
Tuning/Event Generation/Monte Carlo/Kitchen Sink meeting

FASTER PARTON DISTRIBUTION EVALUATION

IN MONTE CARLOS

Zack Sullivan
Fermi National Accelerator Laboratory

June 11, 2004

Based on ZS, hep-ph/0403055 and new studies

Contents:

1. How much time is spent retrieving CTEQ PDFs?
(i.e. Why do we care?)

2. Speed enhancements to the evaluations:
How do they work?
How well do they work?

3. Potpourri (a few other irregularities to watch)

http://home.fnal.gov/ � zack/pdf/ has improved code and details.



Why should we care?

More time is spent retrieving PDFs than in any other routine in
event generation (by a long way).

I first noticed this when profiling ZTOP, my fully differential
NLO coding of s- and t-channel single-top-quark production,
but it seems to be universal.

Fraction of time spent inside PDF functions
using default CTEQ PartonX# on single-top

CTEQ4/5 CTEQ6

ZTOP 90% 60%

HERWIG 70% 33%

PYTHIA 30% 16%

You should care because CTEQ5L and CTEQ5M1 are
the default PDF choices for Run 2.

Why does HERWIG spend more time than PYTHIA?

PYTHIA calls STRUCTM � 100 times/event requested.
HERWIG calls STRUCTM � 1100-1800 times/event requested.

Each call of STRUCTM calls the PDF evaluation 8 times.

This means you can call the PDFs up to 13,000,000 times
to get 1000 events using CTEQ5 and HERWIG!

Why is this so expensive? Why is CTEQ4/5 more expensive
than CTEQ6?

CTEQ4/5 and 6 use completely different interpolation algorithms.

I don’t want to change results, so how can I speed these up?



POLINT and CTEQ PDFs

What is POLINT?

It is a routine from “Numerical Recipes” that performs a
polynomial fit of degree � � � to a set of � points based on
Neville’s algorithm.

Why is it used?

This is used by CTEQ to smoothly interpolate between values
of � and � � that are read in form a best-fit table.

Most of the time spent in CTEQ4/5 occurs in POLINT,
while CTEQ6 only uses POLINT at the endpoints of � or � � .
(which is sometimes expensive).

Why is POLINT so slow?

1. A line that is never called disables compiler optimizations.

2. � � �	��

� for CTEQ4/5(6). POLINT( � points) is
too general for most compilers to fully optimize.

Fix this by removing the unreached line, and writing versions
of POLINT for CTEQ4/5(6) that set � � ����

� .

ZS, hep-ph/0403055

There is still a lot of redundancy in POLINT3. Therefore, I’ve
also written a version that removes all unnecessary calls.



SUBROUTINE POLINT (XA,YA,N,X,Y,DY)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C Adapted from "Numerical Recipes"
PARAMETER (NMAX=10)
DIMENSION XA(N),YA(N),C(NMAX),D(NMAX)
NS=1
DIF=ABS(X-XA(1))
DO 11 I=1,N
DIFT=ABS(X-XA(I))
IF (DIFT.LT.DIF) THEN
NS=I
DIF=DIFT

ENDIF
C(I)=YA(I)
D(I)=YA(I)

11 CONTINUE
Y=YA(NS)
NS=NS-1
DO 13 M=1,N-1
DO 12 I=1,N-M
HO=XA(I)-X
HP=XA(I+M)-X
W=C(I+1)-D(I)
DEN=HO-HP
IF(DEN.EQ.0.)PAUSE
DEN=W/DEN
D(I)=HP*DEN
C(I)=HO*DEN

12 CONTINUE
IF (2*NS.LT.N-M)THEN
DY=C(NS+1)

ELSE
DY=D(NS)
NS=NS-1

ENDIF
Y=Y+DY

13 CONTINUE
RETURN
END



cz This specialized recoding assumes N=3.
SUBROUTINE POLINT3 (XA,YA,N,X,Y,DY)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C Adapted from "Numerical Recipes"
DIMENSION XA(3),YA(3),C(3),D(3)
NS=1
DIF=DABS(X-XA(1))
DO 11 I=1,3
DIFT=ABS(X-XA(I))
IF (DIFT.LT.DIF) THEN
NS=I
DIF=DIFT

ENDIF
C(I)=YA(I)
D(I)=YA(I)

11 CONTINUE
Y=YA(NS)
NS=NS-1
DO 13 M=1,2
DO 12 I=1,3-M
HO=XA(I)-X
HP=XA(I+M)-X
W=C(I+1)-D(I)
DEN=HO-HP

cz IF(DEN.EQ.0.)PAUSE
DEN=W/DEN
D(I)=HP*DEN
C(I)=HO*DEN

12 CONTINUE
IF (2*NS.LT.3-M)THEN
DY=C(NS+1)

ELSE
DY=D(NS)
NS=NS-1

ENDIF
Y=Y+DY

13 CONTINUE
RETURN
END



cz This is a specialized recoding that
cz assumes N=3.
cz Written by Z. Sullivan, 5/14/04

SUBROUTINE POLINT3 (XA,YA,N,X,Y,DY)
C Modified "Numerical Recipes" routine.

IMPLICIT NONE
DOUBLE PRECISION XA(3),YA(3),X,Y,DY
DOUBLE PRECISION C1,HO,HP,HP2,W,D1,D2,DEN
INTEGER N

HO=XA(1)-X
HP=XA(2)-X
w=ya(2)-ya(1)
DEN=HO-HP
DEN=W/DEN
D1=HP*DEN
C1=HO*DEN

HP2=XA(3)-X
w=ya(3)-ya(2)
DEN=HP-HP2
DEN=W/DEN
D2=HP2*DEN

W=HP*DEN-D1
DEN=HO-HP2

if((x+x-xa(2)-xa(3)).gt.0d0) then
y=ya(3)+d2+hp2*w/den

elseif((x+x-xa(1)-xa(2)).gt.0d0) then
y=ya(2)+d1+ho*w/den

else
y=ya(1)+c1+ho*w/den

endif

RETURN
END



STRUCTM and the Monte Carlos

Both PYTHIA and HERWIG call PDFs by using the CERNLIB
routine STRUCTM. This in turn loops over 8 uniquely defined
PDFs: ����� � �������	� � �	��
���
�������� .

Much of the code that sets up POLINT, or the CTEQ6
algorithm, is repeated with identical results between runs.

An obvious algorithmic improvement is to do 1 of 2 things:

1. SAVE the values of � , � � , and the results of functions
applied to them; and bypass that setup code unless �
or � � change.

2. Write a custom STRUCTM to do the direct calls itself.

I won’t show these here, but you can find them at:

http://home.fnal.gov/ � zack/pdf/

How much do each of these changes help? �����



Benchmarks give a rough feeling

There are large discrepancies in the amount of execution time
between different compilers and compiler flags.

1. ifc is ALWAYS faster than g77 by a factor of 1–3.

2. Using POLINT3 removes most of the difference between
compiler flags.

3. Using POLINT3, CTEQ4/5 is � ����� faster than CTEQ6.

4. Using POLINT3, CTEQ5 is faster and more accurate than
the functional fit in PYTHIA.

Typical speed gains relative to POLINT3/4 (looping over � )

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/(1.1–1.2) 1.0 1/(1.5–2.7) 1/1.03

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.5 — 1.2 —

SAVE � � � � 1.26 2.6 1.12 2.4

SAVE � � � � (fast) 2.3 — 1.9 —

fastest STRUCTM 3.1 3.1 4.6 2.7

fastest times: 40 s 50 s 17 s 35 s

While these numbers are a nice guide, a simple benchmark
misses the fact that real programs interact in subtle ways with
their routines. E.g., the CPU has more cache misses, memory
alignment is different, �����
We care about real code



Speedup for NLO single-top code ZTOP

Typical speed gains relative to POLINT3/4

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/1.2 1.0 1/(1.6–2.2) 1.0

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.3 — 1.25 —

SAVE � � � � 1.2 2.0 1.13 2.0

SAVE � � � � (fast) 1.7 — 1.7 —

fastest STRUCTM 1.9 2.15 1.9, 2.7 2.15

fastest times: 86 s 98 s 60, 42 s 62 s

Using the fastest routines makes ZTOP run 2–5 times faster!

Publication-quality runs drop from over day to a few hours.

This is probably the biggest gain a theory calculation can

achieve, but factors of 2–3 should be attainable.

I actually got another factor of 1.5 by hard-coding some calls

to CTQNPDF. Removing unnecessary PDF calls can help.



Speedup for HERWIG and PYTHIA

Typical HERWIG speed gains relative to POLINT3/4

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/1.12 1.0 1/(1.2–1.7) 1.0

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.25 — 1.1 —

SAVE � � � � 1.14 1.6 1.12 1.3

SAVE � � � � (fast) 1.5 — 1.3 —

fastest STRUCTM 1.65 1.7 1.53 1.4

fastest times: 64 s 50 s 75 s 55 s

Strangely, g77 was faster than ifc, and CTEQ6 was faster than

CTEQ5. I do not know why yet, but it worries me (see next page).

Typical PYTHIA speed gains relative to POLINT3/4

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/1.03 1.0 1/(1.15–1.25) 1.0

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.06 — 1.05 —

SAVE � � � � 1.04 1.13 1.05 1.13

SAVE � � � � (fast) 1.1 — 1.1 —

fastest STRUCTM 1.14 1.15 1.18 1.15

fastest times: 55 s 58 s 42 s 43 s

HERWIG is 1.5–2.6 times faster.

PYTHIA is 1.15–1.5 times faster ( � 3.3 times faster than HERWIG).



Some “gotchas” I’ve discovered

I often use PFTOPDG rather than STRUCTM because it

directly provides � ���� � � � �� ��
����
 � 
����
���� � � �	� � � �� ��� .

Warning: The CERNLIB version just calls STRUCTM. New

PDFs will have 
 �� �
 , so PFTOPDG will not return the correct

PDFs as it is currently written.

We’ve already seen HERWIG calls the PDFs much too often.

Before EVERY call to STRUCTM, HERWIG calls PDFSET!

1. To use new PDFs, you must write your own PDFSET to fill

the necessary common blocks. HERWIG mysteriously

overwrites these common blocks, and so must call

PDFSET to fix it’s mistake.

2. Switching to LHAPDF will require writing a CERNLIB-like

PDFSET that secretly stores an extra copy of the

variables, and refills the common blocks with each call.

3. LHAPDF currently includes the CTEQ6 evolution code

(not CTEQ5). The code in EVLCTEQ is essentially

PFTOPDG, so the same gains in speed can come from

updating evolvePDF.



Conclusions

1. Retrieving PDFs is still the single most time consuming
operation in HERWIG and theoretical codes (including
those with fast detector simulations).

CTEQ4/5 CTEQ6

ZTOP 90 � 42% 60 � 48%

HERWIG 70 � 30% 33 � 23%

PYTHIA 30 � 9% 16 � 9%

2. Additional improvements can still be made

� You can replace the binary search for � and � � with a
hash

�
factor of 2 for that piece, but only 5% overall.

� We may have reached the point of diminishing returns.

3. I’ve made the validated routines available at
http://home.fnal.gov/ � zack/pdf/

At least use POLINT3. I’ll use the fastest version of STRUCTM.

4. Watch out for the interface bug in PFTOPDG.

5. It is more important to write correct code, than fast code.

That does not mean it is unimportant to write fast code �����


