Secure, Extensible, Token Authentication for Department of Energy High Performance Computing

Abstract

There has been a high level of interest in the deployment of One Time Passwords (OTP) at Department of Energy (DOE) Office of Science Labs. The aggressive deployment of OTP systems can create a usability issue for users of computing resources, both in terms of managing the physical tokens and with respect to the impact of OTP on workflows and applications. Recent collaborative work between NERSC, ESNet, Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) has resulted in a functioning prototype of a DOE wide RADIUS Authentication Fabric that addresses the issue of minimizing the proliferation of OTP tokens across the DOE user community.

In this paper, we review the work on the RADIUS Fabric, and propose that further work begin on a Secure Extensible Token Authentication (SETA) system, based on Kerberos that integrates directly with OTP/RADIUS based systems. We propose that the project be based on standard, reliable open source platforms such as Kerberos and FreeRADIUS, and that the source code be made available to all DOE sites so that it can be customized to support the individual OTP systems and security policies in place at each site. This will create a community across DOE that collectively possesses the skills to modify and extend SETA to support future security initiatives. With this in place, we believe that as the Federal Personal Identity Verification (PIV) project begins to roll out across DOE, it will be possible to modify the services to cleanly support PIV, cutting down on deployment costs as well as minimizing incompatibilities due to vendor specific implementations.

Background and Summary of Work

Readers of this document are probably aware of the expensive and widespread security compromises in early 2004, as well as the identification of One Time Password (OTP) technology as a potential solution. The plans for widespread adoption of OTP across DOE laboratories motivated the creation of an inter-laboratory collaboration to examine the possibility of sharing OTP token deployment in order to minimize the total cost to DOE, as well as avoiding token deployments that would prove onerous to our user community. This group eventually consisted of representatives from ESNet, NERSC, ANL and ORNL and was originally known as the NOPS Group.

The NOPS group has demonstrated that a framework for sharing OTP tokens across DOE labs is technically feasible as an initial step in addressing the burden of widespread OTP deployment. The overall architecture can be summarized as follows:

· Use RADIUS as a standard protocol for communicating OTP requests between DOE sites.

· OTP systems are mandated to support RADIUS authentication. All of the major OTP vendors support RADIUS, and the NOPS group has tested OTP authentication over RADIUS on the following OTP systems:

· SecureID by RSA Technologies

· CRYPTOCard from CRYPTOCard Corporation

· SafeWord from Secure Computing

· Translations between a local site’s namespace and a shared, fully qualified username/domainname namespace can be handled with fairly straightforward modules on FreeRADIUS servers.

· Within each site, Radius proxying is used to forward authentication requests to the appropriate destination site.

· Individual clients only need to forward to a sitewide hub that is aware of the routing details for each domain, as well as which users are local. This hub then routes requests as appropriate and forwards the responses.

· Radius “routing” information is centrally managed, in a way very similar to network routing. The hub is essentially a RADIUS router.

· When a user with a token from a remote site attempts to log into the local site, they are able to use their remote token to authenticate to systems at the local site

· The local machine routes the request to the site RADIUS router, where it is rewritten (if necessary) and then forwarded to the appropriate OTP server (see Figures 1 and 2).
Each of the sites mentioned above has built a RADIUS infrastructure and has tested it locally for shell and Web authentication, as well as made it available to remote sites for Web authentication. NERSC volunteered a system for shell logins (via ssh) and has successfully demonstrated Unix logins with One Time Password tokens from remote sites.

[image: image1.jpg]Sample OTP Deployment using RADIUS

ESNet

g otp1.nersc.gov
H st s
gt o,
B Linux (CentOS)
0 i
< £
@ H
£)
&
& Cluster
& s test node. 5 Radical.nersc.gov
5 RADIS prory b
RadusONE Agpiance

otp2.nersc.gov

Joe User
ore
Keylob
gridlock.nersc.gov 3
RO s Fel] s
SecuriD server
Solaris &

FroeRADIUS on Linux
User nameldomain rewrte module

Figure 1: Sample OTP Deployment (NERSC RADIUS testbed)

The diagram above shows our deployment within NERSC. The important architectural details are:

1. radical.nersc.gov – this machine is the “router” that all RADIUS requests must pass through. It has information about the local and remote OTP servers. In our testing, we configured the system to forward all remote domains to ESNet for final routing. In the current configuration, it is an InfoBlox RADIUS appliance.

2. otp1.nersc.gov and otp2.nersc.gov – these machines are OTP servers with software from RSA SecureID, CryptoCard and Secure Computing’s SafeWord. We have tested the RADIUS configuration with all 3 systems and found them to be compatible with the overall architecture

3. gridlock.nersc.gov – this is a system running the FreeRADIUS package. It has been configured to execute a module that maps from an unqualified local username (such as “sychan”) into a fully qualified username (such as sychan123@nersc.gov). It then forwards the modified RADIUS request to radical.nersc.gov for final routing.

4. Cluster – at NERSC, we tested OTP with sample nodes from 2 production clusters, PDSF and Newton. Both systems were able to use RADIUS easily using only modifications to the PAM configuration and setting up the necessary RADIUS configuration files.

ESNet managed the transport of RADIUS requests between sites. ESNet has written an excellent paper on the RADIUS Authentication Fabric that proposes a permanent infrastructure for routing authentication requests between sites. Here is a diagram that shows the relationships between different sites and ESNet.

[image: image2.jpg]Sample Wide Area OTP Deployment using RADIUS

Cluster

e

Joe User
Cluster
Cluster
Joe User Cluster

ESNet

Joe User

Cluster

RADIUS auif-reques's

]| Raows

Cluster

Joe User

oTP
Server

Figure 2: Diagram of Wide Area RADIUS infrastructure (RADIUS Authentication Fabric)

In developing and using this testbed, we believe that we have examined and found solutions for all the basic technical issues of routing RADIUS requests between sites, and being able to share tokens among sites that choose to participate. There are still policy, funding and procedural issues that need to be addressed, but there are few (if any) technical hurdles to be dealt with at the level of sharing OTP tokens.

In looking at the deployment of OTP across NERSC, and its effects on our users and their work, further usability issues have become clear. The usability issue goes beyond minimizing the number of tokens users must carry. It includes the following issues:

· Not requiring users to use the token for each and every access to a system.

· This can be problematic with OTP systems that have a 1 minute limit per login

· Support for batch job submissions.

· Support for distributed computing applications.

· Grid computing is becoming increasingly important, with scientists working in High Energy Physics aggressively deploying Grid technology

· Support for bulk file copies and other data management tasks (often related to the batch job and distributed computing issues listed above)

The approach that many sites use to deal with these is to use a gateway based model where a hard perimeter requires OTP technology to pass through; once through this perimeter the systems have no additional OTP requirements. This approach has the benefit of being relatively simple and inexpensive to implement, however it is an eggshell or Maginot Line type defense – it bets everything on a thin perimeter, and has little protection against password hijacking once this perimeter has been breached. It lacks the “defense in depth” that is recommended for robust security.

The other drawback to the gateway approach is that it only supports batch jobs, distributed computing and bulk file copies within the perimeter of the gateway: if usage or applications cross this perimeter, OTP intrudes itself into the process, requiring manual entry of One Time Passwords. This is the Kiss of Death for Grid computing and similar collaborative projects within DOE.

Sites that have deployed OTP systems have successfully integrated Kerberos with OTP. This addresses every one of the issues listed above, and also provides deeper defense because once a Kerberos token is acquired, passwords are no longer used and are no longer vulnerable to theft. Kerberos is also a mature, well understood technology that is supported on virtually all DOE computing platforms, as well as Windows. It has been vetted by the computer security community and is generally respected.

Existing Kerberos/OTP implementations, however, have limitations:

· There is no allowance for integration with RADIUS

· Current Kerberos/OTP authentication solutions require that either the Kerberos Key Distribution Center(KDC) knows the OTP in advance or, the ticket be sent back to the client encrypted with the users long lived Kerberos key(requiring the user to provide both their OTP, and their Kerberos password.)

· Prior knowledge of the OTP by the KDC is not possible if the OTP is to be passed on to another server via the RADIUS fabric for validation)

· If the user's long term key is used to encrypt the ticket, it becomes possible to capture Kerberos tickets via network sniffing of Kerberos authentication exchanges once the Kerberos password has been captured using tty sniffing techniques like those we have already seen in use by hackers.

· Kerberos tokens themselves are vulnerable to theft.

· Current Unix Kerberos implementations store user credentials in the local file system. This allows any process running as a normal user to access all credentials acquired in other sessions by that user, and additionally allows accounts with administrative privileges to access all currently stored credentials for any user.

· In order to mitigate the danger of credential theft it is desirable to isolate credentials to a session (a process and those of its descendants which have not requested a new session.)

· Secure session based credential caches exist for Linux, but need to be more aggressively tested and deployed

· Kerberos credential caches based on generic kernel credential caches need to be implemented
· Some form of more secure credential cache needs to be developed for non-Linux platforms and made available to DOE sites

· Kerberos implementations need to be configured and extended to support real time credential cancellation (similar to the service that OCSP provides for certificates)

Radius integration, and secure credential caches for Linux are relatively straightforward integration problems, and do not require extensive research and development: the code base is open sourced, and many of the problems have been solved either in piecemeal form or solutions can be adapted from other, existing packages.
Further investigation will be required to determine which Unix platforms provide the necessary kernel interfaces to develop a secure session based credential cache, and what would be necessary to develop such a thing for those platforms that don’t.

Kerberos currently does not provide for the revocation of tickets. In order to support this sort of functionality a new type of Kerberos transaction would need to be added to the protocol in order to determine if the user key from which a ticket was derived is still valid. Additional information would also need to be stored in the ticket (possibly in the authorization-data field of the ticket) to relate the ticket back to the key upon which it is based.

Proposed Work

Our proposal is that DOE laboratories agree to support a cross site RADIUS based OTP standard. Participating labs would agree to require RADIUS support in their OTP systems, and allow remote sites to authenticate against their OTP services when appropriate. It is understood that further negotiations will be necessary to establish the policies around federation, standards of security and related issues; we propose that ESNet be chartered with this task, due to their experience with creating federations for the DOE Grids project. ESNet has proposed a Radius Authentication Fabric that describes the proposed architecture, as well as other topics related to it. The ESNet proposal grew directly from the work described in this paper, and we endorse the Radius Authentication Fabric as an excellent step in creating a DOE wide OTP authentication strategy.

To address the shortcomings in a system that is dependent solely on OTP tokens, as well as planning for the future F.I.V. deployment, we further propose that work begin on the following:

1. A mechanism for authentication and acquisition of a Kerberos ticket granting ticket (TGT) via the use of a user’s OTP.

a. This could be implemented as an extension of the standard Kerberos authentication exchange, taking advantage of the padata field of the authentication request to transmit the OTP, and negotiate the key to be used in encrypting the authentication reply.

b. Alternatively this could be implemented as part of the RADIUS exchange using a custom FreeRadius (http://www.freeradius.org/)module to acquire the TGT, and a custom Pluggable Authentication Module (PAM) based on the open source PAM radius and Open1x XSupplicant (http://www.open1x.org/)clients which would place the tgt in the session’s credential cache.

2. A FreeRadius (http://www.freeradius.org/) module that makes use of the impending Open Sourcing of the CryptoCard OTP server to create an integrated OTP solution that is free of the licensing cost and restrictions of commercial products. This can result in significant long term savings for DOE.

3. A Pluggable Authentication Module (PAM) based on the open source PAM radius and Open1x XSupplicant (http://www.open1x.org/)clients.

a. This will serve as the client portion of the RADIUS/Kerberos service mentioned above in 1b.

b. Typical RADIUS clients have encryption protocols that are adequate, but the rigid key management strategies have difficulties when scaling. The Xsupplicant code supports PEAP and EAP-TTLS, two RADIUS authentication protocols that support more flexible (and secure) encryption – we propose modifying Xsupplicant to interface into a standard PAM installation.

4. Promoting the use and development of secure session-private credential caches across DOE.

a. Credential theft is a fact of life – passwords are being routinely stolen automatically. How long until ssh keys, Kerberos credentials and grid certificates are harvested automatically?

b. Kerberos credentials have sound cryptography in the design; however they are vulnerable when stored locally on a computer system. There has already been instances of Kerberos tokens being stolen and abused. SSH keys are vulnerable to the same problems.

c. The Linux community has an in-kernel keyring management patch (http://lwn.net/Articles/97061/ The latest patch can be found at http://people.redhat.com/~dhowells/keys/)

i. This facility and others like it should be developed into more mature tools and promoted across DOE labs.

5. Examine methods of real-time Kerberos credential revocation

a. Despite efforts to make sure that credentials are stored securely, they will inevitable be stolen. How can we be proactive about damage control?

The result of this work would be an open sourced, secure OTP infrastructure that is maintained by and for the DOE Science Community. By developing the code within DOE, and open sourcing it, we create a community that has the programming and operational experience to extend it to support future systems such as F.I.V. or to deal with new security threats as they materialize.

Detailed Discussion of Proposed Solution

1. Extensions to existing Kerberos implementations supporting authentication with OTPs over a RADIUS fabric could be accomplished as follows.

a. When issuing a KRB_AS_REQ message the program requesting authentication (pam module, kinit, etc.) would include the OTP encrypted with a secret key shared by both the host from which the request is issued, and the KDC as part of the padata field.

b. The KDC can then use the OTP to authenticate the user over the RADIUS fabric, and if the OTP authentication succeeds the reply can be encrypted using the shared secret which was used to encrypt the OTP in the request.

c. This requires that all programs used to request a TGT(pam, kinit, etc.) have access to the key used to generate the authentication request(likely by making them setuid to a user able to read a keytab.)

2. As an alternative to section 1 above, create a RADIUS server that provides integrated OTP authentication and Kerberos credential acquisition.

a. The RADUIS server could acquire the ticket on the users’ behalf after verifying the OTP via the RADIUS fabric, and return it as part of the RADIUS response.

b. This would require that the RADIUS conversation be protected by strong encryption such as that provided by PEAP or EAP-TTLS.

c. The RADIUS server would also need access to the users Kerberos key. Since the RADIUS server is already trusted to establish the authenticity of a user, it shouldn’t be an additional security risk to store the users Kerberos keys there.

3. CryptoCard is a One Time Password solution provider that has been integrated with Kerberos at several sites such as FermiLab and the Naval Research Lab (NRL). These sites use the CryptoCard tokens, but do not have to purchase the server or per seat licenses (resulting immediate and long term savings). In addition, CryptoCard has informed NERSC and LBL that they intend to open source their server toolkit to enable customers to build custom OTP servers. We propose that the following work be done:
a. Using the code already developed and shared by FermiLab, NRL and CryptoCard, develop a standalone program that can authenticate users of the CryptoCard OTP tokens.

i. Other OTP tokens will be supported if implementation details are made available by the vendors

ii. The code that FermiLab and NRL have developed already performs the necessary authentication function – but it needs to be modified to be a standalone program.

iii. CryptoCard offers an SDK, including a library that performs the necessary authentication functions.

b. Integrate this service with FreeRadius via the published module interface, creating an open source and freely available OTP service that runs under FreeRADIUS.
i. This service would make it far less expensive for sites to deploy OTP solutions, lowering costs across DOE overall and helping to promote more deployments of OTP solutions
c. This OTP authentication module would be used for the integrated OTP/Kerberos service described above.

i. FreeRadius modules can return additional, virtually arbitrary attributes to a client.

ii. Using the techniques described in the Kerberos section, a Kerberos ticket can be acquired and returned as an attribute to the client after successful authentication.

iii. The client will then be responsible for decrypting the Kerberos ticket and inserting it into the credential cache

4. The Pluggable Authentication Module standard is widely available and many authentication methods are supported. The current RADIUS clients available under PAM do not support the PEAP or EAP-TTLS protocols. These protocols provide secure, encrypted communications between machines where users are attempting to login, and the back end servers that perform the actual authentication.

a. The code base for using PEAP and EAP-TTLS for RADIUS already exists in the Open1x project (http://www.open1x.org/)
b. Using the available source code from the existing PAM Radius client libraries as a wrapper, the Open1x code can be made into a PAM module. The initial versions of this client will likely be Linux.
c. This will allow PEAP and/or EAP-TTLS to be used with Unix clients, vastly simplifying the problem of RADIUS key management, as well increasing the cryptographic security of the RADIUS traffic
d. After extracting the Kerberos ticket from the RADIUS transaction, the credential will then be stored in the user’s credential cache using standard Kerberos techniques.

5. The availability of secure session-private credential caches can be encouraged in the following ways.

a. Support the effort to get keyring support adopted into the mainline Linux kernel source tree, as well as encouraging similar efforts for other Unix operating systems.

b. Investigate whether the necessary features to implement similar functionality exist in other Unix-like operating systems.

c. Develop, or support existing efforts to develop Kerberos credential caches which make use of these advanced os security features.

d. Adopt the use of session-private credential caches where they are available in preference to the current file based cache implementations.

Conclusion

The recent rise in credential theft has spurred an interest in the use of OTPs. We have proposed a method to reduce the burden on DOE users by developing a mechanism of using RADIUS to allow for cross site authentication, thus reducing the number of tokens required by each user and reducing the amount of replication at each site. The NOPS group has shown that this approach is technically viable.

The development of a DOE Science wide authentication fabric will increase the overall security of all sites. Many sites are currently pursuing similar, yet different routes toward OTP. This mish mash of deployments has the potential of resulting in some OTPs that are either deployed improperly or provide a false sense of security with a hardened external shell, but soft inside. As has been shown with recent security incidents, incidents that occur at one site can adversely affect other sites. A more unified approach to OTP can potentially reduce the overall impacts of credential thefts and security incidents.

Appendix 1: Sample configuration for FreeRADIUS username rewriting

The following is an excerpt from an email sent to the otp-eng mailing list describing how to configure FreeRADIUS to perform rewriting of local username into a fully qualified name of the form username@domain which can be used to route RADIUS authentication requests. The prototype is written in Perl, but can be easily rewritten in ‘C’ for speed and security concerns.

 In addition, I found a hint on the FreeRADIUS mailing list about how
to get a more scalable username mapping working. I've tested locally and
it seems to work.

 I've created a local alias for Tom Barron of "tbarron" that maps to
"tpb@ornl.gov" and one for Suzanne of "willoughby" that maps to
"sdq@ornl.gov". Please give them a try, as well as your actual, fully
qualified usernames.

 The basic approach is to setup a lookup table that translates from a
local username to the "actual" username (which may be local, or remote).
Early on in the processing of the radius request, you take the username
and perform the lookup, then replace the original username with the
actual username - then allow the radius server to do the normal
processing (in our case, normal processing means proxying to the
appropriate server).

 I used FreeRadius's rlm_perl and rlm_attr_rewrite modules to do the
translation. You need to use 2 different modules because:
 - the rlm_perl module can do a table lookup for translation
purposes, but is incapable of rewriting the original User-Name value in
the request
 - the rlm_rewrite_attr module can rewrite the original User-Name,
but is incapable of doing table lookups

 I took the sample example.pl script that comes with the rlm_perl
module and put this function into it:

sub authorize
{
 # Perform a lookup of the given User-Name and see if we have a
 # new username to map it to. If so, set a check item for it
 # so that a subsequent rewrite_attr function can replace the
 # username with this new value. If we don't have a match
 # then set the check item to the given User-Name
 #

 # lookup hash
 my %nameLookup = (sychan => 'nobody@nersc.gov',
 tbarron => 'tpb@ornl.gov',
 willoughby => 'sdq@ornl.gov');

 for (keys %RAD_REQUEST) {
 # This is for test only
 &radiusd::radlog(0, "rlm_perl:: $_ = $RAD_REQUEST{$_} ");
 }
 if ($nameLookup{$RAD_REQUEST{'User-Name'}}) {
 $RAD_CHECK{'User-Name'} =
$nameLookup{$RAD_REQUEST{'User-Name'}};
 } else {
 $RAD_CHECK{'User-Name'} = $RAD_REQUEST{'User-Name'};
 }
 #...
 #
 &radiusd::radlog(0, "rlm_perl::Set new User-Name attribute to
$RAD_CHECK{'User-Name'} ");

 return RLM_MODULE_OK;
}

 You then configure the FreeRadius server with the appropriate
configuration directives to execute the perl script, then run a rewrite
action on the subsequent packet:

from radiusd.conf:
[skip to appropriate section for rewrite definition]
 # rewrite arbitrary packets. Useful in accounting and
authorization.
 #
 ## This module is highly experimental at the moment. Please give
 ## feedback to the mailing list.
 #
 # The module can also use the Rewrite-Rule attribute. If it
 # is set and matches the name of the module instance, then
 # that module instance will be the only one which runs.
 #
 # Also if new_attribute is set to yes then a new attribute
 # will be created containing the value replacewith and it
 # will be added to searchin (packet, reply or config).
 # searchfor,ignore_case and max_matches will be ignored in that
case.

 #
 attr_rewrite newname {
 attribute = User-Name
 # may be "packet", "reply", or "config"
 searchin = packet
 searchfor =~ ".*"
 replacewith = "%{check:User-Name}"
 ignore_case = no
 new_attribute = no
 max_matches = 1
 ## If set to yes then the replace string will be
appended to the original string
 append = no

 }

[skip to modules definition section]
 # Lets try the rlm_perl module - sychan
 perl {
 module = ${confdir}/example.pl
 func_authorization = "authorize"
 }

[skip to authorize definition section]
authorize {
 #
 # The preprocess module takes care of sanitizing some bizarre
 # attributes in the request, and turning them into attributes
 # which are more standard.
 #
 # It takes care of processing the 'raddb/hints' and the
 # 'raddb/huntgroups' files.
 #
 # It also adds a Client-IP-Address attribute to the request.
 preprocess

 # lets try the perl module
 perl

 # lets try rewriting
 newname

 [rest of authorize section ignored]

 After setting this up, the name translation seems to work.
 Note that in the example.pl script, I am using a hardcoded hash - it
would be a trivial change to make it a tied hash to a Berkeley DB file,
allowing you to get a much more scalable and manageable way to do the
translations.

 Since this is just a prototype, hacking it up in perl is fine. I
suspect that you could probably actually run this in production if you
wanted to: the rlm_perl and rlm_attr_rewrite modules are labelled as
"experimental" but it seems that many sites are using them in
production. The perl module is an embedded interpreter, and I suspect
that it is doing bytecode caching, so the overhead is probably very
small. My experience is that the embedded perl interpreters are
generally very quick, and they run pretty cleanly unless you start to
depend too much on the perl garbage collector. With complex data
structures, the perl reference counting garbage collector used to miss
things. Maybe things have changed since then. In any case, I believe
that if you avoid creating lots of stuff in perl's heap, you should be
safe from GC issues.

