integration time is increased (vertical axis), the SNR first
increases, then drops, an effect most easily seen at moderately
high source speeds. The net effect is that, for any given source
speed, there is an integration time that maximizes the SNR.
This is clearly seen by examining the solid contour lines; the
peak SNR for a given speed is at the “nose” of a contour. This
result can also be derived by means of an analytical approxima-
tion; [4] used the expression

where is the integration time for maximum SNR, is the dis-
tance of the closest approach, is the source speed. Likewise,
the locus of points of maximum SNR in Fig. 1, shown by the
dotted curve, follows a hyperbola, with a coefficient of 12.
A change in any of the parameters of our model (closest ap-
proach, source activity, detector type, background, gamma en-
ergy, and so on) would alter the specifics of the SNR curves from
that demonstrated by Fig. 1, but the general behavior (maximum
SNR at an integration time given by a hyperbolic curve) would
remain the same, according to the following reasoning.

Assume that at the source is at distance from the
sensor, that is

Therefore, assuming the count rate equals , where is a
cross-section coefficient, and the source activity, the instanta-
neous count rates at time for signal and background, respec-
tively, are
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Setting these equal, using the positive root and noting
, we have

otherwise.

For fixed parameters, , i.e., a hyperbola results.
For the situation demonstrated in Fig. 1 (75 mm detector, 0.3
cm detector attenuation coefficient, 0.49 photopeak fraction,
0.0001 cm atmospheric attenuation coefficient, 20 m closest
approach, and a 0.01 C source) the constant evaluates to 36, a
factor of three greater than manifest by Fig. 1, whose simula-
tion also includes factors for atmospheric attenuation, detector
attenuation, and photopeak fraction.

III. SNR FOR NETWORKED DETECTORS

Next we examine the increase in SNR made possible by
adding together detector outputs. We make the assumption that
all 25 detectors in the network are operating identically, with
synchronized integration times and with identical background
levels. One detector (the 13th or central unit) is treated as in the
previous section, i.e., it is the detector on which the interaction
length happens to be centered. The calculation of SNR for the
surrounding detectors is performed as before, with the excep-
tion that the center of the interaction length is displaced some
distance to one side or the other. We assume that the integrated
counts from each detector are all made available at some point
in the network. We then add the SNR values in quadrature for
varying numbers of detectors: 1 (central detector), 3 (center
plus one on each side), 5 (center plus two on each side), and so
on, to a total of 25 detectors.

Typical results are shown in Fig. 2, expressed as a ratio of
SNR for the combined detectors to SNR for a single detector.
Fig. 2(a) is for a source speed of 20 m/s, while Fig. 2(b) is for
a source speed of 10 m/s. Each curve on the plots represents a
different integration time. For each integration time, the SNR
ratio increases as the number of detectors increases. After some
number of detectors is added, however, the SNR ratio curve
flattens out. This occurs because the additional detectors are
increasingly far from the interaction length of the source, and
therefore the integrated background is relatively larger. As the
interaction length is increased (compare curves at increasing
integration times in either panel or the same integration time
in both panels), the greater the number of detectors that can
be added before the rolloff occurs. At the longest interaction
lengths shown in Fig. 2(a) and (b) (integration times of 50 and
100 s), the SNR ratio curve collapses into a straight line (on our
log–log plot) for all detector combinations. This line is simply
the (where is the number of detectors) increase one
would expect from the statistics of adding co-located detectors,
i.e., the motion of the source combined with the integration time
has made the detectors virtually co-located. The curves in Fig. 2
are symmetric with respect to integration time and speed; that
is, the SNR ratio curve for a 1-s integration time and a source
moving at 10 m/s is identical to the curve for a 10-s integration
time and a 1 m/s source speed. Only their product, the inter-
action length, matters. In Fig. 2, the curves for higher speeds

Fig. 2. SNR for multiple sensors ratioed to SNR for a single sensor. (a) Source
moving at 20 m/s. (b) Source moving at 10 m/s. Effective source activity is 0.01
C and the distance of the closest approach is 20 m. Legends give the integration
time for each curve.

are above those for lower speeds, at any given integration time.
This does not contradict the results of the previous section that
source speed reduces SNR, since Fig. 2 presents a ratio of SNRs.
If absolute SNR values were plotted, the SNR for some number
of combined detectors and a high-speed source would be lower
than that for the same number of detectors and a low-speed
source. Some situations might have a crossover where a curve
that has leveled off intercepts one that is still increasing.

With a system of networked detectors capable of autonomous
storage and trading of data, it is straightforward to do something
more complicated than described in the previous paragraph: the
coherent addition of data. By “coherent addition,” we mean the
combination of data values while taking into account the mo-
tion of the source: the counts from each detector are added to-
gether with increasing time lags, so that (hopefully) the inte-
gration window follows the source as it moves from detector
to detector. We simulated this in our model by propagating the
source past the detector array in a series of contiguous interac-
tion lengths (again, we are assuming that the detectors are in-
tegrating in synchronization). We first selected the integration
interval that provided the maximum SNR for the central (13th)
detector in our array of 25. We then added detectors with zero
lags (the same situation as in Fig. 2), one lag (nearest neighbors
to the center are combined using the integration time one step
ahead or behind the center, second nearest neighbors two steps
ahead or behind, etc.), two lags (nearest neighbors two steps
removed, second nearest neighbors four steps removed, etc.),
and so on. Detectors are combined in groups totaling 1, 3, 5, ,
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Fig. 3. SNR for detector outputs combined by coherent addition. (a) A 1-s
integration time. (b) A 2-s integration time. For both panels, the source speed
equals 10 m/s, the effective source activity equals 0.001 C, and the distance of
the closest approach is 5 m. The legend gives the lag value for each curve.

25 as before. Again, the data values were added in quadrature
and SNR calculated; the results are presented in Fig. 3. When
the interaction length matches the detector spacing and number
of lags [Fig. 3(a), one lag], the SNR increases along the
curve without limit. There is no rolloff as the number of de-
tectors is increased, as the coherent addition process keeps the
source centered on the integration time window of each detector.
Under less favorable conditions,[(Fig. 3(b), one lag], the SNR
increases with the combination of a few detectors and then rolls
off. For very poor matches [Fig. 3(b), lags 3, 4, 5], the SNR
for combined detectors is always worse than that of a single de-
tector.

Finally, in Fig. 4, we see the effect of a varying speed on
the coherent integration process. We start with a situation in
which the lag factor is chosen to produce an exact match with
the source speed, giving a linearly increasing SNR ratio on the
log–log plot. As a small, constant acceleration is introduced
(0.02 and 0.1 m/s are shown), the SNR ratio begins to break
away from the curve, with the effect increasing as addi-
tional detectors are combined. The loss in SNR is approximately
50% for 25 detectors and an acceleration of 0.1 m/s . In this
demonstration, the initial speed of the source was chosen so that
the accelerating source was moving at 10 m/s as it passed the
25th detector in the array, after an elapsed time of 100 s.

While our signal-to-noise simulations demonstrate the mea-
surement limitations that will ensue for the any detector net-
work, they do not address the issue of characterizing a source
based upon those measurements, which is the topic we address
next. If we idealize the situation of our simulations by elimi-
nating atmospheric attenuation, we can derive insights into our

Fig. 4. SNR for detectors combined with coherent addition, including an
acceleration term, ratioed to SNR for a single detector. Integration time equals
1 s, effective source activity equals 0.001 C, and the distance of the closest
approach is 5 m. The initial source speed was chosen such that the source was
traveling at 10 m/s as it passed the 25th detector in the array, after an elapsed
time of 100 s. The legend gives the acceleration value for each curve.

problem analytically. In particular, if we have a source of ac-
tivity and a cross-section coefficient , the average number of
recorded counts in the sensor can be expressed as , where

is the distance from source to sensor. If our network is a line
of sensors equally spaced by distance , and the source passes
on a parallel line separated from the sensor array by a distance

, the average total count rate it induces, summed over all the
sensors, is readily found to be

(1)

This result may be obtained from the formulas in the next sec-
tion.

IV. BAYESIAN METHODS FOR RADIOACTIVE-SOURCE

LOCALIZATION

Localization of nonacoustic sources has been the subject of
general investigations [5]. Here we elaborate Bayesian methods
for the detection and characterization of mobile, radioactive
sources as in [6], noting that Bayesian methods have been
implemented for related objectives [7]–[9]. The limited amount
of published work in this area belies its import for national
security.

Although they cannot transcend the signal-to-noise envelope
described above, the methods considered here may be construed
as generalizing the aforesaid coherent addition of counts. For
instance, only these generalizations anticipate sources subject
to accelerations. Our methods provide not only estimates for
source parameters but also respective confidence domains.

Recalling the foregoing, our sensors occur at intervals
of length on a line. Their number is , and they collect
counts over successive time intervals of size . The level of
background radiation is constant, with mean counts per
second. (Our methods will also readily accommodate variable
backgrounds.) The source is assumed to move at constant speed

: parallel to the line of the sensors with separation . In
addition to and , the source is characterized by its activity ,
having dimensions ; for instance, equals the expected
number of counts which would be captured in a time interval of
length by a spherical, 100%-efficient sensor centered about



NEMZEK et al.: DISTRIBUTED SENSOR NETWORKS FOR DETECTION OF MOBILE RADIOACTIVE SOURCES 1697

the source. Furthermore, the expected rate of count collection
by a sensor is assumed to be proportional to the solid angle
it subtends, taken to be isotropic (as previously mentioned).
Our previous SNR calculations were based on a realistically
modeled 75-mm NaI detector, but in the following sections,
the detector is assumed to have physical dimensions of zero.
The simulations are dimensionless, but we quote results for
source speed and detector spacing using centimeters. In a fully
realized simulation, the detectors would be of a specific size,
spaced meters or perhaps tens of meters apart, and source
speeds would be on the order of 10 m/s.

Our methods estimate , , and , based upon the ’s: the
counts recorded by sensor in time interval (of length ),

, . The key to our methods is
a formula for the probability of the ’s in terms of , , , and
the source parameters. We assume Poisson statistics obtain, and,
consequently, the sought formula is

(2)

where denotes the expected number of counts recorded by
sensor during time interval . To formulate the ’s, we re-
call our approximation that the capture rates of the sensors equal

, respectively, where is the cross-section coefficient and
the activity of the source, with the distance between the sensor

and source equal to . Therefore, the following integral mea-
sures the expected number of nonbackground counts recorded
by sensor in time interval

(3)

where denotes the coordinate of the source at the begin-
ning of the th time interval—along the line of the sensors, with
origin at the position of sensor and increasing in the direction
of motion and where denotes the distance from to sensor
. It follows that

(4)

The range of these arctangents is ; monotonicity
guarantees nonnegativity of the ’s, which are to be substi-
tuted into (2).

We assume that , , and are given constants. Equation (2),
along with a suitable prior distribution, specifies a posterior dis-
tribution on ( , , ), given the data. This distribution may be

characterized through its moments, which, based on a uniform
prior, are defined as given in (5), shown at the bottom of page,
where , , and denote respective upper bounds. In par-
ticular, the “first moments,” , , and , are our estimates
for the source parameters, and the second moments may be used
to obtain an ellipsoidal confidence domain, whose volume may
be estimated from the eigenvalues of the matrix of second mo-
ments: through the reciprocal of their product.

More realistic geometric models for the cross section could be
incorporated, yielding a formula analogous to (4). For instance,
were the sensor a rectangle with base of length , lying in the
line of sensors, then, with the source at (coordinate as above),
the solid angle would, in a far-field approximation, be reduced
from by a factor of , where denotes either of
the supplementary angles between the ray through the source
from the center of the base of the sensor and the line of sensors.
The integral to be substituted for (3) into (4) evaluates to

It follows that the analog of (1) has a rate reduced by a factor of
.

V. IMPLEMENTATION

Adaptive Gaussian quadrature may be used to evaluate the in-
tegrals of (5)—which yield our parameter estimates. We chose,
instead, to implement uniform sampling of

(and respective function evaluation) because this ap-
proach was effective for the minute integrands engenderable
by (2), as will be seen. This sampling is achievable using ei-
ther triples of pseudorandom numbers or low-discrepancy col-
lections of points, with the latter affording asymptotically arbi-
trarily greater accuracy for the same computational cost [10],
[11]. It may be noted that “importance sampling” could yield
further improvement.

The sums resulting from such sampling afford approxima-
tions to the integrals. To avoid underflow, the logarithm of the
sum was used, and precautions were implemented to mitigate
roundoff in the generation of partial sums. To reduce the fluc-
tuations in these approximations, the same points were used for
all the moments computed: the zeroth [viz. the denominator of
(5)] through the second.

VI. SIMULATIONS

Our motivation for performing these simulations was to
determine the capabilities and limitations of our Bayesian
methods—for sensor-network data. With exceptions as noted,
simulations involved ten sensors. The integration time (the

(5)
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Fig. 5. Noise limitations (� = 7 cts/s, d = 4 cm, v = 1 cm/s,
number of sensors = 10, � = 2 s, number of time points = 21, h = 0:1 cm
or 4 cm, as indicated in legend). (a) hai=a, hhi=h, and hvi=v, plotted as a
function of a/h. The average first moments are plotted, after five realizations of
Poisson random variables with the same expectations—for each time interval
and each sensor. (b) The standard deviations of the first moments over the five
realizations are plotted, after normalizing by the parameter value, as in (a).

length of the time interval over which sensors collect counts)
was two seconds, and the number of time intervals was 21.
At the middle of the 11th interval, the source was taken to be
opposite the middle of the segment of sensors. Five repetitions,
with independently chosen Poisson counts, were used, and the
average and the square root of the variance (referred to as the
standard deviation) of the first moments , , and are
reported. For simplicity, .

We usually estimated the moments using random triples.
The errors of these estimates contributed to the standard devia-
tions. Smaller numbers of low-discrepancy points [11] yielded
similar accuracy, as will be seen. We chose upper bounds for in-
tegration which were an order of magnitude larger than the re-
spective true parameter value. Note that in our simulations the
failure to obtain a reliable estimate for any of the parameters is
indicated by the estimate being close to the midpoint of the re-
spective integration interval.

Fig. 5(a) and (b) illustrates the dependence of the parameter
estimates and their accuracy upon . For , all

Fig. 6. Varying the array length relative to the distance traversed by the source.
(a) and (b) are the normalized parameter estimates and their standard deviations,
respectively, as described in the legend of Fig. 5. � = 7 cts/s, � = 2 s, v =

1 cm/s, number of sensors = 10, number of time points = 21, h = 0:1 cm, d
ranges from 1/16 to 64 cm. The distance traversed by the source = 42 cm. The
length of the array varies from 9/16 to 576 cm, respectively.

parameters are well estimated. For , only is
well estimated. Also, if , all parameters are poorly esti-
mated. This is consistent with (1), which indicates that the sum
of the signals should depend, roughly, on . Here, the coeffi-
cient is roughly unity because . As , we would ex-
pect to be able to characterize sources with . Fig. 5(b)
depicts the increase in the noise in the parameter estimates with
decreasing .

Fig. 6(a) and (b) depicts the accuracy in the parameter esti-
mates as the length of the array of sensors varies relative to the
length of the source’s trajectory. The best estimates occur when
the lengths are comparable. Poor estimates are obtained at both
extremes: when the trajectory is much shorter or much longer
than the interval containing the sensors.

Fig. 7(a) and (b) illustrates the degradation in parameter esti-
mates as the source speed is increased and the spacing between
sensors increased proportionately. Here, this degradation is sig-
nificant when , disproportionate to what is expected
based on (1) and to that manifest in Fig. 5(a).
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Fig. 7. Consequences of sparse measurements. (a), (b) The normalized
parameter estimates and their standard deviations, respectively, as described
in the legend of Fig. 5. Here, � = 7 cts/s, � = 2 s, number of sensors = 10,
number of time points = 21, h = 0:1 cm. d ranges from 4 to 1000 cm, and
v = d=4 cm/s.

Our methods are applicable in situations broader than we have
demonstrated so far. As an illustration, we let the location of the
source at time zero be a random position within the array,
rather than its midpoint. Then the four-dimensional analog of
(5) can be used to estimate , , , and . For comparison,
in Table I, we report respective estimates of , , and .
Using the parameters listed in the table caption, good estimates
were obtained using (5).

Table II demonstrates the advantageousness of increasing the
number of sensors. For all parameters, as the number of sensors
is increased (first column), the normalized standard deviation
decreases.

Table III compares the efficacies of two methods of sampling
points—pseudorandom triples and low-discrepancy—for eval-
uating the integrals of (5). It may be seen that an order of mag-
nitude fewer “low-discrepancy points” yields comparable ac-
curacy. Note also that the improvement in accuracy when the
number of pseudorandom points is increased by a factor of 64
is about 5/3. Thus, the empirical behavior of the variance in the
parameter estimates is the inverse fourth root of the number of
such points, which is a weaker dependence than afforded by
better behaved integrands. Poisson fluctuations also contribute

TABLE I
PARAMETER ESTIMATES FOR A RANDOM INITIAL SOURCE POSITION

Number of sensors = 10, spacing = 4 cm,
number of time points = 10, � = 7 cts/s, � = 2 s,
v = 1 cm/s, h = 0:1 cm, a = 25 cts/s

TABLE II
INCREASING THE NUMBER OF SENSORS

Number of time points = 21, � = 7 cts/s, � = 2 s, v =

1 cm/s, h = 0:1 cm, a = 25 cts/s. Increasing the number of
sensors 	 is given in column 1 with d = 8; 4; and 1 for the
three numbers of sensors.

TABLE III
COMPARISON OF SAMPLING TECHNIQUES. ACCURACY AS A FUNCTION

OF THE NUMBER OF POINTS SAMPLED USING DIFFERENT METHODS

FOR SELECTING POINTS: EITHER PSEUDORANDOM NUMBER TRIPLES,
UNIFORM ON THE RECTANGULAR PARALLELEPIPED (PRT); OR

LOW-DISCREPANCY POINTS (LD)[11]

to these estimates: contributions whose magnitudes have yet to
be determined.

VII. CONCLUSION

The SNR that can be expected from a single detector mea-
suring a moving source is considerably different from what is
expected for a stationary source: there is an optimal integration
time which is proportional to the ratio of closest-approach dis-
tance to source speed. When combining readings of a moving
source from an array of detectors, we find that SNR increases
along a curve for small numbers of detectors, but levels off
for larger numbers of detectors, with the position of the roll-off
depending on the “interaction length,” given by the product of
source speed and integration time. This limitation can be over-
come by incorporating appropriate time lags into the addition,
such that the integration windows used in the addition follows
the source as it moves from detector to detector.

A small detector will always have lower efficiency than a
large detector, although in the presence of background the two
may be equivalent in detection abilities [3]. For a detector array,
the coherent addition process can make up for the low efficiency
of small detectors. The difficulty, of course, is that the sensor
network must have some knowledge of the traffic speed to deter-
mine the appropriate time lag for addition. The sensor network
design could easily incorporate an average speed measurement,
or even a vehicle-specific speed in areas of low traffic density.
Alternatively, if the traffic speed is relatively constant, the sensor
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network’s data fusion algorithm could simply step through dif-
ferent lag values; as Fig. 3 demonstrates, there will be a rel-
atively limited set of reasonable values, and a rapid improve-
ment in SNR at the correct one. In any event, the increasing
SNR shown in Fig. 3 would not be sustained indefinitely in a
real-world situation.

An actual urban or roadside situation is a two-dimensional
(2-D) problem. However, it can be considered an assemblage of
one-dimensional paths: blocks. Our simulations are equivalent
to sensor network processing on a block-by-block basis. A full
simulation, including sources passing potential cross streets, is
a much more difficult problem. On the other hand, our results
show that, in the absence of perfect knowledge of source speed,
the gains to be had by adding sensors will level off after some
number of sensors, simplifying the full 2-D problem. This lim-
itation also introduces the argument that individual portal mon-
itors may be equivalent to, or better than, networked sensors.
However, as stated earlier, portal monitors may be objectionable
compared to small networked sensors. Also, the urban environ-
ment is defined by obstruction, which may make multiple sen-
sors more likely to have a clear view of a source. Obviously, de-
termining the combination algorithm for a congested area could
be quite difficult. The advantages offered by sensor networks
over portals include the ability to make more precise estimates,
for instance, of the trajectory of a radioactive source. Note that
the applicability of coherent addition extends to trajectories in-
volving accelerations, with the requirement that the trajectory be
known (for example, if a single vehicle is present and the DSN is
equipped with radar or some other speed/position sensor). Am-
biguity in the trajectory of a candidate source is addressed by
Bayesian methods, which provide estimates of both the source
characteristics and its trajectory.

For the most part, we did not also estimate the “time of
arrival” of the source, avoiding this importunity by assuming
knowledge of the time at which the source passes the midpoint
of the segment containing the sensors. Although the problem
we solve is, therefore, idealized, straightforward extension
of our methods will be practical for estimation of this and
additional parameters, as illustrated in Table I. An extension
of our methods for sensors which capture an energy spectrum
is immediate. With Bayesian methods, one must specify the
characteristics of radiation sources of interest. Furthermore,
one may view the problem of detection of constant-speed ra-
dioactive sources as a special case: in which one must integrate
(2) over a domain in , , and .

A common feature of the simulations is that, as the difficulty
of estimation is increased, the errors in the estimates are most
pronounced for and . It is desirable to find mitigating
methodologies, achieving uniform accuracy for all estimates.

Were there multiple sources, one would face the additional
challenge of “partitioning” the counts at the sensors in order to
make effective estimates for all of their parameters. It seems
that importance sampling of “good” partitions would be a nec-

essary component of effective methods for this problem [12]. In
any case, the partitioning would occur atop methods similar to
those elaborated above which could be applied to the individual
sources based on a postulated “partition.”

The coherent addition process is straightforward and well
within the processing and data storage capabilities of simple
distributed sensor systems. A system incorporating Bayesian
methods may require the addition of dedicated processing
nodes to provide the computational power needed for a timely
decision. Performance tradeoffs, such as between sensitivity
and computational requirements, remain to be evaluated. The
ability to efficiently evaluate Bayesian integrals, as addressed
by Table III, will be essential for addressing more compli-
cated trajectories, which may necessitate further adaptations,
involving importance sampling. The results shown here
demonstrate that the system design for a radioactivity-detecting
DSN will have clear imperatives for at least two important
parameters: the integration time for a single detector and the
maximum number of detector outputs that need to be combined
at any one location. In an operational system, both of these
quantities may have to be adaptive, as they depend on the speed
of the source being detected.
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