Project

Modeling of BlueTooth

Link Manager Protocol (LMP)
(PART C of the Bluetooth Specification)

Table of Contents

1 Modeling of BlueTooth’s Link Manager Protocol (LMP)........ccccooeviiinniiienieniee 1
1.1 Project PartiCIPANTS:ecceiieieeiesieseeie st e et e et e e sta e e e sae e snaeneesraenneenes 1
1.2 GO et b et r e 1
G T = - Tod (o €011 o PSR 1
1.4 Current Status (8S 0F 3/31/99):eiiiiiiie s 1
1.5 Current Conclusions (as 0f 3/31/99):cvoieiiieiiie e 2

2 MOAEliNG EXPEIIENCES:veeueeiieetieiie ettt sttt sttt sbe et e sreebeeneesee e 3
2.1 Promela/SPIN NOTESccviiiiiiiiesie st 3
2.2 BlueTooth not fully SPECITIEd..........cccviiiiiiice e 3
2.3 CONCIUSTON. ...ttt bbbttt bbbt bttt 6

3 Future plans for modeling other PARTs/Protocols of BlueTooth................cccocveenen 7

O N U141 o] €] SRR 8

AL ANNEX A ettt et bt e e et e e 11

B ANNEX B .ot bbb 12
B.1 AUTHENTICATION. ...iciiieieieieiie ettt sttt nes 12

B.1.2 SPIN OULPULeviiieiieee et ns 13
B.2 PAIRING ...ttt ettt bbb te e e et besaenrenne e 14
B.2.2 SPIN OULPULeeiieiieee ettt ns 16
B.3 CHANGE LINK KEY ..ottt 17
B.3.2 SPIN OULPULeeiiecieee ettt ns 18
B.4 CHANGE THE CURRENT KEYcoiiiiiiiiiiiesie et 19
B.4.2 SPIN OULPULeeiieiieee et ns 20
B.5 ENCYPTION ..ottt sttt ne et 21
B.5.2 SPIN OULPULeeiieciiee ettt nas 23
B.6 CLOCK OFFSET REQUESTcoiiiiiiiereciesteeee et 23
B.6.2 SPIN OULPULeiiieiieee ettt e e 24
B.6.2.1Model with channel length 0f Size 1 0r 2......ccccoviieiiiiiiieeee e, 24
B.6.2.2Model with channel length 0f Siz€ Oc.ccovevviieiieiie e, 25

B.7 TIMING ACCURACY INFORMATION REQUESTc.cccoeeiereierieeeeeieeens 25
B.7.2 SPIN OULPULeeiiecieee et nne e 26
B.8 LIMP VERSIONoooiiiiiiiiiesieiee ettt ettt nne e 27
B.8.2 SPIN OULPULeeiieiiieie ettt sne e 28
B.9 SUPPORTED FEATURES........coiiie ettt 28
B.9.2 SPIN OULPULeiiieciiee ettt ns 29
B.10 SWITCH OF MASTER SLAVE ROLEccccoiiiiiiece e 29
B.10.2 SPIN OULPUL ..ottt ae e ns 31
B.11 NAME REQUESTocotiiiiiieieie sttt sttt 31
B.11.2 SPIN OULPULoviiieiiieiece ettt e sneens 32
B.12 DETAGCH. ...ttt ettt ettt nne b ne e 33
B.12.2 SPIN OULPULeiiieiiieie ettt ae e e ns 33
B.13 HOLD MODEc.i ittt st 34
B.13.1.1 Model with channel length of Size O..........cccevvevviiiiieiececeee e, 34
B.13.1.2 Spin output with channel length of Size 0..........ccccccovviiiinieiiiiiie, 36
B.13.2.1 Model with channel length of Size 1.......c.ccccovvevviiivieieceeee e, 36
B.13.2.2 Spin output with channel length of size 1..........cccoccovviiiiiiiiiicie. 40

B.14 SNIFF MODEoiiiiiiiii e 40

B.14.1.1 Model with channel length of Size 0..........cccevvevviiiiieie e 40
B.14.1.2 Spin output with channel length of Size 0..........ccccccevvieviiiiiiiiiie, 42
B.14.2.1 Model with channel length of Size L.......c..cccovveviiiivieie e 42
B.14.2.2 Spin output with channel length of size 1..........cccoccovviiininiiciiine, 46
B.15 PARK MODE ..ottt st 46
B.15.1.1 Model with channel length of Size 0..........ccooveiiiiiiiiie, 46
B.15.1.2 Spin output with channel length of Size O..........c.ccccovvvevviieivecece, 46
B.15.2.1 Model with channel length of Size 1.........ccccooiiiiiiiiniiece, 47
B.15.2.2 Spin output with channel length off size 1cccccevveivieivceie, 49
B.16 POWER CONTROLociiiiieiiieiie ettt sna s 50
B.16.2 SPIN OULPULeeiieiiieie ettt ae e ens 51
B.17 CHANNEL QUALITY DRIVEN CHANGE BETWEEN DM AND DH....... 51
B.17.2 SPIN OULPULeevieiiieece ettt ettt e e nas 52
B.18 QUALITY OF SERVICE (QOS).....ccctitiiiiiaiiniieieierienie e sie e 53
B.18.2 SPIN OULPULeeeieiiieie ettt e e ns 54
B.19 SCO LINKS ..ottt sttt nne st sne e 54
B.19.2 SPIN OULPULeeiieciieie ettt ettt enas 57
B.20 CONTROL OF MULTI-SLOT PACKETScoceiiiereiesieeseeieie e 57
B.20.2 SPIN OULPULeeiieiiieie ettt e e nneens 59
B.21 Single asynchronous model (functions 1-4).......ccccooeviinieniieniinin e 59
B.22 Single synchronous model (functions 1-5).......ccccccevveviinieiiienese e 63
B.23 Single synchronous model (functions 6-11).........ccccceririiiiieneniinneenesee e 69
C ANNEX C ettt bbbt 73
C.1 Comments 0N VEISION 0.7ccuoiiiiiiieieiie ettt 73
C.2 Comments 0N VErSION 0.8........ccoiiiiiiiiiiiieieieie et 81

1 Modeling of BlueTooth’s Link Manager Protocol (LMP)

1.1 Project participants:
David Cypher and Yunming Song

1.2 Goal:

To create a model of the Bluetooth Layer Management Protocol (LMP) using
PROMELA, and then verify and validate the model using SPIN.

1.3 Background:

This project started in December 1998, with a review of the Bluetooth specification
version 0.6. Comments were generated, but never submitted as a newer version of the
specification was available by this time. Version 0.7 was then reviewed and comments
generated and submitted to the Bluetooth chatroom for LMP (PART C) on the Bluetooth
website. Additional comments were submitted shortly thereafter. No responses were
ever received on these comments.

At the end of January 1999 a new version of the specification (0.8) was released.
Comments were created by updating previous comments and adding new ones. These
were submitted to the new Forum, the replacement of the chatroom, on the Bluetooth
Web site.

May 11, 1999 version 0.9 was released. Comments for version 0.9 were generated on
May 17th from the previous version 0.8 comments. While doing so it was found that all
editorial comments on version 0.8 were either accepted into version 0.9 or rendered not
applicable by other modifications. As for the technical comments only a few were
accepted. Most are still unanswered. As for the assumptions #1, #6, and #7 were
addressed. #6 and #7 have final resolution, while #1 only addressed the solutions, not the
issue.

Modeling was started in February using version 0.8 of the LMP. There are twenty
separate subsections (i.e. procedures) contained in LMP (Part C) to be modeled.

During the months of December and January time was spent learning the Promela
language and SPIN. This learning is continuing as we create the models and run the
simulations

1.4 Current Status (as of 5/17/99):.

There are now twenty three (23) procedures from LMP (Part C). Three new procedures
were added to version 0.9 and most of the previous twenty (20) procedures requires
modifications.

1.5 Current Conclusions (as of 3/31/99):

The base specification changed significantly from 0.6 to 0.7, 0.7 to 0.8, and 0.8 to 0.9.
Modeling is difficult because our assumptions have not always matched the changes from
version to version. Too many assumptions create too many non-interoperable models. If
the review comments would be addressed, modeling assumptions could be reduced and
perhaps a single model could be produced.

2 Modeling experiences:
This section describes our experiences during the modeling of the LMP based on the use
of Promela and SPIN and the BlueTooth specification.

2.1 Promela/SPIN Notes

SPIN running on a Windows 95 or NT 4.0 PC is not stable.

The output of SPIN cannot be assumed to be correct on first execution. Multiple tries,
changing platforms, and rebooting often produce different results.

No easy way (non-error generating) to model termination of a process, which is needed
for the BlueTooth Detach procedure.

2.2 BlueTooth not fully specified

Being that there were some key questions unanswered, we had to make many
assumptions that produced many models. Only those models that were our final
understanding are contained. However, we did testing on two different views of the
channels that a Bluetooth device might use to communicate with. These two cases were
where the channels were modeled as being synchronous (i.e. no buffers in channel) or
asynchronous (i.e. buffering allowed in channels).

There were twenty (23) individual functions with the associate procedures to be modeled
and verified. Figure 1 shows by graphical representation of the SPIN output (the number
of states stored and matched and number of transitions reached) for the twenty individual
models. Some functions have two models: one for synchronous and one for
asynchronous. Where two models exist, only the asynchronous output is shown because
it provides the upper bound on number of states stored and matched and number of
transitions. Both Promela models and SPIN outputs are listed in Annex B.

Ochannel Length
B stored

5000 Omatched
Otransitions

authentication
encryption

Channel Length

change link key

change current link key

Figure 1 Twenty (20) single function models and their SPIN output in number
of states stored and matched and the number of transitions and size of channel.

When using the asynchronous channel type, states must be defined within the models.
These states are not part of the BlueTooth LMP specification. States were not needed in
the synchronous channel type models, since only one transaction can exist at a time.

Even though on an individual basis the models created were easily manageable, when
combining them into one complete system, the number of states and transitions were
unmanageable. We grouped the individual functions into related functions, thus making
the models more manageable. A single model with all 23 functions is not possible due to
the state space explosion.

One such example of grouping related functions into a small model is the first five
functions. The functions described in sections 3.2 through 3.6 are grouped together since
they are all security related. This division is also supported by the text from section 4 of
the Bluetooth specification. This model assumes a synchronous channel (i.e. no buffers).
An asynchronous model was created for the first 4 functions, but when the fifth was
added an error occurred with conflicting states, which is caused by the fact that multiple
message exchanges could be outstanding, which leads to indistinguishable replies.

Figure 2 shows the state space explosion as one function (sections 3.2 through 3.5) after
another is added to a single model.

12000

10000

8000

—®—stored
—®—matched
transitions

6000

4000

2000

authen pair change link key change current link key encryption

Figure 2 Growth of state space as one function after another is add to create a
single model. (Authentication, Pairing, Change Link Key, and Change Current Link
Key)

Figure 3 shows the state space explosion as one function (sections 3.6 through 3.11) after
another is added to a single model.

35000

30000

25000

20000

15000

10000

5000

clock+time add version add features add switch add name

Figure 3 Growth of state space as one function after another is add to create a
single model. (Clock Offset request, Timing Accuracy Information Request, LMP
Version, Supported Features, Switch of Master/Slave Role, Name Request)

2.3 Conclusion

This tool (Promela/SPIN) provides many opportunities for trying the various assumptions
and attempted fixes for protocol development, but the LMP protocol is too immature to
perform an exhaustive test of all the possibilities based on our assumptions.

transitions
—#—matched
—*—stored

3 Future plans for modeling other PARTs/Protocols of BlueTooth

Future plans for modeling depend upon our capability to have access to the developing
specification. At this time we have access to version 0.9. The final version is not
scheduled for release until the end of June 1999 (i.e. version 1.0). We should at least
update our current models to align with the new versions (0.9 and 1.0) of the
specification. To test the protocol for completeness, as well as prepare for conformance
testing of the protocol.

BlueTooth is designed to be used in a mobile network where any system can
communicate with any other system. A system is part of a piconet where at most one
device is considered as MASTER while the rest of the devices are considered as
SLAVEs. For our current modeling we only modeled two devices (one master and one
slave) and one ACL channel. We could expand this to cover multiple devices and
multiple ACL channels. We also could add simulated DM/DH packets and SCO
channels. Currently we just model their invocation functions as described in the
specification.

If we want to expand our modeling, we could begin to model the wireless (channels)
interface (PART B). However, timing could present a problem when trying to do
detailed work.

As for conformance testing and interoperability testing, it is too premature to attempt
because if we cannot model the behavior, then how could we possibly test it.

4 Assumptions:

The Bluetooth specification has a number of holes (due to the fact that the specification is
under construction) that required us to make assumptions in order to complete our
models. These assumptions need to be confirmed, and if correct, need to be stated within
the Bluetooth specification before the specification is finalized. What follows is our list

LMP_accepted and LMP_not_accepted to differentiate responses. However, the
main issue was not addresed.

2. Assumption: A device does not have to respond to a received PDU in its next slot.
Problem: This permits a collision situation in some message exchanges.

Eventhough there is a bit indicating which device initiated the message exchange, it is
possible for both devices to initiate the same or similar message exchanges. In this
case, How is the procedure to be completed? There are two positions to take. One is
that you treat each message exchange as separate exchanges (i.e. reason for the added
bit in version 0.8). The second is to define new procedures for the detection and
resolution of these collisions.

Solution(s): The first position fails because there is interaction that cannot be
separated, therefore it is not a solution. The second position requires defining new
procedures, which are numerous. The LMP_hold and LMP_hold_req procedures
presents a good example of this problem. (a similar one is LMP_sniff procedures).
The final solution is to accept assumption #1 and not allow more than one exchange
at a time over the ACL.

3. Assumption: (Related to the first two assumptions and effects the next two
assumptions) Only one transaction at a time from either side can exist on the ACL. If
either side initiates a transaction, then that transaction must complete before any other
transaction can be initiated with the exception of the detach procedure.

Problem: No way to resolve the hold or sniff procedures, if both side can initiate the
message exchange (i.e. do not respond immediately to other sides request.
Eventhough there exists a bit to differentiate which side began a message exchange, it
is impossible to resolve the collision situation without defining many more
procedures.

Soultion: (1) Accept the assumption. Side effect is that slots will be wasted, if a
device can not return a response in the next time slot and can not use that time slot for
sending another PDU. (2) Define many more procedures to allow the interactions.

. Assumption: An LMP_hold message can only be sent when there is nothing
outstanding or waiting for a response or being received.

Problem: Following the above line of assumptions, there is a possibility that a
device may want to force a hold on the other device, but what happens to the possible
queue of messages when a hold is received?

Solution(s): Dequeue all messages when an LMP_hold is received or sent. - OR —
Ignore all message received while in hold state (this appears to be impossible as the
master does not transmit while in hold state, but what prevents a slave from
transmitting?).

. Assumption: (Related to the LMP_hold assumption) If a LMP_hold_req is received
while awaiting a response to a previously sent message, then what is the action.
Problem: If the LMP_hold_req is accepted, then what is done about the outstanding
response? If the LMP_hold_req is not accepted, then what happens to the outstanding
response by the side that transmitted the LMP_hold_req?

Solution(s): (1) Create a pending hold state for both transmitter and receiver. The
pending state is entered after transmitting the LMP_hold_req. While in this state if
any PDU other than LMP_hold_req, LMP_accepted, LMP_not_accepted, LMP_hold
is recevied, then the messages are responded to normally — or — take this as an
implicit negative response (i.e. LMP_not_accepted received). If a LMP_hold_req is
received in response to its own LMP_hold_req, then all is well, proceed as normal. If
the LMP_hold_req is not in response to its own LMP_hold_req, then (i) assume
connection held (i.e. collision) or (ii) treat separately. If LMP_accepted is received,
then go to hold state. If LMP_not_accepted is received, then go to a normal state. If
LMP_hold is received, then what? (send LMP_hold and go to hold state) The
pending state is entered when receiving a LMP_hold _req. If there are any
outstanding requests, then no response to the LMP_hold_req until the response is
received or reply with LMP_not_accepted and return to a normal state. This solution
impacts greatly the current procedures of the specification. (2) if any message is
awaiting a response when a LMP_hold_req is received, then send a
LMP_not_accepted.

A aalalidTala

with-EMP-not-accepted-with-the reason-codenotsupported. Version 0.9 makes
mandatory recognition of all PDUs and allows the LM to send LMP_not_accepted
PDU with error code unsupported feature.

10

A ANNEXA
Milestones:
December 1998 — January 1999: Learn Promela and SPIN by reading Design and
Validation of Computer Protocols by Gerard J. Holzmann and doing the exercises
contained within.
February 1- 12, 1999: Review and understand LMP specification
February 8 — March 19, 1999: Model the 20 procedures (approximately one day for each
procedure)
February 8 — 16: Authentication procedure (This takes a long time, since it is the
first attempt at coding and verifying the protocol)
Week 1
February 16: Pairing
February 17: Change Link Key
February 18: Change Current Link Key
February 19: Encryption
Week 2
February 22: Clock Offset
February 23: Timing Accuracy
February 24: LMP Version
February 25: Supported Features
February 26: Switch of Master Salve Roles
Week 3
March 1: Name Request
March 2: Detach
March 3: Hold
March 4: Sniff
March 5: Park
Week 4
March 8: Power Control
March 9: Channel Quality
March 10: Quality of Service
March 11: SCO Links
March 12: Control of Multi Slot Packets
Week 5
Integrate all parts into one model
March 22 — 31, 1999: Generate Report

11

B ANNEXDB
Models

This annex lists the Promela models followed by their SPIN output for the LMP. Some

models are only for synchronous. Some models are only for asynchronous. Others have
both asynchronous and synchronous models.

B.1 AUTHENTICATION

#def i ne LMP_not _accept ed 4
#defi ne LMP_det ach 7
#defi ne LMP_au_rand 11

#def i ne LMP_sres 12

#defi ne SLAVE 1
#defi ne MASTER 0O
#defi ne YES 1
#defi ne NO 0
#defi ne NORMAL O
#define s_auth 1
#define s_detach 12

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored) */

proctype device (chan in, out; bit device type, |inkey)
{

byt e st at e=NORMAL;

bit outstandi ng=NO, aut h_done=NG,

BEGQ N:

do
/**************************************/
/* 3.1 Authentication */

/**************************************/

(((out st andi ng==NO) &&(aut h_done==NO)) &&(st at e==NORMAL)) ->
out! LMP_au_rand;
out st andi ng=YES;
state=s_aut h;

i n?LMP_au_rand ->
i f
:: (state==s_detach) -> skip;
| (state==s_detach) ->
i f
(1'i nkey==YES) -> out!LMP_sres;
©: (linkey==NO) -> out!LMP_not _accepted;
fi;
fi;
i Nn?LMP_sres ->
i f
(state==s_auth) ->

12

i f
aut h_done=YES; out standi ng=NG, st at e=NORVAL;
aut h_done=NO, out st andi ng=NO, st at e=NORNMAL;
out! LMP_det ach; outstandi ng=YES; state=s_detach;
fi;
(state==s_detach) -> skip;
fi;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */

/***************************************/

i N?LMP_not _accepted ->
if
(state==s_auth) -> state=NORMAL; out st andi ng=NG,
fi;
i Nn?LMP_det ach -> break;
ti meout ->
if
(state==s_detach) &(| en(out)==0) -> break;
I (state==s_detach) ->

if
(aut h_done==YES) -> skip;
(aut h_done==NO) -> ski p;
fi;
fi;
od;
}
i nit
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER, YES);
run device (BA, AB, SLAVE, YES);
}
}

B.1.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Oder Reduction

Ful | statespace search for:

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 48, errors: O
238 states, stored
74 states, nmatched
312 transitions (= stored+nat ched)

13

1 atonic steps
hash conflicts:

(max size 2719 states)

2.542

1 (resol ved)

menory usage (Moyte)

"out!4"

“(1)"

"state = 0"

"outstanding = 0"

"((state==1))"

(1)

unreached in proctype device

line 39, state 12,
line 51, state 31,
line 60, state 36,
line 60, state 37,
line 59, state 38,
line 71, state 49,
(6 of 57 states)

unreached in proctype :init:

B.2

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
store

proctype device (chan in,

{

byt e st at e=NORMAL,

(0 of 4 states)

PAIRING
ne LMP_not _accept ed
ne LMP_det ach
ne LMP_in_rand
ne LMP_comb_key
ne LMP_unit_key
ne LMP_au_rand
ne LMP_sres
ne SLAVE 1
ne MASTER 0
ne YES 1
ne NO 0
ne NORMAL O
ne TEMP1 7
ne s_auth 1
ne s_ukey 2
ne s_ckey 3
ne s _detach 12
ne CHAN LEN 2 /* length of channel
d) */

BEG N:

do

out ;

i nkey=l i nkkey;
bit outstandi ng=NO, auth_done=NGQ

bit device_type,

/**************************************/

/* 3.2 Pairing

/**************************************/

(((out st andi ng==NO) &&(aut h_done==NO)) &&(st at e==NORMAL))
i f

(1'i nkey==NO)

-> out!LMP_in_rand;

14

*/

12

(number of messages to be

[i nkkey)

->

I i nkey=TEMP1;

'(l'i nkey==NO) -> ski p;
fi;
out! LMP_au_rand;
out st andi ng=YES;
state=s_aut h;

in?LMP_in_rand ->
i f

(state==s_detach) -> skip;

I (state==s_detach) -> |inkey=TEMP1;
fi;

i n?LMP_au_rand ->
if
.. (state==s_detach) -> skip;
| (state==s_detach) ->
i f

(1'i nkey==YES) -> out!LMP_sres;

(l'i nkey==TEMP1) -> out!LMP_sres;

(l'inkey==NO) -> out!LMP_not accepted;
2o H((linkey==NO | | ((I i nkey==YES) | | (| i nkey==TEMP1))) -> skip;
fi;
fi;

i nNn?LMP_sres ->
i f
(state==s_detach) -> skip;
(state==s_auth) ->
if
;. auth_done=YES ->
if
(l'i nkey==TEMP1) ->
if
out! LMP_unit_key; outstandi ng=YES; state=s_ukey;
out! LMP_conb_key; outstandi ng=YES; state=s_ckey;
fi;
I'(l'i nkey==TEMP1) -> outstandi ng=NO, st at e=NORMAL;
fi;
aut h_done=NO, out st andi ng=NO, st at e=NORNMAL;
;. out!LMP_detach; outstandi ng=YES; state=s_detach;
fi;
fi;

i N?LMP_unit_key ->
if
.. (state==s_detach) -> skip;
(state==s_ukey) -> outstandi ng=NO, st at e=NORNAL;
(state==s_ckey) -> outstandi ng=NO, st at e=NORNAL;
I'((state==s_ukey)|| (state==s_ckey)|| (state==s_detach)) ->
if

out! LMP_unit_key;

out! LMP_conb_key;
fi;
fi;
i nkey=YES;

i N?LMP_conmb_key ->

15

(state==s_detach) -> skip;
(state==s_ukey) -> outstandi ng=NO, st at e=NORNAL;
(state==s_ckey) -> outstandi ng=NO, st at e=NORNAL;
I ((state==s_ukey)|| (state==s_ckey)|| (state==s_detach)) ->
i f
out! LMP_unit_key; printf("refuse to change |ink key\n");
out! LMP_conb_key; printf("accept change of |ink key\n");
fi;
fi;
i nkey=YES;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */

/***************************************/

i N?LMP_not _accepted ->
if

(state==s_detach) -> skip;

(state==s_auth) -> state=NORMAL; out st andi ng=NG,
fi;

i nN?LMP_detach -> break;

ti meout ->
i f
(state==s_detach) &(| en(out)==0) -> break;
(state==s_detach) &&! (I en(out)==0) -> skip;
| (state==s_detach) ->
i f
(aut h_done==YES) -> skip;
(aut h_done==NO) -> ski p;

fi;
fi;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER, NO);
run device (BA, AB, SLAVE, NO;
}
}

B.2.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for:

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

16

invalid endstates +

State-vector 40 byte, depth reached 90, errors: O
1105 states, stored
225 states, matched
1330 transitions (= stored+nat ched)
1 atonic steps
hash conflicts: 4 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 45, state 14, "(1)"
line 56, state 28, "out!4"
line 57, state 30, "(1)"
line 63, state 37, "(1)"
line 113, state 102, "(1)"
line 114, state 104, "state = 0"
line 114, state 105, "outstanding = 0"
line 112, state 106, "((state==12))"
line 112, state 106, "((state==1))"
line 122, state 114, "(1)"
line 126, state 119, "(1)"
(10 of 127 states)

unreached in proctype :init:
(0 of 4 states)

B.3 CHANGE LINK KEY

#defi ne LMP_conb_key 9
#defi ne LMP_unit_key 10

#define SLAVE 1
#defi ne MASTER 0O
#defi ne YES 1
#defi ne NO 0
#defi ne NORMAL O
#defi ne TEMP1 7
#defi ne s_ckey 3

#define CHAN LEN 2 /* length of channel (nunber of
stored) */

proctype device (chan in, out; bit device_type)
{

byt e st at e=NORMAL;

bit outstandi ng=NO, auth_done=YES

BEG N

do
/**************************************/
/* 3.3 Change Link Key */

17

nmessages to be

/**************************************/

((out st andi ng==NO) &&(aut h_done==YES)) ->
out! LMP_conb_key; outstandi ng=YES; state=s_ckey;

i N?LMP_uni t_key ->

i f
(state==s_ckey) -> outstandi ng=NO, st at e=NORNAL;
I (state==s_ckey) -> skip;

fi;

printf("link key not changed\n");

i N?LMP_conmb_key ->
if
.. (state==s_ckey) -> outstandi ng=NO st at e=NORNAL;
printf("link key changed\n");
I (state==s_ckey) ->
i f
out! LMP_unit _key; printf("refuse to change |ink key\n");
out! LMP_conb_key; printf("accept change of |ink key\n");

fi;
fi;
ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.3.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 59, errors: 0
128 states, stored
57 states, mmtched
185 transitions (= stored+natched)
1 atonic steps
hash conflicts: 0 (resolved)
(max size 2719 states)

2.542 menory usage (Moyte)

18

unreached in proctype device
line 32, state 10, "(1)"
line 51, state 32, "-end-"
(2 of 32 states)

unreached in proctype :init:
(0 of 4 states)

B.4 CHANGE THE CURRENT KEY

#def i ne LMP_accept ed 3
#define LMP_tenp_rand 13
#defi ne LMP_tenp_key 14

#defi ne LMP_use_sem _per nanent _key 50

#defi ne SLAVE 1

#defi ne MASTER 0

#defi ne YES 1

#define NO 0

#defi ne NORVAL O

#def i ne TEMP1 7

/* use of previous indicates |inkey==YES */
#defi ne PREVI QUS 2

#define s_sem 4

#define CHAN LEN 2 /* length of channel (nunber of nessages to be
stored) */

proctype device (chan in, out; bit device_type)

{

byt e stat e=NORMAL, |inkey=NQ

bit out st andi ng=NG,
BEGA N:

do
/**************************************/
/* 3.4 Change Current Link Key */

/**************************************/
((l'en(out)==0) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out! LMP_t enp_rand;
out! LMP_t enp_key;

i nN?LMP_tenmp_rand -> skip;

i N?LMP_t enp_key ->
i nkey=TEMP1;
printf("link key changed to tenporary key\n");

((l'en(out)==0) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out! LMP_use_sem _per nanent _key;
out st andi ng=YES;
state=s_seni ;

19

i nNn?LMP_use_seni _per nanent _key ->
out ! LMP_accept ed;
I i nkey=PREVI OUS

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/

i nN?LMP_accepted ->

if

;. (state==s_sem) -> state=NORMAL; outstandi ng=NG
I i nkey=PREVI OUS

I (state==s_sem) -> skip;
fi;

ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.4.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 57, errors: O
85 states, stored
26 states, matched
111 transitions (= stored+nmatched)
1 atonic steps
hash conflicts: 0 (resolved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 55, state 22, "(1)"
line 62, state 29, "-end-"
(2 of 29 states)

unreached in proctype :init:
(0 of 4 states)

20

B.5

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
/* se
#def i
#def i
#def i
#def i
#def i
#def i

#def i
store

ENCYPTION

ne LMP_accept ed 3
ne LMP_not _accept ed 4
ne LMP_encryption_node req 15
ne LMP_encryption_key size_req 16
ne LMP_start_encryption_req 17
ne LMP_stop_encryption_req 18

ne SLAVE 1

ne MASTER 0O

ne YES 1

ne NO 0

ne NORMAL O

curity (0=NO, 1=YES, 2=STAGEl, 3=STAGE2) YES=ENCRYPTI ON ON*/
ne STACEl 2

ne STAGE2 3

ne s_neg_en 50 /* negotiation of encryption */
ne s_neg size 51 /* negotiation of key size */
ne s_bg _en 52 /* begin encryption */

ne s_end_en 53 /* end encryption */

ne CHAN LEN 2 /* length of channel (nunber of nmessages to be
d) */

proctype device (chan in, out; bit device_type)

{
byt e stat e=NORMAL, security=NQ
bit outstandi ng=NG
BEG N
do
/**************************************/
/* 3.5 Encryption */
/**************************************/
((security==NO) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out! LMP_encrypti on_node_req;
out st andi ng=YES;
st at e=s_neg_en;
i nN?LMP_encryption_node_req ->
if
out! LMP_accepted; security=STAGE];
out! LMP_not _accept ed,;
fi;
((security==STAGEL) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER)))
->

out! LMP_encryption_key_size req;
out st andi ng=YES;
st at e=s_neg_si ze;

i nN?LMP_encryption_key size req ->

21

if
(devi ce_type==SLAVE) ->
if
out! LMP_accepted; security=STAGEZ;
out! LMP_encryption_key_ size req; outstandi ng=YES;
state=s_neg_si ze;
fi;
(devi ce_t ype==MASTER) ->
if
out! LMP_accepted; security=STAGEZ;
out! LMP_not _accepted; security=NG
fi;
out st andi ng=NQ,
st at e=NORVAL,;
fi;

((security==STAGE2) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER)))

->
out! LMP_start_encryption_req;
out st andi ng=YES;
state=s_bg_en;
i nNn?LMP_start_encryption_req ->
out! LMP_accepted; security=YES;
((security==YES) &((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out! LMP_stop_encryption_req;
out st andi ng=YES;
state=s_end_en;
i nNn?LMP_stop_encryption_req ->
out! LMP_accept ed; security=NG /* this may be STAGEl or
STAGE2 */

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/
i nNn?LMP_accepted ->
i f
(state==s_neg_en) -> state=NORMAL; outstandi ng=NG,
security=STAGEL,;
(state==s_neg_size) -> state=NORMAL; out st andi ng=NG,
securit y=STAGEZ;
(state==s_bg_en) -> state=NORVAL; outstandi ng=NQ
securi ty=YES;
(state==s_end_en) -> state=NORMAL; outstandi ng=NG,
security=NQ

I ((state==s_neg_size)||(state==s_neg_en) || (state==s_bg en) || (state==s_e
nd_en)) ->
ski p;
fi;

i Nn?LMP_not _accepted ->
i f

22

(state==s_neg_en) -> state=NORMAL; outstandi ng=NGQ
security=NQ
(state==s_neg_size) -> state=NORMAL; out st andi ng=NQ
security=NQ
I ((state==s_neg_si ze)||(state==s_neg_en)) -> skip;
fi;

ti meout ;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.5.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 50, errors: O
102 states, stored
17 states, matched
119 transitions (= stored+nmatched)
1 atonic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 94, state 67, "(1)"
line 102, state 80, "(1)"
line 108, state 87, "-end-"
(3 of 87 states)

unreached in proctype :init:
(0 of 4 states)

B.6 CLOCK OFFSET REQUEST

#defi ne LMP_cl koffset _req 5

23

#defi ne LMP_cl koffset_res 6
#defi ne SLAVE 1
#defi ne MASTER 0O
#defi ne YES 1
#def i ne NO 0

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored */

proctype device (chan in, out; bit device_type)

bit outstandi ng=NG,

BEG N

do
/**************************************/
/* 3.6 Cock Ofset Request */

/**************************************/
((out st andi ng==NO) &&(devi ce_t ype==MASTER)) ->
out! LMP_cl kof f set _req;
out st andi ng=YES;
i nN?LMP_cl koffset _req -> out!LMP_cl kof fset _res;
i nN?LMP_cl kof f set _res -> out st andi ng=NQ,
/*assert only MASTER can receive */

ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.6.2 Spin output

B.6.2.1 Model with channel length of size 1 or 2

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for:

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

24

State-vector 36 byte, depth reached 8, errors: 0O
8 states, stored
2 states, matched
10 transitions (= stored+matched)
1 atonic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 32, state 12, "-end-"
(1 of 12 states)

unreached in proctype :init:
(0 of 4 states)

B.6.2.2 Model with channel length of size 0

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 36 byte, depth reached 8, errors: 0
6 states, stored
2 states, matched
8 transitions (= stored+matched)
1 atonic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 32, state 12, "-end-"
(1 of 12 states)

unreached in proctype :init:
(0 of 4 states)

B.7 TIMING ACCURACY INFORMATION REQUEST

#defi ne LMP_not _accept ed 4
#define LMP_tim ng_accuracy_req 47
#define LMP_tim ng_accuracy_res 48

#defi ne SLAVE 1
#defi ne MASTER 0O
#defi ne YES 1
#def i ne NO 0

25

#defi ne NORVAL O
#define s tine 7

#define CHAN LEN 1 /* length of channel (nunber of
stored */

proctype device (chan in, out; bit device_type)

byt e st at e=NORMAL;
bit outstandi ng=NG,

BEG N:
do

/***/

/* 3.7 Timng Accuracy Information Request */
/***/
(out st andi ng==NOQ) - >
out! LMP_tim ng_accuracy_req;
out st andi ng=YES;
state=s_tine;
i n?LMP_ti mi ng_accuracy_req ->
if
out! LMP_tim ng_accuracy_res;
out! LMP_not _accept ed,;
fi;

nmessages to be

i N?LMP_ti m ng_accuracy_res -> state=NORMAL; out st andi ng=NG,

i nNn?LMP_not _accepted ->

i f
(state==s_tine) -> state=NORMAL; out st andi ng=NG,
fi;
ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.7.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for:

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

26

State-vector 40 byte, depth reached 33, errors: O
92 states, stored
45 states, natched
137 transitions (= stored+natched)
1 atonic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 44, state 23, "-end-"
(1 of 23 states)

unreached in proctype :init:
(0 of 4 states)

B.8 LMP VERSION

#defi ne LMP_version_req 37
#define LMP_version_res 38

#define SLAVE 1
#defi ne MASTER 0O
#defi ne YES 1
#defi ne NO 0

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored */

proctype device (chan in, out; bit device_type)

{

bit outstandi ng=NG
BEG N:

do
/**************************************/
/* 3.8 LMP Version */

/**************************************/

(out st andi ng==NOQ) - >

out! LMP_version_req;

out st andi ng=YES;
i N?LMP_version_req -> out!LMP_version_res;
i N?LMP_version_res -> outstandi ng=NG

ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN _LEN] of {byte};

27

atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);

}

B.8.2 Spin output

(Spin Version 3.2.3 --
Partial Order

Ful |

+

never-claim

cycl e checks
invalid endstates +

1 August 1998)

Reducti on

st at espace search for:

- (not sel ected)
assertion violations - (disabled by -A flag)
- (disabl ed by -DSAFETY)

State-vector 36 byte, depth reached 23,
38 states, stored
24 states, matched

2.542

62 transitions (= stored+natched)

1 atonic steps
hash conflicts:
(max size 2719 states)

0 (resol ved)

menory usage (Moyte)

unreached in proctype device

line 31,
(1 of 12 states)

state 12, "-end-"

unreached in proctype :init:

B.9

#def i
#def i

#def i
#def i
#def i
#def i

#def i

(0 of 4 states)

SUPPORTED FEATURES

ne
ne

ne
ne
ne
ne

ne

LMP_features_req 39
LMP_features res 40

SLAVE 1
MASTER 0
YES 1
NO 0

CHAN LEN 1

stored */

/* length of channel

errors: O

(nunber of nessages to be

proctype device (chan in, out; bit device_type)

bit out st andi ng=NGQ

BEG N:

do

28

/**************************************/

/* 3.9 Supported Features */
/**************************************/
(out st andi ng==NOQ) - >
out! LMP_features_req;
out st andi ng=YES;
i n?LMP_features_req -> out!LMP_features_res;
i nN?LMP_f eatures_res -> outstandi ng=NG

ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.9.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 36 byte, depth reached 23, errors: 0O
38 states, stored
24 states, matched
62 transitions (= stored+nmatched)
1 atonmic steps
hash conflicts: 1 (resolved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 31, state 12, "-end-"
(1 of 12 states)

unreached in proctype :init:
(0 of 4 states)

B.10 SWITCH OF MASTER SLAVE ROLE

#def i ne LMP_accept ed 3
#def i ne LMP_not _accept ed 4
#define LMP_switch_req 19

29

#defi ne SLAVE 1
#defi ne MASTER O
#defi ne YES 1
#def i ne NO 0
#defi ne NORMVAL O
#define s_switch 10

#define CHAN LEN 1 /* length of channel (nunber of
stored */

proctype device (chan in, out; bit device_type)
{

byt e st at e=NORMAL;

bit outstandi ng=NG,

BEG N:
do

/**************************************/

/* 3.10 Switch of Master/Sl ave Role */
/**************************************/
(out st andi ng==NOQ) - >
out! LMP_switch_req;
state=s_swi tch;
out st andi ng=YES;
i n?LMP_switch_req ->

i f
out ! LMP_accept ed;
i f
(devi ce_type==SLAVE) -> devi ce_t ype=MASTER,
(devi ce_t ype==MASTER) -> devi ce_t ype=SLAVE;
fi;
out! LMP_not _accept ed,;
fi;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/
i nNn?LMP_accepted ->
if
:: (state==s_switch) ->
if
(devi ce_type==SLAVE) -> devi ce_t ype=MASTER,
(devi ce_type==MASTER) -> devi ce_t ype=SLAVE;
fi;
st at e=NORVAL;
out st andi ng=NQ,
fi;

i N?LMP_not _accepted ->
if

nmessages to be

(state==s_switch) -> state=NORVAL; outstandi ng=NQ

fi;

ti meout ;

30

od;

init

chan AB
chan BA

atom c {
run device (AB, BA, MASTER);

B.10.2 Spin output

(Spin Version 3.2.3 --
Partial O der

Ful |

State-vector 40 byte,
279 states,
96 st at es,

2.542

+

never-claim

cycl e checks
invalid endstates +

depth reached 85
stored
mat ched

[CHAN_LEN] of {byte};
[CHAN_LEN] of {byte};

run device (BA, AB, SLAVE);
}

1 August 1998)

Reducti on

st at espace search for:

- (not sel ected)
assertion violations - (disabled by -A flag)
- (disabl ed by -DSAFETY)

375 transitions (= stored+mat ched)

1 atonic steps
hash conflicts:
(max size 2719 states)

0 (resol ved)

menory usage (Moyte)

unreached in proctype device

line 62,
(1 of 38 states)

state 38, "-end-"

unreached in proctype :init:

B.11 NAME REQUEST

#def i
#def i

#def i
#def i
#def i
#def i

#def i

(0 of 4 states)

ne
ne

ne
ne
ne
ne

ne

LMP_nanme_req
LMP_nane_res

SLAVE 1
MASTER 0
YES 1
NO 0

CHAN LEN 1

stored */

/* length of channel

31

errors: O

(nunber of nessages to be

proctype device (chan in, out; bit device_type)

{
bit out st andi ng=NGQ

BEG N:

do
/**************************************/
/* 3.11 Nanme request */

/**************************************/

(out st andi ng==NOQ) - >

out! LMP_nane_r eq;

out st andi ng=YES;
i nNn?LMP_name_req -> out!LMP_nanme_res;
i N?LMP_name_res -> out st andi ng=NQ

ti meout ;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.11.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 36 byte, depth reached 23, errors: 0O
38 states, stored
24 states, matched
62 transitions (= stored+natched)
1 atonic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 31, state 12, "-end-"
(1 of 12 states)

unreached in proctype :init:
(0 of 4 states)

32

B.12 DETACH
#defi ne LMP_det ach 7

#defi ne SLAVE 1
#defi ne MASTER O
#defi ne YES 1
#def i ne NO 0

#define CHAN LEN 1 /* length of channel (nunber of nessages to be

stored */

proctype device (chan in, out; bit device_type)

{
bit out st andi ng=NG,

BEG N:

do
/**************************************/
/* 3.12 Detach */

/**************************************/

(out st andi ng==NO) -> out! LMP_detach -> out standi ng=YES;
i Nn?LMP_det ach -> break;

ti meout ;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.12.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for:

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 36 byte, depth reached 13, errors: O
26 states, stored

33

2.542

7 states,

mat ched

33 transitions (= stored+natched)

1 atonmic steps
hash conflicts:
(max size 2719 states)

0 (resol ved)

menory usage (Moyte)

unreached in proctype device

(0 of 10 states)

unreached in proctype :init:

(0 of 4 states)

B.13 HOLD MODE

B.13.1.1

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
store

ne
ne
ne
ne

ne
ne
ne
ne

ne
d)

Model with channel length of size O

LMP_accept ed
LMP_not _accept ed

LMP_hol d1
LMP_hol d_req

SLAVE 1
MASTER 0O
YES 1
NO 0

CHAN LEN 0
*)

bit out st andi ng=NGQ
bit outstandl=NO, outstand2=NO
bit holdedl = NO holded2 = NQ
bit reg_sendl = NQ

20
21

/* length of channel

reg_send2 = NO
bit hold accepted = NO

3
4

(nunber of nessages to be

proctype device (chan in, out; bit device_type, hol ded, outstand,

req_send)
{
end:

do

atom c {
hol ded ==
if

YES - >

out st andi ng = YES;

i f

NO && outstand == NO && outstanding == NO ->

devi ce_type == MASTER && hol d_accepted ==

out! LMP_hol d1;

hol ded = YES

devi ce_type == SLAVE ->
out! LMP_hol d1;

hol ded = YES;

34

outstand = YES
else -> skip

fi
out! LMP_hol d
req_send
out st and

fi;
out st andi ng

}
atom c {
i n?LMP_hol d1 ->
out st andi ng
i f

devi ce_type

req,
YES;
YES

8

YES;

MASTER - >

hol d_accepted = YES;
out! LMP_hol d1
devi ce_type == SLAVE ->

out st and
fi;

NO

out standi ng = NO

}
atom c {
i nNn?LMP_hol d_req ->

out st andi ng = YES;

if
req_send ==
req_send
out st and
.. req_send ==
fi;
if

YES ->

NO,
NO

NO -> skip

out! LMP_hol d_r eq;

req_send
out st and

YES;
YES

out! LMP_accept ed
out! LMP_not _accept ed

fi;

out standi ng = NO

}

i nNn?LMP_accepted ->
hol ded = YES;
req_send NO,
out st and NO

i nNn?LMP_not _accepted ->
req_send = NO

outstand = NO
od
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (BA, AB, MASTER, hol dedl, outstandl, req_sendl);
run device (AB, BA, SLAVE, hol ded2, outstand2, req_send2)
}
}

35

B.13.1.2 Spin output with channel length of size 0

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Oder Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 67, errors: O
99 states, stored
43 states, natched
142 transitions (= stored+natched)
227 atonic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 81, state 60, "-end-"
(1 of 60 states)

unreached in proctype :init:
(0 of 4 states)

B.13.2.1 Model with channel length of size 1

#defi ne LMP_accept ed 3
#def i ne LMP_not _accept ed 4
#define LMP_hol d1 20
#defi ne LMP_hol d_req0 21
#defi ne LMP_hol d_reql 121

#define SLAVE 1

#define MASTER O

#defi ne YES 1

#define NO 0

#defi ne NORVAL O

#define s _tine 7

#define s _switch 10

#defi ne s_hol dO 13 /* used for hold */

#define s _hold rO 131 /* used for hold request master init*/
#define s _hold r1 113 /* used for hold request slave init*/
#def i ne s_qgos 18

#define s _sco_add 19

#define s_sco_rem 191

#defi ne s_sl ot 20

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored */

36

proctype device (chan in, out; bit device_type)
{

byt e st at e=NORMAL;

bit outstandi ng=NO, previ ous_h=NQ

BEG N:
do

/**************************************/

/* 3.13 Hol d Mode */
/**************************************/

/* can not send if sonething is in the transmt queue */

/* can not send if unit has not received a previous hold request */
/* can not send if waiting for a response */

((l'en(out)==0) &&((pr evi ous_h==YES) &&((out st andi ng==NO) &&(devi ce_t ype==M
ASTER)))) ->

out! LMP_hol d1;

got o HOLD_STATE;

((l'en(out)==0) &&((out st andi ng==NO) &&(devi ce_t ype==SLAVE))) ->
out! LMP_hol d1;
out st andi ng=YES;
stat e=s_hol dO;

i Nn?LMP_hol d1 ->
i f
(devi ce_type==SLAVE) -> goto HOLD STATE;
.. (device_type==MASTER) -> out!LMP_hol d1; previous h=YES; goto
HOLD_STATE;
fi;

((out st andi ng==NO) &&(devi ce_t ype==MASTER)) ->
out! LMP_hol d_reqO;
out st andi ng=YES;
state=s_hol d_r0;

((out st andi ng==NO) &&(devi ce_type==SLAVE)) ->
out! LMP_hol d_reqil;
out st andi ng=YES;
state=s_hol d _r1;

i n?LMP_hold _req0 ->

if
(devi ce_type==SLAVE) ->
if

((out st andi ng==YES) &&((st at e==s_hol d0) | | (state==s_hol d_r1))) ->
out! LMP_not _accept ed,;
((out st andi ng==YES) &&(state==s_hold r0)) ->
i f
out! LMP_hol d_r eqO;
out! LMP_accepted; goto HOLD STATE;
: out!LMP_not _accepted; outstandi ng=NG, st at e=NORVAL;
fi;

37

/* next |ine need for conbining with nodels other functions.
Unr eachabl e ot herwi se. */

((out standi ng==YES) &&! (((state==s_hold r0)|| (state==s_hol d0)) || (state==
s_hold r1))) ->
out! LMP_not _accept ed,;
(out st andi ng==NO) - >
if
out! LMP_hol d_req0O; outstandi ng=YES; state=s_hold ro0;
out! LMP_accepted; goto HOLD STATE;
out! LMP_not _accept ed,;
fi;
fi;
(devi ce_type==MASTER) ->
if
/* The next condition cannot be met because new procedures were defined
to not */
/* permit multiple requests (i.e. nultiple requests would be deni ed.
*
/
((out st andi ng==YES) &&(state==s_hold r1)) ->
out! LMP_not _accept ed,;
((out st andi ng==YES) &&(state==s_hol d_r0)) ->
i f
out! LMP_hol d_r eqO;
out! LMP_accepted; goto HOLD STATE;
out! LMP_not _accept ed; outstandi ng=NO, st at e=NORNMAL;
fi;
/* condition cannot occur because MASTER cannot be an any state other
t han these two. */
/* However, when added to nodels of other functions, this condition can
be net. */

((out st andi ng==YES) &&! ((state==s_hold_r0)||(state==s_hold_r1))) ->
out! LMP_not _accept ed,;
fi;
fi;

i nNn?LMP_hol d_reql ->
if
(devi ce_type==SLAVE) ->
if
((out st andi ng==YES) &&(state==s_hold_r1)) ->
if
out! LMP_hol d_reqil;
out! LMP_accepted; goto HOLD STATE;
out! LMP_not _accept ed; outstandi ng=NO, st at e=NORNMAL;
fi;
/* condition cannot occur because SLAVE cannot be an any state other
than these two. */
/* However, when added to nodels of other functions, this condition can
be net. */

((out st andi ng==YES) &&(! (((st at e==s_hol d_r0)| | (st ate==s_hol d0))| | (st at e=
=s_hold r1)))) ->
out! LMP_not _accept ed,;
fi;
(devi ce_t ype==MASTER) ->

38

((out st andi ng==YES) &&(state==s_hol d_r0)) ->
out! LMP_not _accept ed,;
((out st andi ng==YES) &&(state==s_hold r1)) ->

i f

out! LMP_hol d_reqil;

out! LMP_accepted; goto HOLD STATE;

out! LMP_not _accept ed; outstandi ng=NO, st at e=NORNMAL;
fi;

/* condition cannot occur because MASTER cannot be an any state other
than these two. */

/* However, when added to nodels of other functions, this condition can
be net. */

((out st andi ng==YES) &&! ((state==s_hold r0)||(state==s_hold r1))) ->
out! LMP_not _accept ed,;

(out st andi ng==NO) - >

if
out! LMP_hol d_reql; outstandi ng=YES; state=s_hold ri;
out! LMP_accepted; goto HOLD STATE;
out! LMP_not _accept ed,;

fi;

fi;
fi;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/
i nNn?LMP_accepted ->
i f
(state==s_hol d_r0) -> goto HO.LD STATE;
(state==s_hold_r1l) -> goto HO.LD STATE;
fi;

i nNn?LMP_not _accepted ->

i f

(state==s_hol d_r0) -> state=NORMAL; outstandi ng=NG,
;. (state==s_hold r1l) -> state=NORMAL; outstandi ng=NG,
fi;

ti meout ;
od;

HOLD_STATE:
printf("Entered HOLD state\n");
/* enpty in & out queues */
do
;. in?LMP_hol d1;

i nN?LMP_hol d_reqO;

i nN?LMP_hol d_req1;

i N?LMP_accept ed;

i nN?LMP_not _accept ed;

:: timeout -> break;

od;

/* before | eaving HOLD STATE set everything to "go" */

39

st at e=NORVAL,;
out st andi ng=NQ,
progr essA: goto BEGQ N;

}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.13.2.2 Spin output with channel length of size 1

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 72, errors: O
452 states, stored
106 states, matched
558 transitions (= stored+mat ched)
1 atonic steps
hash conflicts: 0 (resolved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 78, state 39, "out!4"
line 91, state 53, "out!4"
line 101, state 64, "out!4"
line 118, state 81, "out!4"
line 133, state 97, "out!4"
line 178, state 146, "-end-"
(6 of 146 states)

unreached in proctype :init:
(0 of 4 states)

B.14 SNIFF MODE

B.14.1.1 Model with channel length of size O

#defi ne LMP_accept ed 3
#def i ne LMP_not _accept ed 4
#define LMP_sniffl 22

40

#define LMP_sniff _req 23
#defi ne LMP_unsniff_req 24

#define SLAVE 1
#defi ne MASTER 0O
#defi ne YES 1
#defi ne NO 0

#define CHAN LEN O /* length of channel (nunber of nessages to be
stored) */

bit outstandl= NO, outstand2= NG
bit sniffedl = NO, sniffed2 = NG
bit reg_sendl = NO, req_send2 = NG

/* Assunption: only the SLAVE can enter the sniff node */

proctype device (chan in, out; bit device_type, outstand, sniffed,
req_send)

end:
do
((sniffed == NO && (outstand == NO)) ->
if
e if
devi ce_type == MASTER ->
out! LMP_sni ff1;
sniffed = YES
.. device_type == SLAVE -> skip
fi
out! LMP_sniff _req;
req_send
out st and

YES,
YES

fi
atom c {

((sniffed == YES) && (outstand == NO)) ->
out! LMP_unsni ff _req;
out stand = YES

}

in?LMP_sniffl -> sniffed = YES
i nN?LMP_unsni ff_req ->
out ! LMP_accept ed;
sniffed = NO
i n?LMP_sniff_req ->
if
req_send == YES ->
req_send NG,
out st and NO
;. req_send == NO -> skip
fi;
if

out! LMP_sniff_req;
req_send = YES;
outstand = YES

out ! LMP_accept ed;
sniffed = YES

out! LMP_not _accept ed

41

fi
i nN?LMP_accepted ->
outstand = NGO
if
sniffed == NO ->
reg_send = NO
sniffed = YES
;. sniffed == YES -> sniffed = NO
fi
i nNn?LMP_not _accepted ->

req_send = NO
out stand = NO
od
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (BA, AB, MASTER, outstandl, sniffedl, req_sendl);
run device (AB, BA, SLAVE, outstand2, sniffed2, req_send2)
}
}

B.14.1.2 Spin output with channel length of size 0

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 26, errors: O
67 states, stored
41 states, matched
108 transitions (= stored+nmatched)
3 atom c steps
hash conflicts: 0 (resolved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 72, state 54, "-end-"
(1 of 54 states)

unreached in proctype :init:
(0 of 4 states)

B.14.2.1 Model with channel length of size 1
#defi ne LMP_accept ed 3

42

#defi ne LMP_not _accept ed 4

#define LMP_sniffl 22
#define LMP_sniff_req0 23
#define LMP_sniff _reql 123
#define LMP_unsniff _req 24

#define SLAVE 1

#defi ne MASTER 0O

#defi ne YES 1

#define NO 0

#define NORVAL O

#define s_sniff_r0 141 /* used for sniff request master init */
#define s _sniff _r1 114 /* used for sniff request slave init */
#define s _unsniff 140

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored) */

proctype device (chan in, out; bit device_type)
{

byt e st at e=NORMAL;

bit outstandi ng=NG,

BEG N:
do

/**************************************/

/* 3.14 Sniff Mode */
/**************************************/
((l'en(out)==0) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out! LMP_sni ff1;
got o SNI FF_STATE;

/* onI y possible for SLAVE */
i Nn?LMP_sni ff1 -> goto SN FF_STATE;

((out st andi ng==NO) &&(devi ce_t ype==MASTER)) ->
out! LMP_sniff _reqoO;
out st andi ng=YES;
state=s_sniff _ro;

((out st andi ng==NO) &&(devi ce_t ype==SLAVE)) ->
out! LMP_sniff _reql;
out st andi ng=YES;
state=s _sniff _r1,;

i n?LMP_sni ff_req0 ->
if
(devi ce_type==SLAVE) ->
if
((out st andi ng==YES) &&(state==s_sni ff_r1)) ->
out! LMP_not _accept ed,;
((out st andi ng==YES) &&(state==s_sni ff_r0)) ->
if
out! LMP_sni ff_reqoO;

43

out! LMP_accept ed; outstandi ng=NOQ, state=NORMAL; goto
SNI FF_STATE;
:: out!LMP_not _accepted; outstandi ng=NO, st at e=NORMAL;
fi;
/* next |ine needed for conbining with nodels of other functions.
Unr eachabl e ot herw se. */

((out st andi ng==YES) &&! ((state==s_sniff _r0)||(state==s_sniff_r1))) ->
out! LMP_not _accept ed,;
(out st andi ng==NOQ) - >
if
out! LMP_sniff_req0; outstandi ng=YES; state=s_sniff_rO0;
out! LMP_accepted; goto SN FF_STATE;
out! LMP_not _accept ed,;
fi;
fi;
(devi ce_t ype==MASTER) ->
i f
out! LMP_sniff _reqoO;
out! LMP_accept ed; outstandi ng=NOQ, stat e=NORMAL; goto
SNI FF_STATE;
out! LMP_not _accept ed; outstandi ng=NO, st at e=NORNAL;
fi;
fi;
i n?LMP_sni ff_reql ->
if
(devi ce_type==SLAVE) ->

i f
((out st andi ng==YES) &&(state==s_sni ff _r1)) ->
if
out! LMP_sni ff_reql;
out! LMP_accept ed; outstandi ng=NO, state=NORMAL; goto
SNI FF_STATE;
out! LMP_not _accept ed; outstandi ng=NO, st at e=NORNMAL;
fi;

fi;
(devi ce_t ype==MASTER) ->
if
((out st andi ng==YES) &&(state==s_sni ff_r0)) ->
out! LMP_not _accept ed,;
((out st andi ng==YES) &&(state==s_sni ff_r1)) ->
i f
out! LMP_sniff _reql;
out! LMP_accept ed; outstandi ng=NO, state=NORMAL; goto
SNI FF_STATE;
out! LMP_not _accepted; outstandi ng=NO, st at e=NORNMAL;
fi;
/* condition cannot occur because MASTER cannot be an any state other
than these two. */
/* However, when added to nodels of other functions, this condition can
be met. */

((out st andi ng==YES) &&! ((state==s_sniff r0)||(state==s_sniff _r1))) ->
out! LMP_not _accept ed,;
(out st andi ng==NO) ->
i f

44

out! LMP_sniff _reql; outstandi ng=YES; state=s _sniff _r1;
out! LMP_accept ed; goto SN FF_STATE;
:: out!LMP_not _accepted;
fi;
fi;
fi;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/

i nN?LMP_accepted ->

if

;. (state==s_sniff_r0) -> outstandi ng=NG, state=NORVAL; goto
SNI FF_STATE;

(state==s_sniff _rl) -> outstandi ng=NG, state=NORVAL; goto

SNI FF_STATE;

fi;

i nNn?LMP_not _accepted ->

i f
(state==s_sniff_r0) -> state=NORMAL; out standi ng=NQ,
(state==s_sniff_r1) -> state=NORMAL; out standi ng=NQ,
fi;
ti meout;
od;
SNI FF_STATE:

printf("Entered SNIFF state\n");
/* enpty in & out queues */
do
i N?LMP_sni ff1;
i N?LMP_sni ff_reqO;
i nN?LMP_sni ff_reql;
i N?LMP_accept ed;
i f
(state==s_unsniff) -> state=NORMAL; outstandi ng=NG, goto
BEG N,
/* condition not possible using this nodel alone, but possible when
conbi ned with nodels */
/* of other functions. */
(state!=s_unsniff) -> skip;
fi;
i nN?LMP_not _accept ed;
((out st andi ng==NO) &&(| en(i n) ==0)) &&(| en(out) ==0) ->
out! LMP_unsni ff _req;
out st andi ng=YES;
state=s_unsni ff;
i nN?LMP_unsni ff_req ->
if
(state==s_unsniff) -> out!LMP_accept ed;
(state!=s _unsniff) -> out!LMP_accepted; goto BEG N,
fi;
ti meout ;
od;

45

init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.14.2.2 Spin output with channel length of size 1

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Oder Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 88, errors: 0O
272 states, stored
105 states, matched
377 transitions (= stored+nat ched)
1 atonmic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 63, state 30, "out!4"
line 103, state 85, "out!4"
line 145, state 133, "(1)"
line 159, state 153, "-end-"
(4 of 153 states)

unreached in proctype :init:
(0 of 4 states)

B.15 PARK MODE

B.15.1.1 Model with channel length of size O

B.15.1.2 Spin output with channel length of size 0

46

B.15.2.1 Model with channel length of size 1

#defi ne LMP_accept ed 3
#def i ne LMP_not _accept ed 4
#define LMP_park_req 25
#defi ne LMP_parkl 26
#defi ne LMP_set broadcast _scan_wi ndow 27
#defi ne LMP_nodi fy beacon 28
#defi ne LMP_unpar k_BD ADDR req 29
#defi ne LMP_unpar k_PM ADDR req 30

#define SLAVE 1
#define MASTER O
#defi ne YES 1
#defi ne NO 0
#define NORVAL O
#define s_park 15
#define s_unpark 151

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored */

proctype device (chan in, out; bit device_type)
{

byt e st at e=NORMAL;

bit outstandi ng=NO, par ked=NG,

BEG N:
do

/**************************************/

/* 3.15 Park Mode */
/**************************************/
((par ked==NO) &&(out st andi ng==NO) &&(devi ce_t ype==MASTER)) ->
out! LMP_parkl1;
par ked=YES;

i nN?LMP_parkl ->
if
.. (state==s_park) -> outstandi ng=NO state=NORMAL; goto
PARK_STATE;
(state!=s_park) -> goto PARK STATE;
fi;

((par ked==NO) &&(out st andi ng==NO) &&(devi ce_t ype==MASTER)) ->
out! LMP_park_req;
out st andi ng=YES;
st at e=s_park;

((par ked==NO) &&(out st andi ng==NO) &&(devi ce_t ype==SLAVE)) ->
out! LMP_park_req;
out st andi ng=YES;
st at e=s_park;

i nN?LMP_park_req ->
if

47

(devi ce_type==SLAVE) ->
if
out ! LMP_accept ed;
out! LMP_not _accept ed,;
fi;
(devi ce_type==MASTER) ->
if
i (parked==YES) -> skip;
(parked==NOQ) ->
if
out! LMP_parkl; parked=YES;
out! LMP_not _accept ed,;
fi;
fi;
fi;

4:51;’ ked==YES) &&((| en(out) ==0) &&(out st andi ng==NO) &&(devi ce_t ype==MASTER
->

~ —~
~ —~
o]

out! LMP_set broadcast _scan_wi ndow;

4:51;’ ked==YES) &&((| en(out) ==0) &&(out st andi ng==NO) &&(devi ce_t ype==MASTER
->

~ —~
~ —~
o]

out! LMP_nodi fy_beacon;

((par ked==YES) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out ! LMP_unpar k_BD_ADDR r eq;
out st andi ng=YES;
st at e=s_unpark;

((par ked==YES) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out ! LMP_unpar k_PM ADDR r eq;
out st andi ng=YES;
st at e=s_unpark;

/***************************************/

RS SRS e
/ i n?LMP_accepted -> /
. _(st ate==s_park) ->
; _(devi ce_type==MASTER) ->
; (par ked==YES) -> skip;
: (parked==NO) -> par ked=YES; out!LM_park1l;
: I:ﬂévi ce_type==SLAVE) -> skip;
f' Ilst at e==s_unpar k) -> parked=NO outstandi ng=NO, st at e=NORNAL;
[
! n?LMP_not _accepted ->
; (state==s_park) -> state=NORMAL; out st andi ng=NG,

48

fi;
od;

PARK_STATE:

/* while in park state only broadcast nessages are accepted */

do
;. i n?LMP_set broadcast _scan_w ndow,
i nN?LMP_nodi fy_beacon;

i nN?LMP_unpark_BD ADDR req ->

out! LMP_accept ed; outstandi ng=NO, st at e=NORMAL;

i N?LMP_unpark_PM ADDR req ->

out! LMP_accept ed; out st andi ng=NO, st at e=NORMAL;

/* receive leftover PDUs from queue and do not hing */
. in?LMP_accept ed;
i nN?LMP_not _accept ed;

i nN?LMP_par k1;
i N?LMP_park_req;
©o timeout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.15.2.2 Spin output with channel length off size 1

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Oder Reduction

Ful | statespace search for:

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 40, errors: O
277 states, stored
88 states, matched
365 transitions (= stored+nat ched)
1 atonic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)
unreached in proctype device
line 99, state 63, "(1)"

line 127, state 101, "-end-"
(2 of 101 states)

49

goto BEG N;

goto BEGQ N;

unreached in proctype :init:
(0 of 4 states)

B.16 POWER CONTROL

#defi ne LMP_i ncr_power _req 31
#defi ne LMP_decr _power _req 32
#def i ne LMP_max_power 33
#defi ne LMP_mi n_power 34

#defi ne SLAVE 1
#defi ne MASTER O
#defi ne YES 1
#def i ne NO 0
#def i ne MAX 1
#defi ne NORMAL O
#define M N -1

#define CHAN LEN 1

proctype device (chan in, out; bit device_type)

byt e power =NORVAL;
bit outstandi ng=NG,

BEGQ N:

do
/**************************************/
/* 3.16 Power Control */

/**************************************/
((l'en(out)==0) &&((out st andi ng==NO) &&(power ! =MAX))) ->
out! LMP_i ncr _power _req;
power =NORVAL;
i N?LMP_i ncr _power _req ->
if
skip /* increnent power, not at maxi num */
;. out!LMP_nax_power; /* increnent power causes maxi num power */
fi;
((l'en(out)==0) &&((out st andi ng==NO) &&(power! =M N))) ->
out! LMP_decr _power _req;
power =NORVAL,;
i nN?LMP_decr _power _req ->
if
ski p; /* decrenent power, not at mininum*/
out! LMP_mi n_power; [/* decrenent power causes ninimum power */
fi;
i N?LMP_max_power -> power =NVAX;
i N?LMP_m n_power -> power =M N,

ti meout ;

od;

50

init

chan AB
chan BA

atom c {
run device (AB, BA, MASTER);

}

B.16.2 Spin output

(Spin Version 3.2.3 --

Ful |

+

Partial Order

never-cl ai m

cycl e checks
invalid endstates +

St ate-vector 40 byte,

2660 st at es,
3085 st at es,

depth reached 774,
stored
mat ched

[CHAN_LEN] of {byte};
[CHAN_LEN] of {byte};

run device (BA, AB, SLAVE);

1 August 1998)

Reducti on

st at espace search for:

- (not sel ected)
assertion violations - (disabled by -A flag)
- (disabl ed by -DSAFETY)

5745 transitions (= stored+matched)

2.542

1 atonic steps
hash conflicts:
(max size 2719 states)

67 (resolved)

menory usage (Moyte)

unreached in proctype device

line 50,
(1 of 25 states)

state 25, "-end-"

unreached in proctype :init:
(0 of 4 states)

errors: O

B.17 CHANNEL QUALITY DRIVEN CHANGE BETWEEN DM AND DH

#define LMP_auto_rate 35
#define LMP_preferred rate 36
#define SLAVE 1

#define MASTER O

#defi ne YES 1

#define NO 0

#define DH 1

#defi ne DM 0

#define CHAN LEN 1 /* length of channe
stored */

(nunber of nessages to be

proctype device (chan in, out; bit device_type, tx_channel)

{

51

bit p_type=DM outstandi ng=NO, rx_channel =NG,

BEG N:
do

/**************************************/

/* 3.17 Channel Quality Driven change */
/**************************************/
((tx_channel ==YES) &&((| en(out) ==0) &&(out st andi ng==NO))) ->
out! LMP_auto_rate;
i nNn?LMP_auto_rate -> rx_channel =YES;
((rx_channel ==YES) &&((| en(out) ==0) &&(out st andi ng==NQ))) ->
out! LMP_preferred_rate;
i nNn?LMP_preferred rate ->

i f
(p_type==DM) -> p_type=DH;
];; (p_type==DH) -> p_type=DM
[
ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN _LEN] of {byte};
atom c {
run device (AB, BA, MASTER, YES)
run device (BA, AB, SLAVE, YES)
}
}

B.17.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 148, errors: O
405 states, stored
375 states, matched
780 transitions (= stored+mat ched)
1 atonic steps
hash conflicts: 5 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 38, state 18, "-end-"

52

(1 of 18 states)
unreached in proctype :init:
(0 of 4 states)

B.18 QUALITY OF SERVICE (Qo0S)

#def i ne LMP_accept ed 3
#def i ne LMP_not _accept ed 4
#define LMP_quality of service 41

#define LMP_quality of service req 42

#defi ne SLAVE 1
#defi ne MASTER O
#defi ne YES 1

#define NO 0
#defi ne NORMAL 0O
#def i ne s_qgos 18

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored */

proctype device (chan in, out; bit device_type)
{

byt e st at e=NORMAL;

bit out st andi ng=NG,

BEG N:
do

/**************************************/

/* 3.18 Quality of Service (QOS) */
/**************************************/
((l'en(out)==0) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out! LMP_quality_of service;
i nN?LMP_qual ity_of _service -> skip;
/* assert device_type==maseter and receive LMP_quality_of_service */
(out st andi ng==NO) - >
out! LMP_quality_of service_req;
st at e=s_qos;
out st andi ng=YES;
i n?LMP_qual ity _of service req ->
if
out ! LMP_accept ed;
out! LMP_not _accept ed,;
fi;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */

/***************************************/
i nN?LMP_accepted ->
i f
(state==s_qos) -> state=NORMAL; out st andi ng=NQ,
fi;

53

i nNn?LMP_not _accepted ->
i f

(state==s_qgos) -> stat e=NORMAL;
fi;

ti meout;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN _LEN] of {byte};
atom c {
run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);
}
}

B.18.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

out st andi ng=NQ,

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 65,
133 states, stored
86 states, matched
219 transitions (= stored+mat ched)
1 atonic steps
hash conflicts: 0 (resolved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 57, state 30, "-end-"
(1 of 30 states)

unreached in proctype :init:
(0 of 4 states)

B.19 SCO LINKS

#defi ne LMP_accept ed_m

#defi ne LMP_not _accepted_m

#define LMP_SCO |ink req_m 43
#define LMP_renove_SCO |ink _req 44
#defi ne LMP_accepted_s

fake 0/1 bit*/

54

errors:

103

/* new messages to

#defi ne LMP_not accepted_s 104 /* that distinguishes
initiated*/

#define LMP_SCO |ink_req_s 143 /* transaction (see 2,
PART C) */

#defi ne SLAVE 1 /* dual purpose: distinguish transaction id */
#define MASTER O /* device function */
#defi ne YES 1
#define NO 0
#defi ne MAX 1
#defi ne NORVAL O
#define MN -
#define DH 1
#defi ne DM 0
#defi ne numsco |inks 3 /* for use in sco links */
#define s_sco_add 19

#define s_sco_addO 190

#define s_sco rem 191

#defi ne CHAN LEN 1

proctype device (chan in, out; bit device_type)

byt e stat e=NORVAL, SCO=0;
bit state2=NORMAL, outstandi ng=NO, out st andi ng2=NG,

BEG N:

do
/**************************************/
/* 3.19 SCO Links (add & renpve) */

/**************************************/
((out st andi ng==NO) &&(SCO<num sco_| i nks)) ->
if
(devi ce_type==SLAVE) ->
out! LMP_SCO | i nk_req_s;
(devi ce_t ype==MASTER) ->
out! LMP_SCO |ink _req_m
fi;
state=s_sco_add,;
out st andi ng=YES;
i nN?LMP_SCO link_req_m->
i f
out! LMP_accepted _nm SCO=SCO+1;
out! LMP_not _accepted_m
fi;
i n?LMP_SCO link_req_s ->
if
.. (device_type==SLAVE) ->
if
out! LMP_accepted_s; SCO=SCO+1;
out! LMP_not _accepted_s;
fi;
st at e=NORNAL,;
out st andi ng=NQ,
(devi ce_t ype==MASTER) ->

55

out! LMP_SCO | i nk_req_s;
if
(out st andi ng==YES) -> out st andi ng2=YES;
(out st andi ng==NO) -> out st andi ng=YES;
fi;
st at e2=MAX;
:: out!LMP_not _accepted_s;
fi;
fi;

((out st andi ng==NO) &&(SCC>0)) ->
out! LMP_rempbve_SCO | i nk_req;
state=s_sco_rem
out st andi ng=YES;
i nNn?LMP_renmove_SCO | ink _req -> out! LMP_accepted_m SCO=SCO 1;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/
i nNn?LMP_accepted _m ->
i f
(state==s_sco_add) -> SCO=SCO+1;
(state==s_sco_renm -> SCO=SCO 1;
fi;
st at e=NORNAL,;
if
(out st andi ng2==YES) -> out standi ng2=NO, /*| eave out st andi ng
unchanged*/
: (outstandi ng2==NO) -> out st andi ng=NG,
fi;

i N?LMP_not _accepted_m ->
i f
(state==s_sco_add) -> stat e=NORMAL;
fi;
i f
(out st andi ng2==YES) -> out standi ng2=NQ, /*| eave out st andi ng
unchanged*/
(out st andi ng2==N0O) -> out st andi ng=NQ,
fi;
i nNn?LMP_accepted_s ->
if
i (state2==MAX) -> state2=NORMAL; SCO=SCO+1; out standi ng=NQ
fi;
i N?LMP_not _accepted_s ->
if
i (state2==MAX) -> state2=NORMAL; out st andi ng=NG,
fi;

ti nmeout ;

od;

56

init

{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {

run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);

}

B.19.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 3605, errors: O
18533 states, stored
3134 states, matched
21667 transitions (= stored+natched)
1 atonic steps
hash conflicts: 42 (resol ved)
(max size 2719 states)

Stats on nenory usage (in Megabytes):

0. 890 equi val ent menory usage for states (stored*(State-vector +

over head))

0.717 actual nenory usage for states (conpression: 80.58%
State-vector as stored = 31 byte + 8 byte overhead

2.097 menory used for hash-table (-wl9)

0. 240 menory used for DFS stack (-nl0000)

3. 156 total actual menory usage

unreached in proctype device
[ine 115, state 88, "-end-"
(1 of 88 states)

unreached in proctype :init:
(0 of 4 states)

B.20 CONTROL OF MULTI-SLOT PACKETS

#def i ne LMP_accept ed 3

#def i ne LMP_not _accept ed 4

#define LMP_nmax_slot1l 45 /* nane changed due to Pronela
*/

#define LMP_max_sl ot _req 46

#defi ne SLAVE 1
#defi ne MASTER 0

57

#def i ne YES 1
#defi ne NO 0
#defi ne MAX 1
#defi ne NORMVAL O
#define MN -1

#defi ne s_sl ot 20

#define CHAN LEN 1 /* length of channel (nunber of nessages to be
stored */

proctype device (chan in, out; bit device_type)

byt e stat e=NORVAL, SCO=1;
bit outstandi ng=NG,

BEG N:
do

/**************************************/

/* 3.20 Control of Multi-Slot packets */

/**************************************/

((lI en(out)==0) &&((out st andi ng==NO) &&((devi ce_t ype==MASTER) &&(SCC>0))))
->
out! LMP_nmax_sl ot 1;
i nN?LMP_max_slotl -> skip;
/* assert that MASTER cannot receive LMP_max_slotl */
((out st andi ng==NO) &&((devi ce_t ype==SLAVE) &&(SCC>0))) ->
out! LMP_max_sl ot _req;
state=s_sl ot;
out st andi ng=YES;
i N?LMP_max_sl ot _req ->
if
out ! LMP_accept ed;
out! LMP_not _accept ed,;
fi;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */

/***************************************/
i nN?LMP_accepted ->
if
(state==s_slot) -> state=NORMAL; out st andi ng=NG,
fi;
i N?LMP_not _accepted ->
if
(state==s_slot) -> state=NORMAL; out st andi ng=NG,
fi;
ti meout ;

od;
init

58

{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN _LEN] of {byte};
atom c {

run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);

}

B.20.2 Spin output

(Spin Version 3.2.3 -- 1 August 1998)
+ Partial Order Reduction

Ful | statespace search for

never-claim - (not sel ected)
assertion violations - (disabled by -A flag)
cycl e checks - (disabl ed by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 26, errors: O
37 states, stored
30 states, matched
67 transitions (= stored+natched)
1 atonmic steps
hash conflicts: 0 (resol ved)
(max size 2719 states)

2.542 menory usage (Moyte)

unreached in proctype device
line 59, state 30, "-end-"
(1 of 30 states)

unreached in proctype :init:
(0 of 4 states)

B.21 Single asynchronous model (functions 1-4)

#defi ne LMP_name_req 1
#define LMP_nane_res 2
#defi ne LMP_accept ed 3
#defi ne LMP_not _accept ed 4
#defi ne LMP_cl koffset _req 5
#define LMP_cl koffset _res 6
#def i ne LMP_det ach 7
#define LMP_in_rand 8
#defi ne LMP_conb_key 9
#define LMP_unit_key 10
#define LMP_au_rand 11
#def i ne LMP_sres 12
#define LMP_tenp_rand 13
#defi ne LMP_tenp_key 14
#defi ne LMP_encrypti on_node_req 15

#defi ne LMP_encryption_key_size req 16

59

#define LMP_start _encryption_req 17

#defi ne LMP_stop_encryption_req 18
#define LMP_switch_req 19
#defi ne LMP_hol d1 20
#define LMP_hol d req 21
#define LMP_sniffl 22
#define LMP_sniff_req 23
#define LMP_unsniff_req 24
#define LMP_park_req 25
#defi ne LMP_parkl 26
#defi ne LMP_set broadcast _scan_wi ndow 27
#defi ne LMP_nodi fy_beacon 28
#defi ne LMP_unpar k_BD ADDR req 29
#defi ne LMP_unpar k_PM ADDR req 30
#defi ne LMP_i ncr_power req 31
#defi ne LMP_decr _power req 32
#def i ne LMP_max_power 33
#defi ne LMP_mi n_power 34
#define LMP_auto_rate 35
#define LMP_preferred rate 36
#defi ne LMP_version_req 37
#define LMP_version_res 38
#define LMP_features_req 39
#define LMP_features res 40
#define LMP_quality of service 41
#define LMP_quality of service req 42
#define LMP_SCO Iink_req 43
#define LMP_renmove_SCO | i nk_req 44
#define LMP_nmax_slot1l 45
#define LMP_max_sl ot _req 46

#define LMP_tim ng_accuracy_req 47
#define LMP_tim ng_accuracy_res 48
#defi ne LMP_setup_conpl ete 49
#defi ne LMP_use_sem _per nanent _key 50
#defi ne LMP_host connection_req 51

#define SLAVE 1

#defi ne MASTER O

#defi ne YES 1

#define NO 0

#defi ne MAX 1

#define NORVAL O

#define MN -1

#define TEMPL 7

/* use of previous indicates |inkey==YES */

#define PREVI OQUS 2

/* security (0=NO, 1=YES, 2=STACEl, 3=STAGE2) YES=ENCRYPTI ON ON*/
#defi ne STAGEL 2

#defi ne STAGE2 3

#define DH 1

#defi ne DM 0

#define s_auth 1

#defi ne s_ukey 2

#defi ne s_ckey 3

#defi ne s_sem 4

#define s_neg_en 50 /* negotiation of encryption */
#define s_neg_size 51 /[/* negotiation of key size */

60

#define s_bg en 52 /* begin encryption */
#define s_end_en 53 /* end encryption */
#define s _tine 7

#define s_switch 10

#define s_detach 12

#defi ne s_qgos 18

#define s _sco_add 19

#define s_sco rem 191

#defi ne s_sl ot 20

#define CHAN LEN 2 /* length of channel (nunber of nessages to be
stored) */
proctype device (chan in, out; bit device type, |inkkey)

byt e stat e=NORMVAL, power =NORMAL, SCO=0, I|i nkey=li nkkey;
bit p_type, outstandi ng=NO, auth_done=NO

BEG N:

do
/**************************************/
/* 3.2 Pairing */

/**************************************/

(((out st andi ng==NO) &&(aut h_done==NO)) &&(st at e==NORMAL)) - >
i f
(l'inkey==NO) -> out!LMP_in_rand; |inkey=TEMP1
;o 1(linkey==NOQ -> skip;
fi;
out! LMP_au_rand;
out st andi ng=YES;
state=s_aut h;

in?LMP_in_rand ->
i f

(state==s_detach) -> skip;

I (state==s_detach) -> |inkey=TEMP1
fi;

i n?LMP_au_rand ->
i f
:: (state==s_detach) -> skip;
| (state==s_detach) ->
i f

(l'i nkey==YES) -> out!LMP_sres;

(1'i nkey==TEMP1) -> out!LMP_sres;
©1 (linkey==NO) -> out!LMP_not _accepted;
2o 1 ((linkey==NO | | ((Ii nkey==YES) || (I i nkey==TEMP1))) -> ski p;
fi;
fi;

i Nn?LMP_sres ->

if
(state==s_detach) -> skip;
(state==s_auth) ->
if

61

aut h_done=YES - >
if
©r (linkey==TEMP1) ->
if
out! LMP_unit_key; outstandi ng=YES; state=s_ukey;
out! LMP_conb_key; outstandi ng=YES; state=s_ckey;
fi;
:o 1 (linkey==TEMP1) -> outstandi ng=NO, st at e=NORNAL;
fi;
aut h_done=NO, out st andi ng=NO, st at e=NORNAL;
;. out!LMP_detach; outstandi ng=YES; state=s_detach;
fi;
fi;

i N?LMP_uni t _key ->

i f
:: (state==s_detach) -> skip;
(state==s_ukey) -> outstandi ng=NO, st at e=NORNAL;
(state==s_ckey) -> outstandi ng=NO, st at e=NORNAL;
I'((state==s_ukey)|| (state==s_ckey)|| (state==s_detach)) ->
i f
out! LMP_uni t _key;
out! LMP_conb_key;
fi;
fi;
i nkey=YES;
i N?LMP_conmb_key ->
i f
.. (state==s_detach) -> skip;
(state==s_ukey) -> outstandi ng=NO, st at e=NORNAL;
(state==s_ckey) -> outstandi ng=NO, st at e=NORNAL;
I'((state==s_ukey)|| (state==s_ckey) || (state==s_detach)) ->
if
out! LMP_unit _key; printf("refuse to change |ink key\n");
out! LMP_conb_key; printf("accept change of |ink key\n");
fi;
fi;
i nkey=YES;

/**************************************/

/* 3.3 Change Link Key */

/**************************************/

((out st andi ng==NO) &&(aut h_done==YES)) ->
out! LMP_conb_key; outstandi ng=YES; state=s_ckey;

/**************************************/

/* 3.4 Change Current Link Key */

/**************************************/
((l'en(out)==0) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER)))
out! LMP_tenp_rand;
out! LMP_tenp_key;
i nN?LMP_tenp_rand -> skip;

i N?LMP_tenp_key ->
i nkey=TEMP1;

62

->

printf("link key changed to tenporary key\n");

((l'en(out)==0) &&((out st andi ng==NO) &&(devi ce_t ype==MASTER))) ->
out! LMP_use_sem _per nanent _key;
out st andi ng=YES;
state=s_sen ;

i N?LMP_use_seni _per manent _key ->
out ! LMP_accept ed;
I i nkey=PREVI OUS;

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/
i nNn?LMP_accepted ->
if
©: (state==s_sem) -> state=NORMAL; outstandi ng=NG
I i nkey=PREVI OUS;
I (state==s_sem) -> skip;
fi;
i N?LMP_not _accepted ->
if
(state==s_detach) -> skip;
(state==s_auth) -> state=NORMAL; out st andi ng=NG,
fi;

i nN?LMP_detach -> break;

ti mneout ->

if
(state==s_detach) &(| en(out)==0) -> break;
(state==s_detach) &&! (I en(out)==0) -> skip;
| (state==s_detach) ->
if
:: (aut h_done==YES) -> skip;
:: (auth_done==NO) -> skip;
fi;
fi;
od;
}
init
{ chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {
run device (AB, BA, MASTER YES);
run device (BA, AB, SLAVE, YES);
}
}

B.22 Single synchronous model (functions 1-5)

/* Because there nay be so nany LMP_accepted or LMP_not_accepted nessages
received at roughly sanme tinme, currently there is no way for the protocol
to differentiate them the tenporary solution is to make assunption,
meani ng that one time only sends one nessage until getting back the

63

response for this message. But what about for other nessages, for exanple,
there is no response necessary for LMP_tenp_rand and LMP_t enp_key.

*/

/* authentication performcontains pairing perform*/

#defi ne LMP_nane_req 1

#defi ne LMP_nane_res 2

#define LMP_accept ed 3

#defi ne LMP_not _accept ed 4

#define LMP_cl kof fset _req 5

#define LMP_cl kof fset _res 6

#defi ne LMP_det ach 7
#define LMP_in_rand 8
#defi ne LMP_conb_key 9

#define LMP_unit_key 10
#define LMP_au_rand 11
#define LMP_sres 12
#define LMP_tenp_rand 13

#defi ne LMP_t enp_key 14
#define LMP_encryption_npde_req 15
#define LMP_encryption_key_size_req 16

#define LMP_start_encryption_req 17

#defi ne LMP_stop_encryption_req 18
#define LMP_switch_req 19
#define LMP_hol d 20
#define LMP_hol d_req 21
#define LMP_sniff 22
#define LMP_sniff_req 23
#define LMP_unsniff_req 24
#define LMP_park_req 25

#defi ne LMP_park 26
#defi ne LMP_set _broadcast _scan_wi ndow27

#define LMP_nodi fy_beacon 28

#defi ne LMP_unpark_BD ADDR req 29

#defi ne LMP_unpar k_PM ADDR req 30
#define LMP_i ncr_power_req 31

#defi ne LMP_decr_power_req 32

#defi ne LMP_nmax_power 33

#defi ne LMP_m n_power 34
#define LMP_auto_rate 35
#define LMP_preferred_rate 36
#define LMP_version_req 37
#define LMP_version_res 38
#define LMP_features_req 39
#define LMP_features_res 40
#define LMP_quality_of service 41
#define LMP_quality_of _service_req 42

#define LMP_SCO |ink_req 43
#define LMP_renove_SCO |ink_req 44

#defi ne LMP_nmax_sl ot 45
#define LMP_nmax_sl ot _req 46
#define LMP_tim ng_accuracy_req 47
#define LMP_tim ng_accuracy_res 48
#define LMP_setup_conpl ete 49

#defi ne LMP_use_sem _permanent _key 50

#defi ne LMP_host_connection_req 51

#defi ne yes 1

#define no 0

#defi ne master
#defi ne sl ave
#defi ne conbb_key
#define unitt_key

OO

#define max_attenpts 2
byte auth_attenptl = 0, auth_attenpt2 = 0;
byte pair_attenptl = 0, pair_attenpt2 = 0;

byte key_sendl = 0, key_send2 = 0;
byte encryption_flag = O;

bit outstanding = no; /* run one after finishing one */

64

bi t

bit undone_flag = yes; /* make the sem -pernmanent key the current key */
bit change_any = yes; /* change encryption node, key or random nunber */
bit outstandl = no, outstand2 = no
bit auth_donel = no, auth_done2 = no
bit pair_donel = yes, pair_done2 = yes;
bit result_keyl = conbb_key, result_key2 = conbb_key;
bit encryptionl = yes, encryption2 = yes;
bit tenmp_keyl = no, tenp_key2 = no
bit send_nodel = no, send_nobde2 = no
bit agree_encryptionl = no, agree_encryption2 = no;
bit break_flagl = no, break flag2 = no
bit change_keyl = no, change_key2 = no
proctype device (chan in, out; byte auth_attenpt, pair_attenpt, key_send
bit device_type, auth_done, pair_done, result_key, tenp_key, encryption
send_node, agree_encryption, change_key, outstand, break_fl ag)
{
do
atomc {
auth_done == no && auth_attenpt == 0
&& outstand == no && outstanding == no && break_flag == no ->
out st andi ng = yes;
out stand = yes;
out! LMP_au_r and;
auth_attenpt = auth_attenpt + 1;
out standi ng = no
}
atomc {
aut h_done == yes
&& outstand == no && outstanding == no && break_flag == no ->
progress: ski p;
out st andi ng = yes;
if /* encryption */
devi ce_type == master && encrypted_broadcast == yes ->
encrypt ed_broadcast = no; /* change to tenporary key */
tenp_key = yes
| abel 1: encryption = yes;
out! LMP_t enp_r and
out! LMP_t enp_key
tenp_key == yes && encryption == yes && agree_encryption == no -
>
encryption = no
out stand = yes;
out! LMP_encryption_node_req; /* encryption node */
send_node = yes
devi ce_type == master && tenp_key == yes && encryption_flag == 3
->
out stand = yes;
out! LMP_stop_encryption_req
/* change encryption node, key or random nunber */
device_type == master && tenp_key == yes
&& change_any == yes && encryption_flag > 0 ->
change_any = no;
encryption_flag = 3;
out stand = yes;
out! LMP_stop_encryption_req
device_type == master && tenp_key == yes
&& change_any == no && encryption_flag == 0 ->
change_any = yes;
goto label 1l
/* make the sem -pernmanent key the current key */
devi ce_type == master && tenp_key == yes && undone_flag == yes -
>

encrypt ed_br oadcast

= yes;

out stand = yes;
if
encryption_flag > 0 ->
encryption_flag = 3;

out! LMP_stop_encryption_req

encryption_flag == ->

65

undone_flag = no;
out ! LMP_use_sem _per manent _key
fi
tenp_key == no && change_key == no ->
change_key = yes; [* change |link key */
out stand = yes;
if
result_key == conbb_key ->
out! LMP_conb_key;
key_send =1
result_key == unitt_key ->
out! LMP_i n_rand;
out! LMP_au_rand;
pair_attenpt = pair_attenpt + 1
fi
el se -> skip
fi;
out st andi ng = no

/* reset so as to restart the program */
;1 atomic {
break_flag == yes ->
break_flag = no;
auth_attenpt = 0;
pair_attenpt = 0;
aut h_done = no;
pai r _done = yes;
result_key = conbb_key

in?LMP_accepted ->
putst and = no;
! aut h__done == yes && device_type == nmaster && tenp_key == yes ->
! encrypti on_flag == 0 ->
I/E‘ master win, based on accepted for master encryption node

request */
undone_flag == yes ->
encryption_flag = 1;
out stand = yes;
out! LMP_encrypti on_key_size_req
undone_flag == no -> tenp_key = no
fi
encryption_flag == ->
encryption_flag = 2;
out stand = yes;
out! LMP_start_encryption_req
encryption_flag == 2 -> encryption_flag = 3
encryption_flag == -> encryption_flag = 0
fi
else -> skip
fi
atomc {
in?LMP_not _accepted ->
out stand = no;
if
aut h_done == no && pair_done == yes ->
out st andi ng = yes;
pai r _done = no;
out stand = yes;
out! LMP_i n_rand;
out! LMP_au_rand;
pair_attenpt = pair_attenpt + 1;
out standi ng = no
aut h_done == no && pair_done == no ->
break_flag = yes /* pairing not allowed */
aut h_done == yes -> change_key = no

/* give consideration to two or nore things:
change link key and encryption */

66

f

}
i N?LMP_det ach -> break_flag = yes

/* authentication failure */

in?LMP_in_rand -> skip

in?LMP_conb_key ->

out stand = no;

aut h_done = yes;
pai r _done = yes;
if
key_send == -> result_key = conbb_key

key_send > 1 -> result_key = unitt_key
fi;
change_key = no;
key_send = 0
0 ->

/* change link key for one tinme */

out! LMP_conb_key
out! LMP_unit_key

progressi: ski p;
if
key_send > 0 ->
key_send ==
if
f
f
in?LMP_uni t _key ->
progress2: ski p;

if

key_send > 0 ->

key_send = 0;
out stand = no;
aut h_done = yes;
pai r _done = yes;
result_key = unitt_key;
change_key = no
key_send == ->
if
out ! LMP_conb_key
out! LMP_unit_key
f
f
in?LMP_au_rand ->
if
out! LMP_sres
out ! LMP_not _accept ed
f
atomc {
in?LMP_sres ->
out stand = no;
out st andi ng = yes;
if
- if
;. auth_done == no && pair_done == yes ->
aut h_done = yes
aut h_done == no && pair_done == no ->

out stand = yes;

if
out ! LMP_conb_key; key_send
out! LMP_unit _key; key_send

f

aut h_done == yes ->
out stand = yes;
out ! LMP_conb_key;
key_send = 1

f

if

aut h_done
if

== no && pair_done == yes ->
auth_attenpt <= nax_attenpts ->

out stand = yes;

out! LMP_au_rand

auth_attenpt = auth_attenpt + 1
auth_attenpt > nax_attenpts ->

67

break_flag = yes;
out! LMP_det ach
fi
(auth_done == no && pair_done == no) || auth_done == yes

/* al so repeat for changing |ink key */
if
pair_attenpt <= max_attenpts ->
out stand = yes;
out! LMP_i n_rand;
out ! LMP_au_r and;
pair_attenpt = pair_attenpt + 1
pair_attenpt > max_attenpts ->
break_flag = yes;
out! LMP_det ach
fi
fi
fi;
out standi ng = no

in?LMP_tenp_rand -> skip
i n?LMP_t enp_key ->
tenp_key = yes;
encryption = yes
i n?LMP_encryption_node_req ->
if
out ! LMP_accept ed;
agree_encryption = yes;
if
devi ce_type == naster && send_npde == no ->
encryption_flag = 1;
out stand = yes;
out! LMP_encryption_key_size_req
else -> skip
fi
out ! LMP_not _accept ed
fi
in?LMP_encryption_key_size_req ->
if
devi ce_type == naster ->
outstand = no;
if
out ! LMP_accept ed;
encryption_flag = 2;
out! LMP_start_encryption_req
out ! LMP_not _accept ed;
encryption_flag = 0 /* unsuccessful negotiation */
fi
devi ce_type == slave ->
if
out! LMP_accept ed
out stand = yes;
out! LMP_encrypti on_key_si ze_req
fi
fi
in?LMP_start _encryption_req -> out!LMP_accepted
i n?LMP_st op_encryption_req -> out!LMP_accept ed
i n?LMP_use_sem _per manent _key ->
out! LMP_accept ed;
tenp_key = no
od
}

init
{ chan AB = [0] of {byte};
chan BA = [0] of {byte};
run device (BA, AB, auth_attenptl, pair_attenptl, key_sendl, nmster,
aut h_donel, pair_donel, result_keyl, tenp_keyl, encryptionl,
send_nodel, agree_encryptionl, change_keyl, outstandl, break_flagl);
run device (AB, BA, auth_attenpt2, pair_attenpt2, key_send2, slave,
aut h_done2, pair_done2, result_key2, tenp_key2, encryption2,

68

B.23 Single synchronous model (functions 6-11)

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

send_node2, agree_encryption2

LMP_nane_r eq
LMP_nane_res
LMP_accept ed
LMP_not _accept ed
LMP_cl kof fset _req
LMP_cl kof fset _res
LMP_det ach
LMP_in_rand
LMP_conb_key
LMP_unit_key
LMP_au_rand
LMP_sres
LMP_tenp_rand
LMP_tenp_key
LMP_encryption_node_req
LMP_encryption_key_size req
LMP_start_encryption_req
LMP_stop_encryption_req
LMP_switch_req
LMP_hol d
LMP_hol d_req
LMP_sni ff
LMP_sniff_req
LMP_unsni ff _req
LMP_park_req
LMP_par k

8
9
10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26

LMP_set broadcast scan_w ndow 27

LMP_nodi fy_beacon
LMP_unpar k_BD_ADDR req
LMP_unpar k_PM ADDR req
LMP_i ncr _power _req
LMP_decr _power _req
LMP_max_power

LMP_mi n_power
LMP_auto_rate
LMP_preferred_rate
LMP_version_req
LMP_version_res
LMP_features_req
LMP_features_res
LMP_qual ity of service
LMP_quality_of service_req
LMP_SCO |i nk_req
LMP_renove _SCO |ink _req
LMP_nmax_sl ot

LMP_nmax_sl ot _req
LMP_tim ng_accuracy_req
LMP_tim ng_accuracy_res

SLAVE 1
MASTER 0O

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

69

28
29
30
31
32

change_key?2

12

out st and2, break_fl ag2)

#defi ne YES 1
#define NO 0
#defi ne MAX 1
#defi ne NORVAL O
#define M N -
#define DH 1
#defi ne DM 0
#define s _tine 7
#define s_switch 10
#defi ne s_qgos 18
#define s_sco_add 19
#define s_sco rem 191
#define s_sl ot 20

#define CHAN LEN 2 /* length of channel (nunber of nessages to be
stored */
proctype device (chan in, out; bit device_type)

byt e stat e=NORVAL, power =NORMAL, SCO=0;
bit p_type, outstandi ng=NG,

BEGQ N:

do
/**************************************/
/* 3.6 CUock Ofset Request */

/**************************************/
((out st andi ng==NO) &&(devi ce_t ype==MASTER)) ->
out! LMP_cl kof fset _req;
out st andi ng=YES;
i Nn?LMP_cl kof fset _req -> out!LMP_cl kof f set _res;
i nN?LMP_cl kof f set _res -> out st andi ng=NQ,
/*assert only MASTER can receive */

/***/

/* 3.7 Timng Accuracy Information Request */
/***/
(out st andi ng==NOQ) - >
out! LMP_tim ng_accuracy_req;
out st andi ng=YES;
state=s_tine;
i n?LMP_tim ng_accuracy_req ->
if
out! LMP_tim ng_accuracy_res;
out! LMP_not _accept ed,;
fi;
i n?LMP_ti mi ng_accuracy_res -> outstandi ng=NG,

/**************************************/

/* 3.8 LWMP Version */
/**************************************/
(out st andi ng==NOQ) - >
out! LMP_version_req;
out st andi ng=YES;
i N?LMP_version_req -> out!LMP_version_res;

70

i nN?LMP_versi on_res -> outstandi ng=NQ,

/**************************************/

/* 3.9 Supported Features */
/**************************************/
(out st andi ng==NO) - >
out! LMP_features_req;
out st andi ng=YES;
i n?LMP_features_req -> out! LMP_features_res;
i nN?LMP_features_res -> outstandi ng=NG,

/**************************************/

/* 3.10 Switch of Master/Sl ave Role */
/**************************************/
(out st andi ng==NOQ) - >
out! LMP_switch_req;
state=s_switch;
out st andi ng=YES;
i n?LMP_switch req ->

if
out ! LMP_accept ed;
i f
(devi ce_type==SLAVE) -> devi ce_t ype=MASTER,
(devi ce_type==MASTER) -> devi ce_t ype=SLAVE;
fi;

out! LMP_not _accept ed,;
fi;

/**************************************/

/* 3.11 Nanme request */
/**************************************/
(out st andi ng==NO) - >
out! LMP_nane_r eq;
out st andi ng=YES;
i nNn?LMP_name_req -> out!LMP_nanme_res;
i N?LMP_name_res -> outstandi ng=NQ

/***************************************/

/* ACEPTED and NOT_ACCEPTED */
/***************************************/
i nNn?LMP_accepted ->
i f
:: (state==s_switch) ->
if
(devi ce_type==SLAVE) -> device_t ype=MASTER,
(devi ce_type==MASTER) -> devi ce_t ype=SLAVE;
fi;
st at e=NORVAL;
out st andi ng=NQ,
fi;

i N?LMP_not _accepted ->
if
(state==s_tine) -> state=NORMAL; out st andi ng=NG,
(state==s_switch) -> state=NORVAL; outstandi ng=NQ
fi;

71

od;
}
init
{
}

ti nmeout ;

chan AB = [CHAN LEN] of {byte};
chan BA = [CHAN LEN] of {byte};
atom c {

run device (AB, BA, MASTER);
run device (BA, AB, SLAVE);

}

72

C ANNEXC
Comments

This annex includes the copies of the comments submitted to the Bluetooth members
webpage.

C.1 Comments on Version 0.7

Comments on Bluetooth Project Version 0.7, Part C: Link Manager Protocol
Submitted: January, 1999

Modeling Assumptions
1. Since 1.1, last paragraph states that there is no need to explicitly acknowledge the
messages in LMP, we will assume no loss or out-of-sequence packets.

Technical comments

1. Section 3.1.4(Repeated Attempts): a maximum value is hinted to, but no value is
specified in this section. One should be defined. The period always increases after a
failure. No mention here about how to decrease this period. {Part B 14.4.1 made
mention of decreasing it, but gave no specifics.}

2. Section 3.5.2, sequence 15; shows an unsuccessful negotiation of the encryption key
by sending a LNP_not_accepted, there is no reason given and a reason is required by
that message. What should it be? #6: not supported?

3. Section 3.6; talks about receiving a FHS packet, upon which the slave responds. Yet
the Sequence 18 shows sending and receiving LMP_clkoffset_req and
LMP_clkoffset_res. [Investigate further on the inclusion of these PDUs in FHS
packets. {Part B 4.4.1.5: The FHS has no payload for this LMP PDU. Therefore, it
must be sent using another packet type (i.e. DM1)}]. Is it to be assumed that there is
a one-to-one mapping with the generation of LMP PDU with FHS packet?

4. Section 3.7, Timing accuracy information request, Sequence 20; Show that the
requested device does not support timing accuracy information. What does this
mean? Since these PDUs are optional, this device may not recognize this PDU
because it does not implement or support it and respond with LMP_not_accepted (#4
unknown PDU) as per section 3.21. Yet the sequence appears to show the case where
if requested for such information, that is the requested device recognizes the PDU, it
must then respond with LMP_not_accepted (#6 not supported). Even though the
PDU is the same the reason is not. This should be clarified.

5. Section 3.9 (Supported Features); It should be possible to know which features are
supported and therefore should be tested. However, there are no procedures defined
for any mismatch, but text now states that this cannot happen. Information about
which are the supported services was not found in reference [1] as stated.

6. Section 3.10; states that if a device wants to join an existing piconet, it must respond
to the LMP_switch_req with a LMP_accepted. However if the device does not
support the master-slave switch it will send a LMP_not_accepted. How can this be
possible? If the device wants to join an existing piconet, it knows it must respond

73

10.

11.

12.

13.

14.

15.

16.

17.

18.

positively to the LMP_switch_req. [Where is the indication that the new device
wants to join the existing piconet? {Part B}]

Section 3.13.2; contains no text describing the behavior, only the Sequence 28 is
shown. Text should indicate that whether or not the LMP_hold exchange must occur
because just reading the other sections on Hold Mode does not indicate that the
Master must accept and acknowledge the Slave’s LMP_hold.

Section 3.14; What are the two options hinted to for the calculation of the first sniff
slot? {Part B 10.8.2}

Section 3.14.3; The title indicates that the slave is being moved from sniff mode to
active mode, yet the text and sequence 32 indicates that initiating (either master or
slave) can do this. Also Table 5.1 supports the latter, so most likely the title must be
replaced with “Moving a device from sniff mode to active mode”.

Section 3.15, third paragraph; The sentence, “When a slave is placed in park mode it
is assigned a unique PM_ADDR, which can be used by the master to unpark slaves”,
is confusing. Is the PM_ADDR unique? If so then the sentence should end “... by
the master to unpark that slave”. If the PM_ADDR can be used to refer to a group of
slaves, then the word, unique, should be removed. If both are true, which seems to be
what section 3.15.6 indicates, then better text needs to be written to clarify this.
Section 3.15.2; There is no text to explain the sequence 34, which appears to be
misleading. Is the sequence 34 correct? If so, what is the purpose of sending the
LMP_park_req, when sending the LMP_park will do? OR the sequence 34 is wrong
and the LMP_park should be removed. However in this case the parameters are not
passed, which causes more errors. What is the purpose of the master allowing the
slave to accept or reject being park? If the slave rejects being placed in park, can the
master force it? It seems like LMP_park_req PDU is really only for the slave.
Section 3.15.6, second paragraph; the text and related messages do not appear to
align. Also Table 5.1 adds to the confusion (e.g. which PM or BD is in which
message and how many).

Section 3.17 (Channel quality driven change between DM and DH); If this is an
optional feature, then how can sequence 46 be accomplished? If the left-hand device
does not understand the message, then what?

Table 3.18: need to add M/O column with both PDUs marked as mandatory, since
text indicates that the slave cannot reject the notification, which is could do if the
PDUs were optional.

Table 5.1, page 205, modify and unpark PDUs are variable. How is the PDU to be
parsed? Forthe LMP_unpark_BD_ADDR_req and LMP_unpark_ PM_ADDR_req,
how does one know how many AM_ADDR are present?

For the LMP_maodify_beacon, it appears that the Maccess and the access scheme share
one byte, but Table 5.2 states that M,ccess IS 4bits and access scheme is 8bits.
Therefore this will not work.

For the LMP_unpark_BD_ADDR_req and LMP_unpark_PM_ADDR_req, it appears
that two AM_ADDR can share one byte, but Table 5.2 states that AM_ADDR is
8bits. Therefore this will not work. {PART B states that AM_ADDR is 3bits}

For the LMP_unpark_PM_ADDR _req, it appears that the BD_ADDR uses only one
byte, but Table 5.2 shows 6 bytes. This could be related to another mistake in that the

74

19.

20.

21.

BD_ADDR should be PM_ADDR. {Part B states that the PM_ADDR is 8 bits and
BD_ADDR is 48 bits}

Table 5.2, Name=reason row; in the detailed column the values, 0 (no error) and 5
(repeated attempts) are not used in Part C and should be removed or have the missing
procedures added which could use this value. The 0 (no error) is not consistent with
how the reason value is used throughout this section. The reason value is only
included in the LMP_not_accepted PDU and gives the reason for not accepting.
Therefore 0 (no error) is right out.

Table 5.3; lists coding features.
) The optional timing accuracy information request (3.7) does not have a code
point.

)] Hold mode is not optional, so why does it have a code point?

I11) The optional channel quality (3.17) does not have a code point.

IV) According to Table 5.4; the SCO packet’s default value is HV3, so why does
it have a code point?

V) According to Table 5.4; the air mode’s default value is CVSD, so why does it
have a code point?

Table 6.1; needs the M/O column added with both LMP PDUs marked as M

(Mandatory), since the text states that the link manager must be able to receive this

message anytime.

Editorials

1. Section 3.2.1: change first “but” to “and”

2. Section 3.2.3, first paragraph: change “has to” to “must”

3. Section 3.8: change “confirm” to “conform”

4. Sequence 23: change to the following for clarification.

5. Sequence 24: change to the following for clarification.

6. Section 3.13.1, sequence 27; add caption, “Master forces slave into hold mode”
7. Section 3.13.1, sequence 28; add caption, “Slave forces master into hold mode”
8. Section 3.14.1, sequence 30; add caption, “Master forces slave into sniff mode”

75

10.

11.

12.

13.

Section 3.14.3, sequence 32, add caption, “TBD based on outcome of technical
comment”

Section 3.19.2; add colon: “..., but the parameters: timing control flags and Dsco are
Section 3.19.2, sequences 53 and 54 have the devices master (right) and slave (left)
which is the opposite of all previous ones. Suggest switching them to be consistent.
Section 3.19.2, sequence 53; add caption, “Master rejects slave’s request for a SCO
link”

Section 3.19.2, sequence 54; add caption, “Master accepts slave’s request for a SCO
link”

76

Date: 1/11/99

Alignments
The following need to be corrected one way or the other.
1. Section 3.18, Table 3.18, LMP_quality_of service_req: has only one parameter, poll
interval, however, the Table 5.1 (page 206) show an additional parameter, Ngc.
2. Table5.2
i. hold time: Length column is 1 byte, while Type column is u_int16. Table 5.1
indicates two (2) bytes.
ii. broadcast scan window: table indicates 1 byte, while Table 5.1 indicates two (2)
bytes.

Editorials

1. Section 3.3: change “Kinit” to “Kipit”

2. Section 3.4.2: change “... key been changed ...” to “... key has been changed ...”

3. Section 3.9; 4™ line: change “...send any other than ID, ...” to ... send any packets
other than ID, ...

4. Section 3.16, 1% paragraph, last line: change “effects” to “effect”

5. Section 4, last paragraph; LMP_setup_complete PDU is mentioned, but no Table is
provided stating its mandatory or optional status. It is assumed that it is mandatory,
since the text states that a unit will send this PDU.

6. Section 4, last paragraph, 2" line: change “request” to “requests”

77

January 14, 1999

Technical

3.17 Channel Quality Driven Change Between DM and DH: This is a continuation of the
technical comments #13 and #20 111 above. This section describes optional procedures
for changing between DM and DH. What exactly does this mean? The first sentence
states that a device is configured to always use DM packets or to always use DH packets
or to automatically adjust its packet type to the quality of the channel. Based on this

information | get the following.

Assumption: A) Only a device configured to automatically change mandatorily supports
these procedures. Devices that support only DM or only DH do not support these

procedures.

1) Since there is no way of knowing (i.e. through Bluetooth features) whether a
device supports this feature or not, a device that does support this feature can
send either message to an unknown device.

i) The LMP_auto_rate is sent only to notify the other device that it
supports these features. (In this case technical comment #20 111 is

void)

a) If the receiving device does not support this feature, it

1)

1)

does nothing (meaning the other side has learnt
nothing about whether the other device supports this
feature)

sends back a LMP_error (meaning that it does not
support this message. No change is possible)

b) If the receiving device supports this feature, it

1)

1)

1)

1)

does nothing (meaning the sender did not discover

whether the other device supports this feature, but

receiver knows the senders capability.)

sends back a LMP_accepted (meaning that this

device understands the message and supports the

feature)

sends back an LMP_auto_rate (meaning that the

receiving device also supports this feature. Both

devices know that the other supports this feature.)
sends back a LMP_preferred_rate (meaning that the
device supports the feature and wants to change the
current packet)

1. What does the data rate value of Medium or
High mean in this returned PDU, since it is
an indication to switch between DM and
DH? Does Medium equal DM or DH?
Why not change data rate values to DM or
DH, instead of Medium or High?

i) The LMP_auto_rate is sent to tell the other device that it will be
switching between DM and DH packets (i.e. a toggle message)
a) If the receiving device does not support this feature, it

78

i)

) does nothing (meaning the other side continues to
send current packet type and will be receiving a
different packet type, which is may not be able to
process)

)] sends back a LMP_error (meaning that it does not
support this message. No change is possible.
Sender shall not switch packet type.)

b) If the receiving device supports this feature, it

) does nothing (meaning
1. itaccepts the toggle
2. it has determined that there is no need to change

(i.e. not send an LMP_preferred_rate).

I can send back an LMP_preferred_rate (meaning
that the device supports the feature and wants to
change current packet type)

1. If LMP_auto_rate is a toggle, what is the need
for this PDU?
The LMP_auto_rate is sent to suggest to the other device to do a
test to change packet type.
a) If the receiving device does not support this feature, it

) does nothing (unknown meaning)

)] sends an LMP_error

1) sends an LMP_not_accepted [not supported]

b) If the receiving device supports this feature, it

) does nothing (meaning it does not want to change
or it has determined that there is no need to change)

)] sends an LMP_preferred_rate

The LMP_preferred_rate is sent to order the other device to switch
between DM and DH packets (i.e. a toggle message)
a) If the receiving device does not support this feature, it

) does nothing (meaning it ignores the order to
switch from current packet type)

)] sends back a LMP_error (meaning that it does not
support this message. No change is possible.
Neither sender or receiver shall switch packet type.)

I11) sends back a LMP_not_accepted (meaning that
device does not want to change.)

b) If the receiving device supports this feature, it
)] sends back a LMP_accepted (meaning it accepts
the change.)

)] Sends nothing (meaning that it accepts the change.)

I11) sends back a LMP_preferred_rate with opposite
data value. (meaning that the device supports the
feature, but does not want to change.)

79

January 19, 1999

Technical

1) Section 3.3 (Change Link Key): This section states that this procedure is the same as
3.2.3, except for the current link key value. However this is not true. If the current
key is a derived key from combination keys, then sending of a LMP_unit_key is not
possible, since it had initially sent a LMP_comb_key. Otherwise this procedure
would not apply. Assuming that the previous statement is wrong. When the unit
receives the LMP_unit_key, it will change its link key to unit key because only one
unit sent an LMP_unit_key, as per 3.2.3.

2) Section 3.15 (Park Mode) State information must be maintained for sequence 34.
Otherwise the receipt of the LMP_accepted cannot invoke an LMP_park.

80

C.2 Comments on Version 0.8

Comments on Bluetooth Project Version 0.8, Part C: Link Manager Protocol
Submitted: March 3, 1999

Date: February 9, 1999
Comments on Bluetooth Project Version 0.8, Part C: Link Manager Protocol

Technical comments

22.

23.

24,

25.

26.

27.

28.

29.

30.

Section 3.1.3(Repeated Attempts): a maximum value is hinted to, but no value is
specified in this section. One should be defined. The period always increases after a
failure. No mention here about how to decrease this period. {related Part B 14.4.1}
Section 3.3 (Change Link Key): This section states that this procedure is the same as
3.2.3, except for the current link key value is used instead of Kj,i;. However this is
not true. If the current key is a derived key from combination keys, then sending of a
LMP_unit_key is not possible, since it had initially sent a LMP_comb_key.
Otherwise this procedure would not apply. Assuming that the previous statement is
wrong. When the unit receives the LMP_unit_key, it will change its link key to unit
key because only one unit sent an LMP_unit_key, as per 3.2.3. Therefore Sequence 7
does not indicate that change of link key is not possible, but instead indicates that the
key has changed to the value in the LMP_unit_key. Clarification is needed.

Section 3.5.2, sequence 13; shows an unsuccessful negotiation of the encrytion key
by sending a LMP_not_accepted, there is no reason given and a reason is required by
that message. What should it be? #6: not supported?

Section 3.9 (Supported Features); It should be possible to know which features are
supported and therefore should be tested. However, there are no procedures defined
for any mismatch, but text now states that this cannot happen. Information about
which are the supported services was not found in reference [1] as stated. Reference
should be removed or information should be provided at said reference point.

Section 3.13.2; contains no text describing the behavior, only the Sequence 26 is
shown. Text should indicate that whether or not the LMP_hold exchange must occur
because just reading the other sections on Hold Mode does not indicate that the
Master must accept and acknowledge the Slave’s LMP_hold.

Section 3.15 2; State information must be maintained for sequence 32. Otherwise the
receipt of the LMP_accepted cannot invoke an LMP_park.

Section 3.17 (Channel quality driven change between DM and DH); If this is an
optional feature, then how can sequence 44 be accomplished? If the left-hand device
does not understand the message, then what? Can the device send
LMP_not_accepted (reason: unknown PDU)?

Table 5.1, LMP PDU=LMP_in_rand, possible direction is only M->S, however, the
change from v0.7 to 0.8 made this M<->S.

Table 5.2, Name=reason row; in the detailed column the values, 0 (no error) and 5
(repeated attempts) are not used in Part C and should be removed or have the missing
procedures added which could use this value. The 0 (no error) is not consistent with
how the reason value is used throughout this section. The reason value is only

81

included in the LMP_not_accepted PDU and gives the reason for not accepting.
Therefore 0 (no error) is right out.
31. Table 5.3; lists coding features.
VI) The optional timing accuracy information request (3.7) does not have a code
point.
VII) Hold mode is not optional, so why does it have a code point?
VIIl) The optional channel quality (3.17) does not have a code point.
IX) According to Table 5.4; the SCO packet’s default value is HV3, so why does
it have a code point?
X) According to Table 5.4; the air mode’s default value is CVSD, so why does it
have a code point?
32. Table 6.1; needs the M/O column added with both LMP PDUs marked as M
(Mandatory), since the text states that the link manager must be able to receive these
messages anytime.

Editorials
14. Sequence 1; has an extraneous arrow, which should be deleted from the verifier.
15. Sequence 21: change to the following for clarification.

Slave Master
unit A unit B
LM LM

Slave
unit B
LM

Master
unit A
LM

16. Sequence 22: change to the following for clarification.

Slave Master
unit A unit B
LM LM

> LMP_switch_req

LMP_not_accepted

17. Section 3.11, sequence 23; add caption, “Device’s hame requested and it response”

18. Section 3.12, sequence 24; add caption, “Connection closed by sending an
LMP_detach”

19. Section 3.13.1, sequence 25; add caption, “Master forces slave into hold mode”

20. Section 3.13.1, sequence 26; add caption, “Slave forces master into hold mode”

21. Section 3.14.1, sequence 28; add caption, “Master forces slave into sniff mode”

22. Section 3.14.3, sequence 30, add caption, “Slave moved from sniff mode to active
mode”

23. Section 3.15.1, sequence 31, add caption, “Slave forced into park mode

24. Section 3.15.4, sequence 36, add caption, “Master notifies all slaves of increase in
broadcast capacity”

82

25.
26.

27.

28.

29.
30.

Section 3.19.1, sequence 50; add caption, “Master requests an SCO link”

Section 3.19.2, sequences 51 and 52 have the devices master (right) and slave (left)
which is the opposite of all previous ones. Suggest switching them to be consistent.
Section 3.19.2, sequence 51; add caption, “Master rejects slave’s request for a SCO
link”

Section 3.19.2, sequence 52; add caption, “Master accepts slave’s request for a SCO
link”

Section 3.19.5, sequence 53; add caption, “SCO link removed”

Both the LMP_accepted and LMP_not_accepted were deleted from the Table in
version 0.7, now there is no table indicating their M/O or contents. Create a new
table and section with these two PDUs stating that they are mandatory and their
content. The accompanying text should state that these PDUs are used as responses
to other PDUs as stated elsewhere in the document.

Technical

3.17 Channel Quality Driven Change Between DM and DH: This is a continuation of the
technical comments #7 and #10 111 above. This section describes optional procedures for
changing between DM and DH. What exactly does this mean? The first sentence states
that a device is configured to always use DM packets or to always use DH packets or to
automatically adjust its packet type to the quality of the channel. Based on this
information | get the following.

Assumption: A) Only a device configured to automatically change mandatorily supports
these procedures. Devices that support only DM or only DH do not support these
procedures.

2) Since there is no way of knowing (i.e. through Bluetooth features) whether a
device supports this feature or not, a device that does support this feature can
send either message to an unknown device.

V) The LMP_auto_rate is sent only to notify the other device that it
supports these features. (In this case technical comment #10 111 is
void)

c) If the receiving device does not support this feature, it

IV) does nothing (meaning the other side has learnt
nothing about whether the other device supports this
feature)

V) sends back an LMP_not_accepted (meaning that it
does not support this message. No change is
possible)

d) If the receiving device supports this feature, it

IV) does nothing (meaning the sender did not discover
whether the other device supports this feature, but
receiver knows the sender’s capability.)

V) sends back a LMP_accepted (meaning that this
device understands the message and supports the
feature), however this is not stated as possible
behavior in the specification.

83

vi)

vii)

viii)

VI) sends back an LMP_auto_rate (meaning that the
receiving device also supports this feature. Not
directly specified, but a possible outcome. Both
devices know that the other supports this feature.)

VI) sends back a LMP_preferred_rate (meaning that the
device supports the feature and wants to change the
current packet)

2. What does the data rate value of Medium or

High mean in this returned PDU, since it is
an indication to switch between DM and
DH? Does Medium equal DM or DH?
Why not change data rate values to DM or
DH, instead of Medium or High?

The LMP_auto_rate is sent to tell the other device that it will be

switching between DM and DH packets (i.e. a toggle message)

c) If the receiving device does not support this feature, it

I11) does nothing (meaning the other side continues to
send current packet type and will be receiving a
different packet type, which it may not be able to
process)

IV) sends back a LMP_not_accepted (meaning that it
does not support this message. No change is
possible. Sender shall not switch packet type.)

d) If the receiving device supports this feature, it

I11) does nothing (meaning
3. it accepts the toggle
4. it has determined that there is no need to change

(i.e. not send an LMP_preferred_rate).

IV) can send back an LMP_preferred_rate (meaning
that the device supports the feature and wants to
change current packet type)

2. If LMP_auto_rate is a toggle, what is the need
for this PDU?
The LMP_auto_rate is sent to suggest to the other device to do a
test to change packet type.
C) If the receiving device does not support this feature, it
IV) does nothing (unknown meaning)
V) sends an LMP_not_accepted [not supported]
d) If the receiving device supports this feature, it

I11) does nothing (meaning it does not want to change
or it has determined that there is no need to change)

IV) sendsan LMP_preferred_rate

The LMP_preferred_rate is sent to order the other device to switch
between DM and DH packets (i.e. a toggle message)
C) If the receiving device does not support this feature, it

84

IV) does nothing (meaning it ignores the order to
switch from current packet type)

V) sends back a LMP_not_accepted (meaning that
device does not want to change.)

d) If the receiving device supports this feature, it

IV) sends back a LMP_accepted (meaning it accepts
the change.)

V) Sends nothing (meaning that it accepts the change.)

VI) sends back a LMP_preferred_rate with opposite
data value. (meaning that the device supports the
feature, but does not want to change.)

Assuming no error retransmissions, would the LMP_auto_rate PDU be sent more than
once on a link by a supporting/implementing device? Based on the above outcomes, |
think the answer is no. The LMP_auto_rate is sent at most once per link (between the
master and a slave) by a supporting/implementing device. The LMP_preferred_rate can
be sent only after receiving an LMP_auto_rate. After receiving an LMP_auto_rate, the
LMP_preferred_rate can be sent any time a change is determined to be advantageous.

85

