Characterization of Fly Ash from Full-Scale Testing of Sorbent Injection for Mercury Control on Coal-Fired Power Plants

Connie Senior, Reaction Engineering International C. Jean Bustard, Michael Durham, Kenneth Baldrey, ADA Environmental Solutions

Presented at

Hg Control – The Effects on By-products Pittsburgh, PA March 19, 2002

> REACTION ENGINEERING INTERNATIONAL

77 West 200 South, Suite 210 Salt Lake City, Utah 84101

ADA-ES Hg Control Program

- Full-scale field testing of sorbent-based mercury control on non-scrubbed coal-fired boilers
- Primary funding from DOE National Energy Technology Laboratory (NETL)
- Co-funding provided by:
 - Southern Company
 - Wisconsin Electric
 - PG&E NEG
 - EPRI
 - Ontario Power Generation
 - First Energy
 - TVA
 - Kennecott Energy

Project Overview

- Perform first full-scale evaluations of mercury control on coal-fired boilers (up to 150 MW equivalent).
- Evaluate effectiveness of sorbent-based Hg control (activated carbon).
- Test several different power plant configurations.
- Document all costs associated with Hg control.

Coal-Fired Boiler with Sorbent Injection and Spray Cooling

DOE/NETL Test Sites

Test Site	Coal	Particul Contro	ate Test ol Dates	
Alabama Power Bituminous Gaston		HS ESP Spring COHPAC FF 2001		
Wisconsin Elect Pleasant Prairie	ricPRB	CS ESP	Fall 2001	
PG&E NEG Brayton Point	Bituminous	CS ESP	Summer 2002	
PG&E NEG Salem Harbor	Bituminous	CS ESP	Fall 2002	
ada.es			REACTION ENGINEERING INTERNATIONAL	

Solid Samples

- Coal feeder samples and ash hopper samples taken periodically
- Coal analysis (Microbeam Technologies)
 - Standard (ult/prox/ash)
 - Hg and Cl content
- Ash analysis (Microbeam Technologies)
 - LOI
 - Hg content
 - Special tests as required (Surface area, PSD, leaching)

Leaching Studies

- Performed by D. Hassett (EERC)
- TCLP
- SGLP
- Special Studies:
 - Long term SGLP (60, 90 days) for PRB ash
 - Sulfuric acid (pH=2) for bituminous ash

Fuel Characteristics

	Gaston	Pleasant Prairie		
Rank	Bituminous	PRB		
Sulfur, wt%	1.24	0.32		
Ash, wt%	14.78	5.10		
Moisture, wt%	6.85	30.69		
HHV, Btu/lb	11,902	8,385		
Hg, ug/g	0.136	0.109		
Cl, ug/g	169.0	8.1		

REACTION ENGINEERING INTERNATIONAL

Gaston Site Description

- Alabama Power Company E.C. Gaston Electric Generating Plant Unit 3, Wilsonville, AL
- 270 MW Firing a Variety of Low-Sulfur, Washed Eastern Bituminous Coals
 - Tests conducted on ½ of Unit 3 gas stream (135 MW)
- Particulate Collection System
 - Hot-side ESP, SCA = $274 \text{ ft}^2/1000 \text{ acfm}$
 - COHPAC baghouse supplied by Hamon Research-Cottrell
- Wet Ash Disposal to Pond

COHPAC Baghouse

- EPRI Patented Technology
 - High A/C Pulse-Jet Baghouse Installed Downstream of Existing ESP
 - Low Inlet Mass Loading
- Hamon Research-Cottrell Pulse-Jet Baghouse
- Testing conducted on B-Side
 - 4,352 bags per side
- Ryton/Ryton[™] Felt Fabric

E.C. Gaston

PAC Injection Conditions: Gaston

- Baseline ash ~15% LOI
- Commercial sorbent (Norit Americas FGD Carbon):
 - 600 m²/g, 18 microns MMD
- Injected in B-side of COHPAC
 - 1.5 lb/MMacf

Mercury Speciation: Gaston

Ontario Hydro results during long term testing

Gaston Ash Characteristics

Conclusions from Gaston Tests

- Effective mercury control, up to 90% efficiency, was obtained with Darco FGD
- Significant increase in cleaning frequency with carbon injection (COHPAC configuration)
- On average during long-term test, 80-85% mercury removal was obtained
- Actual and theoretical removals were in reasonable agreement
- Tests provide data for design of future COHPAC (TOXECON) baghouses

ENGINEERING

INTERNATIONAL

PPPP Site Description

- Wisconsin Electric's Pleasant Prairie Power Plant Unit 2, Kenosha, WI
- 600 MW Firing a Variety of Powder River Basin, Low Sulfur, Sub-bituminous Coals
 - Test conducted on ¼ of Unit 2 gas stream (150 MW)
- Particulate Collection System
 - Cold-side ESP, SCA = 468 ft²/1000 acfm
 - SO₃ flue gas conditioning
- Ash is Sold for Use in Concrete Applications

ENGINEERING

INTERNATIONAL

ESP Configuration, PPPP

PAC Injection Conditions: PPPP

- Baseline ash ~0.5% LOI
- Commercial sorbent (Norit Americas FGD Carbon):
 - 600 m²/g, 18 microns MMD
- Injected upstream of ESP
 - 1-10 lb/MMacf

Mercury Speciation: Pleasant Prairie

S-CEM (gas-phase only) results during long term testing at 10 lb/MMacf

Pleasant Prairie Ash Characteristics

Conclusions from Testing at PPPP

- Higher removal at lower injections rates than expected from models
- No increased removal at high injection rates
- PAC injection reduced both elemental and oxidized mercury concentrations
- No detrimental impact on ESP performance
- On a PRB ash, if the gas temperature is below 300 °F, it appears that additional cooling does not improve capture of mercury

PAC Injection Summary

GASTON

- Darco FGD @ 1.5
 Ib/MMacf
- Hg removal 78% (10day average)
- Ash during testing:
 - 20-35% LOI
 - 10-50 ug/g Hg

PLEASANT PRAIRIE

- Darco FGD @
- 1-10 lb/Mmacf
- Hg removal 40-70%
- Ash during testing:
 - LOI increased to ~5%@ 10 lb/MMacf
 - 1-5 ug/g Hg

Mercury Removal Trends from NETL Tests

Leaching Result (EERC)

	Injection Rate.	Sample	Hg content, ug/g	Micrograms Hg per liter (ppbw)		
Plant	lb/MMacf	location		TCLP	SGLP	SAL
Gaston	10	B-side	30.6	0.01	<0.01	<0.01
Gaston	10	B-side	21.7	<0.01	<0.01	<0.01
P4	1.5	Front Ash	5.5	<0.01	<0.01	
P4	1.5	Back Ash	4.73	<0.01	<0.01	

Pleasant Prairie Leaching Results (ASTM Water)

 Date	Sample Type	Inj.Rate Ib/MMacf	Hg, ppbw in soln	
baseline	Front Ash	0	<0.028	
11/2/2001	Front Ash	1	<0.028	
11/2/2001	Front Ash	1	0.033	
11/8/2001	Front Ash	3	<0.028	
11/14/2001	Front Ash	10	<0.028	

Source: Wisconsin Electric Co.

Pleasant Prairie ASTM C 618 tests

Date	Sample Type	Inj.Rate Ib/MMacf	LOI, wt%	7-day strength activity index	water required %of control	Autoclave, % exp.
baseline	Front Ash	0	0.58%	91.3	94.2	-0.06
11/2/2001	Front Ash	1	1.04%	84.3	95	0.01
11/8/2001	Front Ash	3	1.58%	86.8	94.6	0.01
11/14/2001	Front Ash	10	3.57%	84.1	96.2	-0.02
Class C limit			<6%	>75	<105	<0.8

Source: Wisconsin Electric Co.

Summary

- Preliminary leaching studies completed for Gaston (COHPAC baghouse/bituminous) and Pleasant Prairie (ESP/PRB)
- Little or no detectable Hg leached by ASTM water leach,TCLP, SGLP, sulfuric acid (bituminous ash)
- Long-term SGLP in progress for PRB ash
- PRB ash + sorbent conforms to ASTM C618, but issues with foam index test (air entrainment)

