NEPHELINE FORMATION STUDY FOR SLUDGE BATCH 4 (SB4): PHASE 3 EXPERIMENTAL RESULTS

K.M. Fox
T.B. Edwards
D.K. Peeler
D.R. Best
I.A. Reamer
R.J. Workman

May 2006

Process Science and Engineering Section Savannah River National Laboratory Aiken, SC 29808

DISCLAIMER

Abstract

This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, or product or process disclosed herein or represents that its use will not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trademark, name, manufacturer or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring of same by WSRC or by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America

Prepared For
U.S. Department of Energy

The Savannah River National Laboratory is operated for the U.S. Department of Energy by Washington Savannah River Company.

Keywords: glass, durability, crystallization, nepheline

Retention: permanent

NEPHELINE FORMATION STUDY FOR SLUDGE BATCH 4 (SB4): PHASE 3 EXPERIMENTAL RESULTS

K.M. Fox
T.B. Edwards
D.K. Peeler
D.R. Best
I.A. Reamer
R.J. Workman

May 2006

Process Science and Engineering Section Savannah River National Laboratory Aiken, SC 29808

REVIEWS AND APPROVALS

AUTHORS:

K.M. Fox, Materials Science and Technology Section Date

T.B. Edwards, Statistical Consulting Section	Date
D.K. Peeler, Process Science and Engineering Section	Date
D.R. Best, Process Science and Engineering Section	Date

I.A. Reamer, Process Science and Engineering Section	Date

R.J. Workman, Process Science and Engineering Section Date

TECHNICAL REVIEWER:

M.E. Smith, Process Engineering Technology Group Date

APPROVERS:

R.E. Edwards, Manager, Process Science and Engineering Section Date
C.C. Herman, Manager, Process Engineering Technology Group Date
$\begin{array}{lr}\text { J.E. Occhipinti, Manager, Process Cognizant Engineering } & \text { Date } \\ \text { Waste Solidification Engineering } & \end{array}$

EXECUTIVE SUMMARY

This Phase 3 study was undertaken to complement the previous phases of the nepheline formation studies ${ }^{1,2}$ by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of nepheline crystallization in Sludge Batch 4 (SB4) glasses and into the impact of such phases on the durability of the SB4 glasses. The Phase 3 study had two primary objectives. The first was to continue to demonstrate the ability of the discriminator value to adequately predict the nepheline formation potential for specific glass systems of interest. The second was to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, sixteen glasses were selected based on the most recent SB4 compositional projection, Case 15C Blend $1 .{ }^{3}$ Four different frits were included, based on previous assessments of projected operating windows and melt rate, ${ }^{4,5}$ with four WLs selected for each frit. Eight of these frit-sludge combinations covered WLs which tightly bound the nepheline discriminator value of 0.62 , with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the Process Composition Control System (PCCS) to support Slurry Mix Evaporator (SME) acceptability decisions. The remaining eight frit-sludge combinations targeted lower WLs (35 and 40\%) and were prepared and analyzed to contribute needed data to the ComPro ${ }^{\mathrm{TM}}$ database ${ }^{6}$ to support a potential variability study for SB4.

Each Phase 3 glass was batched and melted following established SRNL procedures. ${ }^{7,8}$ Specimens of each glass were heat-treated to simulate cooling along the centerline of a DWPF-type canister (ccc) ${ }^{9}$ to gauge the effects of thermal history on the product performance. Visual observations on both quenched and ccc glasses were documented. A representative sample from each glass was submitted to the SRNL Process Science Analytical Laboratory (PSAL) for chemical analysis to confirm that the as-fabricated glasses corresponded to the defined target compositions. The Product Consistency Test $(\mathrm{PCT})^{10}$ was performed in triplicate on each Phase 3 quenched and ccc glass to assess chemical durability. The experimental test matrix also included the Environmental Assessment (EA) glass ${ }^{11}$ and the Approved Reference Material (ARM) glass. Representative samples of all Phase 3 ccc glasses were submitted to Analytical Development (AD) for X-ray diffraction (XRD) analysis.

Chemical composition measurements indicated that the experimental glasses were close to their target compositions. The chemical composition data suggest essentially full retention of $\mathrm{SO}_{4}{ }^{2-}$ in the glass (i.e., no volatilization during the fabrication process). There were no signs of a salt layer on any of the Phase 3 glasses upon cooling. These results suggest that the $0.6 \mathrm{wt} \% \mathrm{SO}_{4}{ }^{2-}$ limit is applicable for the SB4 system.

PCT results showed that all of the Phase 3 quenched glasses were acceptable as compared with the EA reference glass. The highest normalized release for boron (NL [B]) for the quenched glasses was $1.26 \mathrm{~g} / \mathrm{L}$, as compared to $16.695 \mathrm{~g} / \mathrm{L}$ for the EA glass. ${ }^{11}$ The durabilities of some of the ccc glasses, particularly those with higher WLs, were statistically greater than their quenched counterparts. However, this was shown to be of little practical significance, as the durabilities of the ccc glasses were also all considerably better than that of the EA reference glass, with the highest NL [B] being $3.23 \mathrm{~g} / \mathrm{L}$. All but one of the glasses in the Phase 3 study had durabilities that were predictable based on the $\Delta \mathrm{G}_{\mathrm{P}}$ model. The glass that was not predicable using the model contained both spinel and nepheline, and had a nepheline discriminator value of less than 0.62 . Since the glass was not homogenous, it is expected that the model will not correctly predict its performance. ${ }^{12}$ Also, a glass with a nepheline discriminator value of less than 0.62 is likely to be screened out from production at DWPF upon implementation of a nepheline discriminator in PCCS.

Visual observations and PCT results indicated that all of the Phase 3 quenched glasses were amorphous. For the ccc glasses, XRD results indicated that the lower WL glasses (35 and $40 \mathrm{wt} \%$) in each frit-sludge group were amorphous. The higher WL glasses in each frit-sludge group were shown by XRD to contain spinel (trevorite, $\mathrm{NiFe}_{2} \mathrm{O}_{4}$). XRD showed that two of the highest WL glasses contained nepheline $\left(\mathrm{NaAlSiO}_{4}\right)$ as well. It is possible that some of the other high WL glasses also contained some nepheline, but that the amount of nepheline crystallization was below the detection limit associated with XRD (estimated to be $\sim 0.5 \mathrm{wt} \%$). Nepheline crystallization was shown to result in a decrease in durability for some of the high WL glasses. In the worst case (within the glasses studied here), the NL $[B]$ increased from $1.26 \mathrm{~g} / \mathrm{L}$ (quenched) to $3.23 \mathrm{~g} / \mathrm{L}$ (ccc). However, this $\mathrm{NL}[\mathrm{B}]$ is still acceptable as compared to the EA reference glass $(16.695 \mathrm{~g} / \mathrm{L}) .{ }^{11}$

The results of the Phase 3 study concur with the earlier phases of the nepheline studies in that a nepheline discriminator of 0.62 appears to be the appropriate value for screening out glasses with the potential for nepheline crystallization (and therefore reduced chemical durabilities) upon slow cooling. The nepheline discriminator was also useful in screening out a glass that would be unpredictable by the $\Delta \mathrm{G}_{\mathrm{P}}$ model. ${ }^{12}$ Further discussion of a nepheline discriminator for possible inclusion in DWPF process controls will be addressed in a forthcoming report.

With respect to frit selection for SB4, the Phase 3 results indicate that Frits 418, 425, 501 and 502 are all acceptable candidates, based on chemical durability and devitrification upon slow cooling. Differences in chemical durability and devitrification behavior were relatively small between the four frits studied as part of Phase 3. The results also indicate that WLs of $35-40 \mathrm{wt} \%$ should produce acceptable glasses with these frits. However, melt rate is also an important factor in frit selection. Melt rate studies on these frits are currently underway, and will likely have a significant impact on frit selection due to the high $\mathrm{Al}_{2} \mathrm{O}_{3}$ content of SB4.

TABLE OF CONTENTS

LIST OF TABLES ix
LIST OF FIGURES x
LIST OF ACRONYMS xi
1.0 Introduction 1
2.0 Experimental Procedure 5
2.1 Glass Selection. 5
2.2 Glass Fabrication 7
2.3 Property Measurements 7
2.3.1 Compositional Analysis 7
2.3.2 $\mathrm{SO}_{4}{ }^{2-}$ Solubility 7
2.3.3 Product Consistency Test (PCT) 8
2.3.4 X-Ray Diffraction Analysis 8
3.0 Results and Discussion 9
3.1 A Statistical Review of the Chemical Composition Measurements for the Phase 3 Nepheline Glasses 9
3.1.1 Measurements in Analytical Sequence 9
3.1.2 Batch 1 and Uranium Standard Results 9
3.1.3 Composition Measurements by Glass Number 10
3.1.4 Measured versus Targeted Compositions 11
3.1.5 $\mathrm{SO}_{4}{ }^{2-}$ Retention. 11
3.2 A Statistical Review of the PCT Measurements 12
3.2.1 Measurements in Analytical Sequence 13
3.2.2 Results for the Samples of the Multi-Element Solution Standard 13
3.2.3 Measurements by Glass Number 13
3.2.4 Normalized PCT Results 14
3.2.5 Effects of Heat Treatment on PCTs 18
3.2.6 Predicted versus Measured PCTs 20
3.2.7 Values of the Nepheline Constraint and Predictability 21
3.3 Homogeneity 22
3.3.1 Visual Observations 23
3.3.2 XRD Results 25
4.0 Conclusions 27
5.0 Recommendations 29
6.0 References 31
Appendix A 35
Appendix B 45
Appendix C 53
Appendix D 61
Appendix E 119

LIST OF TABLES

Table 2-1. Composition of Candidate Frits 5
Table 2-2. Target Compositions of Glasses Selected for SB4 Case 15C Blend 1 in wt\% 6
Table 3-1. Results from Samples of the Multi-Element Solution Standard 13
Table 3-2. Normalized Release Values for the Nepheline Phase 3 Glasses 15
Table 3-3. Values of the nepheline discriminator calculated for each glass using the measured, measured bias-corrected, and targeted compositions. 20
Table 3-4. Visual observations and XRD results for the Phase 3 glasses. 24

LIST OF FIGURES

Figure 3-1. Targeted versus measured $\mathrm{SO}_{4}{ }^{2-}$ values for the Phase 3 glasses. 12
Figure 3-2. Normalized boron release and nepheline discriminator values for the quenched and ccc Phase 3 glasses. 19
Figure 3-3. NL [B] versus $\Delta \mathrm{G}_{\mathrm{P}}$ for the quenched and ccc Phase 3 glasses. 21
Figure 3-4. Scatter Plot Matrix of $\log \mathrm{NL}[\mathrm{B} g / \mathrm{L}]$, Nepheline Constraint, and $\Delta \mathrm{G}_{\mathrm{P}}$ 22

LIST OF ACRONYMS

AD	Analytical Development
ANOVA	Analysis of Variance
ARM	Approved Reference Material glass
ARP	Actinide Removal Process
bc	bias-corrected
CBU	Closure Business Unit
ccc	centerline canister cooled
DWPF	Defense Waste Processing Facility
EA	Environmental Assessment glass
HLW	High Level Waste
ICP-AES	Inductively Coupled Plasma - Atomic Emission Spectroscopy
LM	lithium-metaborate dissolution
LWO	Liquid Waste Operations
MAR	Measurement Acceptability Region
PCCS	Product Composition Control System
PCT	Product Consistency Test
PF	sodium peroxide fusion dissolution
PSAL	Process Science Analytical Laboratory
SB4 / SB5	Sludge Batch 4 / Sludge Batch 5
SME	Slurry Mix Evaporator
SRL	Savannah River Laboratory
SRNL	Savannah River National Laboratory
TL	liquidus temperature
WL	Waste Loading (weight percent)
XRD	X-Ray Diffraction

This page intentionally left blank.

1.0 Introduction

Crystallization (or devitrification) is an important factor in the processing and performance of nuclear waste glass. In terms of processing, the Defense Waste Processing Facility (DWPF) uses a liquidus temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$ model ${ }^{13}$ and an imposed T_{L} limit for feed acceptability to avoid bulk devitrification within the melter. In terms of product quality or the durability of the waste form, the impact of devitrification depends on the type and extent of crystallization.

Numerous studies ${ }^{9,14-19}$ have assessed the potential for devitrification in various high level waste (HLW) glasses and its impact on durability. These studies generally agree that the impact of devitrification on durability is dependent upon the type and extent of crystallization. For example, a strong increase in the rate of glass dissolution (or decrease in durability) was observed in previous studies ${ }^{16,20,21}$ of glasses that formed aluminum-containing crystals, such as $\mathrm{NaAlSiO}_{4}$ (nepheline) and $\mathrm{LiAlSi}_{2} \mathrm{O}_{6}$, or crystalline SiO_{2}. This is in contrast to the results from a study by Bickford and Jantzen. ${ }^{14}$ Their results indicated that the formation of spinel had little or no effect on the durability of Savannah River Laboratory (SRL) 165- or SRL 131-based glasses, while the formation of acmite produced a small but noticeable increase in the rate of dissolution of the matrix glass. The impact of devitrification on durability is complex and depends on several interrelated factors including the change in residual glass composition, the development of internal stress or microcracks, and preferential attack at the glass - crystal interface.

While the addition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to borosilicate glasses generally enhances the durability of the waste form (through creation of network-forming tetrahedral $\mathrm{Na}^{+}-\left[\mathrm{AlO}_{4 / 2}\right]^{-}$pairs), nepheline formation, which depends in part on the $\mathrm{Al}_{2} \mathrm{O}_{3}$ content, can result in severe deterioration of the chemical durability of the glass through residual glass compositional changes. Three moles of glass forming oxides $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and $\left.2 \mathrm{SiO}_{2}\right)$ are removed from the continuous glass phase per each mole of $\mathrm{Na}_{2} \mathrm{O}$ as nepheline crystallizes. Therefore, nepheline formation produces an $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2} deficient continuous glass matrix (relative to the same composition without crystallization) which reduces the durability of the final product. The magnitude of the reduction ultimately depends on the extent (volume fraction) of crystallization.

Li et al. ${ }^{18,22}$ indicated that sodium alumino-borosilicate glasses are prone to nepheline crystallization if their compositions projected on the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ ternary fall within or close to the nepheline primary phase field. In particular, glasses with $\mathrm{SiO}_{2} /\left(\mathrm{SiO}_{2}+\mathrm{Na}_{2} \mathrm{O}+\mathrm{Al}_{2} \mathrm{O}_{3}\right)>0.62$, where the chemical formulae stand for the mass fractions in the glass, do not tend to precipitate nepheline as a primary crystalline phase. The potential for formation of nepheline and/or other aluminum/silicon-containing crystals exists in the Sludge Batch 4 (SB4) system based on the projected compositional views coupled with the initial frit development strategy. Compositional projections of Sludge Batch 4 (SB4) ${ }^{23}$ indicate that the sludge will be enriched in $\mathrm{Al}_{2} \mathrm{O}_{3}$ relative to the $\mathrm{Al}_{2} \mathrm{O}_{3}$ concentrations of previous sludge batches processed through the DWPF. Candidate frits have been identified which range in $\mathrm{Na}_{2} \mathrm{O}$ concentration from $8-13 \%$ by mass for the SB 4 compositional projections. ${ }^{24}$ The combination of high $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ concentrations, coupled with lower SiO_{2} concentrations as waste loadings are increased (given the primary source of SiO_{2} is from the frit), shifts the composition toward the nepheline phase field, raising the potential for nepheline crystallization. Therefore, strategic frit development efforts ${ }^{4}$ have been made to suppress the development of nepheline formation by lowering the $\mathrm{Na}_{2} \mathrm{O}$ content while increasing $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and/or $\mathrm{Li}_{2} \mathrm{O}$ concentration in the frit.

Peeler et al. ${ }^{1,25}$ provided insight into the potential impact of nepheline formation on SB4 glasses based on the Lilliston ${ }^{23}$ SB4 compositional projections. In that study (referred to as Phase 1), twelve SB4-based glasses were fabricated (only two of which were prone to nepheline formation using the 0.62 value ${ }^{22}$ as a guide) and the durability of each was measured. The results indicated that all the glasses in the study (both quenched and centerline canister cooled (ccc)) had a durability as defined by the Product Consistency Test (PCT) ${ }^{10}$ that was acceptable. More specifically, the normalized boron release ($\mathrm{NL}[\mathrm{B}]$) values for all the Phase 1 nepheline glasses were much lower than the Environmental Assessment (EA) glass value of $16.695 \mathrm{~g} / \mathrm{L} .{ }^{11}$ The most durable glass was NEPH-04 (quenched) with a NL [B] of $0.61 \mathrm{~g} / \mathrm{L}$, while the least durable glass was NEPH-01 (ccc) with a NL $[B]$ of $2.47 \mathrm{~g} / \mathrm{L}$ (based on the measured composition).

The Phase 1 PCT results suggested that for the two glasses prone to nepheline formation (NEPH-01 and NEPH-02), a statistically significant difference in PCT response was observed between the quenched and ccc versions but the impact on durability was of little or no practical concern. When the PCT responses were coupled with the X-ray diffraction (XRD) results and/or visual observations, it was concluded that the formation of nepheline in these glasses did have a negative impact on durability. However, the impact (as seen by a difference between the quenched and ccc PCT responses), while statistically significant, was not of practical concern.

The results of the Phase 1 study suggested that the 0.62 value, as proposed by Li et al., ${ }^{22}$ appeared to be a reasonable guide to monitor the potential for nepheline formation in the alumino-borosilicate based SB4 glass system. The results also suggested that the presence of nepheline in the glasses studied during this phase had little or no practical impact on durability as measured by the PCT. This latter statement must be qualified to some extent given that only two glasses were selected which were actually prone to nepheline formation based on the general guide and that the volume fraction of nepheline formed based on XRD results was relatively low (~ 0.5 vol. $\%$). Given that the waste loadings (WLs) for the Phase 1 glasses were limited to 40%, if higher WLs were considered, the potential for nepheline formation (and potentially the volume fraction of crystallization) could increase, and the likelihood of observing a significant and practical difference in PCT response could be realized.

After issuance of the Phase 1 report, revised compositional projections from the Closure Business Unit (CBU) for SB4 were issued. ${ }^{26,27}$ These revised projections were framed around three decision areas: the sodium molarity of the sludge (at values of $1 \mathrm{M} \mathrm{Na}^{+}$and $1.6 \mathrm{M} \mathrm{Na}^{+}$), the Sludge Batch 3 (SB3) heel that will be included in the batch (expressed in inches of SB3 sludge with values of 0,40 , and 127"), and the introduction of an Actinide Removal Process (ARP) stream into the sludge (which was represented by six options: no ARP, ARP-A, ARP-E, ARP-K, ARP-M, and ARP-V). In response to these revised projections, candidate frits whose operating windows (i.e., waste loading intervals that meet Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) criteria) are robust to and/or selectively optimal for these sludge options were identified via a paper study approach. ${ }^{28}$ The results of that paper study indicated that candidate frits are available for the various SB4 options which provide relatively large operating windows. Besides the revised compositional projections, the primary difference between this second assessment ${ }^{28}$ and the first ${ }^{24}$ was that the 0.62 nepheline discriminator value was used as a screening tool to evaluate the potential impact of nepheline formation on the projected operating windows. The results of activating the nepheline discriminator ${ }^{28}$ indicated that access to higher WLs for almost all SB4 frit - sludge options was restricted when the nepheline discriminator was applied. That is, a relatively large WL interval was available in which all PCCS MAR criteria were satisfied except for the nepheline discriminator value. This suggested possible issues associated with crystallization and its impact on durability. Therefore, the value of the nepheline discriminator was challenged to determine if access to those higher WLs could be regained without compromising durability.

Twenty eight glasses were identified for Phase 2 of the nepheline study ${ }^{29}$ that intentionally challenged the nepheline discriminator value based on the $1.6 \mathrm{M} \mathrm{Na}^{+}, 40$ " and $1.6 \mathrm{M} \mathrm{Na}^{+}, 127^{\prime \prime}$ sludge options. ${ }^{26}$, ${ }^{27}$ These Phase 2 glasses were selected to complement the Phase 1 study ${ }^{1}$ by continuing the investigation into the ability of the nepheline discriminator to predict the crystallization of nepheline in SB4 glasses and the impact of nepheline crystallization on durability. In general, the Phase 2 glasses were selected to cover WLs over which nepheline was the only criterion restricting acceptability. The primary difference between the Phase 1 and Phase 2 nepheline studies is that Phase 2 challenged the nepheline discriminator for all glasses - not just a few select glasses as in Phase 1. In order to meet this objective, WLs of $\sim 40 \%$ or higher were targeted for the Phase 2 glasses whereas 40% was the maximum WL used during Phase 1 . As previously mentioned, the probability of nepheline formation increases when WL increases (at higher WLs, $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ concentrations increase and the SiO_{2} concentration decreases).

The Phase 2 glasses were fabricated and the durability of each (as measured by the PCT) was assessed for both quenched and ccc samples. All of the Phase 2 quenched glasses had normalized boron releases of less than $1.19 \mathrm{~g} / \mathrm{L}$, which is approximately an order of magnitude better than the EA benchmark glass. ${ }^{11}$ However, the potential for crystallization was suppressed kinetically in the quenched glasses. That is, the glasses may be prone to nepheline formation but the rapid cooling limited the formation of nepheline (or other crystalline phases).

For the ccc glasses, visual observations suggested that as the targeted WL within a specific frit sludge system was increased, the degree of crystallization became more extensive. This is not unexpected as the slower cooling provides a glass with a composition that is thermodynamically favorable for nepheline formation (i.e., a composition that falls within the nepheline primary phase field) the kinetic opportunity to devitrify. XRD results indicated the presence of nepheline, trevorite ($\mathrm{NiFe}_{2} \mathrm{O}_{4}$), and/or lithium silicate $\left(\mathrm{Li}_{2} \mathrm{SiO}_{3}\right)$ in select Phase 2 ccc glasses. In general, as the WL increased within a specific frit - sludge system, the glass transitioned from amorphous or from containing crystalline phase(s) such as spinels at the lowest WL, to spinel and nepheline at the intermediate WL, and ultimately to spinel, nepheline, and lithium silicate at the highest WL. As a result, the difference between the quenched and ccc PCT response for each specific frit system increased as WL increased. Coupling this trend with the crystallization results, one can easily explain the durability responses as a function of WL. As WL increased within a specific frit - sludge system, the durability of the ccc based glasses decreased due to the formation of nepheline and/or lithium silicate. These trends are in agreement with previous observations that the impact on durability is dependent upon the type and extent of crystallization and the resulting change to the residual glass composition.

The results of the Phase 1 and Phase 2 studies suggest that the 0.62 value is a reasonable guide to monitor SB4 - frit systems for potential nepheline formation upon ccc. The significance of "ccc" in this sentence is based on the fact that none of the Phase 1 or Phase 2 quenched glasses showed any sign of nepheline formation (based on the PCT response) although some of the Phase 2 glasses had nepheline discriminator values as low as 0.541 . It was only when the glass was provided the kinetic opportunity to devitrify through the slow ccc schedule that nepheline formed and had an adverse impact on durability.

In Phase 2, the lower WL glasses showed no significant or practical differences in durability when comparing quenched and ccc glasses, which is consistent with the Phase 1 results. It was only at the higher WLs that nepheline formation had a significant impact on durability, where ccc glasses had normalized releases for boron that exceeded that of the EA glass. The practical implication to DWPF is that higher WL glasses should be avoided for these types of glass systems (i.e., those containing
high $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$). The primary question becomes: how can potential nepheline formation regions be avoided or controlled in DWPF if necessary? A formal recommendation of the specific path was not made in the Phase 2 report, ${ }^{2}$ but a general discussion was provided on available options. These included: (1) use of an administrative control on waste loading, (2) implementation of a nepheline discriminator value in the Product Composition Control System (PCCS), or (3) strategic frit development efforts to mitigate nepheline formation.

For Phase 3 of the nepheline study, 16 glasses have been selected to complement the earlier work ${ }^{1,2}$ by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of nepheline crystallization in SB4 glasses and into the impact of such phases on the durability of the SB4 glasses. The Phase 3 study has two primary objectives. The first is to continue to demonstrate the ability of the discriminator value to adequately predict the nepheline formation potential for specific glass systems of interest. The second is to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, glasses were selected to cover WLs that tightly bound the nepheline discriminator value of 0.62 , with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the PCCS to support Slurry Mix Evaporator (SME) acceptability decisions. In addition, glasses targeting lower WLs (35 and 40%) were prepared and analyzed to contribute needed data to the ComPro ${ }^{\mathrm{TM}}$ database in anticipation of a variability study for SB4.

The results of this study will provide valuable input for the frit development efforts and subsequent feedback to Liquid Waste Operations (LWO) regarding the viability of four of the frit options under consideration and the need for incorporating a nepheline discriminator into administrative or process controls. Additional data provided through other studies, such as melt rate information, will also influence the frit recommendation decision for SB4 vitrification. The work was initiated by a Technical Task Request ${ }^{30}$ and is covered by a Technical Task and QA Plan. ${ }^{31}$

2.0 Experimental Procedure

2.1 Glass Selection

A detailed description of the Phase 3 glass selection process has been given in a previous report. ${ }^{32} \mathrm{~A}$ brief summary is provided below. It should be noted that although the primary focus of these glasses is SB4, the Phase 3 data will be applicable to other high $\mathrm{Al}_{2} \mathrm{O}_{3}$ waste streams, such as SB5.

In selecting the Phase 3 glasses, a window of nepheline discriminator values was first determined using the Phase 1 and 2 results. The lower end of the window was set at a value of 0.59 , where it was expected that the glasses would begin to have a measurable difference in PCT response between the quenched and ccc specimens, but would not have unacceptable (EA-like) responses. The upper end of the window was set at 0.62 , as the previous phases of the work have shown this value to be a reliable indicator of the potential for nepheline crystallization in ccc glasses.

The frits considered in this study, including two frits (Frit 418 and Frit 425) used for the earlier frit development efforts, ${ }^{28}$ are described in Table 2-1. These frits are currently primary candidates for use with SB4 based on previous assessments of projected operating windows and melt rate., ${ }^{4}$

Table 2-1. Composition (as mass fractions) of Candidate Frits

Frit ID	$\mathbf{B}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$	$\mathbf{L i}_{\mathbf{2}} \mathbf{O}$	$\mathbf{N a}_{\mathbf{2}} \mathbf{O}$	$\mathbf{S i O}_{\mathbf{2}}$
418	0.08	0.08	0.08	0.76
425	0.08	0.08	0.10	0.74
501	0.09	0.10	0.05	0.76
502	0.08	0.11	0.05	0.76

Only one sludge option, Case 15C Blend 1 (~ 96 inch SB3 heel, $1.4 \mathrm{M} \mathrm{Na}^{+}$before blending), ${ }^{3}$ was employed in the Phase 3 selection process as this option is seen as providing the most likely representation of SB4. This sludge option was combined with the four frits in Table 2-1 in a paper study where the PCCS MAR assessments and nepheline discriminator values were determined for a WL interval of 25 to $60 \% .{ }^{4}$ The WLs for each sludge - frit combination that gave nepheline discriminator values at the upper and lower bounds of the window described above were then chosen for this Phase 3 study. The paper study indicated that some of the higher WLs chosen will produce glasses that have an unacceptable T_{L} or viscosity based on the PCCS MAR results. This was intentionally disregarded in favor of concentrating on the potential for nepheline formation.

In addition, glass compositions at WLs of 35 and 40% (a range more likely to be used by DWPF) were chosen to contribute needed data to the ComPro ${ }^{\mathrm{TM}}$ database ${ }^{6}$ in anticipation of a variability study for SB4. The 16 glass compositions generated by the selection process are given in Table 2-2. Unique identifiers for these glasses are provided in the first row of the table, and the value of the nepheline discriminator for each glass is also included.

Table 2-2. Target Compositions of Glasses Selected for SB4 Case 15C Blend 1 in wt\%

Glass ID	$\begin{gathered} \hline \text { NEPH } \\ 3-41 \\ \hline \end{gathered}$	$\begin{gathered} \text { NEPH } \\ 3-42 \end{gathered}$	$\begin{gathered} \text { NEPH } \\ 3-43 \end{gathered}$	$\begin{gathered} \hline \hline \text { NEPH } \\ 3-44 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { NEPH } \\ 3-45 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NEPH } \\ 3-46 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \hline \text { NEPH } \\ 3-47 \\ \hline \end{array}$	$\begin{gathered} \text { NEPH } \\ 3-48 \end{gathered}$	$\begin{gathered} \hline \text { NEPH } \\ 3-49 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { NEPH } \\ 3-50 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { NEPH } \\ 3-51 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NEPH } \\ 3-52 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { NEPH } \\ 3-53 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NEPH } \\ 3-54 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { NEPH } \\ 3-55 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { NEPH } \\ 3-56 \\ \hline \end{gathered}$
Frit ID	418	418	418	418	501	501	501	501	425	425	425	425	502	502	502	502
\%WL	35	40	46	50	35	40	47	51	35	40	44	48	35	40	48	51
neph. discrim.	0.702	0.667	0.624	0.593	0.721	0.685	0.631	0.599	0.684	0.650	0.622	0.594	0.721	0.685	0.623	0.599
$\mathrm{Al}_{2} \mathrm{O}_{3}$	8.682	9.922	11.411	12.403	8.682	9.922	11.659	12.651	8.682	9.922	10.915	11.907	8.682	9.922	11.907	12.651
$\mathrm{B}_{2} \mathrm{O}_{3}$	5.200	4.800	4.320	4.000	5.850	5.400	4.770	4.410	5.200	4.800	4.480	4.160	5.200	4.800	4.160	3.920
BaO	0.044	0.050	0.058	0.063	0.044	0.050	0.059	0.064	0.044	0.050	0.056	0.061	0.044	0.050	0.061	0.064
CaO	0.836	0.955	1.098	1.194	0.836	0.955	1.122	1.218	0.836	0.955	1.051	1.146	0.836	0.955	1.146	1.218
$\mathrm{Ce}_{2} \mathrm{O}_{3}$	0.052	0.060	0.069	0.075	0.052	0.060	0.070	0.076	0.052	0.060	0.066	0.072	0.052	0.060	0.072	0.076
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.074	0.085	0.098	0.106	0.074	0.085	0.100	0.108	0.074	0.085	0.093	0.102	0.074	0.085	0.102	0.108
CuO	0.021	0.024	0.028	0.030	0.021	0.024	0.028	0.031	0.021	0.024	0.026	0.029	0.021	0.024	0.029	0.031
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	9.298	10.626	12.220	13.283	9.298	10.626	12.486	13.548	9.298	10.626	11.689	12.751	9.298	10.626	12.751	13.548
$\mathrm{K}_{2} \mathrm{O}$	0.120	0.138	0.158	0.172	0.120	0.138	0.162	0.175	0.120	0.138	0.151	0.165	0.120	0.138	0.165	0.175
$\mathrm{La}_{2} \mathrm{O}_{3}$	0.038	0.043	0.050	0.054	0.038	0.043	0.051	0.055	0.038	0.043	0.048	0.052	0.038	0.043	0.052	0.055
$\mathrm{Li}_{2} \mathrm{O}$	5.200	4.800	4.320	4.000	6.500	6.000	5.300	4.900	5.200	4.800	4.480	4.160	7.150	6.600	5.720	5.390
MgO	0.873	0.998	1.148	1.248	0.873	0.998	1.173	1.273	0.873	0.998	1.098	1.198	0.873	0.998	1.198	1.273
MnO	1.918	2.192	2.521	2.740	1.918	2.192	2.576	2.795	1.918	2.192	2.411	2.630	1.918	2.192	2.630	2.795
$\mathrm{Na}_{2} \mathrm{O}$	12.928	13.632	14.477	15.040	10.978	11.832	13.027	13.711	14.228	14.832	15.315	15.798	10.978	11.832	13.198	13.711
NiO	0.552	0.631	0.726	0.789	0.552	0.631	0.741	0.804	0.552	0.631	0.694	0.757	0.552	0.631	0.757	0.804
PbO	0.032	0.036	0.042	0.045	0.032	0.036	0.043	0.046	0.032	0.036	0.040	0.043	0.032	0.036	0.043	0.046
$\mathrm{SO}_{4}{ }^{2-}$	0.468	0.535	0.615	0.669	0.468	0.535	0.629	0.682	0.468	0.535	0.589	0.642	0.468	0.535	0.642	0.682
SiO_{2}	50.840	47.245	42.932	40.057	50.840	47.245	42.213	39.338	49.540	46.045	43.250	40.454	50.840	47.245	41.494	39.338
ThO_{2}	0.023	0.026	0.030	0.033	0.023	0.026	0.031	0.034	0.023	0.026	0.029	0.032	0.023	0.026	0.032	0.034
TiO_{2}	0.009	0.011	0.012	0.013	0.009	0.011	0.013	0.014	0.009	0.011	0.012	0.013	0.009	0.011	0.013	0.014
$\mathrm{U}_{3} \mathrm{O}_{8}$	2.674	3.056	3.515	3.820	2.674	3.056	3.591	3.897	2.674	3.056	3.362	3.667	2.674	3.056	3.667	3.897
ZnO	0.034	0.039	0.045	0.049	0.034	0.039	0.046	0.050	0.034	0.039	0.043	0.047	0.034	0.039	0.047	0.050
ZrO_{2}	0.083	0.095	0.109	0.119	0.083	0.095	0.111	0.121	0.083	0.095	0.104	0.114	0.083	0.095	0.114	0.121

2.2 Glass Fabrication

Each Phase 3 glass was prepared from the proper proportions of reagent-grade metal oxides, carbonates, $\mathrm{H}_{3} \mathrm{BO}_{3}$, and salts in $150-\mathrm{g}$ batches. ${ }^{7}$ The raw materials were thoroughly mixed and placed into a 95% Platinum $/ 5 \%$ Gold $250-\mathrm{mL}$ crucible. The batch was placed into a high-temperature furnace at the target melt temperature of $1150^{\circ} \mathrm{C} .^{8}$ After an isothermal hold at $1150^{\circ} \mathrm{C}$ for 1.0 h , the crucible was removed from the furnace. The glass was poured onto a clean stainless steel plate and allowed to air cool (quench). The glass pour patty was used as a sampling stock for the various property measurements (i.e., chemical composition and durability).

Approximately 25 g of each glass was heat-treated to simulate cooling along the centerline of a DWPF-type canister ${ }^{9}$ to gauge the effects of thermal history on the product performance. This cooling schedule is referred to as the ccc curve. Visual observations on both quenched and ccc glasses were documented. ${ }^{\text {a }}$

2.3 Property Measurements

This section provides a general discussion of the chemical composition analyses, the PCTs, and the XRD analyses of the Phase 3 glasses.

2.3.1 Compositional Analysis

To confirm that the as-fabricated glasses corresponded to the defined target compositions, a representative sample from each glass was submitted to the SRNL Process Science Analytical Laboratory (PSAL) for chemical analysis under the auspices of an analytical plan. The plan (see Appendix A) identified the cations to be analyzed and the dissolution techniques (i.e., sodium peroxide fusion $[\mathrm{PF}]$ and lithium-metaborate $[\mathrm{LM}]$) to be used. The samples prepared by LM were used to measure for barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), copper (Cu), potassium (K), lanthanum (La), magnesium (Mg), sodium (Na), lead (Pb), sulfur (S), thorium (Th), titanium (Ti), zinc (Zn), and zirconium (Zr) concentrations. Samples prepared by PF were used to measure for aluminum (Al), boron (B), iron (Fe), lithium (Li), manganese (Mn), nickel (Ni), silicon (Si), and uranium (U). Each glass was prepared in duplicate for each cation dissolution technique (PF and LM). All of the prepared samples were analyzed (twice for each element of interest) by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES) with the instrumentation being recalibrated between the duplicate analyses. The analytical plan was developed in such a way as to provide the opportunity to evaluate potential sources of error. Glass standards were also intermittently measured to assess the performance of the ICP-AES instrument over the course of these analyses.

2.3.2 $\mathrm{SO}_{4}{ }^{2-}$ Solubility

Although not a primary focus of the Phase 3 work, $\mathrm{SO}_{4}{ }^{2-}$ solubility is a secondary concern in this study. The applicability of the current $0.6 \mathrm{wt} \% \mathrm{SO}_{4}{ }^{2-}$ limit (established for the Frit 418 - SB3 system ${ }^{33}$) to SB4 was investigated. From Table 2-2, the targeted $\mathrm{SO}_{4}{ }^{2-}$ concentrations in the Phase 3 glasses range from 0.468 to $0.682 \mathrm{wt} \%$. Previous tests have suggested that the use of reagent grade raw materials is conservative with respect to $\mathrm{SO}_{4}{ }^{2-}$ retention and/or volatility. ${ }^{\text {b }}$ Since the Phase 3 glasses have both high $\mathrm{SO}_{4}{ }^{2-}$ concentrations and are batched from reagent grade raw materials, the

[^0]ability of the glasses to retain the targeted $\mathrm{SO}_{4}{ }^{2-}$ concentrations will provide valuable insight into the applicability of the $\mathrm{SO}_{4}{ }^{2-}$ limit to SB 4 . Both visual observations (i.e., formation of a salt layer on the surface of the glass indicating that $\mathrm{SO}_{4}{ }^{2-}$ limit has been exceeded) and a comparison of measured versus targeted $\mathrm{SO}_{4}{ }^{2-}$ concentrations were used to support this assessment.

2.3.3 Product Consistency Test (PCT)

The PCT^{10} was performed in triplicate on each Phase 3 quenched and ccc glass to assess chemical durability. Also included in the experimental test matrix was the EA glass, ${ }^{11}$ the Approved Reference Material (ARM) glass, and blanks from the sample cleaning batch. Samples were ground, washed, and prepared according to the standard procedure. ${ }^{10}$ Fifteen milliliters of Type I American Society for Testing and Materials (ASTM) water were added to 1.5 g of glass in stainless steel vessels. The vessels were closed, sealed, and placed in an oven at $90 \pm 2^{\circ} \mathrm{C}$ where the samples were maintained for 7 days. Once cooled, the resulting solutions were sampled (filtered and acidified), then labeled and analyzed by PSAL under the auspices of two analytical plans (see Appendices B and C). ${ }^{\text {a }}$ The aim of the plans was to provide an opportunity to assess the consistency (repeatability) of the PCT and analytical procedures to evaluate the chemical durability of the Phase 3 glasses. Normalized release rates were calculated based on targeted, measured, and bias-corrected (bc) compositions using the average of the logs of the leachate concentrations.

2.3.4 X-Ray Diffraction Analysis

Although visual observations for crystallization were performed and documented, representative samples for all ccc Phase 3 glasses were submitted to Analytical Development (AD) for X-ray diffraction (XRD) analysis. The quenched glasses were not submitted for XRD analyses based on visual observations and the PCT responses. Samples were run under conditions providing a detection limit of approximately $0.5 \mathrm{vol} \%$. That is, if crystals (or undissolved solids) were present at $0.5 \mathrm{vol} \%$ or greater, the diffractometer will not only be capable of detecting the crystals but will also allow a qualitative determination of the type of crystal(s) present. Otherwise, a characteristically high background devoid of crystalline spectral peaks indicates that the glass product is amorphous, suggesting either a completely amorphous product or that the degree of crystallization is below the detection limit.

[^1]
3.0 Results and Discussion

3.1 A Statistical Review of the Chemical Composition Measurements for the Phase 3 Nepheline Glasses

In this section, the measured versus targeted compositions of the 16 Phase 3 Nepheline study glasses (NEPH3-41 through NEPH3-56) are presented and compared. The targeted compositions for these glasses are provided in Table 2-2 (also shown in Table D1 of Appendix D). Chemical composition measurements for these glasses were conducted by PSAL following the analytical plan provided in Appendix A as described in Section 2.3.1. For each study glass, measurements were obtained from samples prepared in duplicate by both the LM and PF dissolution methods.

Table D2 in Appendix D provides the elemental concentration measurements derived from the samples prepared using LM, and Table D3 in Appendix D provides the measurements derived from the samples prepared using PF. Measurements for standards (Batch 1 and a uranium standard, $\mathrm{U}_{\text {std }}$) that were included in the PSAL analytical plan along with the study glasses are also provided in these two tables.

The elemental concentrations were converted to oxide concentrations by multiplying the values for each element by the gravimetric factor for the corresponding oxide. During this process, an elemental concentration that was determined to be below the detection limit of the analytical procedures used by the PSAL was reduced to half of that detection limit as the oxide concentration was determined.

In the sections that follow, the analytical sequences of the measurements are explored, the measurements of the standards are investigated and used for bias correction, the measurements for each glass are reviewed, the average chemical compositions (measured and bias-corrected) for each glass are determined, and comparisons are made between the measurements and the targeted compositions for the glasses.

3.1.1 Measurements in Analytical Sequence

Exhibit D1 in Appendix D provides plots of the measurements generated by the PSAL for samples prepared using the LM method. The plots are in analytical sequence with different symbols and colors being used to represent each of the study and standard glasses. Similar plots for the samples prepared using the PF method are provided in Exhibit D2 in Appendix D. These plots include all of the measurement data from Tables D2 and D3. A review of these plots indicates no significant patterns or trends in the analytical process over the course of these measurements, and there appear to be no obvious outliers in these chemical composition measurements. One minor exception is the measurement of $\mathrm{Na}_{2} \mathrm{O}$ concentration in glass NEPH3-44. The $\mathrm{Na}_{2} \mathrm{O}$ measurements for this single glass varied by 2.5 to $3 \mathrm{wt} \%$, which should not cause any difficulty in evaluating the results.

3.1.2 Batch 1 and Uranium Standard Results

In this section, the PSAL measurements of the chemical compositions of the Batch 1 and uranium standard ($\mathrm{U}_{\text {stt }}$) glasses are reviewed. These measurements are investigated across the ICP analytical blocks, and the results are used to bias correct the measurements for the study glasses.

Exhibit D3 in Appendix D provides statistical analyses of the Batch 1 and $\mathrm{U}_{\text {std }}$ results generated by the LM prep method by block for each oxide of interest. The results include analysis of variance (ANOVA) investigations looking for statistically significant differences between the block means for each of the oxides for each of the standards. The results from the statistical tests for the Batch 1 standard may be summarized as follows: $\mathrm{BaO}, \mathrm{CaO}, \mathrm{Ce}_{2} \mathrm{O}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CuO}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{TiO}_{2}$, and ZrO_{2}
have measurements that indicate a significant ICP calibration effect on the block averages at the 5% significance level. For the $\mathrm{U}_{\text {std }}, \mathrm{CaO}, \mathrm{Ce}_{2} \mathrm{O}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CuO}, \mathrm{MgO}, \mathrm{MnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{ThO}_{2}$ (a detection limit effect), and TiO_{2} have measurements that indicate a significant ICP calibration effect on the block averages at the 5% significance level. The reference values for the oxide concentrations of the standard are given in the header for each set of measurements in the exhibit.

Exhibit D4 in Appendix D provides a similar set of analyses for the measurements derived from samples prepared via the PF method. The results from the statistical tests for the Batch 1 standard may be summarized as follows: only $\mathrm{B}_{2} \mathrm{O}_{3}$ has measurements that indicate a significant ICP calibration effect on the block averages at the 5% significance level. For the $U_{\text {std }}$, none of the oxides have measurements that indicate a significant ICP calibration effect on the block averages at the 5% significance level. The reference values for the oxide concentrations of the standard are given in the headers for each set of measurements in the exhibit.

Some of these results provide incentive for adjusting the measurements by the effect of the ICP calibration. Therefore, the oxide measurements of the study glasses were bias corrected for the effect of the ICP calibration on each of the analytical blocks. The basis for this bias correction is presented as part of Exhibits D3 and D4 - the average measurement for Batch 1 for each ICP block/sub-block for $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}, \mathrm{BaO}, \mathrm{CaO}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CuO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Li}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{MnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{NiO}, \mathrm{SiO}_{2}$, and TiO_{2} and the average measurement for $\mathrm{U}_{\text {std }}$ for each ICP set/block for $\mathrm{U}_{3} \mathrm{O}_{8}$. The Batch 1 results served as the basis for bias correcting all of the oxides (that were bias corrected) except uranium. The $\mathrm{U}_{\text {std }}$ results were used to bias correct for uranium. For the other oxides, the Batch 1 results were used to conduct the bias correction as long as the reference value for the oxide concentration in the Batch 1 glass was greater than or equal to $0.1 \mathrm{wt} \%$. Applying this approach and based upon the information in the exhibits, the Batch 1 results were used to bias correct the $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}, \mathrm{BaO}, \mathrm{CaO}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CuO}$, $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Li}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{MnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{NiO}, \mathrm{SiO}_{2}$, and TiO_{2} measurements. No bias correction was conducted for $\mathrm{Ce}_{2} \mathrm{O}_{3}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{ThO}_{2}, \mathrm{ZnO}$, or ZrO_{2}.

The bias correction was conducted as follows. For each oxide, let $\bar{a}_{i j}$ be the average measurement for the $i^{\text {th }}$ oxide at analytical block j for Batch 1 (or $\mathrm{U}_{\text {std }}$ for uranium), and let t_{i} be the reference value for the $i^{t h}$ oxide for Batch 1 (or for $\mathrm{U}_{\text {std }}$ if uranium). The averages and reference values are provided in Exhibits D3 and D4. Let $\bar{c}_{i j k}$ be the average measurement for the $i^{t h}$ oxide at analytical block j for the $k^{\text {th }}$ glass. The bias adjustment was conducted as follows:

$$
\bar{c}_{i j k} \bullet\left(1-\frac{\bar{a}_{i j}-t_{i}}{\bar{a}_{i j}}\right)=\bar{c}_{i j k} \bullet \frac{t_{i}}{\bar{a}_{i j}}
$$

Bias-corrected measurements are indicated by a "bc" suffix, and such adjustments were performed for all of the oxides of this study except for $\mathrm{Ce}_{2} \mathrm{O}_{3}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{ThO}_{2}, \mathrm{ZnO}$, and ZrO_{2}. Both measured and measured "bc" values are included in the discussion that follows. In these discussions, the measured values for $\mathrm{Ce}_{2} \mathrm{O}_{3}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{ThO}_{2}, \mathrm{ZnO}$, and ZrO_{2} are duplicated as the measured-bc values for completeness (e.g., to allow a sum of oxides to be computed for the biascorrected results). These bias-corrected values are the same as the original, measured $\mathrm{Ce}_{2} \mathrm{O}_{3}, \mathrm{La}_{2} \mathrm{O}_{3}$, $\mathrm{PbO}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{ThO}_{2}, \mathrm{ZnO}$, and ZrO_{2} values.

3.1.3 Composition Measurements by Glass Number

Exhibits D5 and D6 in Appendix D provide plots of the oxide concentration measurements by Glass
ID \# (including both Batch 1, labeled as glass numbered 100 and $U_{\text {std }}$, labeled as glass numbered 200)
for the measured and bc values for the LM and PF preparation methods, respectively. Different symbols and colors are used to represent the different glasses. These plots show the individual measurements across the duplicates of each preparation method and the two ICP calibrations. A review of the plots presented in these exhibits reveals the repeatability of the four individual oxide values for each glass. The sole exception is the $\mathrm{Na}_{2} \mathrm{O}$ concentration of glass NEPH3-44, which should not have a significant impact on the results presented here. More detailed discussions of the average, measured chemical compositions of the study glasses are provided in the sections that follow.

3.1.4 Measured versus Targeted Compositions

The four measurements for each oxide for each glass (over both preparation methods) were averaged to determine a representative chemical composition for each glass. These determinations were conducted both for the measured and for the bias-corrected data. A sum of oxides was also computed for each glass based upon both the measured and bias-corrected values. Exhibit D7 in Appendix D provides plots showing results for each glass for each oxide to help highlight the comparisons among the measured, bias-corrected, and targeted values.

Table D4 in Appendix D provides a summary of the average compositions as well as the targeted compositions and some associated differences and relative differences. Notice that the targeted sums of oxides for the standard glasses do not sum to 100% due to an incomplete coverage of the oxides in the Batch 1 (glass \# 100) and $U_{\text {std }}$ (glass \#200) glasses. All of the sums of oxides (both measured and bias-corrected) for the study glasses fall within the interval of 95 to $105 \mathrm{wt} \%$. Entries in Table D4 show the relative differences between the measured or bias-corrected values and the targeted values. These differences are shaded when they are greater than or equal to 5%. Overall, these comparisons between the measured and targeted compositions suggest only minor difficulties in hitting the targeted compositions for some of the oxides (including $\mathrm{CaO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and NiO) for some of the glasses. These should have no impact on the conclusions drawn to support the objectives of this report.

3.1.5 $\mathrm{SO}_{4}{ }^{2-}$ Retention

Although not the primary focus of the Phase 3 study, a secondary concern is the potential need to redefine the $\mathrm{SO}_{4}{ }^{2-}$ solubility limit for SB 4 . The compositional analysis, coupled with the visual observations of the as-fabricated glasses (see Section 3.3.1), will serve as primary indicators to determine whether the current $0.6 \mathrm{wt}^{2} \mathrm{SO}_{4}{ }^{2-}$ limit (established for the Frit $418-\mathrm{SB} 3$ system ${ }^{33}$) is still applicable for SB4. From Table 2-2, the targeted $\mathrm{SO}_{4}{ }^{2-}$ concentrations in the Phase 3 glasses range from $0.468 \mathrm{wt} \%$ (NEPH3-41) to $0.682 \mathrm{wt} \%$ (NEPH3-48).

Figure 3-1 summarizes the targeted versus measured $\mathrm{SO}_{4}{ }^{2-}$ concentrations in glass. The purple line represents the targeted concentrations as noted in Table 2-2. The red data points represent the measured $\mathrm{SO}_{4}{ }^{2-}$ concentrations in the glass, while the green data points are the measured, biascorrected values. The data suggest essentially full retention in the glass (i.e., no solubility or volatilization issues during the fabrication process). Although the visual observations are discussed in Section 3.3.1 in more detail, there were no signs of a salt layer on any of the Phase 3 glasses upon fabrication. Coupling the analytical measurements with visual observations of the as-fabricated glasses, the results suggest that the $0.6 \mathrm{wt} \% \mathrm{SO}_{4}{ }^{2-}$ limit is applicable for these frit - SB 4 systems. The degree of $\mathrm{SO}_{4}{ }^{2-}$ retention does not appear to be frit-dependent for the systems studied here. If the $\mathrm{SO}_{4}{ }^{2-}$ concentration in the SB 4 feed to DWPF contains the projected levels, then no issues with $\mathrm{SO}_{4}{ }^{2-}$ solubility are anticipated.

Oxide $=\mathrm{SO}_{4}{ }^{2-}(\mathbf{w t} \%)$

Figure 3-1. Targeted versus measured $\mathrm{SO}_{4}{ }^{2-}$ values for the Phase $\mathbf{3}$ glasses.

3.2 A Statistical Review of the PCT Measurements

The nepheline study glasses, after being batched and fabricated, were subjected to the 7-day PCT to assess their durabilities. ${ }^{10}$ Durability is the critical product quality metric for DWPF glass studies. Two heat treatments (quenched and $\mathbf{c c c}$) were used during the fabrication of each of the study glasses. Both heat treatments for each study glass were subjected to the PCT (in triplicate). PCTs were also conducted in triplicate for samples of the EA glass and for samples of the ARM glass. Blanks (samples consisting only of ASTM Type I water) were also submitted for the PCT.

Analytical plans, presented in the appendices, were provided to the PSAL to support the measurement of the compositions of the solutions resulting from the PCTs which were conducted in two parts. Samples of a multi-element, standard solution were also included in the analytical plans as a check of the accuracy of the ICP-AES instrument used for these measurements. In this and the following sections, the measurements generated by the PSAL for these PCTs are presented and reviewed.

Table E1 in Appendix E provides the elemental leachate concentration measurements determined by the PSAL for the solution samples generated by the PCTs. One of the quality control checkpoints for the PCT procedure is solution-weight loss over the course of the 7-day test. None of these PCT results indicated a solution-weight loss problem. Any measurement in Table E1 below the detection limit of the analytical procedure (indicated by a " $<$ ") was replaced by $1 / 2$ of the detection limit in subsequent analyses. In addition to adjustments for detection limits, the values were adjusted for the dilution factors: the values for the study glasses, the blanks, and the ARM glass in Table E1 were multiplied by 1.6667 to determine the values in parts per million (ppm) and the values for EA were multiplied by 16.6667. Table E2 in Appendix E provides the resulting measurements.

One of the important objectives of this study is the investigation of the effects of heat treatment on the PCTs. In the sections that follow, the analytical sequence of the measurements is explored, the measurements of the standards are investigated and used to assess the overall accuracy of the ICP
measurement process, the measurements for each glass are reviewed, plots are provided that explore the effects of heat treatment on the PCTs for these glasses, the PCTs are normalized using the compositions (targeted, measured, and bias-corrected) presented in Table D4, and the normalized PCTs are compared to durability predictions for these compositions generated from the current DWPF models. ${ }^{12}$

3.2.1 Measurements in Analytical Sequence

Exhibits E1 and E2 in Appendix E provide plots of the leachate concentrations (ppm) in analytical sequence as generated by the PSAL for all of the data and for the data from only the study glasses, respectively. A different color and symbol are used for each study glass or standard. No problems are seen in these plots.

3.2.2 Results for the Samples of the Multi-Element Solution Standard

Exhibit E3 in Appendix E provides analyses of the PSAL measurements of the samples of the multielement solution standard by ICP analytical (or calibration) block. An ANOVA investigating for statistically significant differences among the part/block averages for these samples for each element of interest is included in these exhibits. These results indicate a statistically significant (at approximately a 5% level) difference among only the B average measurements over these parts/blocks. However, no bias correction of the PCT results for the study glasses was conducted. This approach was taken since the triplicate PCTs for a single study glass were placed in different ICP blocks. Averaging the ppm's for each set of triplicates helps to minimize the impact of the ICP effects.

Table 3-1 summarizes the average measurements and the reference values for the four primary elements of interest. The results indicate consistent and accurate measurements from the PSAL processes used to conduct these analyses.

Table 3-1. Results from Samples of the Multi-Element Solution Standard

Analytical Part/Block	Avg B (ppm)	Avg Li (ppm)	Avg Na (ppm)	Avg Si (ppm)
$1 / 1$	19.4	9.7	82.2	49.4
$1 / 2$	20.8	9.6	79.3	49.4
$1 / 3$	21.0	9.7	80.1	49.3
$2 / 1$	20.5	9.7	81.3	49.1
$2 / 2$	21.1	9.7	83.3	49.6
$2 / 3$	21.2	9.8	77.5	49.9
Grand Average	20.7	9.7	80.6	49.5
Reference Value	20	10	81	50
$\%$ difference	3.3%	-3.2%	-0.5%	-1.1%

3.2.3 Measurements by Glass Number

Exhibit E4 in Appendix E provides plots of the leachate concentrations for each type of submitted sample: the study glasses and the standards (EA (101), ARM (102), the multi-element solution standard (100), and blanks (103)). Exhibit E5 in Appendix E provides plots of the leachate concentrations for the PCT results of the study glasses only. These plots allow for the assessment of
the repeatability of the measurements, which suggests some scatter in the triplicate values for some analytes for some of the glasses. Also, note that the results from the two heat treatments are shown for each study glass and that some differences between the two sets of values are evident.

3.2.4 Normalized PCT Results

PCT leachate concentrations are typically normalized using the cation composition (expressed as a weight percent) in the glass to obtain a grams-per-liter (g / L) leachate concentration. The normalization of the PCTs is usually conducted using the measured compositions of the glasses. This is the preferred normalization process for the PCTs. For completeness, the targeted cation and the bias-corrected cation compositions were also used to conduct this normalization.

As is the usual convention, the common logarithm of the normalized PCT (normalized leachate, NL) for each element of interest was determined and used for comparison. To accomplish this computation, one must:

1. Determine the common logarithm of the elemental parts per million (ppm) leachate concentration for each of the triplicates and each of the elements of interest (these values are provided in Table E2 of Appendix E),
2. Average the common logarithms over the triplicates for each element of interest, and then

Normalizing Using Measured Composition (preferred method)

3. Subtract a quantity equal to 1 plus the common logarithm of the average cation measured concentration (expressed as a weight percent of the glass) from the average computed in step 2.

Or Normalizing Using Target Composition
3. Subtract a quantity equal to 1 plus the common logarithm of the target cation concentration (expressed as a weight percent of the glass) from the average computed in step 2.

Or Normalizing Using Measured Bias-Corrected Composition

3. Subtract a quantity equal to 1 plus the common logarithm of the measured bias-corrected cation concentration (expressed as a weight percent of the glass) from the average computed in step 2.

Exhibit E6 in Appendix E provides scatter plots for these results and offers an opportunity to investigate the consistency in the leaching across the elements for the glasses of this study. All combinations of the normalizations of the PCTs (i.e., those generated using the targeted, measured, and bias-corrected compositional views) and both heat treatments are represented in the series of scatter plots. Consistency in the leaching across the elements is typically demonstrated by a high degree of linear correlation among the values for pairs of these elements. For the study glasses, the ccc results demonstrate a higher degree of correlation than do the quenched results. This may be due to the limited range of PCT responses for the quenched glasses as opposed to the ccc glasses, as revealed by the scale of the axes of the two sets of PCT measurements in the scatter plots of Exhibit E6. Table 3-2 summarizes the normalized PCTs for the glasses of this study.

Table 3-2. Normalized Release Values for the Nepheline Phase 3 Glasses

$\begin{gathered} \hline \hline \text { Glass } \\ \text { ID } \end{gathered}$	$\begin{gathered} \hline \text { Heat } \\ \text { Treatment } \end{gathered}$	Composition	$\begin{gathered} \hline \hline \log \mathrm{NL} \\ {[\mathrm{~B}(\mathrm{~g} / \mathrm{L})]} \end{gathered}$	$\begin{gathered} \hline \log N L \\ {[\operatorname{Li}(\mathrm{~g} / \mathrm{L})]} \end{gathered}$	$\begin{array}{\|c\|} \hline \hline \log \mathrm{NL} \\ {[\mathrm{Na}(\mathrm{~g} / \mathrm{L})]} \end{array}$	$\begin{gathered} \hline \hline \log \mathrm{NL} \\ {[\mathrm{Si}(\mathrm{~g} / \mathrm{L})]} \end{gathered}$	$\begin{gathered} \mathrm{NL} \\ \mathrm{~B}(\mathrm{~g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{NL} \\ \mathrm{Li}(\mathrm{~g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{NL} \\ \mathrm{Na}(\mathrm{~g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{NL} \\ \mathrm{Si}(\mathrm{~g} / \mathrm{L}) \end{gathered}$
ARM	-	reference	-0.265	-0.217	-0.257	-0.517	0.54	0.61	0.55	0.30
EA	-	reference	1.243	0.956	1.120	0.576	17.51	9.03	13.17	3.77
NEPH3-41	quenched	measured	-0.170	-0.112	-0.131	-0.282	0.68	0.77	0.74	0.52
NEPH3-41	quenched	measured bc	-0.174	-0.120	-0.120	-0.288	0.67	0.76	0.76	0.52
NEPH3-41	quenched	target	-0.201	-0.129	-0.120	-0.300	0.63	0.74	0.76	0.50
NEPH3-41	ccc	measured	-0.182	-0.114	-0.153	-0.287	0.66	0.77	0.70	0.52
NEPH3-41	ccc	measured bc	-0.186	-0.121	-0.142	-0.292	0.65	0.76	0.72	0.51
NEPH3-41	ccc	target	-0.213	-0.130	-0.141	-0.305	0.61	0.74	0.72	0.50
NEPH3-42	quenched	measured	-0.062	-0.089	-0.068	-0.267	0.87	0.81	0.86	0.54
NEPH3-42	quenched	measured bc	-0.056	-0.098	-0.056	-0.276	0.88	0.80	0.88	0.53
NEPH3-42	quenched	target	-0.071	-0.101	-0.067	-0.284	0.85	0.79	0.86	0.52
NEPH3-42	ccc	measured	-0.107	-0.091	-0.085	-0.275	0.78	0.81	0.82	0.53
NEPH3-42	ccc	measured bc	-0.100	-0.099	-0.074	-0.284	0.79	0.80	0.84	0.52
NEPH3-42	ccc	target	-0.115	-0.102	-0.084	-0.292	0.77	0.79	0.82	0.51
NEPH3-43	quenched	measured	-0.070	-0.078	0.007	-0.259	0.85	0.83	1.02	0.55
NEPH3-43	quenched	measured bc	-0.064	-0.087	0.001	-0.269	0.86	0.82	1.00	0.54
NEPH3-43	quenched	target	-0.064	-0.086	0.000	-0.264	0.86	0.82	1.00	0.54
NEPH3-43	ccc	measured	-0.047	0.002	0.001	-0.230	0.90	1.01	1.00	0.59
NEPH3-43	ccc	measured bc	-0.041	-0.006	-0.005	-0.239	0.91	0.99	0.99	0.58
NEPH3-43	ccc	target	-0.041	-0.005	-0.005	-0.235	0.91	0.99	0.99	0.58
NEPH3-44	quenched	measured	0.025	-0.067	0.000	-0.249	1.06	0.86	1.00	0.56
NEPH3-44	quenched	measured bc	0.021	-0.074	0.012	-0.255	1.05	0.84	1.03	0.56
NEPH3-44	quenched	target	-0.009	-0.078	0.034	-0.251	0.98	0.84	1.08	0.56
NEPH3-44	ccc	measured	0.036	0.026	0.011	-0.225	1.09	1.06	1.03	0.60
NEPH3-44	ccc	measured bc	0.032	0.019	0.022	-0.230	1.08	1.04	1.05	0.59
NEPH3-44	ccc	target	0.002	0.015	0.045	-0.227	1.01	1.03	1.11	0.59
NEPH3-45	quenched	measured	-0.134	-0.060	-0.125	-0.255	0.73	0.87	0.75	0.56
NEPH3-45	quenched	measured bc	-0.139	-0.068	-0.131	-0.261	0.73	0.86	0.74	0.55
NEPH3-45	quenched	target	-0.147	-0.071	-0.134	-0.261	0.71	0.85	0.74	0.55
NEPH3-45	ccc	measured	-0.134	-0.053	-0.127	-0.251	0.73	0.89	0.75	0.56
NEPH3-45	ccc	measured bc	-0.139	-0.060	-0.133	-0.256	0.73	0.87	0.74	0.55
NEPH3-45	ccc	target	-0.147	-0.064	-0.136	-0.256	0.71	0.86	0.73	0.55
NEPH3-46	quenched	measured	-0.097	-0.061	-0.088	-0.260	0.80	0.87	0.82	0.55
NEPH3-46	quenched	measured bc	-0.101	-0.068	-0.094	-0.265	0.79	0.85	0.81	0.54
NEPH3-46	quenched	target	-0.109	-0.070	-0.085	-0.260	0.78	0.85	0.82	0.55
NEPH3-46	ccc	measured	-0.071	-0.012	-0.081	-0.234	0.85	0.97	0.83	0.58
NEPH3-46	ccc	measured bc	-0.075	-0.019	-0.087	-0.240	0.84	0.96	0.82	0.58
NEPH3-46	ccc	target	-0.083	-0.021	-0.079	-0.235	0.83	0.95	0.83	0.58
NEPH3-47	quenched	measured	-0.001	-0.019	0.003	-0.230	1.00	0.96	1.01	0.59
NEPH3-47	quenched	measured bc	0.005	-0.028	0.014	-0.240	1.01	0.94	1.03	0.58
NEPH3-47	quenched	target	0.006	-0.026	0.015	-0.234	1.01	0.94	1.03	0.58

Table 3-2. Normalized Release Values for the Nepheline Phase 3 Glasses (continued)

$\begin{gathered} \hline \text { Glass } \\ \text { ID } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Heat } \\ \text { Treatment } \\ \hline \end{gathered}$	Composition	$\begin{array}{\|l\|} \hline \log \mathbf{N L} \\ [\mathbf{B} \mathbf{(g / L})] \\ \hline \end{array}$	$\text { \| } \log \mathrm{NL}$ [Li(g/L)\|	$\begin{array}{\|c} \hline \hline \log \mathrm{NL} \\ \mathrm{Na}(\mathrm{~g} / \mathrm{L})] \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \hline \begin{array}{c} \log \mathrm{NL} \\ {[\mathrm{Si}(\mathrm{~g} / \mathrm{L})]} \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \mathbf{N L} \\ \mathbf{B}(\mathrm{g} / \mathrm{L}) \end{array}$	$\begin{gathered} \mathrm{NL} \\ \mathrm{Li}(\mathrm{~g} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{N L} \\ \mathrm{Na}(\mathrm{~g} / \mathrm{L}) \\ \hline \end{array}$	$\begin{gathered} \hline \text { NL } \\ \text { Si(g/L) } \\ \hline \end{gathered}$
NEPH3-47	ccc	measured	-0.040	0.024	-0.014	-0.213	0.91	1.06	0.97	0.61
NEPH3-47	ccc	measured bc	-0.033	0.015	-0.002	-0.223	0.9	1.04	0.99	0.6
NEPH3-47	ccc	target	-0.032	0.016	-0.002	-0.217	0.93	1.04	1.00	0.61
NEPH3-48	quenched	measured	-0.002	-0.001	0.078	-0.19	1.00	1.00	1.20	0.63
NEPH3-48	quenched	measured bc	0.005	-0.010	0.072	-0.209	1.01	0.9	1.18	0.62
NEPH3-48	quenched	target	0.014	-0.010	0.076	-0.205	1.03	0.98	1.19	0.62
NEPH3-48	ccc	measured	0.170	0.214	0.126	-0.115	1.4	1.64	1.34	0.7
NEPH3-48	ccc	measured bc	0.177	0.205	0.120	-0.125	1.50	1.60	1.32	0.75
NEPH3-48	ccc	target	0.186	0.204	0.125	-0.121	1.54	1.60	1.33	0.76
NEPH3-49	quenched	measured	-0.117	-0.100	-0.044	-0.266	0.76	0.79	0.90	0.54
NEPH3-49	quenched	measured bc	-0.110	-0.109	-0.051	-0.275	0.78	0.78	0.89	0.53
NEPH3-49	quenched	target	-0.118	-0.112	-0.025	-0.275	0.76	0.77	0.95	0.53
NEPH3-49	ccc	measured	-0.106	-0.063	-0.063	-0.255	0.78	0.87	0.86	0.56
NEPH3-49	ccc	measured bc	-0.099	-0.072	-0.070	-0.265	0.8	0.85	0.85	0.54
NEPH3-49	ccc	target	-0.107	-0.075	-0.044	-0.264	0.78	0.84	0.90	0.54
NEPH3-50	quenche	measured	-0.064	-0.079	0.006	-0.238	0.86	0.83	1.01	0.58
NEPH3-50	quenche	measured bc	-0.058	-0.087	0.017	-0.247	0.8	0.82	1.04	0.57
NEPH3-50	quenched	target	-0.059	-0.089	0.012	-0.247	0.87	0.81	1.03	0.57
NEPH3-50	ccc	measured	-0.059	-0.047	-0.017	-0.237	0.87	0.90	0.96	. 58
NEPH3-50	ccc	measured bc	-0.052	-0.055	-0.006	-0.246	0.89	0.88	0.99	0.57
NEPH3-50	ccc	target	-0.053	-0.057	-0.010	-0.247	0.8	0.88	0.98	0.57
NEPH3-51	quenche	measured	0.023	-0.045	0.063	-0.222	1.05	0.90	1.16	0.60
NEPH3-51	quenched	measured bc	0.019	-0.052	0.056	-0.228	1.04	0.89	1.14	0.59
NEPH3-51	quenched	target	-0.009	-0.060	0.058	-0.232	0.9	0.87	1.14	0.5
NEPH3-51	ccc	measured	0.153	0.087	0.071	-0.170	1.42	1.22	1.18	0.68
NEPH3-51		measured b	0.149	0.080	0.065	-0.17	1.4	1.20	1.16	. 67
NEPH3-51	ccc	targe	0.121	0.072	0.067	-0.180	1.32	1.18	1.17	0.66
NEPH3-52	quenched	measured	0.032	-0.033	0.097	-0.191	1.08	0.93	1.25	0.64
NEPH3-52	quenche	measured bc	0.039	-0.041	0.090	-0.201	1.09	0.91	1.23	0.63
NEPH3-52	quenched	target	0.036	-0.043	0.095	-0.207	1.09	0.91	1.24	0.6
NEPH3-52	ccc	measured	0.045	0.033	0.094	-0.172	1.11	1.08	1.24	0.67
NEPH3-52	ccc	measured b	0.052	0.024	0.088	-0.182	1.13	1.06	1.22	0.66
NEPH3-52	ccc	target	0.049	0.022	0.092	-0.188	1.12	1.05	1.24	0.65
NEPH3-53	quenched	measured	-0.051	-0.020	-0.045	-0.213	0.8	0.9	0.90	0.61
NEPH3-53	quenched	measured bc	-0.056	-0.027	-0.051	-0.218	0.88	0.94	0.89	0.61
NEPH3-53	quenche	target	-0.065	-0.031	-0.044	-0.223	0.86	0.93	0.90	0.60
NEPH3-53	cc	measured	0.048	0.252	0.029	-0.029	1.12	1.79	1.07	0.94
NEPH3-53	ccc	measured b	0.044	0.245	0.023	-0.034	1.11	1.76	1.05	0.93
NEPH3-53	ccc	target	0.035	0.241	0.030	-0.039	1.08	1.74	1.07	0.91
NEPH3-54	quenched	measured	-0.016	0.023	-0.020	-0.198	0.96	1.05	0.96	0.63
NEPH3-54	quenched	measured bc	-0.010	0.014	-0.008	-0.208	0.98	1.03	0.98	0.62
NEPH3-54	quenched	target	-0.014	0.011	-0.014	-0.204	0.97	1.02	0.97	0.63
NEPH3-54	ccc	measured	0.007	0.080	0.004	-0.160	1.02	1.20	1.01	0.69
NEPH3-54	ccc	measured bc	0.013	0.071	0.016	-0.169	1.03	1.18	1.04	0.68
NEPH3-54	cc	target	0.009	0.068	0.010	-0.165	1.02	1.17	1.02	0.6

Table 3-2. Normalized Release Values for the Nepheline Phase 3 Glasses (continued)

$\begin{gathered} \hline \hline \text { Glass } \\ \text { ID } \end{gathered}$	$\begin{array}{c\|} \hline \text { Heat } \\ \text { Treatment } \end{array}$	Composition	$\begin{aligned} & \hline \begin{array}{l} \log \mathrm{NL} \\ {[\mathbf{B}(\mathrm{~g} / \mathrm{L})]} \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \hline \begin{array}{c} \log \mathrm{NL} \\ \text { [Li(g/L) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \hline \log N L \\ {[\mathrm{Na}(\mathrm{~g} / \mathrm{L})]} \end{gathered}$	$\begin{array}{\|c} \hline \hline \begin{array}{c} \log \mathrm{NL} \\ {[\mathrm{Si}(\mathrm{~g} / \mathrm{L})]} \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \mathbf{N L} \\ \mathbf{B}(\mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { NL } \\ \text { Li(g/L) } \end{gathered}$	$\begin{gathered} \hline \mathrm{NL} \\ \mathrm{Na}(\mathrm{~g} / \mathrm{L}) \end{gathered}$	$\begin{array}{\|c} \hline \hline \mathbf{N L} \\ \mathrm{Si}(\mathrm{~g} / \mathrm{L}) \\ \hline \end{array}$
NEPH3-55	quenched	measure	0.074	0.022	0.055	-0.181	1.19	1.05	1.14	0.66
NEPH3-55	quenched	measured b	0.070	0.015	0.067	-0.18	1.18	1.03	1.17	0.65
NEPH3-55	quenched	target	0.045	0.003	0.063	-0.194	1.11	1.01	1.16	0.6
NEPH3-55	ccc	measured	0.218	0.250	0.099	-0.066	1.65	1.78	1.26	0.86
NEPH3-55	ccc	measured b	0.214	0.242	0.110	-0.071	1.64	1.75	1.29	0.8
NEPH3-55	ccc	target	0.18	0.231	0.107	-0.080	1.55	1.70	1.28	0.83
NEPH3-56	quenche	measured	0.09	0.031	0.086	-0.16	1.26	1.07	22	0.69
NEPH3-56	quenched	measured b	0.096	0.023	0.098	-0.167	1.25	1.06	1.25	0.6
NEPH3-56	quenched	target	0.066	0.015	0.096	-0.174	1.17	. 04	. 25	0.67
NEPH3-56	ccc	measured	0.509	0.494	0.208	0.083	3.23	3.12	1.61	1.21
NEPH3-56		measured bc	0.506	0.487	0.219	0.078	3.20	3.07	1.66	1.20
NEPH3-56	ccc	target	0.476	0.479	0.218	0.071	2.99	3.01	1.65	1.1

3.2.5 Effects of Heat Treatment on PCTs

Exhibit E7 in Appendix E provides a series of plots and statistical comparisons that show the effects of heat treatment on the common logarithm ppm-responses of interest of the triplicate PCTs for each element for each study glass. The ccc version of a given glass yielded measurements indicating a significantly (at the 5% significance level) larger mean $\log (\mathrm{ppm})$ response than the quenched version of the glass for a given element if the Prob>t value in the exhibit is 0.05 or smaller.

As shown in Table 3-2, all of the Phase 3 quenched glasses have normalized boron releases less than $1.20 \mathrm{~g} / \mathrm{L}$, which in terms of acceptability are approximately an order of magnitude better than the EA benchmark glass that has a reported NL [B] of $16.695 \mathrm{~g} / \mathrm{L} .{ }^{11}$ The range of measured, normalized boron releases for the quenched glasses is from $0.67 \mathrm{~g} / \mathrm{L}$ (NEPH3-41) to $1.25 \mathrm{~g} / \mathrm{L}$ (NEPH3-56). The results suggest that even though some of the glasses may be prone to nepheline formation based on the 0.62 nepheline discriminator value, all Phase 3 quenched glasses are acceptable. However, the potential for crystallization was suppressed in the quenched glasses in terms of kinetics. That is, the glasses may be prone to nepheline formation but the rapid cooling limited or prevented the formation of nepheline or other crystalline phases. As observed in the Phase 1 and 2 glasses, it was only in the slowly cooled (ccc) glasses where the impact of nepheline on durability response was observed.

Also shown in Table 3-2 are the normalized releases based on the ccc version of each Phase 3 glass for each compositional view. As will be discussed further in Sections 3.3.1 (Visual Observations) and 3.3.2 (XRD Results), the ccc cooling schedule generally resulted in devitrification, with the extent of crystallization generally increasing with increasing WL. This is not unexpected, as the slower cooling rate provides a thermodynamically favorable (compositional-wise) glass the kinetic opportunity to devitrify. The measured, normalized boron releases for the Phase 3 ccc glasses range from $0.65 \mathrm{~g} / \mathrm{L}$ (NEPH3-41) to $3.20 \mathrm{~g} / \mathrm{L}$ (NEPH3-56). While these values span a wider PCT response as compared to the quenched versions of these glasses, their responses are still well below that of the EA glass $(16.695 \mathrm{~g} / \mathrm{L}) .^{11}$

Figure 3-2 shows the PCT responses for boron, normalized based on measured compositions, for both the quenched and ccc glasses. The value of the nepheline discriminator (calculated from the measured compositions) for each glass is also shown. The PCT responses are indicated by the symbol (\square) for the quenched glasses and the symbol (\bullet) for the ccc glasses.

(\square) quenched glasses, (\bullet) ccc glasses
Figure 3-2. Normalized boron release and nepheline discriminator values for the quenched and cce Phase 3 glasses.

Some general trends are evident upon examination of Figure 3-2. For the quenched glasses, the NL [B] values generally increase with increasing WL for each of the sludge-frit systems. A similar trend is seen for the ccc glasses, with a few exceptions in the Frit 425 and Frit 502 systems. Though troubling from a visual perspective, these variations in the trend are of little practical importance, since all of the normalized release values are still well below that of the EA reference glass.

Glasses NEPH3-48, NEPH3-51, NEPH3-53, NEPH3-55 and NEPH3-56 show statistically significant differences in the quenched versus ccc normalized boron release. However, these differences are of little practical importance due to the relatively low values of NL [B].

Table 3-3 lists the nepheline discriminator values for each of the Phase 3 glasses, calculated using either the target, measured, or measured-bc compositions. If a nepheline discriminator value of 0.62 were to be implemented, based on the target compositions, two of the ccc glasses with high NL [B] responses (NEPH3-48 and NEPH3-56) would be screened out by the discriminator. The highest NL [B] response for the Phase 3 glasses would then be $1.65 \mathrm{~g} / \mathrm{L}$ (glass NEPH3-55ccc), which is an order of magnitude less than the EA reference glass. ${ }^{11}$ If the nepheline discriminator values calculated using the measured compositions were used in the screening, the highest $\mathrm{NL}[\mathrm{B}]$ response for the Phase 3 ccc glasses would then be $1.12 \mathrm{~g} / \mathrm{L}$ (glass NEPH3-53).

Table 3-3. Values of the nepheline discriminator calculated for each glass using the measured, measured bias-corrected, and targeted compositions.
(Values below 0.62 are highlighted.)

Glass ID	Nepheline Discriminator Values		
	Measured	Measured bc	Targeted
NEPH3-41	0.688	0.694	0.702
NEPH3-42	0.656	0.664	0.667
NEPH3-43	0.620	0.623	0.624
NEPH3-44	0.580	0.587	0.593
NEPH3-45	0.718	0.719	0.721
NEPH3-46	0.681	0.682	0.685
NEPH3-47	0.621	0.629	0.631
NEPH3-48	0.594	0.598	0.599
NEPH3-49	0.670	0.673	0.684
NEPH3-50	0.640	0.649	0.650
NEPH3-51	0.617	0.619	0.622
NEPH3-52	0.584	0.587	0.594
NEPH3-53	0.713	0.714	0.721
NEPH3-54	0.677	0.685	0.685
NEPH3-55	0.612	0.618	0.623
NEPH3-56	0.588	0.595	0.599

Use of a value of 0.62 and the measured compositions for screening with the nepheline discriminator eliminates all but one of the glasses that showed a statistical difference in NL [B] between the quenched and ccc specimens. This one remaining glass (NEPH3-53) showed only a small difference in NL [B], $0.89 \mathrm{~g} / \mathrm{L}$ versus $1.12 \mathrm{~g} / \mathrm{L}$, between the quenched and ccc samples, respectively.

Exhibit E8 in Appendix E provides a series of plots that show the effects of heat treatment on the PCT response based on the three different compositional views: measured, measured bias-corrected, and targeted. These plots allow for an assessment of the differences in PCT responses from a practical perspective, and reinforce the above discussion.

3.2.6 Predicted versus Measured PCTs

As seen in Table 3-2, the durabilities for the Phase 3 glasses are all acceptable (i.e. NL [B] less than $3.24 \mathrm{~g} / \mathrm{L})$ as compared to the EA reference glass. It should be noted though that some of the ccc glasses exhibited varying amounts of crystallization. Since the current durability model ${ }^{12}$ is only applicable to homogeneous glasses, the inability of the model to predict the PCT response for those ccc glasses which resulted in devitrification is not surprising.

Exhibit E9 in Appendix E provides plots of the DWPF models that relate the logarithm of the normalized PCT (for each element of interest) to a linear function of a free energy of hydration term ($\Delta \mathrm{G}_{\mathrm{p}}, \mathrm{kcal} / 100 \mathrm{~g}$ glass) derived from all of the glass compositional views and heat treatments. ${ }^{12}$ Prediction limits (at a 95% confidence) for an individual PCT result are also plotted along with the linear fit. The EA and ARM results are also indicated on these plots. Exhibit E10 in Appendix E provides a version of these plots for the quenched glasses only while Exhibit E11 in Appendix E
provides a version for ccc glasses only. Figure 3-3 shows the $\log N L[B]$ versus ΔG_{P} for the quenched and ccc glasses.

Figure 3-3. NL $[B]$ versus ΔG_{P} for the quenched (\square) and ccc (॰) Phase 3 glasses.

As shown in Figure 3-3, all of the quenched Phase 3 glasses are predictable by the $\Delta \mathrm{G}_{\mathrm{p}}$ model. Also, with the exception of NEPH3-56, all of the ccc glasses are predictable by the ΔG_{P} model. Since NEPH3-56ccc is not a homogeneous glass (and contains nepheline, as will be shown below in Section 3.3), it is not surprising that the model is not able to predict its durability. While the PCT response of NEPH3-56ccc is acceptable, it is not predictable. All of the Phase 3 glasses remaining after a nepheline discriminator screening would be both acceptable as compared to the EA reference glass and predictable using the $\Delta \mathrm{G}_{\mathrm{P}}$ model. The relationship between predictability and the nepheline discriminator is explored in the next section.

3.2.7 Values of the Nepheline Constraint and Predictability

Li et al. proposed 0.62 as the critical value for the nepheline discriminator. ${ }^{22}$ Glass compositions with a nepheline discriminator value of less than 0.62 are prone to nepheline crystallization. ${ }^{22}$ Figure 3-4 provides a scatter plot matrix of the values for PCT response for boron, for the nepheline constraint, and for $\Delta \mathrm{G}_{\mathrm{P}}$. In this plot, the PCT response is provided for both the quenched (\square) and $\operatorname{ccc}(\bullet$ or $\bullet)$ versions of the glass. The two different colors used to represent the ccc results allow for the distinction between those glasses that satisfy the nepheline constraint (\bullet) and those that fail it (\odot).

Based on Figure 3-4, the PCT results for the ccc version of NEPH3-56 (i.e., the three compositional views of the ccc version of NEPH3-56), while unpredictable by the $\Delta \mathrm{G}_{\mathrm{P}}$ model (see Figure 3-3), also correspond to compositional views that fail the nepheline constraint. As discussed earlier, this glass would be screened out of DWPF processing if a nepheline discriminator value of 0.62 were to be implemented.

(\square) quenched glasses, (\bullet) ccc glasses that satisfy the nepheline constraint, (\bullet) ccc glasses that do not satisfy the nepheline constraint
Figure 3-4. Scatter Plot Matrix of $\log \mathrm{NL}[B \mathrm{~g} / \mathrm{L}]$, Nepheline Constraint, and $\Delta \mathbf{G}_{\mathbf{P}}$

3.3 Homogeneity

In this section, the primary interest is the possible formation of nepheline (and/or other crystalline phases) in the Phase 3 ccc glasses which could be responsible for the measurable and sometimes statistically significant differences in PCT responses as compared to their quenched counterparts. Table 3-4 summarizes the visual and XRD results for the quenched and ccc Phase 3 glasses. It should be noted that only the ccc versions of the glasses were submitted for XRD analysis given that the visual observations and durability responses suggested no significant crystallization in the quenched glasses. That is, with normalized boron releases ranging from $0.67 \mathrm{~g} / \mathrm{L}$ to $1.26 \mathrm{~g} / \mathrm{L}$, there is no evidence of nepheline formation in the quenched glasses - even if present, the impact is of no practical concern.

Prior to discussing the results, a few words regarding the terminology used in the tables are warranted. The use of "homogeneous" for visual observations indicates that the sample was classified as a single-phase system (i.e., no evidence of crystallization). The term "surface crystals" (used as a descriptor for visual observations) implies that the surface of the glass was characterized by the presence of crystallization while the cross-section of bulk glass appeared homogeneous (i.e., singlephase, black and shiny). Surface crystallization in the Phase 3 glasses was apparent through the
presence of a "textured" surface that ranged in appearance from a "dull or matte" surface to a "highly metallic-like" surface.

The XRD results are more qualitative in nature. As previously mentioned, only the ccc glasses were submitted for XRD analysis based on both the PCT responses as well as visual observations of the quenched glasses. The PCT responses of the quenched glasses were "acceptable and predictable" and visual observations suggested only the presence of surface devitrification on the higher WL glasses. Historically, surface devitrification occurs as WLs increase, and this is typically the result of spinel formation for DWPF type glasses. The Phase 3 PCT responses suggested that for those quenched glasses that were classified as having "surface crystallization" or a "metallic haze on the surface", spinel formation was highly probable - which is consistent with recent observations and the inert effect on the PCT response. For the ccc glasses, the XRD results suggested that the glass was either amorphous or contained some degree of crystallization. The presence of a characteristically high background devoid of crystalline spectral lines indicates that the glass product is amorphous (suggesting either a completely amorphous product or that the degree of crystallization is below the detection limit - approximately $0.5 \mathrm{vol} \%$ in glass). In terms of crystallization, the XRD results indicated the presence of spinel (Trevorite, $\mathrm{NiFe}_{2} \mathrm{O}_{4}$) and nepheline $\left(\mathrm{NaAlSiO}_{4}\right)$. For a more detailed description of the visual observations and XRD results of both the quenched and ccc glasses, see WSRC-NB-2006-00016.

3.3.1 Visual Observations

Visual observations of the quenched Phase 3 glasses indicate that nine glasses were homogeneous, while the remaining seven glasses were characterized by a metallic haze on the surface with the bulk (cross-section) being homogeneous. The nine quenched glasses classified as visually homogeneous were generally lower WL glasses within their respective frit series.

The noted surface crystallization on the seven quenched, high WL glasses is consistent with historical, visual observations of DWPF-based glasses, especially those targeting higher waste loadings. More specifically, use of descriptions such as a dull or matte texture and/or metallic-like surface is common for DWPF-type glasses targeting higher WLs and/or having undergone a slow cooling schedule. Previous XRD analyses have indicated that the textured or metallic-like surfaces are typically a result of spinels that precipitate during the cooling process. This is in-line with glass theory which suggests that as WL increases, the concentrations of $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{NiO}, \mathrm{Cr}_{2} \mathrm{O}_{3}$, and/or MnO also increase, enhancing the likelihood of spinel devitrification. Based on the PCT responses for the quenched glasses, spinel formation resulting in the metallic haze is reasonable as spinels have been shown to have no impact on the durability response. ${ }^{14}$

A metallic haze, either somewhat shiny or dull, characterized the surface of all 16 ccc glasses. The primary difference among the ccc glasses is the degree of devitrification visually observed within the bulk glass. That is, when examining the cross-sections of the heat treated samples, visual observations ranged from "shiny and clean" (indicating a homogeneous glass) to "devitrified". In general, the transition from homogeneous to partially devitrified and completely devitrified resulted as WL increased within a specific frit - sludge system. For example, consider NEPH3-46cce through NEPH3-48ccc (from Table 3-4). The visual observations suggest that the bulk of the heat treated sample was homogeneous at 40\% WL (NEPH3-46ccc), partially devitrified at 47\% WL (NEPH3-47ccc), and completely devitrified at 51\% WL (NEPH3-48ccc).

In general, visual observations indicate that devitrification was more prevalent in the ccc glasses than in the quenched glasses, as expected, given kinetics are more favorable for devitrification during the slower cooling cycle.

Table 3-4. Visual observations and XRD results for the Phase $\mathbf{3}$ glasses.

Glass	Frit ID	Target WL	Heat Treatment	Visual	XRD
NEPH3-41	418	35	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-41	418	35	ccc	Surface - shiny, metallic; Bulk - shiny and clean	Amorphous
NEPH3-42	418	40	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-42	418	40	ccc	Surface - shiny, metallic with crystals; Bulk - black, shiny, clean	Amorphous
NEPH3-43	418	46	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-43	418	46	ccc	Surface - dull metallic with crystals; Bulk - shiny, black, some crystals	$\mathrm{NiFe}_{2} \mathrm{O}_{4}$
NEPH3-44	418	50	quenched	Patty - shiny metallic haze; Crucible - clean with bubbles	-
NEPH3-44	418	50	ccc	Surface - crusty, metallic with crystals; Bulk - black matte, crystals	$\mathrm{NiFe}_{2} \mathrm{O}_{4}, \mathrm{NaAlSiO}_{4}$
NEPH3-45	501	35	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-45	501	35	ccc	Surface - metallic haze; Bulk - black, shiny, clean	Amorphous
NEPH3-46	501	40	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-46	501	40	ccc	Surface - metallic haze with crystals; Bulk - black, shiny, clean	Amorphous
NEPH3-47	501	47	quenched	Patty - black, shiny with a few hazy swirls; Crucible - clean with bubbles	-
NEPH3-47	501	47	ccc	Surface - dull, metallic haze with crystals; Bulk - black, shiny with crystals	$\mathrm{NiFe}_{2} \mathrm{O}_{4}$
NEPH3-48	501	51	quenched	Patty - a few shiny, metallic spots; Crucible - clean with bubbles	-
NEPH3-48	501	51	ccc	Surface - dull and crusty; Bulk - black matte with crystals, devitrified	$\mathrm{NiFe}_{2} \mathrm{O}_{4}$
NEPH3-49	425	35	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-49	425	35	ccc	Surface - metallic haze; Bulk - clean	Amorphous
NEPH3-50	425	40	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-50	425	40	ccc	Surface - metallic haze with many crystals; Bulk - clean	Amorphous
NEPH3-51	425	44	quenched	Patty - black, shiny with a few milky swirls; Crucible - clean with bubbles	-
NEPH3-51	425	44	ccc	Surface - dull and crusty; Bulk - clean	$\mathrm{NiFe}_{2} \mathrm{O}_{4}$
NEPH3-52	425	48	quenched	Patty - shiny metallic surface; Crucible - clean with bubbles	-
NEPH3-52	425	48	ccc	Surface - metallic haze with heavy crystallization; Bulk - crystals	$\mathrm{NiFe}_{2} \mathrm{O}_{4}$
NEPH3-53	502	35	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-53	502	35	ccc	Surface - metallic haze with crystals; Bulk - clean	Amorphous
NEPH3-54	502	40	quenched	Patty - black, shiny, homogeneous; Crucible - clean with bubbles	-
NEPH3-54	502	40	ccc	Surface - dull, metallic haze with some crystals; Bulk - clean	Amorphous
NEPH3-55	502	48	quenched	Patty - shiny, metallic surface; Crucible - clean with bubbles	-
NEPH3-55	502	48	ccc	Surface - dull metallic haze with crystals; Bulk - crystals	$\mathrm{NiFe}_{2} \mathrm{O}_{4}$
NEPH3-56	502	51	quenched	Patty - shiny, metallic surface; Crucible - clean with bubbles	-
NEPH3-56	502	51	ccc	Surface - dull and crusty; Bulk - crystals	$\mathrm{NiFe}_{2} \mathrm{O}_{4}, \mathrm{NaAlSiO}_{4}$

3.3.2 XRD Results

The XRD results shown in Table 3-4 provide a technical basis for making decisions regarding the impact of nepheline formation on durability. The PCT data (as shown in Figure 3-2) indicate that, in general, as WL increased within a given frit-sludge system, the difference in NL [B] between quenched and ccc glasses increased. This same type of response was seen in the Phase 2 study. ${ }^{2}$ Since the higher WL glasses challenge the nepheline discriminator value of 0.62 , it is not surprising that nepheline crystallization and a reduction in durability occurred in some of the Phase 3 glasses.

XRD results indicated that the low WL glasses (i.e. 35 and $40 \mathrm{wt} \%$) were amorphous in each of the four frit-sludge groups. This agrees well with the PCT data, in that no statistical or practical difference in NL $[B]$ response was seen between the quenched and ccc versions of each glass, with the exception of NEPH3-53. This exception is not of practical concern, as the NL [B] for NEPH3-53ccc was only $1.12 \mathrm{~g} / \mathrm{L}$ (based on measured composition), which is more than an order of magnitude below that of the EA reference glass and which fell within the prediction uncertainty of the $\Delta \mathrm{G}_{\mathrm{P}}$ model for boron.

The higher WL ccc glasses ($>40 \% \mathrm{WL}$) in each frit-sludge group were shown by XRD to contain spinel (trevorite, $\mathrm{NiFe}_{2} \mathrm{O}_{4}$). This is expected, since as WL increases, the spinel formers ($\mathrm{Fe}, \mathrm{Mn}, \mathrm{Ni}$ and Cr) increase in concentration, resulting in precipitation of spinels in the glass upon slow cooling. Two of the highest WL glasses, NEPH3-44 and NEPH3-56, also contained nepheline $\left(\mathrm{NaAlSiO}_{4}\right)$. It is possible that some of the other high WL glasses, such as NEPH3-48, NEPH3-51 and NEPH3-55 also contain some nepheline, but that the amount of nepheline crystallization was below the detection limit of the XRD instrument. The presence of small amounts of nepheline would explain the difference in PCT responses between the quenched and ccc versions of these glasses. While a statistical difference in NL [B] response for these three glasses between the two cooling conditions was seen, the difference is small and of little practical concern, since the NL [B] values for the ccc glasses are well below that of the EA reference glass and the PCT responses fell within the uncertainty bands of the $\Delta \mathrm{G}_{\mathrm{P}}$ models.

The effect of nepheline crystallization is shown most clearly by NEPH3-56ccc. For this glass, the PCT response shows a significant difference between the quenched and ccc specimens, and XRD indicates that nepheline crystallization has occurred. As previously noted, nepheline formation can result in a severe deterioration of the chemical durability of the glass through changes in the composition of the residual glass (i.e., a continuous glass matrix which is $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $/$ or SiO_{2} deficient). The primary driver for the reduction in durability is the removal of three moles of glass forming oxides $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and $\left.2 \mathrm{SiO}_{2}\right)$ per each mole of $\mathrm{Na}_{2} \mathrm{O}$ from the continuous glass phase when nepheline crystallizes. Therefore, nepheline formation produces an $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2} deficient continuous glass matrix (relative to the same composition which is void of crystals) which reduces the durability of the final product. The magnitude of the reduction ultimately depends on the extent of crystallization. For NEPH3-56ccc, the NL [B] is still acceptable as compared to the EA reference glass (3.23 vs .
$16.695 \mathrm{~g} / \mathrm{L}$). However, the glass's unpredictability by the $\Delta \mathrm{G}_{\mathrm{P}}$ model suggests, once again, that glasses with nepheline discriminator values below the 0.62 limit may be of concern for processing at the DWPF.

This page intentionally left blank.

4.0 Conclusions

The results of this Phase 3 study concur with the earlier phases in that a nepheline discriminator of 0.62 appears to be the appropriate value for screening out glasses with the potential for nepheline crystallization upon slow cooling (and therefore reduced chemical durability). For the glasses studied here, the nepheline discriminator was also successful in screening out glasses that would be unpredictable by the $\Delta \mathrm{G}_{\mathrm{P}}$ model. Further discussion of a nepheline discriminator for possible inclusion in DWPF process controls will be addressed in a forthcoming report.

Chemical composition measurements indicated that the experimental glasses were close to their target compositions. The targeted $\mathrm{SO}_{4}{ }^{2-}$ concentrations in the Phase 3 glasses ranged from 0.468 to $0.682 \mathrm{wt} \%$. The chemical composition data suggest essentially full retention of $\mathrm{SO}_{4}{ }^{2-}$ in the glass (i.e., no solubility or volatilization issues during the fabrication process). There were no signs of a salt layer on any of the Phase 3 glasses. The degree of $\mathrm{SO}_{4}{ }^{2-}$ retention did not appear to be frit-dependent for these four frits. Coupling the analytical measurements with visual observations of the asfabricated glasses, the results suggest that the $0.6 \mathrm{wt} \% \mathrm{SO}_{4}{ }^{2-}$ limit is applicable for the SB4 systems evaluated in this study.

PCT results showed that all of the Phase 3 quenched glasses were acceptable as compared with the EA reference glass. The durabilities of some of the ccc glasses, particularly those with higher WLs, were statistically greater than their quenched counterparts. However, this was shown to be of little practical significance, as the durabilities of the ccc glasses were also all below that of the EA reference glass.

The glass that was not predicable contained both spinel and nepheline, had a nepheline discriminator value of less than 0.62 and was slow cooled. Since the glass was not homogenous, it is expected that the $\Delta \mathrm{G}_{\mathrm{P}}$ models will not correctly predict its performance.

Visual observations and PCT results indicated that all of the Phase 3 quenched glasses were amorphous. For the ccc glasses, XRD results indicated that the lower WL glasses (35 and $40 \mathrm{wt} \%$) in each frit-sludge group were amorphous, which was consistent with visual observations and PCT response.

The higher WL glasses ($>40 \% \mathrm{WL}$) in each frit-sludge group were shown by XRD to contain spinel (trevorite, $\mathrm{NiFe}_{2} \mathrm{O}_{4}$). XRD showed that two of the highest WL glasses contained nepheline $\left(\mathrm{NaAlSiO}_{4}\right)$ as well. It is possible that some of the other high WL glasses also contained some nepheline, but that the amount of nepheline crystallization was below the detection limit associated with XRD. Nepheline crystallization was shown to result in a decrease in durability for some of the high WL ccc glasses. In the worst case (for the glasses studied here), the NL $[B]$ increased from $1.26 \mathrm{~g} / \mathrm{L}$ (quenched) to $3.23 \mathrm{~g} / \mathrm{L}$ (ccc) for glass NEPH3-56. However, this NL [B] is still acceptable as compared to the EA reference glass $(16.695 \mathrm{~g} / \mathrm{L}) .{ }^{11}$

With respect to frit selection for SB4, the Phase 3 results indicate that Frits 418, 425, 501, and 502 are all good candidates, based on chemical durability and devitrification upon slow cooling. Differences in chemical durability and devitrification behavior were relatively small between the four frits studied as part of Phase 3. The results also indicate that WLs of $35-40 \mathrm{wt} \%$ are attainable with these frits, producing glasses with acceptable durability responses. However, melt rate is also an important factor in frit selection. Melt rate studies on these frits are currently underway and will likely have a significant impact on frit selection due to the high $\mathrm{Al}_{2} \mathrm{O}_{3}$ content of SB4.

This page intentionally left blank.

5.0 Recommendations

The path forward for evaluating the impact of nepheline formation on SB4-based glasses should include an assessment of the impact of implementing a nepheline discriminator value of 0.62 as an administrative control at DWPF, based on the results of the Phase $1-3$ studies and the on-going Frit 503 study. A determination should be made as to whether the nepheline discriminator would screen out all of the existing data that are either unacceptable (based on PCT responses) and/or unpredictable (using the $\Delta \mathrm{G}_{\mathrm{P}}$ models).

In addition, the impact of measurement uncertainty (MAR) on the projected operating windows for the frit-SB4 systems of interest must be made. The nepheline discriminator value of 0.62 does not yet have a measurement uncertainty associated with it. An assessment must be made to determine whether the inclusion of measurement uncertainty in the nepheline discriminator will restrict the range of WLs available to DWPF.

Finally, the impact of applying a nepheline discriminator to process controls must be evaluated for glasses that have already been fabricated at DWPF. Future work should identify what impact, if any, implementation of the nepheline discriminator would have on acceptability of historical glass compositions.

This page intentionally left blank.

6.0 References

1. Peeler, D. K., T. B. Edwards, I. A. Reamer and R. J. Workman, Nepheline Formation Study for Sludge Batch 4 (SB4): Phase 1 Experimental Results, WSRC-TR-2005-00371, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
2. Peeler, D. K., T. B. Edwards, D. R. Best, I. A. Reamer and R. J. Workman, Nepheline Formation Study for Sludge Batch 4 (SB4): Phase 2 Experimental Results, WSRC-TR-2006-00006, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2006).
3. Shah, H. B., Estimate of Sludge Batch 4 Calcine Composition: Additional Cases for Final Recommendation, CBU-PIT-2006-0001, Westinghouse Savannah River Company, Aiken, South Carolina (2006).
4. Peeler, D. K. and T. B. Edwards, Model Based Assessments for the Baseline Sludge Batch 4 (Case 15C) Flowsheet, WSRC-TR-2006-00049, Revision 0, Washington Savannah River Company, Aiken, South Carolina (2006).
5. Stone, M. E. and J. E. Josephs, Melt Rate Improvement for DWPF MB3: Melt Rate Furnace Testing (U), WSRC-TR-2001-00146, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2001).
6. Taylor, A. S., T. B. Edwards, J. C. George, T. K. Snyder and D. K. Peeler, The SRNL Composition Properties (ComPro ${ }^{\text {TM }}$) Database, WSRC-RP-2004-00704, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2004).
7. SRNL, Glass Batching, SRTC Procedure Manual, L29, ITS-0001, Westinghouse Savannah River Company, Aiken, South Carolina (2002).
8. SRNL, Glass Melting, SRTC Procedure Manual, L29, ITS-0003, Westinghouse Savannah River Company, Aiken, South Carolina (2002).
9. Marra, S. L. and C. M. Jantzen, Characterization of Projected DWPF Glass Heat Treated to Simulate Canister Centerline Cooling, WSRC-TR-92-142, Revision 1, Westinghouse Savannah River Company, Aiken, South Carolina (1993).
10. ASTM, Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT), ASTM C-1285-2002, (2002).
11. Jantzen, C. M., N. E. Bibler, D. C. Beam, C. L. Crawford and M. A. Pickett, Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material, WSRC-TR-92-346, Revision 1, Westinghouse Savannah River Company, Aiken, South Carolina (1993).
12. Jantzen, C. M., J. B. Picket, K. G. Brown, T. B. Edwards and D. C. Beam, Process/Product Models for the Defense Waste Processing Facility (DWPF): Part I. Predicting Glass Durability from Composition Using a Thermodynamic Hydration Energy Reaction Model (THERMO), WSRC-TR-93-672, Revision 1, Westinghouse Savannah River Company, Aiken, South Carolina (1995).
13. Brown, K. G., R. L. Postles and T. B. Edwards, SME Acceptability Determination for DWPF Process Control, WSRC-TR-95-00364, Revision 4, Westinghouse Savannah River Company, Aiken, South Carolina (2002).
14. Bickford, D. F. and C. M. Jantzen, "Devitrification of SRL Defense Waste Glass," Sci. Basis for Nuclear Waste Management VII, edited by G. L. McVay. Elsevier, New York, pp. 557-565 (1984).
15. Bickford, D. F. and C. M. Jantzen, "Devitrification of Defense Nuclear Waste Glasses: Role of Melt Insolubles," J. Non-Crystalline Solids, 84 [1-3] 299-307 (1986).
16. Jantzen, C. M., D. F. Bickford, D. G. Karraker and G. G. Wicks, "Time-Temperature-Transformation Kinetics in SRL Waste Glass," pp. 30-38 in Advances in Ceramics, Vol. 8, American Ceramic Society, Westerville, OH (1984).
17. Spilman, D. B., L. L. Hench and D. E. Clark, "Devitrification and Subsequent Effects on the Leach Behavior of a Simulated Borosilicate Nuclear Waste Glass," Nuclear and Chemical Waste Management, 6 107119 (1986).
18. Li, H., J. D. Vienna, P. Hrma, D. E. Smith and M. J. Schwieger, "Nepheline Precipitation in High-Level Waste Glasses - Compositional Effects and Impact on the Waste Form Acceptability," Mat. Res. Soc. Proc., Vol. 465, pp. 261-268 (1997).
19. Riley, B. J., J. A. Rosario and P. Hrma, Impact of HLW Glass Crystallinity on the PCT Response, PNNL-13491, Pacific Northwest National Laboratory, Richland, Washington (2001).
20. Cicero, C. A., S. L. Marra and M. K. Andrews, Phase Stability Determinations of DWPF Waste Glasses (U), WSRC-TR-93-00227, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (1993).
21. Kim, D. S., D. K. Peeler and P. Hrma, "Effect of Crystallization on the Chemical Durability of Simulated Nuclear Waste Glasses," Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries, Vol. 61, pp. 177-185 (1995).
22. Li, H., P. Hrma, J. D. Vienna, M. Qian, Y. Su and D. E. Smith, "Effects of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$, and SiO_{2} on Nepheline Formation in Borosilicate Glasses: Chemical and Physical Correlations," Journal of Non-Crystalline Solids, 331 202-216 (2003).
23. Lilliston, G. R., Development of Elemental Sludge Compositions for Variations of Sludge Batch 4 (SB4), CBU-PIT-2004-00011, Revision 1, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
24. Peeler, D. K. and T. B. Edwards, Frit Development Efforts for Sludge Batch 4: Model-Based Assessments, WSRC-TR-2005-00103, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
25. Peeler, D. K., T. B. Edwards and T. H. Lorier, Nepheline Formation Potential in Sludge Batch (SB4) Glasses, WSRC-TR-2005-00153, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
26. Elder, H. H., Estimate of Sludge Batch 4 Calcine Composition, CBU-PIT-2005-00134, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
27. Elder, H. H., Estimate of Sludge Batch 4 Calcine Composition Additional Cases, CBU-PIT-2005-00176, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
28. Peeler, D. K. and T. B. Edwards, Frit Development Effort for SB4: Nominal and Variation Stage Assessments, WSRC-TR-2005-00372, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
29. Edwards, T. B. and D. K. Peeler, Nepheline Formation Potential in Sludge Batch 4 (SB4) and Its Impact on Durability: Selecting Glasses for a Phase 2 Study, WSRC-TR-2005-00370, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2005).
30. Washburn, F. A., Technical Task Request: Sludge Batch 4 and MCU Frit Optimization,

HLW/DWPF/TTR-2004-0025, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2004).
31. Peeler, D. K., Task Technical \& QA Plan: Sludge Batch and MCU Frit Optimization, WSRC-RP-2004-00746, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2004).
32. Fox, K. M., T. B. Edwards and D. K. Peeler, Nepheline Formation Potential in Sludge Batch 4 (SB4) and Its Impact on Durability: Selecting Glases for a Phase 3 Study, WSRC-TR-2006-00053, Revision 0, Washington Savannah River Company, Aiken, South Carolina (2006).
33. Peeler, D. K., C. C. Herman, M. E. Smith, T. H. Lorier, D. R. Best, T. B. Edwards and M. A. Baich, An Assessment of the Sulfate Solubility Limit for the Frit 418 - Sludge Batch 2/3 System, WSRC-TR-200400081, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (2004).

This page intentionally left blank.

Appendix A

An Analytical Plan for Measuring the Chemical Compositions of the Nepheline Phase 3 Study Glasses

(SRNL-SCS-2006-00006)

This page intentionally left blank.

SRNL-SCS-2006-00006
February 14, 2006

To: K. M. Fox, SRNL
cc: \quad R. A. Baker, 773-42A
D. R. Best, 786-1A (wo)
C. C. Herman, 999-W
D. K. Peeler, 999-W

From: T. B. Edwards, 773-42A (5-5148)
Statistical Consulting Section
I. A. Reamer, 999-1 W
P. A. Toole, 786-1A (wo)
R. C. Tuckfield, 773-42A
R. J. Workman, 999-1 W
wo - without glass identifiers

R. A. Baker, Technical Reviewer

an Analytical Plan for Measuring the Chemical Compositions of the Nepheline Phase 3 Study Glasses (U)

1.0 EXECUTIVE SUMMARY

A study is being conducted by the Savannah River National Laboratory (SRNL) for the Defense Waste Processing Facility (DWPF) that involves investigating the potential impact of nepheline formation on the durability of high level waste glasses. To address this issue, several glass compositions were identified for their potential for the formation of nepheline as part of the frit development activities for Sludge Batch 4 (SB4). Sixteen of these glasses were selected to be batched and fabricated as Phase 3 of the nepheline study. These glasses complemented the earlier studies by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of a nepheline primary crystalline phase for SB4 glasses and into the impact of such phases on the durability of the SB4 glasses.

The chemical compositions of these 16 Phase 3 glasses are to be determined by SRNL's Process Science Analytical Laboratory (PSAL). This memorandum provides an analytical plan to direct and support these measurements at PSAL.

2.0 INTRODUCTION

A study is being conducted by the Savannah River National Laboratory (SRNL) for the Defense Waste Processing Facility (DWPF) that involves investigating the potential impact of nepheline formation on the durability of high level waste glasses [1]. To address this issue, sixteen glass compositions were identified for their potential for the formation of nepheline as part of the frit development activities for Sludge Batch 4 (SB4). These glasses make up the Phase 3 study, which has two primary objectives. The first is to continue to demonstrate the ability of the discriminator value to adequately predict nepheline formation potential for specific glass systems of interest. The second is to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, glasses were selected to cover waste loadings (WLs) that tightly bound the nepheline discriminator value of 0.62 [2], with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the Product Composition Control System (PCCS) to support Slurry Mix Evaporator (SME) acceptability decisions. In addition, glasses targeting lower WLs (35 and 40%) will be prepared and analyzed to contribute needed data to the ComPro ${ }^{\mathrm{TM}}$ database [3] in anticipation of a variability study for SB4.

The chemical compositions of the 16 Phase 3 glasses are to be determined by SRNL's Process Science Analytical Laboratory (PSAL). This memorandum provides an analytical plan to direct and support these measurements at PSAL.

3.0 Analytical Plan

The analytical procedures used by PSAL to determine cation concentrations for a glass sample include steps for sample preparation and for instrument calibration. Each glass is to be prepared in duplicate by each of two dissolution methods: lithium metaborate fusion (LM) and sodium peroxide fusion (PF).

The primary measurements of interest are to be acquired as follows. The samples prepared by LM are to be measured for barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), copper (Cu), potassium (K), lanthanum (La), magnesium (Mg), manganese (Mn), sodium (Na), lead (Pb), sulfur (S), thorium (Th), titanium (Ti), zinc (Zn), and zirconium (Zr) concentrations. Samples prepared by PF are to be measured for aluminum (Al), boron (B), iron (Fe), lithium (Li), nickel (Ni), silicon (Si), and uranium (U). Samples dissolved by both preparation methods are to be measured using Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES). It should be noted that some of these elements are minor components that may be near detection limits for most, if not all, of the study glasses.

Randomizing the preparation steps and blocking and randomizing the measurements for the ICP-AES are of primary concern in the development of this analytical plan. The sources of uncertainty for the analytical procedure used by PSAL to determine the cation concentrations for the submitted glass samples are dominated by the dissolution step in the preparation of the sample and by the calibrations of the ICP-AES.

Samples of glass standards will be included in the analytical plan to provide an opportunity for checking the performance of the instrumentation over the course of the analyses and for potential bias correction. Specifically, several samples of Waste Compliance Plan (WCP) Batch 1 (BCH) [4] and a uranium standard glass (Ustd) are included in this analytical plan. The reference compositions of these glasses are provided in Table 1.

Table 1: Oxide Compositions of WCP Batch 1 (BCH) and of Ustd (wt\%)

Oxide/ Anion	$\begin{gathered} \hline \text { BCH } \\ (\mathrm{wt} \%) \end{gathered}$	$\begin{gathered} \text { Ustd } \\ \text { (wt \%) } \end{gathered}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$	4.877	4.1
$\mathrm{B}_{2} \mathrm{O}_{3}$	7.777	9.209
BaO	0.151	0
CaO	1.22	1.301
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.107	0
$\mathrm{Cs}_{2} \mathrm{O}$	0.06	0
CuO	0.399	0
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	12.839	13.196
$\mathrm{K}_{2} \mathrm{O}$	3.327	2.999
$\mathrm{Li}_{2} \mathrm{O}$	4.429	3.057
MgO	1.419	1.21
MnO	1.726	2.892
$\mathrm{Na}_{2} \mathrm{O}$	9.003	11.795
$\mathrm{Nd}_{2} \mathrm{O}_{3}$	0.147	0
NiO	0.751	1.12
RuO_{2}	0.0214	0
SiO_{2}	50.22	45.353
SO_{3}	0	0
TiO_{2}	0.677	1.049
$\mathrm{U}_{3} \mathrm{O}_{8}$	0	2.406
ZrO_{2}	0.098	0

Each glass sample submitted to PSAL will be prepared in duplicate by the LM and PF dissolution methods. Every prepared sample will be read twice by ICP-AES, with the instrument being calibrated before each of these two sets of readings. This will lead to four measurements for each cation of interest for each submitted glass.

Table 2 presents identifying codes, G01 through G16, for the 16 glasses fabricated for this nepheline study. The table provides a naming convention that is to be used in analyzing the glasses and reporting the measurements of their compositions. ${ }^{a}$

[^2]Table 2: Glass Identifiers ${ }^{\text {a }}$ to Establish Blind Samples for PSAL

Glass ID	Sample ID	Glass ID	Sample ID
NEPH3-41	G06	NEPH3-49	G13
NEPH3-42	G08	NEPH3-50	G04
NEPH3-43	G14	NEPH3-51	G03
NEPH3-44	G01	NEPH3-52	G09
NEPH3-45	G12	NEPH3-53	G05
NEPH3-46	G07	NEPH3-54	G16
NEPH3-47	G15	NEPH3-55	G10
NEPH3-48	G02	NEPH3-56	G11

3.1 Preparation of the Samples

Each of the 16 glasses included in this analytical plan is to be prepared in duplicate by the LM and PF dissolution methods. Thus, the total number of prepared glass samples is determined by $16 \cdot 2 \cdot 2=64$, not including the samples of the BCH and Ustd glass standards that are to be prepared.

Table 3 provides blocking and (random) sequencing schema for conducting the preparation steps of the analytical procedures. One block of preparation work is provided for each preparation method to facilitate the scheduling of activities by work shift. The identifier for each of the prepared samples indicates the sample identifier (ID), preparation method, and duplicate number.

[^3]Table 3: Preparation Blocks by Dissolution Method

LM (Lithium Metaborate)	PF (Peroxide Fusion)
G14LM1	G07PF1
G04LM1	G13PF1
G16LM1	G10PF1
G07LM1	G09PF1
G02LM1	G15PF1
G14LM2	G03PF1
G04LM2	G06PF1
G16LM2	G04PF1
G07LM2	G07PF2
G10LM1	G14PF1
G13LM1	G01PF1
G06LM1	G08PF1
G05LM1	G05PF1
G02LM2	G02PF1
G12LM1	G16PF1
G05LM2	G12PF1
G11LM1	G14PF2
G09LM1	G11PF1
G01LM1	G06PF2
G10LM2	G08PF2
G08LM1	G12PF2
G13LM2	G09PF2
G15LM1	G15PF2
G03LM1	G13PF2
G09LM2	G10PF2
G15LM2	G04PF2
G06LM2	G03PF2
G08LM2	G01PF2
G12LM2	G11PF2
G01LM2	G16PF2
G11LM2	G05PF2
G03LM2	G02PF2

3.2 ICP-AES CALIbration Blocks

The glass samples prepared by the LM and PF dissolution methods are to be analyzed using ICP-AES instrumentation calibrated for the particular preparation method. After the initial set of cation concentration measurements, the ICP-AES instrumentation is to be recalibrated and a second set of concentration measurements for the cations determined.

Randomized plans for measuring cation concentrations in the LM-prepared and PF-prepared samples are provided in Table 4. The cations to be measured are specified as part of the table. In the tables, the sample identifiers for the 16 study glasses have been modified by the addition of a suffix (a " 1 "or a " 2 ") to indicate whether the measurement was made during the first or second (respectively)
calibration of the ICP-AES instrumentation. The identifiers for the BCH and Ustd samples have been modified to indicate the ICP-AES calibration and that each of these prepared samples is to be read 3 times (mirrored in the corresponding suffix of 1,2 , or 3) per block and calibration.

Table 4: ICP-AES Blocks \& Calibration Groups by Preparation Method

LM Glass Samples				PF Glass Samples			
Used to Measure Elemental $\mathrm{Ba}, \mathrm{Ca}, \mathrm{Ce}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{Pb}$, $\mathrm{S}, \mathrm{Th}, \mathrm{Ti}, \mathrm{Zn}, \& \mathrm{Zr}$				Used to Measure Elemental Al, B, Fe, Li, Ni, Si, \& U			
Block 1		Block 2		Block 1		Block 2	
Calibration 1	Calibration 2						
BCHLM111	BCHLM121	BCHLM211	BCHLM221	BCHPF111	BCHPF121	BCHPF211	BCHPF221
UstdLM111	UstdLM121	UstdLM211	UstdLM221	UstdPF111	UstdPF121	UstdPF211	UstdPF221
G14LM21	G07LM22	G04LM21	G08LM22	G10PF21	G10PF12	G15PF11	G02PF22
G13LM21	G03LM12	G06LM21	G06LM12	G06PF21	G11PF22	G08PF11	G04PF22
G05LM21	G14LM22	G16LM11	G16LM22	G11PF21	G05PF12	G13PF11	G16PF22
G12LM21	G09LM12	G08LM21	G08LM12	G03PF21	G12PF22	G14PF21	G14PF22
G03LM11	G12LM22	G11LM21	G01LM22	G07PF21	G06PF12	G16PF21	G09PF12
G13LM11	G05LM22	G06LM11	G06LM22	G05PF11	G01PF12	G04PF21	G02PF12
G09LM21	G12LM12	G10LM11	G15LM12	G06PF11	G07PF22	G14PF11	G14PF12
G07LM21	G13LM22	G01LM21	G04LM22	G11PF11	G06PF22	G09PF21	G16PF12
BCHLM112	BCHLM122	BCHLM212	BCHLM222	BCHPF112	BCHPF122	BCHPF212	BCHPF222
UstdLM112	UstdLM122	UstdLM212	UstdLM222	UstdPF112	UstdPF122	UstdPF212	UstdPF222
G02LM21	G02LM12	G04LM11	G16LM12	G12PF21	G11PF12	G02PF11	G09PF22
G09LM11	G03LM22	G11LM11	G04LM12	G05PF21	G05PF22	G02PF21	G08PF12
G02LM11	G02LM22	G10LM21	G10LM22	G01PF21	G12PF12	G09PF11	G04PF12
G05LM11	G09LM22	G01LM11	G15LM22	G01PF11	G07PF12	G04PF11	G08PF22
G12LM11	G14LM12	G15LM11	G10LM12	G12PF11	G03PF22	G15PF21	G15PF22
G07LM11	G13LM12	G08LM11	G11LM22	G10PF11	G03PF12	G08PF21	G13PF12
G03LM21	G05LM12	G16LM21	G11LM12	G07PF11	G10PF22	G13PF21	G15PF12
G14LM11	G07LM12	G15LM21	G01LM12	G03PF11	G01PF22	G16PF11	G13PF22
BCHLM113	BCHLM123	BCHLM213	BCHLM223	BCHPF113	BCHPF123	BCHPF213	BCHPF223
UstdLM113	UstdLM123	UstdLM213	UstdLM223	UstdPF113	UstdPF123	UstdPF213	UstdPF223

4.0 CONCLUDING COMMENTS

In summary, this analytical plan identifies two preparation blocks in Table 3 and eight ICP-AES calibration blocks in Table 4 for use by PSAL. The sequencing of the activities associated with each of the steps in the analytical procedures has been randomized. The size of each of the blocks was selected so that it could be completed in a single work shift.

If a problem is discovered while measuring samples in a calibration block, the instrument should be re-calibrated and the block of samples re-measured in its entirety. If for some reason the measurements are not conducted in the sequences presented in this report, a record should be made of the actual order used along with any explanative comments.

The analytical plan indicated in the preceding tables should be modified by the personnel of PSAL to include any calibration check standards and/or other standards that are part of their routine operating procedures. It is also recommended that the solutions resulting from each of the prepared samples be archived for some period, considering the "shelf-life" of the solutions, in case questions arise during
data analysis. This would allow for the solutions to be rerun without additional preparations, thus minimizing cost.

5.0 REFERENCES

[1] Fox, K.M., T.B. Edwards, and D.K. Peeler, "Nepheline Formation Potential in Sludge Batch 4 (SB4) and its Impact on Durability: Selecting Glasses for a Phase 3 Study," WSRC-TR-2006-00053, Revision 0, 2006.
[2] Li, H., P. Hrma, J.D. Vienna, M. Qian, Y. Su, and D.E. Smith, "Effects of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}$, $\mathrm{Na}_{2} \mathrm{O}$, and SiO_{2} on Nepheline Formation in Borosilicate Glasses: Chemical and Physical Correlations," Journal of Non-Crystalline Solids, 331, pgs. 202-216, 2003.
[3] Taylor, A.S., T.B. Edwards, J.C. George, T.K. Snyder, and D.K. Peeler, "The SRNL Glass Composition - Properties (ComPro) Database," WSRC-RP-2004-00704, Revision 0, 2004.
[4] Jantzen, C.M., J.B. Pickett, K.G. Brown, T.B. Edwards, and D.C. Beam, "Process/ Product Models for the Defense Waste Processing Facility (DWPF): Part I. Predicting Glass Durability from Composition Using a Thermodynamic Hydration Energy Reaction Model (THERMO ${ }^{\mathrm{TM}}$) (U)," WSRC-TR-93-673, Revision 1, Volume 2, Table B.1, pp. B.9, 1995.

Appendix B

An Analytical Plan for Measuring PCT Solutions for the First Set of Glasses from the Phase 3 Nepheline Study

 (SRNL-SCS-2006-00003)This page intentionally left blank.

SRNL-SCS-2006-00003
February 8, 2006

To: K. M. Fox, SRNL
cc: \quad R. A. Baker, 773-42A
I. A. Reamer, 999-1 W
P. A. Toole, $786-1 \mathrm{~A}$ (wo)
D. R. Best, 786-1A (wo)
C. C. Herman, $999-\mathrm{W}$
D. K. Peeler, 999-W

From: T. B. Edwards, 773-42A (5-5148) Statistical Consulting Section
wo - without glass identifiers

R. A. Baker, Technical Reviewer

An Analytical Plan for Measuring PCT Solutions for the First Set of Glasses from the Phase 3 Nepheline Study (U)

1.0 ExECuTIVE Summary

A study is being conducted by the Savannah River National Laboratory (SRNL) for the Defense Waste Processing Facility (DWPF) that involves investigating the potential impact of nepheline formation on the durability of high level waste glasses. To address this issue, several glass compositions were identified for their potential for the formation of nepheline as part of the frit development activities for Sludge Batch 4 (SB4). Sixteen of these glasses were selected to be batched and fabricated as Phase 3 of the nepheline study; the durability of the glasses is to be measured using the Product Consistency Test (PCT) as defined in ASTM C-1285-2002. Two heat treatments were utilized during the fabrication of each of these glasses. Specifically, each of the 16 glasses was quenched (i.e., rapidly cooled) and cooled in accordance with the centerline-canister-cooling (ccc) regime. Both heat treatments of each glass are to be subjected to the PCT.

To complete the full complement of PCTs, the 16 glasses were grouped into two sets based on the frits that were combined with SB4. The first set of PCTs covered the glasses that were developed using Frits 418 and 501, while the second set of PCTs covered the glasses that were developed using Frits 425 and 502. Both sets of PCTs are to be submitted to SRNL's Process Science Analytical Laboratory (PSAL) for measurement. This memorandum provides an analytical plan for the measurement of the first set of PCTs by PSAL.

2.0 Introduction

A study is being conducted by the Savannah River National Laboratory (SRNL) for the Defense Waste Processing Facility (DWPF) that involves investigating the potential impact of nepheline formation on the durability of high level waste glasses [1]. To address this issue, 16 glass compositions were selected for their potential for the formation of nepheline as part of the frit development activities for Sludge Batch 4 (SB4). The specific SB4 option being considered is Case 15C Blend 1 as defined by Shah [2]. The glasses were selected to be batched and fabricated as Phase 3 of the nepheline study; the durability of the glasses is to be measured using the Product Consistency Test (PCT) as defined in ASTM C-1285-2002 [3]. Two heat treatments were utilized during the fabrication of each of these glasses. Specifically, each of the 16 glasses was quenched (i.e., rapidly cooled) and cooled in accordance with the centerline-canister-cooling (ccc) regime. Both heat treatments of each glass are to be subjected to the PCT.

To complete the full complement of PCTs, the 16 glasses were grouped into two sets based on the frits that were combined with SB4. The first set of PCTs covered the glasses (NEPH3-41 through NEPH3-48) that were developed using Frits 418 and 501, while the second set of PCTs covered the glasses (NEPH3-49 through NEPH3-56) that were developed using Frits 425 and 502. This analytical study plan addresses the PCT solutions for NEPH3-41 through NEPH3-48 (or set \#1) for both quenched and ccc heat treatments. A separate analytical plan will be developed for the second set (NEPH3-49 through NEPH3-56). Both sets of PCTs are to be submitted to SRNL's Process Science Analytical Laboratory (PSAL) for measurement. Table 1 presents a listing of the glasses covered by this memorandum.

Table 1: Identifiers for Glasses Covered by this Plan ${ }^{\text {a }}$

NEPH3-41	NEPH3-45
NEPH3-41ccc	NEPH3-45ccc
NEPH3-42	NEPH3-46
NEPH3-42ccc	NEPH3-46ccc
NEPH3-43	NEPH3-47
NEPH3-43ccc	NEPH3-47ccc
NEPH3-44	NEPH3-48
NEPH3-44ccc	NEPH3-48ccc

3.0 DISCUSSION

Each of the study glasses of Table 1 is to be subjected to the PCT in triplicate. In addition to PCTs for the study glasses, triplicate PCTs are to be conducted on a sample of the Approved Reference Material - One (ARM-1) glass and a sample of the Environmental Assessment (EA) glass. Two reagent blank samples are also to be included in these tests. This results in 56 sample solutions being required to complete these PCTs.

The leachates from these tests will be diluted by adding 4 mL of $0.4 \mathrm{M} \mathrm{HNO}_{3}$ to 6 mL of the leachate (a 6:10 volume to volume, v:v, dilution) before being submitted to PSAL. The leachates of EA will

[^4]be further diluted ($1: 10 \mathrm{v}: \mathrm{v}$) with deionized water prior to submission to PSAL in order to prevent problems with the nebulizer. Note that additional dilutions for the ccc versions of one or more of the study glasses may be needed due to a possibly low durability of some of the glasses. Upon termination of the PCT, a decision is to be made (by the technicians and a PSAL representative, if called by the technician) as to whether any other dilution is needed for these solutions to mitigate any potential gelling issues. Any extra dilutions are to be reported, and guidance is to be given as to how the dilutions are to be handled in the statistical assessment of the measurement data. More specifically, PSAL will be responsible for indicating if any additional dilutions were made and how they were, or how they should be, accounted for in the reported measurements.

Table 2 presents identifying codes, F01 through F56, for the individual solutions required for the PCTs of the select study glasses and of the standards (EA, ARM-1, and blanks). This provides a naming convention that is to be used by PSAL in analyzing the solutions and reporting the relevant concentration measurements. ${ }^{\text {a }}$

Table 2: Identifiers for the PCT Solutions Covered by this Plan

Original Sample	Solution Identifier	Original Sample	Solution Identifier	Original Sample	Solution Identifier
NEPH3-41	F37	NEPH3-44ccc	F36	NEPH3-48	F38
NEPH3-41	F09	NEPH3-44ccc	F22	NEPH3-48	F14
NEPH3-41	F17	NEPH3-44ccc	F42	NEPH3-48	F18
NEPH3-41ccc	F32	NEPH3-45	F55	NEPH3-48ccc	F47
NEPH3-41ccc	F11	NEPH3-45	F16	NEPH3-48ccc	F20
NEPH3-41ccc	F41	NEPH3-45	F40	NEPH3-48ccc	F33
NEPH3-42	F52	NEPH3-45ccc	F28	EA	F50
NEPH3-42	F05	NEPH3-45ccc	F02	EA	F53
NEPH3-42	F06	NEPH3-45ccc	F04	EA	F46
NEPH3-42ccc	F39	NEPH3-46	F25	ARM-1	F08
NEPH3-42ccc	F30	NEPH3-46	F35	ARM-1	F29
NEPH3-42ccc	F23	NEPH3-46	F45	ARM-1	F13
NEPH3-43	F10	NEPH3-46ccc	F07	blank	F26
NEPH3-43	F49	NEPH3-46ccc	F19	blank	F12
NEPH3-43	F54	NEPH3-46ccc	F56		
NEPH3-43ccc	F34	NEPH3-47	F01		
NEPH3-43ccc	F44	F51	NEPH3-47	F27	
NEPH3-44	F15	NEPH3-47	F31		
NEPH3-44	F24	NEPH3-47ccc	F48	F03	
NEPH3-44	F21	NEPH3-47ccc	F43		

4.0 Analytical Plan

The analytical plan for PSAL is provided in this section. Each of the solution samples submitted to PSAL is to be analyzed only once for each of the following: boron (B), barium (Ba), cadmium (Cd),

[^5]chromium (Cr), iron (Fe), lithium (Li), sodium (Na), lead (Pb), silicon (Si), thorium (Th), and uranium (U). $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and Si are the elements that are to be used in the assessment of glass durability; the other elements are being monitored to address solution disposal issues in SRNL upon termination of the PCTs. The measurements are to be made in parts per million (ppm).
The analytical procedure used by PSAL to determine the concentrations utilizes an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). The PCT solutions (as identified in Table 2) are grouped in three ICP-AES blocks for processing by PSAL in Table 3. Each block requires a different calibration of the ICP-AES.

Table 3: ICP-AES Calibration Blocks for Leachate Measurements

Block 1	Block 2	Block 3
std-b1-1	std-b2-1	std-b3-1
F52	F05	F06
F39	F30	F23
F08	F27	F46
F01	F03	F31
F48	F35	F43
F26	F19	F45
F25	F09	F56
F07	F11	F17
F37	F29	F41
F32	F53	F12
std-b1-2	std-b2-2	std-b3-2
F15	F24	F21
F36	F22	F42
F38	F14	F18
F47	F20	F33
F50	F49	F13
F10	F44	F54
F34	F16	F51
F55	F02	F40
F28	std-b2-3	F04
std-b1-3		std-b3-3

A multi-element solution standard (denoted by "std-bi-j" where $\mathrm{i}=1$ to 3 represents the block number and $\mathrm{j}=1,2$, and 3 represents the position in the block) was added at the beginning, middle, and end of each of the three blocks. This standard may be useful in checking and correcting for bias in the concentration measurements arising from the ICP calibrations.

5.0 SUMMARY

In summary, this analytical plan provides identifiers for the PCT solutions in Table 2 and three ICPAES calibration blocks in Table 3 for PSAL to use in conducting the boron (B), barium (Ba), cadmium (Cd), chromium (Cr), iron (Fe), lithium (Li), sodium (Na), lead (Pb), silicon (Si), thorium (Th), and uranium (U) concentration measurements for the PCT study of this select subset of the Phase 3 nepheline glasses. The sequencing of the activities associated with each of the steps in the analytical procedure has been randomized. The size of the blocks was selected so that the block
could be completed in a single work shift. If for some reason the measurements are not conducted in the sequence presented in this memorandum, the actual order should be recorded along with any explanative comments.

The analytical plan indicated in the preceding tables should be modified by the personnel of PSAL to include any calibration check standards and/or other standards that are part of their standard operating procedures.

6.0 References

[1] Fox, K.M., T.B. Edwards, and D.K. Peeler, "Nepheline Formation Potential in Sludge Batch 4 (SB4) and its Impact on Durability: Selecting Glasses for a Phase 3 Study," WSRC-TR-2006-00053, Revision 0, 2006.
[2] Shah, H.B., "Estimate of Sludge Batch 4 Calcine Composition Additional Cases for Final Recommendation," CBU-PIT-2006-00011, Revision 0, 2006.
[3] ASTM C-1285-2002, "Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT)," ASTM, 2002.

Appendix C

An Analytical Plan for Measuring PCT Solutions for the Second Set of Glasses from the Phase 3 Nepheline Study

SRNL-SCS-2006-00007

This page intentionally left blank.
cc:
R. A. Baker, 773-42A
D. R. Best, 786-1A (wo)
C. C. Herman, $999-\mathrm{W}$
I. A. Reamer, 999-1 W
P. A. Toole, 786-1A (wo)
R. C. Tuckfield, 773-42A
R. J. Workman, 999-1W

From: T. B. Edwards, 773-42A (5-5148) Statistical Consulting Section

An Analytical Plan for Measuring PCT Solutions for the Second Set of Glasses from the Phase 3 Nepheline Study (U)

1.0 ExEcutive Summary

A study is being conducted by the Savannah River National Laboratory (SRNL) for the Defense Waste Processing Facility (DWPF) that involves investigating the potential impact of nepheline formation on the durability of high level waste glasses. To address this issue, several glass compositions were identified for their potential for the formation of nepheline as part of the frit development activities for Sludge Batch 4 (SB4). Sixteen of these glasses were selected to be batched and fabricated as Phase 3 of the nepheline study; the durability of the glasses is to be measured using the Product Consistency Test (PCT) as defined in ASTM C-1285-2002. Two heat treatments were utilized during the fabrication of each of these glasses. Specifically, each of the 16 glasses was quenched (i.e., rapidly cooled) and cooled in accordance with the centerline-canister-cooling (ccc) regime. Both heat treatments of each glass are to be subjected to the PCT.

To complete the full complement of PCTs, the 16 glasses were grouped into two sets based on the frits that were combined with SB4. The first set of PCTs covered the glasses that were developed using Frits 418 and 501, while the second set of PCTs covered the glasses that were developed using Frits 425 and 502. Both sets of PCTs are to be submitted to SRNL's Process Science Analytical Laboratory (PSAL) for measurement. This memorandum provides an analytical plan for the measurement of the second set of PCTs by PSAL.

2.0 Introduction

A study is being conducted by the Savannah River National Laboratory (SRNL) for the Defense Waste Processing Facility (DWPF) that involves investigating the potential impact of nepheline formation on the durability of high level waste glasses [1]. To address this issue, 16 glass compositions were selected for their potential for the formation of nepheline as part of the frit development activities for Sludge Batch 4 (SB4). The specific SB4 option being considered is Case 15C Blend 1 as defined by Shah [2]. The glasses were selected to be batched and fabricated as Phase 3 of the nepheline study [1]; the durability of the glasses is to be measured using the Product Consistency Test (PCT) as defined in ASTM C-1285-2002 [3]. Two heat treatments were utilized during the fabrication of each of these glasses. Specifically, each of the 16 glasses was quenched (i.e., rapidly cooled) and cooled in accordance with the centerline-canister-cooling (ccc) regime. Both heat treatments of each glass are to be subjected to the PCT.

To complete the full complement of PCTs, the 16 glasses were grouped into two sets based on the frits that were combined with SB4. The first set of PCTs covered the glasses (NEPH3-41 through NEPH3-48) a that were developed using Frits 418 and 501, while the second set of PCTs covered the glasses (NEPH3-49 through NEPH3-56) that were developed using Frits 425 and 502. This analytical study plan addresses the PCT solutions for NEPH3-49 through NEPH3-56 (or set \#2) for both quenched and ccc heat treatments. A separate analytical plan was previously developed for the first set (NEPH3-41 through NEPH3-48) [4]. Both sets of PCTs are to be submitted to SRNL's Process Science Analytical Laboratory (PSAL) for measurement. Table 1 presents a listing of the glasses covered by this memorandum.

Table 1: Identifiers for Glasses Covered by this Plan

NEPH3-49	NEPH3-53
NEPH3-49ccc	NEPH3-53ccc
NEPH3-50	NEPH3-54
NEPH3-50ccc	NEPH3-54ccc
NEPH3-51	NEPH3-55
NEPH3-51ccc	NEPH3-55ccc
NEPH3-52	NEPH3-56
NEPH3-52ccc	NEPH3-56ccc

3.0 DISCUSSION

Each of the study glasses of Table 1 is to be subjected to the PCT in triplicate. In addition to PCTs for the study glasses, triplicate PCTs are to be conducted on a sample of the Approved Reference Material - One (ARM-1) glass and a sample of the Environmental Assessment (EA) glass. Two reagent blank samples are also to be included in these tests. This results in 56 sample solutions being required to complete these PCTs.

The leachates from these tests will be diluted by adding 4 mL of $0.4 \mathrm{M} \mathrm{HNO}_{3}$ to 6 mL of the leachate (a $6: 10$ volume to volume, v:v, dilution) before being submitted to PSAL. The leachates of EA will

[^6]be further diluted ($1: 10 \mathrm{v}: \mathrm{v}$) with deionized water prior to submission to PSAL in order to prevent problems with the nebulizer. Note that additional dilutions for the ccc versions of one or more of the study glasses may be needed due to a possibly low durability of some of the glasses. Upon termination of the PCT, a decision is to be made (by the technicians and a PSAL representative, if called by the technician) as to whether any other dilution is needed for these solutions to mitigate any potential gelling issues. Any extra dilutions are to be reported, and guidance is to be given as to how the dilutions are to be handled in the statistical assessment of the measurement data. More specifically, PSAL will be responsible for indicating if any additional dilutions were made and how they were, or how they should be, accounted for in the reported measurements.

Table 2 presents identifying codes, H01 through H56, for the individual solutions required for the PCTs of the select study glasses and of the standards (EA, ARM-1, and blanks). This provides a naming convention that is to be used by PSAL in analyzing the solutions and reporting the relevant concentration measurements. ${ }^{\text {a }}$

Table 2: Identifiers for the PCT Solutions

Original Sample	Solution Identifier	Original Sample	Solution Identifier	Original Sample	Solution Identifier
NEPH3-49	H31	NEPH3-52ccc	H47	NEPH3-56	H04
NEPH3-49	H44	NEPH3-52ccc	H32	NEPH3-56	H14
NEPH3-49	H06	NEPH3-52ccc	H16	NEPH3-56	H48
NEPH3-49ccc	H53	NEPH3-53	H37	NEPH3-56ccc	H07
NEPH3-49ccc	H52	NEPH3-53	H29	NEPH3-56ccc	H35
NEPH3-49ccc	H55	NEPH3-53	H13	NEPH3-56ccc	H45
NEPH3-50	H38	NEPH3-53ccc	H36	EA	H43
NEPH3-50	H24	NEPH3-53ccc	H50	EA	H54
NEPH3-50	H46	NEPH3-53ccc	H02	EA	H11
NEPH3-50ccc	H05	NEPH3-54	H33	ARM-1	H09
NEPH3-50ccc	H22	NEPH3-54	H15	ARM-1	H17
NEPH3-50ccc	H41	NEPH3-54	H20	ARM-1	H49
NEPH3-51	H03	NEPH3-54ccc	H26	blank	H19
NEPH3-51	H34	NEPH3-54ccc	H18	blank	H56
NEPH3-51	H39	NEPH3-54ccc	H21		
NEPH3-51ccc	H40	NEPH3-55	H23		
NEPH3-51ccc	H10	H51	NEPH3-55	NEPH3-55	H27
NEPH3-52	H42	NEPH3-55ccc	H25		
NEPH3-52	H30	NEPH3-55ccc	H28		
NEPH3-52	H01	NEPH3-55ccc	H12		

4.0 Analytical Plan

The analytical plan for PSAL is provided in this section. Each of the solution samples submitted to PSAL is to be analyzed only once for each of the following: boron (B), barium (Ba), cadmium (Cd),

[^7]chromium (Cr), iron (Fe), lithium (Li), sodium (Na), lead (Pb), silicon (Si), thorium (Th), and uranium (U). $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and Si are the elements that are to be used in the assessment of glass durability; the other elements are being monitored to address solution disposal issues in SRNL upon termination of the PCTs. The measurements are to be made in parts per million (ppm). The analytical procedure used by PSAL to determine the concentrations utilizes an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). The PCT solutions (as identified in Table 2) are grouped in three ICP-AES blocks for processing by PSAL in Table 3. Each block requires a different calibration of the ICP-AES.

Table 3: ICP-AES Calibration Blocks for Leachate Measurements

Block 1	Block 2	Block 3
std-b1-1	std-b2-1	std-b3-1
H43	H52	H55
H07	H15	H21
H09	H22	H39
H26	H34	H11
H04	H18	H01
H47	H50	H27
H23	H28	H41
H33	H24	H13
H19	H30	H20
H31	H29	H49
std-b1-2	std-b2-2	std-b3-2
H40	H54	H56
H38	H14	H46
H05	H17	H48
H53	H44	H12
H37	H35	H16
H42	H10	H06
H36	H32	H02
H03	H08	H51
H25	std-b2-3	H45
std-b1-3		std-b3-3

A multi-element solution standard (denoted by "std-bi-j" where $\mathrm{i}=1$ to 3 represents the block number and $\mathrm{j}=1,2$, and 3 represents the position in the block) was added at the beginning, middle, and end of each of the three blocks. This standard may be useful in checking and correcting for bias in the concentration measurements arising from the ICP calibrations.

5.0 SUMMARY

In summary, this analytical plan provides identifiers for the PCT solutions in Table 2 and three ICPAES calibration blocks in Table 3 for PSAL to use in conducting the boron (B), barium (Ba), cadmium (Cd), chromium (Cr), iron (Fe), lithium (Li), sodium (Na), lead (Pb), silicon (Si), thorium (Th), and uranium (U) concentration measurements for the PCT study of this select subset of the Phase 3 nepheline glasses. The sequencing of the activities associated with each of the steps in the analytical procedure has been randomized. The size of the blocks was selected so that the block
could be completed in a single work shift. If for some reason the measurements are not conducted in the sequence presented in this memorandum, the actual order should be recorded along with any explanative comments.

The analytical plan indicated in the preceding tables should be modified by the personnel of PSAL to include any calibration check standards and/or other standards that are part of their standard operating procedures.

6.0 REFERENCES

[1] Fox, K.M., T.B. Edwards, and D.K. Peeler, "Nepheline Formation Potential in Sludge Batch 4 (SB4) and its Impact on Durability: Selecting Glasses for a Phase 3 Study," WSRC-TR-2006-00053, Revision 0, 2006.
[2] Shah, H.B., "Estimate of Sludge Batch 4 Calcine Composition Additional Cases for Final Recommendation," CBU-PIT-2006-00011, Revision 0, 2006.
[3] ASTM C-1285-2002, "Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT)," ASTM, 2002.
[4] Edwards, T.B., "An Analytical Plan for Measuring PCT Solutions for the First Set of Glasses from the Phase 3 Nepheline Study (U)," SRNL-SCS-2006-00003, February 8, 2006

Appendix D

Tables and Exhibits Supporting the Analysis of the Chemical Composition Measurements of the Nepheline Phase 3 Study Glasses

This page intentionally left blank.

Table D1. Targeted Oxide Concentrations (as wt\%'s) for the Phase 3 Nepheline Study Glasses

Glass \#	Al2O3	B2O3	BaO	CaO	Ce2O3	Cr2O3	CuO	Fe2O3	K2O	La2O3	Li2O	MgO	MnO	Na 2 O	NiO	PbO	SO4	SiO2	ThO2	TiO2	U308	ZnO	ZrO2	Sum
NEPH3-41	8.682	5.200	0.044	0.836	0.052	0.074	0.021	9.298	0.120	0.038	5.200	0.873	1.918	12.928	0.552	0.032	0.468	50.840	0.023	0.009	2.674	0.034	0.083	100.000
NEPH3-42	9.922	4.800	0.050	0.955	0.060	0.085	0.024	10.626	0.138	0.043	4.800	0.998	2.192	13.632	0.631	0.036	0.535	47.245	0.026	0.011	3.056	0.039	0.095	100.000
NEPH3-43	11.411	4.320	0.058	1.098	0.069	0.098	0.028	12.220	0.158	0.050	4.320	1.148	2.521	14.477	0.726	0.042	0.615	42.932	0.030	0.012	3.515	0.045	0.109	100.000
NEPH3-44	12.403	4.000	0.063	1.194	0.075	0.106	0.030	13.283	0.172	0.054	4.000	1.248	2.740	15.040	0.789	0.045	0.669	40.057	0.033	0.013	3.820	0.049	0.119	100.000
NEPH3-45	8.682	5.850	0.044	0.836	0.052	0.074	0.021	9.298	0.120	0.038	6.500	0.873	1.918	10.978	0.552	0.032	0.468	50.840	0.023	0.009	2.674	0.034	0.083	100.000
NEPH3-46	9.922	5.400	0.050	0.955	0.060	0.085	0.024	10.626	0.13	0.043	6.000	0.998	2.192	11.832	0.631	0.036	0.535	47.245	0.026	0.011	3.056	0.039	0.095	100.000
NEPH3-47	11.659	4.770	0.059	1.122	0.070	0.100	0.028	12.486	0.162	0.051	5.300	1.173	2.576	13.027	0.741	0.043	0.629	42.213	0.031	0.013	3.591	0.046	0.111	100.000
NEPH3-48	12.651	4.410	0.064	1.218	0.076	0.108	0.031	13.548	0.175	0.055	4.900	1.273	2.795	13.711	0.804	0.046	0.682	39.338	0.034	0.014	3.897	0.050	0.121	100.000
NEPH3-49	8.682	5.200	0.044	0.836	0.052	0.074	0.021	9.298	0.120	0.038	5.200	0.873	1.918	14.228	0.552	0.032	0.468	49.540	0.023	0.009	2.674	0.034	0.083	100.000
NEPH3-50	9.922	4.800	0.050	0.955	0.060	0.085	0.024	10.626	0.138	0.043	4.800	0.998	2.192	14.832	0.631	0.036	0.535	46.045	0.026	0.011	3.056	0.039	0.095	100.000
NEPH3-51	10.915	4.480	0.056	1.051	0.066	0.093	0.026	11.689	0.151	0.048	4.480	1.098	2.411	15.315	0.694	0.040	0.589	43.250	0.029	0.012	3.362	0.043	0.104	100.000
NEPH3-52	11.907	4.160	0.061	1.146	0.072	0.102	0.029	12.751	0.165	0.052	4.160	1.198	2.630	15.798	0.757	0.043	0.642	40.454	0.032	0.013	3.667	0.047	0.114	100.000
NEPH3-53	8.682	5.200	0.044	0.836	0.052	0.074	0.021	9.298	0.120	0.038	7.150	0.873	1.918	10.978	0.552	0.032	0.468	50.840	0.023	0.009	2.674	0.034	0.083	100.000
NEPH3-54	9.922	4.800	0.050	0.955	0.060	0.085	0.024	10.626	0.138	0.043	6.600	0.998	2.192	11.832	0.631	0.036	0.535	47.245	0.026	0.011	3.056	0.039	0.095	100.000
NEPH3-55	11.907	4.160	0.061	1.146	0.072	0.102	0.029	12.751	0.165	0.052	5.720	1.198	2.630	13.198	0.757	0.043	0.642	41.494	0.032	0.013	3.667	0.047	0.114	100.000
NEPH3-56	12.651	3.920	0.064	1.218	0.076	0.108	0.031	13.548	0.175	0.055	5.390	1.273	2.795	13.711	0.804	0.046	0.682	39.338	0.034	0.014	3.897	0.050	0.121	100.000

Table D2. Measured Elemental Concentrations (wt\%) for Samples Prepared Using Lithium Metaborate

Glass ID	$\begin{gathered} \text { Laboratory } \\ \text { ID } \\ \hline \end{gathered}$	Block	Sub-Block	Analytical Sequence	Ba	Ca	Ce	Cr	Cu	K	La	Mg	Mn	Na	Pb	S	Th	Ti	$\mathbf{Z n}$	$\mathbf{Z r}$
Batch 1	BCHLM111	1	1	,	0.136	0.874	0.023	0.068	0.339	2.96	<0.010	0.851	1.32	6.69	<0.020	<0.100	<0.010	0.415	<0.010	0.061
Ustd	UstdLM111	1	1	2	<0.010	0.942	0.017	0.165	0.034	2.67	<0.010	0.715	2.14	8.79	<0.020	<0.100	0.063	0.588	<0.010	<0.010
NEPH3-43	G14LM21	1	1	3	0.051	0.707	0.037	0.068	0.033	0.136	0.041	0.668	1.88	10.3	0.038	0.192	0.096	0.013	0.039	0.082
NEPH3-49	G13LM21	1	1	4	0.037	0.538	0.031	0.049	0.026	0.106	0.029	0.505	1.47	10.4	0.030	0.143	0.072	0.011	0.050	0.059
NEPH3-53	G05LM21	1	1	5	0.038	0.549	0.033	0.049	0.027	0.100	0.030	0.521	1.48	8.08	0.029	0.146	0.076	0.011	0.030	0.062
NEPH3-45	G12LM21	1	1	6	0.039	0.550	0.034	0.046	0.028	0.106	0.032	0.511	1.48	8.00	0.034	0.150	0.075	0.011	0.039	0.058
NEPH3-51	G03LM11	1	1	7	0.047	0.685	0.041	0.062	0.032	0.131	0.039	0.644	1.84	11.1	0.034	0.190	0.095	0.014	0.036	0.072
NEPH3-49	G13LM11	1	1	8	0.040	0.690	0.035	0.050	0.025	0.120	0.031	0.571	1.46	11.3	0.030	0.148	0.073	0.011	0.030	0.064
NEPH3-52	G09LM21	1	1	9	0.054	0.752	0.049	0.068	0.033	0.146	0.042	0.723	2.00	11.7	0.039	0.208	0.099	0.012	0.042	0.082
NEPH3-46	G07LM21	1	1	10	0.043	0.608	0.040	0.057	0.031	0.120	0.037	0.582	1.68	8.49	0.038	0.166	0.084	0.013	0.032	0.054
Batch 1	BCHLM112	1	1	11	0.138	0.894	0.022	0.069	0.336	2.88	<0.010	0.863	1.30	6.34	<0.020	<0.100	<0.010	0.418	<0.010	0.061
Ustd	UstdLM112	1	1	12	<0.010	0.933	0.017	0.166	0.033	2.59	<0.010	0.716	2.12	8.39	<0.020	<0.100	0.064	0.597	<0.010	<0.010
NEPH3-48	G02LM21	1	1	13	0.053	0.784	0.043	0.067	0.037	0.164	0.043	0.705	2.08	9.99	0.043	0.212	0.105	0.014	0.054	0.086
NEPH3-52	G09LM11	1	1	14	0.052	0.743	0.048	0.070	0.032	0.145	0.041	0.670	1.99	11.0	0.037	0.201	0.097	0.012	0.041	0.080
NEPH3-48	G02LM11	1	1	15	0.054	0.791	0.044	0.067	0.035	0.158	0.044	0.726	2.14	9.74	0.044	0.216	0.107	0.014	0.043	0.088
NEPH3-53	G05LM11	1	1	16	0.036	0.546	0.033	0.050	0.025	0.106	0.029	0.496	1.48	7.78	0.027	0.145	0.073	0.010	0.029	0.059
NEPH3-45	G12LM11	1	1	17	0.040	0.559	0.035	0.046	0.027	0.103	0.032	0.518	1.51	7.52	0.034	0.153	0.076	0.011	0.046	0.057
NEPH3-46	G07LM11	1	1	18	0.045	0.654	0.041	0.057	0.032	0.127	0.037	0.595	1.75	8.47	0.038	0.169	0.087	0.013	0.033	0.057
NEPH3-51	G03LM21	1	1	19	0.046	0.689	0.040	0.059	0.031	0.146	0.038	0.619	1.87	10.7	0.031	0.189	0.092	0.013	0.034	0.069
NEPH3-43	G14LM11	1	1	20	0.050	0.730	0.037	0.066	0.034	0.140	0.040	0.669	1.96	10.2	0.037	0.191	0.096	0.013	0.050	0.079
Batch 1	BCHLM113	1	1	21	0.139	0.913	0.022	0.070	0.343	2.81	<0.010	0.864	1.33	6.17	<0.020	<0.100	<0.010	0.423	<0.010	0.063
Ustd	UstdLM113	1	1	22	<0.010	0.948	0.016	0.164	0.033	2.58	<0.010	0.712	2.21	8.37	<0.020	<0.100	0.063	0.600	<0.010	<0.010
Batch 1	BCHLM121	1	2	1	0.139	0.871	<0.010	0.062	0.339	2.98	<0.010	0.848	1.34	6.82	<0.020	<0.100	<0.010	0.406	<0.010	0.045
Ustd	UstdLM121	1	2	2	<0.010	0.930	<0.010	0.156	0.028	2.67	<0.010	0.706	2.18	9.03	<0.020	<0.100	0.048	0.585	<0.010	<0.010
NEPH3-46	G07LM22	1	2	3	0.043	0.613	0.040	0.056	0.031	0.120	0.037	0.584	1.72	9.07	0.037	0.166	0.083	0.011	0.031	0.052
NEPH3-51	G03LM12	1	2	4	0.047	0.691	0.040	0.061	0.031	0.131	0.039	0.649	1.90	11.5	0.032	0.189	0.094	0.012	0.035	0.071
NEPH3-43	G14LM22	1	2	5	0.049	0.718	0.036	0.067	0.032	0.136	0.040	0.672	1.97	10.8	0.036	0.189	0.095	0.011	0.037	0.081
NEPH3-52	G09LM12	1	2	6	0.051	0.754	0.048	0.070	0.031	0.145	0.041	0.680	2.04	11.9	0.036	0.206	0.097	0.010	0.040	0.079
NEPH3-45	G12LM22	1	2	7	0.039	0.562	0.033	0.045	0.027	0.107	0.031	0.518	1.52	8.24	0.032	0.152	0.073	0.009	0.038	0.057
NEPH3-53	G05LM22	1	2	8	0.038	0.558	0.033	0.048	0.026	0.101	0.030	0.531	1.53	8.26	0.028	0.147	0.075	0.008	0.029	0.061
NEPH3-45	G12LM12	1	2	9	0.039	0.553	0.033	0.045	0.025	0.101	0.032	0.524	1.52	8.17	0.032	0.151	0.074	0.009	0.045	0.055
NEPH3-49	G13LM22	1	2	10	0.037	0.555	0.031	0.049	0.026	0.110	0.029	0.512	1.51	10.7	0.028	0.151	0.071	0.008	0.050	0.058
Batch 1	BCHLM122	1	2	11	0.129	0.862	<0.010	0.052	0.321	2.92	<0.010	0.839	1.34	6.67	<0.020	<0.100	<0.010	0.397	<0.010	0.036
Ustd	UstdLM122	1	2	12	<0.010	0.936	<0.010	0.152	0.023	2.61	<0.010	0.699	2.17	8.82	<0.020	<0.100	0.038	0.578	<0.010	<0.010
NEPH3-48	G02LM12	1	2	13	0.054	0.802	0.044	0.067	0.035	0.160	0.044	0.731	2.15	10.3	0.043	0.214	0.106	0.013	0.042	0.086
NEPH3-51	G03LM22	1	2	14	0.045	0.690	0.039	0.059	0.030	0.145	0.037	0.621	1.87	11.7	0.031	0.190	0.089	0.010	0.033	0.068
NEPH3-48	G02LM22	1	2	15	0.052	0.812	0.043	0.067	0.036	0.170	0.043	0.721	2.11	10.5	0.042	0.219	0.104	0.012	0.053	0.086
NEPH3-52	G09LM22	1	2	16	0.053	0.765	0.049	0.068	0.032	0.147	0.042	0.727	2.07	12.1	0.036	0.209	0.098	0.010	0.041	0.082
NEPH3-43	G14LM12	1	2	17	0.049	0.739	0.036	0.066	0.034	0.141	0.040	0.677	1.94	11.0	0.036	0.199	0.095	0.011	0.048	0.078

Table D2. Measured Elemental Concentrations (wt\%) for Samples Prepared Using Lithium Metaborate (continued)

NEPH3-49	G13LM12	1	2	18	0.040	0.709	0.034	0.049	0.024	0.122	0.030	0.576	1.51	11.8	0.027	0.147	0.072	0.009	0.029	0.063
NEPH3-53	G05LM12	1	2	19	0.036	0.552	0.032	0.050	0.024	0.106	0.029	0.500	1.46	8.49	0.026	0.147	0.071	0.008	0.028	0.057
NEPH3-46	G07LM12	1	2	20	0.044	0.661	0.041	0.056	0.032	0.128	0.037	0.602	1.73	9.28	0.037	0.172	0.085	0.011	0.032	0.055
Batch 1	BCHLM123	1	2	21	0.129	0.856	<0.010	0.053	0.320	3.02	<0.010	0.839	1.31	6.81	<0.020	<0.100	<0.010	0.397	<0.010	0.037
Ustd	UstdLM123	1	2	22	<0.010	0.940	<0.010	0.152	0.023	2.71	<0.010	0.701	2.14	9.09	<0.020	<0.100	0.039	0.588	<0.010	<0.010
Batch 1	BCHLM211	2	1	1	0.120	0.823	<0.010	0.053	0.304	2.96	<0.010	0.847	1.34	6.83	<0.020	<0.100	<0.010	0.397	<0.010	0.032
Ustd	UstdLM211	2	1	2	<0.010	0.892	<0.010	0.146	<0.010	2.69	<0.010	0.698	2.16	8.99	<0.020	<0.100	0.034	0.572	<0.010	<0.010
NEPH3-50	G04LM21	2	1	3	0.042	0.597	0.031	0.057	0.026	0.118	0.033	0.582	1.71	11.3	0.031	0.183	0.079	0.009	0.034	0.062
NEPH3-41	G06LM21	2	1	4	0.036	0.519	0.031	0.049	0.024	0.099	0.027	0.510	1.50	9.92	0.026	0.157	0.069	0.008	0.034	0.056
NEPH3-54	G16LM11	2	1	5	0.045	0.599	0.011	0.051	0.025	0.109	0.033	0.598	1.70	9.16	0.034	0.180	0.081	0.010	0.033	0.064
NEPH3-42	G08LM21	2	1	6	0.041	0.592	0.037	0.056	0.023	0.107	0.031	0.576	1.67	10.4	0.031	0.172	0.078	0.009	0.036	0.065
NEPH3-56	G11LM21	2	1	7	0.054	0.761	0.051	0.060	0.031	0.145	0.039	0.728	2.09	10.6	0.039	0.233	0.102	0.009	0.042	0.081
NEPH3-41	G06LM11	2	1	8	0.036	0.532	0.031	0.049	0.026	0.103	0.026	0.511	1.46	9.95	0.026	0.159	0.069	0.008	0.035	0.055
NEPH3-55	G10LM11	2	1	9	0.050	0.723	0.025	0.061	0.027	0.137	0.040	0.691	1.95	10.4	0.038	0.219	0.096	0.009	0.039	0.078
NEPH3-44	G01LM21	2	1	10	0.052	0.740	0.039	0.062	0.029	0.143	0.040	0.708	2.06	13.1	0.038	0.219	0.097	0.009	0.040	0.077
Batch 1	BCHLM212	2	1	11	0.111	0.813	<0.010	0.043	0.291	2.88	<0.010	0.841	1.29	7.05	<0.020	<0.100	<0.010	0.374	<0.010	0.017
Ustd	UstdLM212	2	1	12	<0.010	0.874	<0.010	0.140	<0.010	2.62	<0.010	0.701	2.12	9.11	<0.020	<0.100	0.025	0.542	<0.010	<0.010
NEPH3-50	G04LM11	2	1	13	0.041	0.613	0.032	0.056	0.024	0.124	0.033	0.580	1.65	11.2	0.031	0.190	0.080	0.008	0.031	0.063
NEPH3-56	G11LM11	2	1	14	0.054	0.780	0.051	0.062	0.032	0.149	0.040	0.728	2.06	10.6	0.039	0.239	0.103	0.009	0.044	0.083
NEPH3-55	G10LM21	2	1	15	0.050	0.725	0.025	0.061	0.030	0.136	0.040	0.696	1.98	10.1	0.038	0.221	0.096	0.009	0.043	0.078
NEPH3-44	G01LM11	2	1	16	0.053	0.765	0.040	0.060	0.030	0.144	0.041	0.720	2.01	11.2	0.039	0.225	0.102	0.009	0.044	0.079
NEPH3-47	G15LM11	2	1	17	0.048	0.719	0.039	0.057	0.028	0.140	0.037	0.679	1.95	9.95	0.040	0.212	0.091	0.009	0.034	0.076
NEPH3-42	G08LM11	2	1	18	0.042	0.614	0.038	0.057	0.024	0.111	0.031	0.583	1.67	10.0	0.031	0.179	0.079	0.009	0.034	0.067
NEPH3-54	G16LM21	2	1	19	0.045	0.604	0.011	0.050	0.025	0.111	0.033	0.588	1.68	8.96	0.033	0.180	0.081	0.010	0.033	0.064
NEPH3-47	G15LM21	2	1	20	0.049	0.721	0.039	0.058	0.029	0.138	0.037	0.683	1.96	10.1	0.039	0.212	0.092	0.010	0.039	0.077
Batch 1	BCHLM213	2	1	21	0.112	0.826	<0.010	0.043	0.298	2.97	<0.010	0.847	1.29	6.76	<0.020	<0.100	<0.010	0.376	<0.010	0.021
Ustd	UstdLM213	2	1	22	<0.010	0.886	<0.010	0.139	<0.010	2.67	<0.010	0.698	2.07	9.05	<0.020	<0.100	0.025	0.540	<0.010	<0.010
Batch 1	BCHLM221	2	2	1	0.128	0.839	0.016	0.061	0.320	2.98	<0.010	0.850	1.35	6.67	<0.020	<0.100	<0.010	0.375	<0.010	0.036
Ustd	UstdLM221	2	2	2	<0.010	0.914	<0.010	0.156	0.021	2.69	<0.010	0.707	2.21	8.97	<0.020	<0.100	0.044	0.553	<0.010	<0.010
NEPH3-42	G08LM22	2	2	3	0.042	0.610	0.040	0.058	0.026	0.111	0.032	0.574	1.75	10.0	0.032	0.161	0.082	0.006	0.036	0.066
NEPH3-41	G06LM12	2	2	4	0.036	0.536	0.033	0.050	0.028	0.103	0.027	0.500	1.55	9.59	0.027	0.149	0.070	0.005	0.034	0.057
NEPH3-54	G16LM22	2	2	5	0.046	0.618	0.013	0.052	0.028	0.112	0.034	0.591	1.78	8.96	0.034	0.168	0.085	0.007	0.033	0.066
NEPH3-42	G08LM12	2	2	6	0.042	0.622	0.040	0.059	0.026	0.110	0.032	0.580	1.73	10.1	0.032	0.163	0.081	0.006	0.034	0.068
NEPH3-44	G01LM22	2	2	7	0.053	0.778	0.042	0.064	0.032	0.151	0.042	0.711	2.17	12.9	0.041	0.209	0.104	0.007	0.041	0.079
NEPH3-41	G06LM22	2	2	8	0.037	0.545	0.033	0.050	0.026	0.105	0.028	0.512	1.53	9.96	0.028	0.148	0.072	0.005	0.034	0.058
NEPH3-47	G15LM12	2	2	9	0.049	0.732	0.041	0.059	0.031	0.141	0.037	0.670	2.06	10.0	0.040	0.197	0.094	0.006	0.034	0.078
NEPH3-50	G04LM22	2	2	10	0.042	0.626	0.033	0.058	0.028	0.122	0.034	0.578	1.77	11.4	0.032	0.170	0.082	0.006	0.033	0.064
Batch 1	BCHLM222	2	2	11	0.122	0.859	0.011	0.056	0.317	3.02	<0.010	0.840	1.35	6.99	<0.020	<0.100	<0.010	0.370	<0.010	0.026
Ustd	UstdLM222	2	2	12	<0.010	0.917	<0.010	0.152	0.020	2.70	<0.010	0.698	2.23	9.08	<0.020	<0.100	0.040	0.553	<0.010	<0.010
NEPH3-54	G16LM12	2	2	13	0.045	0.617	0.013	0.052	0.027	0.112	0.033	0.584	1.83	8.50	0.035	0.167	0.084	0.007	0.033	0.066
NEPH3-50	G04LM12	2	2	14	0.041	0.615	0.033	0.056	0.025	0.122	0.033	0.566	1.79	10.8	0.030	0.169	0.079	0.005	0.030	0.063

Table D2. Measured Elemental Concentrations (wt\%) for Samples Prepared Using Lithium Metaborate (continued)

NEPH3-55	G10LM22	2	2	15	0.050	0.747	0.027	0.061	0.032	0.138	0.041	0.683	2.15	9.74	0.039	0.202	0.098	0.006	0.042	0.080
NEPH3-47	G15LM22	2	2	16	0.049	0.729	0.041	0.059	0.031	0.138	0.037	0.672	2.12	9.69	0.040	0.194	0.094	0.007	0.038	0.078
NEPH3-55	G10LM12	2	2	17	0.050	0.742	0.027	0.061	0.028	0.140	0.040	0.680	2.17	9.63	0.038	0.201	0.098	0.006	0.037	0.079
NEPH3-56	G11LM22	2	2	18	0.053	0.785	0.053	0.060	0.033	0.149	0.040	0.712	2.21	10.2	0.039	0.217	0.105	0.006	0.041	0.083
NEPH3-56	G11LM12	2	2	19	0.053	0.781	0.053	0.062	0.033	0.149	0.040	0.709	2.23	10.2	0.039	0.217	0.103	0.006	0.042	0.084
NEPH3-44	G01LM12	2	2	20	0.053	0.770	0.042	0.061	0.031	0.144	0.041	0.703	2.14	11.0	0.040	0.202	0.103	0.007	0.043	0.080
Batch 1	BCHLM223	2	2	21	0.122	0.838	0.011	0.055	0.313	2.98	<0.010	0.836	1.38	6.82	<0.020	<0.100	<0.010	0.362	<0.010	0.030
Ustd	UstdLM223	2	2	22	<0.010	0.898	<0.010	0.149	0.019	2.65	<0.010	0.687	2.28	8.86	<0.020	<0.100	0.039	0.541	<0.010	<0.010

Table D3. Measured Elemental Concentrations (wt\%) for Samples Prepared Using Peroxide Fusion

Glass ID	PSAL ID	Block	Sub-Block	Analytical Sequence	Al	B	Fe	Li	Ni	Si	U
Batch 1	Batch 1	1	1	1	2.51	2.25	9.00	2.02	0.539	22.6	<0.100
Ustd	Ustd	1	1	2	2.13	2.87	8.85	1.40	0.767	19.8	1.90
NEPH3-55	G10	1	1	3	6.25	1.08	8.52	2.56	0.475	18.5	3.00
NEPH3-41	G06	1	1	4	4.63	1.38	6.11	2.31	0.385	22.4	2.18
NEPH3-56	G11	1	1	5	6.72	1.03	8.96	2.43	0.542	18.1	3.16
NEPH3-51	G03	1	1	6	5.79	1.22	8.20	1.99	0.512	19.7	2.78
NEPH3-46	G07	1	1	7	5.37	1.55	7.33	2.72	0.477	22.2	2.60
NEPH3-53	G05	1	1	8	4.72	1.43	6.42	3.21	0.407	23.2	2.18
NEPH3-41	G06	1	1	9	4.63	1.42	6.28	2.31	0.391	22.8	2.27
NEPH3-56	G11	1	1	10	6.64	0.97	8.50	2.37	0.511	17.5	3.06
Batch 1	Batch 1	1	1	11	2.54	2.20	8.94	1.98	0.551	22.7	<0.100
Ustd	Ustd	1	1	12	2.13	2.64	9.12	1.39	0.788	20.0	1.96
NEPH3-45	G12	1	1	13	4.73	1.80	6.54	2.97	0.416	23.8	2.21
NEPH3-53	G05	1	1	14	4.74	1.52	6.66	3.25	0.426	23.4	2.17
NEPH3-44	G01	1	1	15	6.69	1.09	8.62	1.81	0.561	18.5	3.16
NEPH3-44	G01	1	1	16	6.60	1.06	8.76	1.79	0.578	18.6	3.14
NEPH3-45	G12	1	1	17	4.67	1.60	6.23	2.90	0.394	23.2	2.16
NEPH3-55	G10	1	1	18	6.23	1.12	9.00	2.51	0.489	19.0	3.05
NEPH3-46	G07	1	1	19	5.37	1.54	7.35	2.70	0.482	22.1	2.61
NEPH3-51	G03	1	1	20	5.87	1.21	8.32	2.02	0.513	20.2	2.75
Batch 1	Batch 1	1	1	21	2.56	2.30	9.65	2.02	0.600	23.8	<0.100
Ustd	Ustd	1	1	22	2.17	2.72	9.38	1.41	0.818	20.7	1.96
Batch 1	Batch 1	1	2	1	2.58	2.69	9.39	2.03	0.571	23.3	<0.100
Ustd	Ustd	1	2	2	2.17	2.94	8.98	1.41	0.767	19.9	1.94
NEPH3-55	G10	1	2	3	6.24	1.37	8.70	2.52	0.475	18.5	2.99
NEPH3-56	G11	1	2	4	6.74	1.25	8.95	2.42	0.522	17.8	3.13
NEPH3-53	G05	1	2	5	4.71	1.65	6.45	3.22	0.397	23.1	2.09
NEPH3-45	G12	1	2	6	4.73	1.82	6.26	2.93	0.380	23.2	2.15
NEPH3-41	G06	1	2	7	4.68	1.65	6.64	2.34	0.402	23.3	2.17
NEPH3-44	G01	1	2	8	6.74	1.24	9.04	1.83	0.590	19.0	3.18
NEPH3-46	G07	1	2	9	5.45	1.70	7.22	2.75	0.474	22.0	2.52
NEPH3-41	G06	1	2	10	4.72	1.56	6.17	2.34	0.376	22.8	2.17
Batch 1	Batch 1	1	2	11	2.72	2.42	9.11	2.03	0.561	23.0	<0.100
Ustd	Ustd	1	2	12	2.16	2.84	9.07	1.41	0.781	20.1	1.92
NEPH3-56	G11	1	2	13	6.86	1.27	9.06	2.45	0.547	18.1	3.06
NEPH3-53	G05	1	2	14	4.79	1.66	6.56	3.26	0.414	23.1	2.12
NEPH3-45	G12	1	2	15	4.84	1.83	6.43	2.97	0.392	23.7	2.18
NEPH3-46	G07	1	2	16	5.49	1.73	7.33	2.75	0.466	22.0	2.58
NEPH3-51	G03	1	2	17	5.82	1.37	7.90	1.99	0.493	19.5	2.72
NEPH3-51	G03	1	2	18	5.91	1.37	7.96	2.03	0.484	19.7	2.76
NEPH3-55	G10	1	2	19	6.88	1.27	8.78	2.59	0.473	19.2	3.02
NEPH3-44	G01	1	2	20	6.75	1.21	8.79	1.81	0.556	18.5	3.10
Batch 1	Batch 1	1	2	21	2.62	2.49	9.70	2.06	0.588	23.8	<0.100
Ustd	Ustd	1	2	22	2.20	2.93	9.65	1.44	0.829	20.9	1.90
Batch 1	Batch 1	2	1	1	2.52	2.46	8.88	2.00	0.544	22.5	<0.100
Ustd	Ustd	2	1	2	2.17	3.01	9.39	1.41	0.795	20.3	1.90
NEPH3-47	G15	2	1	3	6.39	1.57	8.21	2.42	0.508	19.5	2.92
NEPH3-42	G08	2	1	4	5.36	1.47	6.90	2.14	0.425	20.9	2.39
NEPH3-49	G13	2	1	5	4.65	1.62	6.22	2.30	0.387	22.0	2.24
NEPH3-43	G14	2	1	6	6.22	1.36	8.31	1.95	0.530	19.5	2.77
NEPH3-54	G16	2	1	7	5.38	1.50	7.48	2.97	0.453	21.7	2.48
NEPH3-50	G04	2	1	8	5.43	1.51	7.62	2.19	0.457	21.3	2.45
NEPH3-43	G14	2	1	9	6.27	1.39	8.81	1.99	0.538	20.4	2.94
NEPH3-52	G09	2	1	10	6.37	1.26	8.71	1.87	0.535	18.2	3.02
Batch 1	Batch 1	2	1	11	2.53	2.35	8.70	1.98	0.529	22.4	<0.100

Table D3. Measured Elemental Concentrations (wt\%) for Samples Prepared Using Peroxide Fusion (continued)

Glass ID	PSAL ID	Block	Sub-Block	Analytical Sequence	Al	B	Fe	Li	Ni	Si	U
Ustd	Ustd	2	1	12	2.12	2.75	8.60	1.38	0.733	19.6	1.85
NEPH3-48	G02	2	1	13	6.76	1.48	9.07	2.22	0.560	18.1	3.25
NEPH3-48	G02	2	1	14	6.85	1.41	9.13	2.24	0.568	18.3	3.17
NEPH3-52	G09	2	1	15	6.38	1.33	9.19	1.89	0.563	18.5	3.02
NEPH3-50	G04	2	1	16	5.47	1.52	7.63	2.19	0.480	21.3	2.51
NEPH3-47	G15	2	1	17	6.46	1.52	8.63	2.42	0.534	19.8	2.97
NEPH3-42	G08	2	1	18	5.47	1.49	7.61	2.21	0.481	22.0	2.50
NEPH3-49	G13	2	1	19	4.80	1.65	6.88	2.38	0.418	23.3	2.25
NEPH3-54	G16	2	1	20	5.50	1.52	7.78	3.03	0.475	22.4	2.52
Batch 1	Batch 1	2	1	21	2.62	2.52	9.67	2.05	0.588	23.8	<0.100
Ustd	Ustd	2	1	22	2.19	2.93	9.62	1.42	0.828	20.7	1.94
Batch 1	Batch 1	2	2	1	2.55	2.59	9.19	2.01	0.548	22.9	<0.100
Ustd	Ustd	2	2	2	2.12	2.90	9.01	1.39	0.755	19.9	1.92
NEPH3-48	G02	2	2	3	6.85	1.44	8.88	2.23	0.547	18.1	3.24
NEPH3-50	G04	2	2	4	5.37	1.52	7.37	2.16	0.445	20.8	2.50
NEPH3-54	G16	2	2	5	5.35	1.52	7.45	2.95	0.455	21.5	2.53
NEPH3-43	G14	2	2	6	6.31	1.35	8.43	1.98	0.511	19.7	2.84
NEPH3-52	G09	2	2	7	6.38	1.29	8.91	1.89	0.529	18.2	3.09
NEPH3-48	G02	2	2	8	6.78	1.36	9.00	2.22	0.546	18.1	3.27
NEPH3-43	G14	2	2	9	6.20	1.35	8.47	1.97	0.510	19.8	2.98
NEPH3-54	G16	2	2	10	5.40	1.46	7.37	2.97	0.432	21.6	2.54
Batch 1	Batch 1	2	2	11	2.70	2.42	9.31	2.05	0.551	23.3	<0.100
Ustd	Ustd	2	2	12	2.17	2.79	8.99	1.41	0.759	20.0	1.97
NEPH3-52	G09	2	2	13	6.36	1.33	8.50	1.89	0.514	18.0	3.04
NEPH3-42	G08	2	2	14	5.37	1.45	6.95	2.15	0.409	20.8	2.45
NEPH3-50	G04	2	2	15	5.40	1.49	7.32	2.17	0.460	20.8	2.49
NEPH3-42	G08	2	2	16	5.38	1.44	7.17	2.18	0.433	21.2	2.53
NEPH3-47	G15	2	2	17	6.40	1.48	8.24	2.41	0.504	19.4	3.04
NEPH3-49	G13	2	2	18	4.74	1.59	6.54	2.35	0.392	22.8	2.33
NEPH3-47	G15	2	2	19	6.41	1.46	8.18	2.43	0.494	19.5	2.98
NEPH3-49	G13	2	2	20	4.76	1.58	6.52	2.37	0.386	22.6	2.31
Batch 1	Batch 1	2	2	21	2.57	2.38	8.94	2.01	0.539	22.9	<0.100
Ustd	Ustd	2	2	22	2.16	2.74	8.59	1.40	0.732	19.5	1.94

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass
(100-Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Measured-bc } \\ (w t \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { Targeted } \\ \text { (wt\%) } \\ \hline \end{gathered}$	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
41	Al2O3 (wt\%)	8.8145	8.7921	8.6820	0.1325	0.1101	1.5\%	1.3\%
41	B2O3 (wt\%)	4.8379	4.8831	5.2000	-0.3621	-0.3169	-7.0\%	-6.1\%
41	BaO (wt\%)	0.0405	0.0460	0.0440	-0.0035	0.0020	-8.0\%	4.5\%
41	CaO (wt\%)	0.7458	0.7806	0.8360	-0.0902	-0.0554	-10.8\%	-6.6\%
41	Ce2O3 (wt\%)	0.0375	0.0375	0.0520	-0.0145	-0.0145	-27.9\%	-27.9\%
41	Cr2O3 (wt\%)	0.0723	0.1032	0.0740	-0.0017	0.0292	-2.2\%	39.5\%
41	CuO (wt\%)	0.0325	0.0338	0.0210	0.0115	0.0128	55.0\%	60.8\%
41	Fe 2 O 3 (wt\%)	9.0071	8.6984	9.2980	-0.2909	-0.5996	-3.1\%	-6.4\%
41	K2O (wt\%)	0.1235	0.1150	0.1200	0.0035	-0.0050	2.9\%	-4.2\%
41	La2O3 (wt\%)	0.0317	0.0317	0.0380	-0.0063	-0.0063	-16.7\%	-16.7\%
41	Li2O (wt\%)	5.0055	5.0894	5.2000	-0.1945	-0.1106	-3.7\%	-2.1\%
41	MgO (wt\%)	0.8428	0.8550	0.8730	-0.0302	-0.0180	-3.5\%	-2.1\%
41	MnO (wt\%)	1.9497	1.9547	1.9180	0.0317	0.0367	1.7\%	1.9\%
41	Na 2 O (wt\%)	13.2845	12.9460	12.9280	0.3565	0.0180	2.8\%	0.1\%
41	NiO (wt\%)	0.4944	0.5134	0.5520	-0.0576	-0.0386	-10.4\%	-7.0\%
41	PbO (wt\%)	0.0288	0.0288	0.0320	-0.0032	-0.0032	-10.0\%	-10.0\%
41	SO4 (wt\%)	0.4591	0.4591	0.4680	-0.0089	-0.0089	-1.9\%	-1.9\%
41	SiO 2 (wt\%)	48.8295	49.4073	50.8400	-2.0105	-1.4327	-4.0\%	-2.8\%
41	ThO2 (wt\%)	0.0797	0.0797	0.0230	0.0567	0.0567	246.3\%	246.3\%
41	TiO2 (wt\%)	0.0108	0.0117	0.0090	0.0018	0.0027	20.5\%	29.7\%
41	U3O8 (wt\%)	2.5913	2.7394	2.6740	-0.0827	0.0654	-3.1\%	2.4\%
41	ZnO (wt\%)	0.0426	0.0426	0.0340	0.0086	0.0086	25.4\%	25.4\%
41	ZrO2 (wt\%)	0.0763	0.0763	0.0830	-0.0067	-0.0067	-8.0\%	-8.0\%
41	Sum (wt\%)	97.4384	97.7247	99.9990	-2.5606	-2.2743	-2.6\%	-2.3\%
42	Al2O3 (wt\%)	10.1939	10.1930	9.9220	0.2719	0.2710	2.7\%	2.7\%
42	B2O3 (wt\%)	4.7091	4.6364	4.8000	-0.0909	-0.1636	-1.9\%	-3.4\%
42	BaO (wt\%)	0.0466	0.0530	0.0500	-0.0034	0.0030	-6.8\%	6.0\%
42	$\mathrm{CaO}(\mathrm{wt} \%)$	0.8528	0.8927	0.9550	-0.1022	-0.0623	-10.7\%	-6.5\%
42	Ce2O3 (wt\%)	0.0454	0.0454	0.0600	-0.0146	-0.0146	-24.4\%	-24.4\%
42	Cr2O3 (wt\%)	0.0840	0.1198	0.0850	-0.0010	0.0348	-1.1\%	41.0\%
42	CuO (wt\%)	0.0310	0.0321	0.0240	0.0070	0.0081	29.1\%	33.9\%
42	Fe2O3 (wt\%)	10.2331	10.0824	10.6260	-0.3929	-0.5436	-3.7\%	-5.1\%
42	K2O (wt\%)	0.1322	0.1232	0.1380	-0.0058	-0.0148	-4.2\%	-10.8\%
42	La2O3 (wt\%)	0.0369	0.0369	0.0430	-0.0061	-0.0061	-14.1\%	-14.1\%
42	Li2O (wt\%)	4.6718	4.7658	4.8000	-0.1282	-0.0342	-2.7\%	-0.7\%
42	MgO ($\mathrm{wt} \%$)	0.9589	0.9728	0.9980	-0.0391	-0.0252	-3.9\%	-2.5\%
42	MnO (wt\%)	2.2015	2.2071	2.1920	0.0095	0.0151	0.4\%	0.7\%
42	Na 2 O ($\mathrm{wt} \%$)	13.6485	13.3007	13.6320	0.0165	-0.3313	0.1\%	-2.4\%
42	NiO (wt\%)	0.5561	0.5968	0.6310	-0.0749	-0.0342	-11.9\%	-5.4\%
42	PbO (wt\%)	0.0339	0.0339	0.0360	-0.0021	-0.0021	-5.7\%	-5.7\%
42	SO4 (wt\%)	0.5056	0.5056	0.5350	-0.0294	-0.0294	-5.5\%	-5.5\%
42	SiO 2 (wt\%)	45.4066	46.4134	47.2450	-1.8384	-0.8316	-3.9\%	-1.8\%
42	ThO2 (wt\%)	0.0910	0.0910	0.0260	0.0650	0.0650	250.1\%	250.1\%
42	TiO2 (wt\%)	0.0125	0.0135	0.0110	0.0015	0.0025	13.7\%	22.5\%
42	U3O8 (wt\%)	2.9097	3.0922	3.0560	-0.1463	0.0362	-4.8\%	1.2\%
42	ZnO (wt\%)	0.0436	0.0436	0.0390	0.0046	0.0046	11.7\%	11.7\%
42	ZrO2 (wt\%)	0.0898	0.0898	0.0950	-0.0052	-0.0052	-5.4\%	-5.4\%
42	Sum (wt\%)	97.4946	98.3410	99.9990	-2.5044	-1.6580	-2.5\%	-1.7\%
43	Al2O3 (wt\%)	11.8094	11.8078	11.4110	0.3984	0.3968	3.5\%	3.5\%
43	B2O3 (wt\%)	4.3871	4.3193	4.3200	0.0671	-0.0007	1.6\%	0.0\%
43	BaO (wt\%)	0.0555	0.0557	0.0580	-0.0025	-0.0023	-4.2\%	-4.0\%
43	CaO (wt\%)	1.0123	1.0054	1.0980	-0.0857	-0.0926	-7.8\%	-8.4\%
43	Ce2O3 (wt\%)	0.0428	0.0428	0.0690	-0.0262	-0.0262	-38.0\%	-38.0\%
43	Cr2O3 (wt\%)	0.0976	0.1159	0.0980	-0.0004	0.0179	-0.4\%	18.2\%
43	CuO (wt\%)	0.0416	0.0398	0.0280	0.0136	0.0118	48.7\%	42.3\%
43	Fe2O3 (wt\%)	12.1596	11.9802	12.2200	-0.0604	-0.2398	-0.5\%	-2.0\%

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass (continued)
(100-Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \end{gathered}$	$\begin{gathered} \hline \hline \text { Measured-bc } \\ \text { (wt\%) } \end{gathered}$	Targeted (wt\%)	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
43	K2O (wt\%)	0.1665	0.1571	0.1580	0.0085	-0.0009	5.4\%	-0.6\%
43	La2O3 (wt\%)	0.0472	0.0472	0.0500	-0.0028	-0.0028	-5.6\%	-5.6\%
43	Li2O (wt\%)	4.2466	4.3320	4.3200	-0.0734	0.0120	-1.7\%	0.3\%
43	MgO ($\mathrm{wt} \%$)	1.1135	1.1203	1.1480	-0.0345	-0.0277	-3.0\%	-2.4\%
43	MnO ($\mathrm{wt} \%$)	2.5017	2.5270	2.5210	-0.0193	0.0060	-0.8\%	0.2\%
43	Na2O (wt\%)	14.2551	14.4606	14.4770	-0.2219	-0.0164	-1.5\%	-0.1\%
43	NiO (wt\%)	0.6646	0.7132	0.7260	-0.0614	-0.0128	-8.5\%	-1.8\%
43	PbO (wt\%)	0.0396	0.0396	0.0420	-0.0024	-0.0024	-5.7\%	-5.7\%
43	SO4 (wt\%)	0.5775	0.5775	0.6150	-0.0375	-0.0375	-6.1\%	-6.1\%
43	SiO 2 (wt\%)	42.4651	43.4059	42.9320	-0.4669	0.4739	-1.1\%	1.1\%
43	ThO2 (wt\%)	0.1087	0.1087	0.0300	0.0787	0.0787	262.2\%	262.2\%
43	TiO2 (wt\%)	0.0200	0.0198	0.0120	0.0080	0.0078	66.8\%	65.2\%
43	U3O8 (wt\%)	3.3990	3.6122	3.5150	-0.1160	0.0972	-3.3\%	2.8\%
43	ZnO (wt\%)	0.0541	0.0541	0.0450	0.0091	0.0091	20.3\%	20.3\%
43	ZrO 2 (wt\%)	0.1081	0.1081	0.1090	-0.0009	-0.0009	-0.9\%	-0.9\%
43	Sum (wt\%)	99.3732	100.6503	100.0020	-0.6288	0.6483	-0.6\%	0.6\%
44	Al2O3 (wt\%)	12.6502	12.6180	12.4030	0.2472	0.2150	2.0\%	1.7\%
44	B2O3 (wt\%)	3.7029	3.7381	4.0000	-0.2971	-0.2619	-7.4\%	-6.5\%
44	BaO (wt\%)	0.0589	0.0669	0.0630	-0.0041	0.0039	-6.5\%	6.3\%
44	CaO (wt\%)	1.0679	1.1179	1.1940	-0.1261	-0.0761	-10.6\%	-6.4\%
44	Ce2O3 (wt\%)	0.0477	0.0477	0.0750	-0.0273	-0.0273	-36.4\%	-36.4\%
44	Cr2O3 (wt\%)	0.0903	0.1288	0.1060	-0.0157	0.0228	-14.9\%	21.5\%
44	CuO (wt\%)	0.0382	0.0396	0.0300	0.0082	0.0096	27.3\%	32.1\%
44	Fe2O3 (wt\%)	12.5849	12.1541	13.2830	-0.6981	-1.1289	-5.3\%	-8.5\%
44	K2O (wt\%)	0.1753	0.1633	0.1720	0.0033	-0.0087	1.9\%	-5.1\%
44	La2O3 (wt\%)	0.0481	0.0481	0.0540	-0.0059	-0.0059	-11.0\%	-11.0\%
44	Li2O (wt\%)	3.8967	3.9621	4.0000	-0.1033	-0.0379	-2.6\%	-0.9\%
44	MgO ($\mathrm{wt} \%$)	1.1782	1.1953	1.2480	-0.0698	-0.0527	-5.6\%	-4.2\%
44	MnO ($\mathrm{wt} \%$)	2.7051	2.7115	2.7400	-0.0349	-0.0285	-1.3\%	-1.0\%
44	Na2O (wt\%)	16.2434	15.8294	15.0400	1.2034	0.7894	8.0\%	5.2\%
44	NiO (wt\%)	0.7269	0.7549	0.7890	-0.0621	-0.0341	-7.9\%	-4.3\%
44	PbO (wt\%)	0.0425	0.0425	0.0450	-0.0025	-0.0025	-5.4\%	-5.4\%
44	SO4 (wt\%)	0.6404	0.6404	0.6690	-0.0286	-0.0286	-4.3\%	-4.3\%
44	SiO 2 (wt\%)	39.8979	40.3714	40.0570	-0.1591	0.3144	-0.4\%	0.8\%
44	ThO2 (wt\%)	0.1155	0.1155	0.0330	0.0825	0.0825	250.0\%	250.0\%
44	TiO2 (wt\%)	0.0133	0.0144	0.0130	0.0003	0.0014	2.6\%	10.7\%
44	U3O8 (wt\%)	3.7086	3.9207	3.8200	-0.1114	0.1007	-2.9\%	2.6\%
44	ZnO (wt\%)	0.0523	0.0523	0.0490	0.0033	0.0033	6.7\%	6.7\%
44	ZrO 2 (wt\%)	0.1064	0.1064	0.1190	-0.0126	-0.0126	-10.6\%	-10.6\%
44	Sum (wt\%)	99.7917	99.8392	100.0020	-0.2103	-0.1628	-0.2\%	-0.2\%
45	Al2O3 (wt\%)	8.9610	8.9379	8.6820	0.2790	0.2559	3.2\%	2.9\%
45	B2O3 (wt\%)	5.6751	5.7392	5.8500	-0.1749	-0.1108	-3.0\%	-1.9\%
45	BaO (wt\%)	0.0438	0.0439	0.0440	-0.0002	-0.0001	-0.4\%	-0.2\%
45	CaO (wt\%)	0.7780	0.7726	0.8360	-0.0580	-0.0634	-6.9\%	-7.6\%
45	Ce2O3 (wt\%)	0.0395	0.0395	0.0520	-0.0125	-0.0125	-24.0\%	-24.0\%
45	Cr2O3 (wt\%)	0.0665	0.0789	0.0740	-0.0075	0.0049	-10.1\%	6.6\%
45	CuO (wt\%)	0.0335	0.0320	0.0210	0.0125	0.0110	59.5\%	52.6\%
45	Fe2O3 (wt\%)	9.1000	8.7900	9.2980	-0.1980	-0.5080	-2.1\%	-5.5\%
45	K2O (wt\%)	0.1256	0.1185	0.1200	0.0056	-0.0015	4.6\%	-1.3\%
45	La2O3 (wt\%)	0.0372	0.0372	0.0380	-0.0008	-0.0008	-2.0\%	-2.0\%
45	Li2O (wt\%)	6.3349	6.4413	6.5000	-0.1651	-0.0587	-2.5\%	-0.9\%
45	MgO ($\mathrm{wt} \%$)	0.8586	0.8638	0.8730	-0.0144	-0.0092	-1.7\%	-1.1\%
45	MnO (wt\%)	1.9465	1.9662	1.9180	0.0285	0.0482	1.5\%	2.5\%
45	Na2O (wt\%)	10.7604	10.9164	10.9780	-0.2176	-0.0616	-2.0\%	-0.6\%
45	NiO (wt\%)	0.5033	0.5228	0.5520	-0.0487	-0.0292	-8.8\%	-5.3\%
45	PbO (wt\%)	0.0355	0.0355	0.0320	0.0035	0.0035	11.1\%	11.1\%
45	SO4 (wt\%)	0.4539	0.4539	0.4680	-0.0141	-0.0141	-3.0\%	-3.0\%
45	SiO2 (wt\%)	50.2201	50.8183	50.8400	-0.6199	-0.0217	-1.2\%	0.0\%

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass (continued)
(100-Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \end{gathered}$	$\begin{gathered} \hline \hline \text { Measured-bc } \\ \text { (wt\%) } \end{gathered}$	Targeted (wt\%)	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
45	ThO2 (wt\%)	0.0848	0.0848	0.0230	0.0618	0.0618	268.6\%	268.6\%
45	TiO2 (wt\%)	0.0167	0.0165	0.0090	0.0077	0.0075	85.3\%	83.4\%
45	U3O8 (wt\%)	2.5648	2.7114	2.6740	-0.1092	0.0374	-4.1\%	1.4\%
45	ZnO (wt\%)	0.0523	0.0523	0.0340	0.0183	0.0183	53.8\%	53.8\%
45	ZrO 2 (wt\%)	0.0767	0.0767	0.0830	-0.0063	-0.0063	-7.6\%	-7.6\%
45	Sum (wt\%)	98.7685	99.5497	99.9990	-1.2305	-0.4493	-1.2\%	-0.4\%
46	Al2O3 (wt\%)	10.2411	10.2147	9.9220	0.3191	0.2927	3.2\%	2.9\%
46	B2O3 (wt\%)	5.2484	5.3025	5.4000	-0.1516	-0.0975	-2.8\%	-1.8\%
46	BaO (wt\%)	0.0488	0.0489	0.0500	-0.0012	-0.0011	-2.3\%	-2.1\%
46	CaO (wt\%)	0.8871	0.8810	0.9550	-0.0679	-0.0740	-7.1\%	-7.8\%
46	Ce2O3 (wt\%)	0.0474	0.0474	0.0600	-0.0126	-0.0126	-20.9\%	-20.9\%
46	Cr2O3 (wt\%)	0.0826	0.0980	0.0850	-0.0024	0.0130	-2.8\%	15.3\%
46	CuO (wt\%)	0.0394	0.0378	0.0240	0.0154	0.0138	64.3\%	57.3\%
46	Fe2O3 (wt\%)	10.4475	10.0918	10.6260	-0.1785	-0.5342	-1.7\%	-5.0\%
46	K2O (wt\%)	0.1491	0.1406	0.1380	0.0111	0.0026	8.0\%	1.9\%
46	La2O3 (wt\%)	0.0434	0.0434	0.0430	0.0004	0.0004	0.9\%	0.9\%
46	Li2O (wt\%)	5.8774	5.9759	6.0000	-0.1226	-0.0241	-2.0\%	-0.4\%
46	MgO ($\mathrm{wt} \%$)	0.9796	0.9856	0.9980	-0.0184	-0.0124	-1.8\%	-1.2\%
46	$\mathrm{MnO}(\mathrm{wt} \%)$	2.2209	2.2434	2.1920	0.0289	0.0514	1.3\%	2.3\%
46	Na2O (wt\%)	11.8995	12.0681	11.8320	0.0675	0.2361	0.6\%	2.0\%
46	NiO (wt\%)	0.6041	0.6274	0.6310	-0.0269	-0.0036	-4.3\%	-0.6\%
46	PbO (wt\%)	0.0404	0.0404	0.0360	0.0044	0.0044	12.2\%	12.2\%
46	SO4 (wt\%)	0.5041	0.5041	0.5350	-0.0309	-0.0309	-5.8\%	-5.8\%
46	SiO 2 (wt\%)	47.2250	47.7884	47.2450	-0.0200	0.5434	0.0\%	1.2\%
46	ThO2 (wt\%)	0.0964	0.0964	0.0260	0.0704	0.0704	270.9\%	270.9\%
46	TiO2 (wt\%)	0.0200	0.0198	0.0110	0.0090	0.0088	82.0\%	80.2\%
46	U3O8 (wt\%)	3.0394	3.2131	3.0560	-0.0166	0.1571	-0.5\%	5.1\%
46	ZnO (wt\%)	0.0398	0.0398	0.0390	0.0008	0.0008	2.1\%	2.1\%
46	ZrO 2 (wt\%)	0.0736	0.0736	0.0950	-0.0214	-0.0214	-22.5\%	-22.5\%
46	Sum (wt\%)	99.8552	100.5822	99.9990	-0.1438	0.5832	-0.1\%	0.6\%
47	Al2O3 (wt\%)	12.1211	12.1198	11.6590	0.4621	0.4608	4.0\%	4.0\%
47	B2O3 (wt\%)	4.8540	4.7793	4.7700	0.0840	0.0093	1.8\%	0.2\%
47	BaO (wt\%)	0.0544	0.0619	0.0590	-0.0046	0.0029	-7.7\%	4.9\%
47	$\mathrm{CaO}(\mathrm{wt} \%)$	1.0148	1.0623	1.1220	-0.1072	-0.0597	-9.6\%	-5.3\%
47	Ce2O3 (wt\%)	0.0469	0.0469	0.0700	-0.0231	-0.0231	-33.1\%	-33.1\%
47	Cr2O3 (wt\%)	0.0851	0.1214	0.1000	-0.0149	0.0214	-14.9\%	21.4\%
47	CuO (wt\%)	0.0372	0.0386	0.0280	0.0092	0.0106	33.0\%	38.0\%
47	Fe2O3 (wt\%)	11.8880	11.7128	12.4860	-0.5980	-0.7732	-4.8\%	-6.2\%
47	K2O (wt\%)	0.1677	0.1563	0.1620	0.0057	-0.0057	3.5\%	-3.5\%
47	La2O3 (wt\%)	0.0434	0.0434	0.0510	-0.0076	-0.0076	-14.9\%	-14.9\%
47	Li2O (wt\%)	5.2100	5.3149	5.3000	-0.0900	0.0149	-1.7\%	0.3\%
47	MgO ($\mathrm{wt} \%$)	1.1210	1.1372	1.1730	-0.0520	-0.0358	-4.4\%	-3.1\%
47	MnO ($\mathrm{wt} \%$)	2.6115	2.6174	2.5760	0.0355	0.0414	1.4\%	1.6\%
47	Na 2 O (wt\%)	13.3924	13.0510	13.0270	0.3654	0.0240	2.8\%	0.2\%
47	NiO (wt\%)	0.6490	0.6965	0.7410	-0.0920	-0.0445	-12.4\%	-6.0\%
47	PbO (wt\%)	0.0428	0.0428	0.0430	-0.0002	-0.0002	-0.4\%	-0.4\%
47	SO4 (wt\%)	0.6104	0.6104	0.6290	-0.0186	-0.0186	-3.0\%	-3.0\%
47	SiO 2 (wt\%)	41.8233	42.7499	42.2130	-0.3897	0.5369	-0.9\%	1.3\%
47	ThO2 (wt\%)	0.1055	0.1055	0.0310	0.0745	0.0745	240.5\%	240.5\%
47	TiO2 (wt\%)	0.0133	0.0144	0.0130	0.0003	0.0014	2.6\%	10.6\%
47	U3O8 (wt\%)	3.5111	3.7312	3.5910	-0.0799	0.1402	-2.2\%	3.9\%
47	ZnO (wt\%)	0.0451	0.0451	0.0460	-0.0009	-0.0009	-1.9\%	-1.9\%
47	ZrO 2 (wt\%)	0.1043	0.1043	0.1110	-0.0067	-0.0067	-6.0\%	-6.0\%
47	Sum (wt\%)	99.5525	100.3635	100.0010	-0.4485	0.3625	-0.4\%	0.4\%
48	Al2O3 (wt\%)	12.8675	12.8658	12.6510	0.2165	0.2148	1.7\%	1.7\%
48	B2O3 (wt\%)	4.5803	4.5097	4.4100	0.1703	0.0997	3.9\%	2.3\%
48	BaO (wt\%)	0.0595	0.0596	0.0640	-0.0045	-0.0044	-7.1\%	-6.9\%
48	CaO (wt\%)	1.1155	1.1079	1.2180	-0.1025	-0.1101	-8.4\%	-9.0\%

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass (continued)
(100 -Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \end{gathered}$	$\begin{gathered} \hline \hline \text { Measured-bc } \\ \text { (wt\%) } \end{gathered}$	Targeted (wt\%)	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
48	Ce2O3 (wt\%)	0.0510	0.0510	0.0760	-0.0250	-0.0250	-33.0\%	-33.0\%
48	Cr2O3 (wt\%)	0.0979	0.1163	0.1080	-0.0101	0.0083	-9.3\%	7.7\%
48	CuO (wt\%)	0.0448	0.0428	0.0310	0.0138	0.0118	44.4\%	38.2\%
48	Fe2O3 (wt\%)	12.8959	12.7057	13.5480	-0.6521	-0.8423	-4.8\%	-6.2\%
48	K2O (wt\%)	0.1963	0.1852	0.1750	0.0213	0.0102	12.2\%	5.8\%
48	La2O3 (wt\%)	0.0510	0.0510	0.0550	-0.0040	-0.0040	-7.2\%	-7.2\%
48	Li2O (wt\%)	4.7956	4.8921	4.9000	-0.1044	-0.0079	-2.1\%	-0.2\%
48	MgO ($\mathrm{wt} \%$)	1.1952	1.2025	1.2730	-0.0778	-0.0705	-6.1\%	-5.5\%
48	$\mathrm{MnO}(\mathrm{wt} \%)$	2.7373	2.7651	2.7950	-0.0577	-0.0299	-2.1\%	-1.1\%
48	Na2O (wt\%)	13.6586	13.8572	13.7110	-0.0524	0.1462	-0.4\%	1.1\%
48	NiO (wt\%)	0.7066	0.7584	0.8040	-0.0974	-0.0456	-12.1\%	-5.7\%
48	PbO (wt\%)	0.0463	0.0463	0.0460	0.0003	0.0003	0.7\%	0.7\%
48	SO4 (wt\%)	0.6449	0.6449	0.6820	-0.0371	-0.0371	-5.4\%	-5.4\%
48	SiO2 (wt\%)	38.8283	39.6883	39.3380	-0.5097	0.3503	-1.3\%	0.9\%
48	ThO2 (wt\%)	0.1200	0.1200	0.0340	0.0860	0.0860	253.1\%	253.1\%
48	TiO2 (wt\%)	0.0221	0.0219	0.0140	0.0081	0.0079	57.9\%	56.4\%
48	U3O8 (wt\%)	3.8118	4.0510	3.8970	-0.0852	0.1540	-2.2\%	4.0\%
48	ZnO (wt\%)	0.0598	0.0598	0.0500	0.0098	0.0098	19.5\%	19.5\%
48	ZrO 2 (wt\%)	0.1168	0.1168	0.1210	-0.0042	-0.0042	-3.4\%	-3.4\%
48	Sum (wt\%)	98.7030	99.9193	100.0010	-1.2980	-0.0817	-1.3\%	-0.1\%
49	Al2O3 (wt\%)	8.9515	8.9502	8.6820	0.2695	0.2682	3.1\%	3.1\%
49	B2O3 (wt\%)	5.1840	5.1041	5.2000	-0.0160	-0.0959	-0.3\%	-1.8\%
49	BaO (wt\%)	0.0430	0.0431	0.0440	-0.0010	-0.0009	-2.3\%	-2.1\%
49	CaO (wt\%)	0.8717	0.8658	0.8360	0.0357	0.0298	4.3\%	3.6\%
49	Ce2O3 (wt\%)	0.0384	0.0384	0.0520	-0.0136	-0.0136	-26.2\%	-26.2\%
49	Cr 2 O 3 (wt\%)	0.0720	0.0855	0.0740	-0.0020	0.0115	-2.7\%	15.5\%
49	CuO (wt\%)	0.0316	0.0303	0.0210	0.0106	0.0093	50.5\%	44.1\%
49	Fe2O3 (wt\%)	9.3502	9.2121	9.2980	0.0522	-0.0859	0.6\%	-0.9\%
49	K2O (wt\%)	0.1379	0.1301	0.1200	0.0179	0.0101	14.9\%	8.4\%
49	La2O3 (wt\%)	0.0349	0.0349	0.0380	-0.0031	-0.0031	-8.2\%	-8.2\%
49	Li2O (wt\%)	5.0593	5.1611	5.2000	-0.1407	-0.0389	-2.7\%	-0.7\%
49	MgO ($\mathrm{wt} \%$)	0.8971	0.9026	0.8730	0.0241	0.0296	2.8\%	3.4\%
49	MnO ($\mathrm{wt} \%$)	1.9207	1.9400	1.9180	0.0027	0.0220	0.1\%	1.1\%
49	Na 2 O (wt\%)	14.8954	15.1155	14.2280	0.6674	0.8875	4.7\%	6.2\%
49	NiO (wt\%)	0.5036	0.5405	0.5520	-0.0484	-0.0115	-8.8\%	-2.1\%
49	PbO (wt\%)	0.0310	0.0310	0.0320	-0.0010	-0.0010	-3.2\%	-3.2\%
49	SO4 (wt\%)	0.4411	0.4411	0.4680	-0.0269	-0.0269	-5.7\%	-5.7\%
49	SiO2 (wt\%)	48.5086	49.5825	49.5400	-1.0314	0.0425	-2.1\%	0.1\%
49	ThO2 (wt\%)	0.0819	0.0819	0.0230	0.0589	0.0589	256.2\%	256.2\%
49	TiO2 (wt\%)	0.0163	0.0161	0.0090	0.0073	0.0071	80.7\%	78.7\%
49	U3O8 (wt\%)	2.6915	2.8601	2.6740	0.0175	0.1861	0.7\%	7.0\%
49	ZnO (wt\%)	0.0495	0.0495	0.0340	0.0155	0.0155	45.5\%	45.5\%
49	ZrO 2 (wt\%)	0.0824	0.0824	0.0830	-0.0006	-0.0006	-0.7\%	-0.7\%
49	Sum (wt\%)	99.8937	101.2986	99.9990	-0.1053	1.2996	-0.1\%	1.3\%
50	Al2O3 (wt\%)	10.2364	10.2357	9.9220	0.3144	0.3137	3.2\%	3.2\%
50	B2O3 (wt\%)	4.8620	4.7868	4.8000	0.0620	-0.0132	1.3\%	-0.3\%
50	BaO (wt\%)	0.0463	0.0527	0.0500	-0.0037	0.0027	-7.3\%	5.3\%
50	CaO (wt\%)	0.8574	0.8975	0.9550	-0.0976	-0.0575	-10.2\%	-6.0\%
50	Ce2O3 (wt\%)	0.0378	0.0378	0.0600	-0.0222	-0.0222	-37.0\%	-37.0\%
50	$\mathrm{Cr2O} 3$ (wt\%)	0.0829	0.1184	0.0850	-0.0021	0.0334	-2.4\%	39.3\%
50	CuO (wt\%)	0.0322	0.0335	0.0240	0.0082	0.0095	34.3\%	39.4\%
50	Fe2O3 (wt\%)	10.7013	10.5439	10.6260	0.0753	-0.0821	0.7\%	-0.8\%
50	K2O (wt\%)	0.1464	0.1363	0.1380	0.0084	-0.0017	6.1\%	-1.2\%
50	La2O3 (wt\%)	0.0390	0.0390	0.0430	-0.0040	-0.0040	-9.3\%	-9.3\%
50	Li2O (wt\%)	4.6879	4.7824	4.8000	-0.1121	-0.0176	-2.3\%	-0.4\%
50	MgO (wt\%)	0.9560	0.9698	0.9980	-0.0420	-0.0282	-4.2\%	-2.8\%
50	MnO ($\mathrm{wt} \%$)	2.2338	2.2391	2.1920	0.0418	0.0471	1.9\%	2.1\%
50	Na 2 O (wt\%)	15.0639	14.6801	14.8320	0.2319	-0.1519	1.6\%	-1.0\%

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass (continued)
(100-Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \end{gathered}$	$\begin{gathered} \hline \hline \text { Measured-bc } \\ \text { (wt\%) } \end{gathered}$	Targeted (wt\%)	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
50	NiO (wt\%)	0.5860	0.6289	0.6310	-0.0450	-0.0021	-7.1\%	-0.3\%
50	PbO (wt\%)	0.0334	0.0334	0.0360	-0.0026	-0.0026	-7.2\%	-7.2\%
50	SO4 (wt\%)	0.5333	0.5333	0.5350	-0.0017	-0.0017	-0.3\%	-0.3\%
50	SiO2 (wt\%)	45.0323	46.0309	46.0450	-1.0127	-0.0141	-2.2\%	0.0\%
50	ThO2 (wt\%)	0.0910	0.0910	0.0260	0.0650	0.0650	250.1\%	250.1\%
50	TiO2 (wt\%)	0.0117	0.0126	0.0110	0.0007	0.0016	6.1\%	14.3\%
50	U3O8 (wt\%)	2.9333	3.1175	3.0560	-0.1227	0.0615	-4.0\%	2.0\%
50	ZnO (wt\%)	0.0398	0.0398	0.0390	0.0008	0.0008	2.1\%	2.1\%
50	ZrO 2 (wt\%)	0.0851	0.0851	0.0950	-0.0099	-0.0099	-10.4\%	-10.4\%
50	Sum (wt\%)	99.3292	100.1254	99.9990	-0.6698	0.1264	-0.7\%	0.1\%
51	Al2O3 (wt\%)	11.0489	11.0217	10.9150	0.1339	0.1067	1.2\%	1.0\%
51	B2O3 (wt\%)	4.1617	4.2026	4.4800	-0.3183	-0.2774	-7.1\%	-6.2\%
51	BaO (wt\%)	0.0516	0.0517	0.0560	-0.0044	-0.0043	-7.8\%	-7.6\%
51	CaO (wt\%)	0.9637	0.9570	1.0510	-0.0873	-0.0940	-8.3\%	-8.9\%
51	Ce2O3 (wt\%)	0.0469	0.0469	0.0660	-0.0191	-0.0191	-29.0\%	-29.0\%
51	Cr2O3 (wt\%)	0.0881	0.1046	0.0930	-0.0049	0.0116	-5.3\%	12.4\%
51	CuO (wt\%)	0.0388	0.0371	0.0260	0.0128	0.0111	49.3\%	42.9\%
51	Fe 2 O 3 (wt\%)	11.5734	11.1813	11.6890	-0.1156	-0.5077	-1.0\%	-4.3\%
51	K2O (wt\%)	0.1665	0.1571	0.1510	0.0155	0.0061	10.3\%	4.0\%
51	La2O3 (wt\%)	0.0449	0.0449	0.0480	-0.0031	-0.0031	-6.5\%	-6.5\%
51	Li2O (wt\%)	4.3219	4.3946	4.4800	-0.1581	-0.0854	-3.5\%	-1.9\%
51	MgO ($\mathrm{wt} \%$)	1.0501	1.0565	1.0980	-0.0479	-0.0415	-4.4\%	-3.8\%
51	$\mathrm{MnO}(\mathrm{wt} \%)$	2.4145	2.4390	2.4110	0.0035	0.0280	0.1\%	1.2\%
51	Na2O (wt\%)	15.1650	15.3835	15.3150	-0.1500	0.0685	-1.0\%	0.4\%
51	NiO (wt\%)	0.6369	0.6616	0.6940	-0.0571	-0.0324	-8.2\%	-4.7\%
51	PbO (wt\%)	0.0345	0.0345	0.0400	-0.0055	-0.0055	-13.8\%	-13.8\%
51	SO4 (wt\%)	0.5677	0.5677	0.5890	-0.0213	-0.0213	-3.6\%	-3.6\%
51	SiO2 (wt\%)	42.3047	42.8110	43.2500	-0.9453	-0.4390	-2.2\%	-1.0\%
51	ThO2 (wt\%)	0.1053	0.1053	0.0290	0.0763	0.0763	263.0\%	263.0\%
51	TiO2 (wt\%)	0.0204	0.0202	0.0120	0.0084	0.0082	70.3\%	68.5\%
51	U3O8 (wt\%)	3.2457	3.4314	3.3620	-0.1163	0.0694	-3.5\%	2.1\%
51	ZnO (wt\%)	0.0429	0.0429	0.0430	-0.0001	-0.0001	-0.1\%	-0.1\%
51	ZrO 2 (wt\%)	0.0946	0.0946	0.1040	-0.0094	-0.0094	-9.1\%	-9.1\%
51	Sum (wt\%)	98.1887	98.8475	100.0020	-1.8133	-1.1545	-1.8\%	-1.2\%
52	Al2O3 (wt\%)	12.0408	12.0394	11.9070	0.1338	0.1324	1.1\%	1.1\%
52	B2O3 (wt\%)	4.1939	4.1289	4.1600	0.0339	-0.0311	0.8\%	-0.7\%
52	BaO (wt\%)	0.0586	0.0587	0.0610	-0.0024	-0.0023	-3.9\%	-3.7\%
52	CaO (wt\%)	1.0543	1.0471	1.1460	-0.0917	-0.0989	-8.0\%	-8.6\%
52	Ce2O3 (wt\%)	0.0568	0.0568	0.0720	-0.0152	-0.0152	-21.1\%	-21.1\%
52	$\mathrm{Cr2O} 3$ (wt\%)	0.1009	0.1198	0.1020	-0.0011	0.0178	-1.1\%	17.5\%
52	CuO (wt\%)	0.0401	0.0383	0.0290	0.0111	0.0093	38.1\%	32.2\%
52	Fe2O3 (wt\%)	12.6207	12.4348	12.7510	-0.1303	-0.3162	-1.0\%	-2.5\%
52	K2O (wt\%)	0.1756	0.1656	0.1650	0.0106	0.0006	6.4\%	0.4\%
52	La2O3 (wt\%)	0.0487	0.0487	0.0520	-0.0033	-0.0033	-6.4\%	-6.4\%
52	Li2O (wt\%)	4.0582	4.1398	4.1600	-0.1018	-0.0202	-2.4\%	-0.5\%
52	MgO ($\mathrm{wt} \%$)	1.1608	1.1679	1.1980	-0.0372	-0.0301	-3.1\%	-2.5\%
52	MnO (wt\%)	2.6147	2.6410	2.6300	-0.0153	0.0110	-0.6\%	0.4\%
52	Na2O (wt\%)	15.7379	15.9661	15.7980	-0.0601	0.1681	-0.4\%	1.1\%
52	NiO (wt\%)	0.6811	0.7310	0.7570	-0.0759	-0.0260	-10.0\%	-3.4\%
52	PbO ($\mathrm{wt} \%$)	0.0399	0.0399	0.0430	-0.0031	-0.0031	-7.3\%	-7.3\%
52	SO4 (wt\%)	0.6172	0.6172	0.6420	-0.0248	-0.0248	-3.9\%	-3.9\%
52	SiO 2 (wt\%)	38.9887	39.8528	40.4540	-1.4653	-0.6012	-3.6\%	-1.5\%
52	ThO2 (wt\%)	0.1112	0.1112	0.0320	0.0792	0.0792	247.6\%	247.6\%
52	TiO2 (wt\%)	0.0183	0.0182	0.0130	0.0053	0.0052	41.1\%	39.7\%
52	U3O8 (wt\%)	3.5877	3.8129	3.6670	-0.0793	0.1459	-2.2\%	4.0\%
52	ZnO (wt\%)	0.0510	0.0510	0.0470	0.0040	0.0040	8.6\%	8.6\%
52	ZrO 2 (wt\%)	0.1091	0.1091	0.1140	-0.0049	-0.0049	-4.3\%	-4.3\%
52	Sum (wt\%)	98.1662	99.3961	100.0000	-1.8338	-0.6039	-1.8\%	-0.6\%

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass (continued)
(100-Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \end{gathered}$	$\begin{gathered} \hline \text { Measured-bc } \\ (w t \%) \end{gathered}$	Targeted (wt\%)	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
53	Al2O3 (wt\%)	8.9562	8.9344	8.6820	0.2742	0.2524	3.2\%	2.9\%
53	B2O3 (wt\%)	5.0391	5.0894	5.2000	-0.1609	-0.1106	-3.1\%	-2.1\%
53	BaO (wt\%)	0.0413	0.0414	0.0440	-0.0027	-0.0026	-6.1\%	-5.9\%
53	CaO (wt\%)	0.7713	0.7660	0.8360	-0.0647	-0.0700	-7.7\%	-8.4\%
53	Ce2O3 (wt\%)	0.0384	0.0384	0.0520	-0.0136	-0.0136	-26.2\%	-26.2\%
53	Cr2O3 (wt\%)	0.0720	0.0855	0.0740	-0.0020	0.0115	-2.7\%	15.5\%
53	CuO (wt\%)	0.0319	0.0306	0.0210	0.0109	0.0096	52.0\%	45.5\%
53	Fe2O3 (wt\%)	9.3252	9.0075	9.2980	0.0272	-0.2905	0.3\%	-3.1\%
53	K2O (wt\%)	0.1244	0.1173	0.1200	0.0044	-0.0027	3.6\%	-2.2\%
53	La2O3 (wt\%)	0.0346	0.0346	0.0380	-0.0034	-0.0034	-9.0\%	-9.0\%
53	Li2O (wt\%)	6.9646	7.0817	7.1500	-0.1854	-0.0683	-2.6\%	-1.0\%
53	MgO ($\mathrm{wt} \%$)	0.8490	0.8542	0.8730	-0.0240	-0.0188	-2.7\%	-2.2\%
53	MnO (wt\%)	1.9207	1.9401	1.9180	0.0027	0.0221	0.1\%	1.2\%
53	Na2O (wt\%)	10.9896	11.1491	10.9780	0.0116	0.1711	0.1\%	1.6\%
53	NiO (wt\%)	0.5230	0.5432	0.5520	-0.0290	-0.0088	-5.3\%	-1.6\%
53	PbO (wt\%)	0.0296	0.0296	0.0320	-0.0024	-0.0024	-7.4\%	-7.4\%
53	SO4 (wt\%)	0.4382	0.4382	0.4680	-0.0298	-0.0298	-6.4\%	-6.4\%
53	SiO2 (wt\%)	49.6318	50.2242	50.8400	-1.2082	-0.6158	-2.4\%	-1.2\%
53	ThO2 (wt\%)	0.0839	0.0839	0.0230	0.0609	0.0609	264.9\%	264.9\%
53	TiO2 (wt\%)	0.0154	0.0153	0.0090	0.0064	0.0063	71.4\%	69.5\%
53	U3O8 (wt\%)	2.5235	2.6676	2.6740	-0.1505	-0.0064	-5.6\%	-0.2\%
53	ZnO (wt\%)	0.0361	0.0361	0.0340	0.0021	0.0021	6.2\%	6.2\%
53	ZrO 2 (wt\%)	0.0807	0.0807	0.0830	-0.0023	-0.0023	-2.8\%	-2.8\%
53	Sum (wt\%)	98.5205	99.2889	99.9990	-1.4785	-0.7101	-1.5\%	-0.7\%
54	Al2O3 (wt\%)	10.2175	10.2168	9.9220	0.2955	0.2948	3.0\%	3.0\%
54	B2O3 (wt\%)	4.8299	4.7552	4.8000	0.0299	-0.0448	0.6\%	-0.9\%
54	BaO (wt\%)	0.0505	0.0574	0.0500	0.0005	0.0074	1.0\%	14.8\%
54	CaO (wt\%)	0.8528	0.8927	0.9550	-0.1022	-0.0623	-10.7\%	-6.5\%
54	Ce2O3 (wt\%)	0.0141	0.0141	0.0600	-0.0459	-0.0459	-76.6\%	-76.6\%
54	Cr2O3 (wt\%)	0.0749	0.1068	0.0850	-0.0101	0.0218	-11.9\%	25.7\%
54	CuO (wt\%)	0.0329	0.0341	0.0240	0.0089	0.0101	36.9\%	42.0\%
54	Fe2O3 (wt\%)	10.7513	10.5930	10.6260	0.1253	-0.0330	1.2\%	-0.3\%
54	K2O (wt\%)	0.1337	0.1246	0.1380	-0.0043	-0.0134	-3.1\%	-9.7\%
54	La2O3 (wt\%)	0.0390	0.0390	0.0430	-0.0040	-0.0040	-9.3\%	-9.3\%
54	Li2O (wt\%)	6.4156	6.5449	6.6000	-0.1844	-0.0551	-2.8\%	-0.8\%
54	MgO ($\mathrm{wt} \%$)	0.9788	0.9930	0.9980	-0.0192	-0.0050	-1.9\%	-0.5\%
54	MnO ($\mathrm{wt} \%$)	2.2564	2.2616	2.1920	0.0644	0.0696	2.9\%	3.2\%
54	Na2O (wt\%)	11.9905	11.6844	11.8320	0.1585	-0.1476	1.3\%	-1.2\%
54	NiO (wt\%)	0.5774	0.6197	0.6310	-0.0536	-0.0113	-8.5\%	-1.8\%
54	PbO (wt\%)	0.0366	0.0366	0.0360	0.0006	0.0006	1.7\%	1.7\%
54	SO4 (wt\%)	0.5205	0.5205	0.5350	-0.0145	-0.0145	-2.7\%	-2.7\%
54	SiO 2 ($\mathrm{wt} \%$)	46.6367	47.6709	47.2450	-0.6083	0.4259	-1.3\%	0.9\%
54	ThO2 (wt\%)	0.0942	0.0942	0.0260	0.0682	0.0682	262.2\%	262.2\%
54	TiO2 (wt\%)	0.0142	0.0153	0.0110	0.0032	0.0043	28.9\%	38.9\%
54	U3O8 (wt\%)	2.9686	3.1549	3.0560	-0.0874	0.0989	-2.9\%	3.2\%
54	ZnO (wt\%)	0.0411	0.0411	0.0390	0.0021	0.0021	5.3\%	5.3\%
54	ZrO2 (wt\%)	0.0878	0.0878	0.0950	-0.0072	-0.0072	-7.6\%	-7.6\%
54	Sum (wt\%)	99.6150	100.5584	99.9990	-0.3840	0.5594	-0.4\%	0.6\%
55	Al2O3 (wt\%)	12.0928	12.0578	11.9070	0.1858	0.1508	1.6\%	1.3\%
55	B2O3 (wt\%)	3.8961	3.9272	4.1600	-0.2639	-0.2328	-6.3\%	-5.6\%
55	BaO (wt\%)	0.0558	0.0635	0.0610	-0.0052	0.0025	-8.5\%	4.0\%
55	CaO (wt\%)	1.0274	1.0754	1.1460	-0.1186	-0.0706	-10.4\%	-6.2\%
55	Ce2O3 (wt\%)	0.0305	0.0305	0.0720	-0.0415	-0.0415	-57.7\%	-57.7\%
55	Cr2O3 (wt\%)	0.0892	0.1274	0.1020	-0.0128	0.0254	-12.6\%	24.9\%
55	CuO (wt\%)	0.0366	0.0380	0.0290	0.0076	0.0090	26.3\%	31.0\%
55	Fe2O3 (wt\%)	12.5099	12.0834	12.7510	-0.2411	-0.6676	-1.9\%	-5.2\%
55	K2O (wt\%)	0.1659	0.1546	0.1650	0.0009	-0.0104	0.6\%	-6.3\%
55	La2O3 (wt\%)	0.0472	0.0472	0.0520	-0.0048	-0.0048	-9.2\%	-9.2\%

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass (continued)
(100 -Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \end{gathered}$	$\begin{gathered} \hline \hline \text { Measured-bc } \\ \text { (wt\%) } \end{gathered}$	Targeted (wt\%)	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
55	Li2O (wt\%)	5.4791	5.5711	5.7200	-0.2409	-0.1489	-4.2\%	-2.6\%
55	MgO ($\mathrm{wt} \%$)	1.1401	1.1566	1.1980	-0.0579	-0.0414	-4.8\%	-3.5\%
55	MnO (wt\%)	2.6631	2.6684	2.6300	0.0331	0.0384	1.3\%	1.5\%
55	Na2O (wt\%)	13.4362	13.0927	13.1980	0.2382	-0.1053	1.8\%	-0.8\%
55	NiO (wt\%)	0.6083	0.6317	0.7570	-0.1487	-0.1253	-19.6\%	-16.5\%
55	PbO (wt\%)	0.0412	0.0412	0.0430	-0.0018	-0.0018	-4.2\%	-4.2\%
55	SO4 (wt\%)	0.6314	0.6314	0.6420	-0.0106	-0.0106	-1.7\%	-1.7\%
55	SiO2 (wt\%)	40.2188	40.6968	41.4940	-1.2752	-0.7972	-3.1\%	-1.9\%
55	ThO2 (wt\%)	0.1104	0.1104	0.0320	0.0784	0.0784	244.9\%	244.9\%
55	TiO2 (wt\%)	0.0125	0.0135	0.0130	-0.0005	0.0005	-3.8\%	3.6\%
55	U3O8 (wt\%)	3.5553	3.7586	3.6670	-0.1117	0.0916	-3.0\%	2.5\%
55	ZnO (wt\%)	0.0501	0.0501	0.0470	0.0031	0.0031	6.6\%	6.6\%
55	ZrO2 (wt\%)	0.1064	0.1064	0.1140	-0.0076	-0.0076	-6.7\%	-6.7\%
55	Sum (wt\%)	98.0041	98.1338	100.0000	-1.9959	-1.8662	-2.0\%	-1.9\%
56	Al2O3 (wt\%)	12.7352	12.7025	12.6510	0.0842	0.0515	0.7\%	0.4\%
56	B2O3 (wt\%)	3.6385	3.6622	3.9200	-0.2815	-0.2578	-7.2\%	-6.6\%
56	BaO (wt\%)	0.0597	0.0679	0.0640	-0.0043	0.0039	-6.7\%	6.1\%
56	CaO (wt\%)	1.0868	1.1377	1.2180	-0.1312	-0.0803	-10.8\%	-6.6\%
56	Ce2O3 (wt\%)	0.0609	0.0609	0.0760	-0.0151	-0.0151	-19.9\%	-19.9\%
56	Cr2O3 (wt\%)	0.0892	0.1274	0.1080	-0.0188	0.0194	-17.4\%	17.9\%
56	CuO (wt\%)	0.0404	0.0419	0.0310	0.0094	0.0109	30.2\%	35.2\%
56	Fe2O3 (wt\%)	12.6779	12.2435	13.5480	-0.8701	-1.3045	-6.4\%	-9.6\%
56	K2O (wt\%)	0.1783	0.1661	0.1750	0.0033	-0.0089	1.9\%	-5.1\%
56	La2O3 (wt\%)	0.0466	0.0466	0.0550	-0.0084	-0.0084	-15.2\%	-15.2\%
56	Li2O (wt\%)	5.2046	5.2919	5.3900	-0.1854	-0.0981	-3.4\%	-1.8\%
56	MgO ($\mathrm{wt} \%$)	1.1927	1.2100	1.2730	-0.0803	-0.0630	-6.3\%	-5.0\%
56	MnO ($\mathrm{wt} \%$)	2.7729	2.7792	2.7950	-0.0221	-0.0158	-0.8\%	-0.6\%
56	Na2O (wt\%)	14.0192	13.6613	13.7110	0.3082	-0.0497	2.2\%	-0.4\%
56	NiO (wt\%)	0.6751	0.7010	0.8040	-0.1289	-0.1030	-16.0\%	-12.8\%
56	PbO (wt\%)	0.0420	0.0420	0.0460	-0.0040	-0.0040	-8.7\%	-8.7\%
56	SO4 (wt\%)	0.6786	0.6786	0.6820	-0.0034	-0.0034	-0.5\%	-0.5\%
56	SiO 2 ($\mathrm{wt} \%$)	38.2400	38.6940	39.3380	-1.0980	-0.6440	-2.8\%	-1.6\%
56	ThO2 (wt\%)	0.1175	0.1175	0.0340	0.0835	0.0835	245.6\%	245.6\%
56	TiO2 (wt\%)	0.0125	0.0135	0.0140	-0.0015	-0.0005	-10.6\%	-3.8\%
56	U3O8 (wt\%)	3.6585	3.8677	3.8970	-0.2385	-0.0293	-6.1\%	-0.8\%
56	ZnO (wt\%)	0.0526	0.0526	0.0500	0.0026	0.0026	5.2\%	5.2\%
56	ZrO 2 (wt\%)	0.1118	0.1118	0.1210	-0.0092	-0.0092	-7.6\%	-7.6\%
56	Sum (wt\%)	97.3914	97.4777	100.0010	-2.6096	-2.5233	-2.6\%	-2.5\%
100	Al2O3 (wt\%)	4.8844	4.8770	4.8770	0.0074	0.0000	0.2\%	0.0\%
100	B2O3 (wt\%)	7.8002	7.7770	7.7770	0.0232	0.0000	0.3\%	0.0\%
100	$\mathrm{BaO}(\mathrm{wt} \%$)	0.1419	0.1510	0.1510	-0.0091	0.0000	-6.0\%	0.0\%
100	CaO (wt\%)	1.1972	1.2200	1.2200	-0.0228	0.0000	-1.9\%	0.0\%
100	Ce2O3 (wt\%)	0.0132	0.0132	0.0000	0.0132	0.0132		
100	Cr2O3 (wt\%)	0.0834	0.1070	0.1070	-0.0236	0.0000	-22.0\%	0.0\%
100	CuO (wt\%)	0.4007	0.3990	0.3990	0.0017	0.0000	0.4\%	0.0\%
100	Fe2O3 (wt\%)	13.1628	12.8390	12.8390	0.3238	0.0000	2.5\%	0.0\%
100	K2O (wt\%)	3.5496	3.3270	3.3270	0.2226	0.0000	6.7\%	0.0\%
100	La2O3 (wt\%)	0.0059	0.0059	0.0000	0.0059	0.0059		
100	Li2O (wt\%)	4.3489	4.4290	4.4290	-0.0801	0.0000	-1.8\%	0.0\%
100	MgO ($\mathrm{wt} \%$)	1.4047	1.4190	1.4190	-0.0143	0.0000	-1.0\%	0.0\%
100	MnO (wt\%)	1.7151	1.7260	1.7260	-0.0109	0.0000	-0.6\%	0.0\%
100	Na 2 O (wt\%)	9.0563	9.0030	9.0030	0.0533	0.0000	0.6\%	0.0\%
100	NiO (wt\%)	0.7114	0.7510	0.7510	-0.0396	0.0000	-5.3\%	0.0\%
100	PbO (wt\%)	0.0108	0.0108	0.0000	0.0108	0.0108		
100	SO4 (wt\%)	0.1498	0.1498	0.0000	0.1498	0.1498		
100	SiO2 (wt\%)	49.3822	50.2200	50.2200	-0.8378	0.0000	-1.7\%	0.0\%
100	ThO2 (wt\%)	0.0057	0.0057	0.0000	0.0057	0.0057		
100	TiO2 (wt\%)	0.6547	0.6770	0.6770	-0.0223	0.0000	-3.3\%	0.0\%

Table D4. Average Measured and Bias-Corrected Chemical Compositions Versus Targeted Compositions by Oxide by Nepheline Study Glass (continued)
(100-Batch 1; $200-U$ std)

Glass \#	Oxide	$\begin{gathered} \text { Measured } \\ \text { (wt\%) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Measured-bc } \\ & \text { (wt\%) } \end{aligned}$	Targeted (wt\%)	Diff of Measured	Diff of Meas-bc	\% Diff of Measured	\% Diff of Meas-bc
100	U3O8 (wt\%)	0.0590	0.0625	0.0000	0.0590	0.0625		
100	ZnO (wt\%)	0.0062	0.0062	0.0000	0.0062	0.0062		
100	ZrO2 (wt\%)	0.0523	0.0523	0.0980	-0.0457	-0.0457	-46.6\%	-46.6\%
100	$\begin{gathered} \hline \text { Sum of Oxides } \\ \text { (wt\%) } \\ \hline \end{gathered}$	98.7963	99.2284	99.0200	-0.2237	0.2084	-0.2\%	0.2\%
200	Al2O3 (wt\%)	4.0766	4.0712	4.1000	-0.0234	-0.0288	-0.6\%	-0.7\%
200	B2O3 (wt\%)	9.1391	9.1216	9.2090	-0.0699	-0.0874	-0.8\%	-0.9\%
200	BaO (wt\%)	0.0056	0.0060	0.0000	0.0056	0.0060		
200	CaO (wt\%)	1.2838	1.3085	1.3010	-0.0172	0.0075	-1.3\%	0.6\%
200	Ce2O3 (wt\%)	0.0093	0.0093	0.0000	0.0093	0.0093		
200	Cr 2 O 3 (wt\%)	0.2237	0.2905	0.0000	0.2237	0.2905		
200	CuO (wt\%)	0.0260	0.0253	0.0000	0.0260	0.0253		
200	Fe2O3 (wt\%)	13.0162	12.6971	13.1960	-0.1798	-0.4989	-1.4\%	-3.8\%
200	K2O (wt\%)	3.1972	2.9970	2.9990	0.1982	-0.0020	6.6\%	-0.1\%
200	La2O3 (wt\%)	0.0059	0.0059	0.0000	0.0059	0.0059		
200	Li2O (wt\%)	3.0266	3.0824	3.0570	-0.0304	0.0254	-1.0\%	0.8\%
200	MgO ($\mathrm{wt} \%$)	1.1661	1.1779	1.2100	-0.0439	-0.0321	-3.6\%	-2.7\%
200	MnO ($\mathrm{wt} \%$)	2.8008	2.8183	2.8920	-0.0912	-0.0737	-3.2\%	-2.5\%
200	Na 2 O (wt \%)	11.9691	11.9002	11.7950	0.1741	0.1052	1.5\%	0.9\%
200	NiO (wt\%)	0.9917	1.0468	1.1200	-0.1283	-0.0732	-11.5\%	-6.5\%
200	PbO (wt\%)	0.0108	0.0108	0.0000	0.0108	0.0108		
200	SO4 (wt\%)	0.1498	0.1498	0.0000	0.1498	0.1498		
200	SiO 2 (wt\%)	43.0356	43.7670	45.3530	-2.3174	-1.5860	-5.1\%	-3.5\%
200	ThO2 (wt\%)	0.0495	0.0495	0.0000	0.0495	0.0495		
200	TiO2 (wt\%)	0.9503	0.9834	1.0490	-0.0987	-0.0656	-9.4\%	-6.3\%
200	U3O8 (wt\%)	2.2700	2.4060	2.4060	-0.1360	0.0000	-5.7\%	0.0\%
200	ZnO (wt\%)	0.0062	0.0062	0.0000	0.0062	0.0062		
200	ZrO2 (wt\%)	0.0068	0.0068	0.0000	0.0068	0.0068		
200	Sum (wt\%)	97.4166	97.9374	99.6870	-2.2704	-1.7496	-2.3\%	-1.8\%

Exhibit D1. Oxide Measurements in Analytical Sequence for Samples Prepared Using the LM Method

BaO (wt\%) By Analytical Sequence

CaO (wt\%) By Analytical Sequence

Ce2O3 (wt\%) By Analytical Sequence

Cr2O3 (wt\%) By Analytical Sequence

CuO (wt\%) By Analytical Sequence

K2O (wt\%) By Analytical Sequence

Exhibit D1. Oxide Measurements in Analytical Sequence for Samples Prepared Using the LM Method (continued)

La2O3 (wt\%) By Analytical Sequence

MgO (wt\%) By Analytical Sequence

MnO (wt\%) By Analytical Sequence

Na 2 O (wt\%) By Analytical Sequence

PbO (wt\%) By Analytical Sequence

SO4 (wt\%) By Analytical Sequence

Exhibit D1. Oxide Measurements in Analytical Sequence for Samples Prepared Using the LM Method (continued)

ThO2 (wt\%) By Analytical Sequence

ZrO2 (wt\%) By Analytical Sequence

TiO2 (wt\%) By Analytical Sequence

ZnO (wt\%) By Analytical Sequence

Exhibit D2. Oxide Measurements in Analytical Sequence for Samples Prepared Using the PF Method

B2O3 (wt\%) By Analytical Sequence

Fe2O3 (wt\%) By Analytical Sequence

Li2O (wt\%) By Analytical Sequence

NiO (wt\%) By Analytical Sequence

SiO2 (wt\%) By Analytical Sequence

Exhibit D2. Oxide Measurements in Analytical Sequence for Samples Prepared Using the PF Method (continued)

U3O8 (wt\%) By Analytical Sequence

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the LM Method

Oneway Analysis of $\mathbf{C a O}$ (wt\%) By Block/Sub-Block

Oneway Anova

Rsquare	0.871825
Adj Rsquare	0.823759
Root Mean Square Error	0.017476
Mean of Response	1.197249
Observations (or Sum Wgts)	12

Observations (or Sum Wgts) 1.197249
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{lllllll}\text { Block/Sub-Block } & 3 & 0.01661878 & 0.005540 & 18.1382 & 0.0006\end{array}$ $\begin{array}{llll}\text { Error } & 8 & 0.00244329 & 0.000305\end{array}$
C. Total
$\begin{array}{lll}\text { C. Total } & 11 & 0.01906206\end{array}$
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95
$\begin{array}{llllll}1-1 & 3 & 1.25042 & 0.01009 & 1.2272 & 1.2737\end{array}$
$\begin{array}{llllll}1 & 3 & 1.20751 & 0.01009 & 1.1842 & 1.2308 \\ 2-1 & 3 & 1.14828 & 0.01009 & 1.1250 & 1.1715\end{array}$

$2-2$	3	1.18279	0.01009	1.1595

Std Error uses a pooled estimate of error variance

Oneway Analysis of Ce2O3 (wt\%) By Block/Sub-Block

Oneway Anova
Summary of Fit

Rsquare		0.972322		
Adj Rsquare		0.961943		
Root Mean Square Error		0.001724		
Mean of Response		0.013177		
Observations (or Sum Wgts) 12				
Analysis of Variance				
Source Block/Sub-Block	DF Sum of Square		Mean Squar	e F Ratio
	k 3	0.00083540	400.0002	27893.6795
Error	8	0.00002378	780.0000	
C. Total	11	0.00085918		
Means for Oneway Anova				
Level Number	Mean	Std Error	Lower 95\%	Upper 95\%
1-1 30.0	0.026159	0.00100	0.02386	0.02845
1-2 30.	0.005857	0.00100	0.00356	0.00815
2-1 30.	0.005857	0.00100	0.00356	0.00815
2-2 30.01	0.014836	0.00100	0.01254	0.01713

td Error uses a pooled estimate of error varianc

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the LM Method (continued)

Oneway Anova

Root Mean Square Error
Mean of Response
0.838522
0.777967
0.777967
0.006329
0.0063293
0.023

Observations (or Sum Wgts)
083433
12
Analysis of Variance \qquad
$\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { Sum of Squares } & \text { Mean Square } & \text { F Ratio } & \text { Prob > F } \\ \text { Block/Sub-Block } & 3 & 0.00166398 & 0.000555 & 13.8474 & 0.0016\end{array}$ $\begin{array}{lllllll}\text { Block/Sub-Block } & 3 & 0.00166398 & 0.000555 & 13.8474 & 0.0016\end{array}$ Crror
$11 \quad 0$
Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{lrrrrr}\text { Level } & \text { Number } & \text { Mean } & \text { Std Error } & \text { Lower 95\% } & \text { Upper 95\% } \\ 1-1 & 3 & 0.100850 & 0.00365 & 0.09242 & 0.10928\end{array}$ $\begin{array}{llllll}1-1 & 3 & 0.0081362 & 0.003655 & 0.09242 & 0.10928 \\ 1-2 & 3 & 0.067294 & 0.08979\end{array}$ $\begin{array}{llllll}2-1 & 3 & 0.067721 & 0.00365 & 0.05929 & 0.07615 \\ 2-1 & 3 & 0.083798 & 0.00365 & 0.07537 & 0.09222\end{array}$ Std Error uses a pooled estimate of error variance

Oneway Analysis of CuO (wt\%) By Block/Sub-Block

$\begin{array}{lr}\begin{array}{l}\text { Oneway Anova } \\ \text { Summary of Fit }\end{array} & \\ \text { Rsquare } & 0.884755 \\ \text { Adj Rsquare } & 0.841538 \\ \text { Root Mean Square Error } & 0.008428 \\ \text { Mean of Response } & 0.40068 \\ \text { Observations (or Sum Wgts) } & 12\end{array}$
Observations (or Sum W
Source DF Sum of Squares Mean Square F Ratio Prob >F $\begin{array}{lllllll}\text { Block/Sub-Block } & 3 & 0.00436293 & 0.001454 & 20.4724 & 0.0004\end{array}$ $\begin{array}{llll}\text { Block/Sub-Block } & 3 & 0.00436293 & 0.001454 \\ \text { Error } & 8 & 0.00056830 & 0.000071\end{array}$
C. Total

Means for On
$11 \quad 0$
Level Number Mean Std Error Lower 95\% Upper 95\%
$\begin{array}{lrrrrr}\text { Level } & \text { Number } & \text { Mean } & \text { Std Error } & \text { Lower 95\% } & \text { Upper 95\% } \\ 1-1 & 3 & 0.424777 & 0.00487 & 0.41356 & 0.43600\end{array}$ $\begin{array}{llllll}1-1 & 3 & 0.424777 & 0.00487 & 0.41356 & 0.43600 \\ 1-2 & 3 & 0.408921 & 0.00487 & 0.39770 & 0.42014 \\ 2-1 & 3 & 0.372619 & 0.00487 & 0.36140 & 0.38384\end{array}$ $\begin{array}{llllll}2-2 & 3 & 0.372619 & 0.00487 & 0.36140 & 0.38384 \\ & 3 & 0.396403 & 0.00487 & 0.38518 & 0.40762\end{array}$ Std Error uses a pooled estimate of error variance

Oneway Analysis of K2O (wt\%) By Block/Sub-Block

Oneway Anova
$\begin{array}{lr} \\ \text { Rsquare } & \\ \text { Adj Rsquare } & 0.485362 \\ \text { Root Mean Square Error } & 0.292373 \\ \text { Mean of Response } & 0.063551 \\ \text { Observations (or Sum Wets) } & 3.549555\end{array}$
Observations (or Sum Wgts)
Source DF Sum of Squares Mean Square F Ratio Prob $>$ F $\begin{array}{llrrrrr}\text { Block/Sub-Block } & 3 & 0.03047228 & 0.010157 & 2.5150 & 0.1321\end{array}$ $\begin{array}{lrll}\text { Block/Sub-Block } & 3 & 0.03047228 & 0.01015 \\ \text { Error } & 8 & 0.03231030 & 0.004039\end{array}$
C. Total
$11 \quad 0$
Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{lrrrrr}\text { Level } & \text { Number } & \text { Mean } & \text { Std Error } & \text { Lower 95\% } & \text { Upper 95\% } \\ 1-1 & 3 & 3.47326 & 0.03669 & 3.3887 & 3.5579\end{array}$

$1-1$	3	3.47326	0.03669	3.3887	3.559
$1-2$	3	3.58168	0.03669	3.4971	3.6663
$2-1$	3	3.53751	0.03669	3.4529	3.6221

$\begin{array}{llllll}2-2 & 3 & 3.60577 & 0.03669 & 3.5212 & 3.6904\end{array}$
Std Error uses a pooled estimate of error variance

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the

 Standard Glasses Prepared Using the LM Method (continued)

Oneway Anova
Summary of Fit
Rsquare
Adj Rsquare
$\begin{array}{lr}\text { Root Mean Square Error } & 0 \\ \text { Mean of Response } & 0.005864 \\ \text { Observations (or Sum Wgts) } & 12\end{array}$
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F Block/Sub-Block 3
00

11
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper

$1-1$	3	0.005864	0	0.00586	0.00586
$1-2$	3	0.005864	0	0.00586	0.00586
$2-1$	3	0.005864	0	0.00586	0.00586
$2-2$	3	0.005864	0	0.00586	0.00586

Oneway Analysis of MgO (wt\%) By Block/Sub-Block

Oneway Anova
Summary of Fit

Rsquare		0.683212					
Adj Rsquare		0.564417					
Root Mean Square Error		0.009927					
Mean of Response		1.404718					
Observations (or	Sum W	Wgts)	12				
Analysis of Variance							
Source	DF S	Sum of Squares		Mean Square		F Ratio	Prob $>$ F
Block/Sub-Block	k	0.00170		0.00	0567	5.7512	0.0214
Error	8	0.00078		0.00	099		
C. Total	11	0.00248					
Means for Oneway Anova							
Level Number	Mean	Std Error		wer 95\%	Uppe	er 95\%	
1-1	1.42503	30.00573		1.4118		1.4382	
1-2 31	1.39629	0.00573		1.3831		1.4095	
2-1 31.	1.40126	0.00573		1.3880		1.4145	
2-2 31.3	1.39629	0.00573		1.3831		1.4095	

Oneway Analysis of MnO (wt\%) By Block/Sub-Block

Oneway Anova
Summary of Fit

$\begin{array}{ll}\text { Rsquare } & 0.591837 \\ \text { Adj Rsquare } & 0.438776\end{array}$				
Root Mean Square	re Error	r 0.026357		
Mean of Response		1.715144		
Observations (or S	Sum W	Wgts) 12		
Analysis of Variance				
Source	DF S	Sum of Squa	Mean Square F Ratio	
Block/Sub-Block		0.008058	120.00	26863.8667
Error	8	0.005557	0.000695	
C. Total	11	0.013615		
Means for Oneway Anova				
Level Number	Mean	n Std Error	Lower 95\%	Upper 95\%
1-1 31	1.70008	80.01522	1.6650	1.7352
$1-2 \quad 31$	1.71730	00.01522	1.6822	1.7524
2-1 31.	1.68717	$7 \quad 0.01522$	1.6521	1.7223
2-2 31	1.75603	30.01522	1.7209	1.7911

Std Error uses a pooled estimate of error variance

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the

 Standard Glasses Prepared Using the LM Method (continued)Oneway Analysis of $\mathbf{N a 2 O O}$ (wt\%) By Block/Sub-Block
Reference Value $=\mathbf{9 . 0 0 3} \mathbf{w t \%}$ \%

ummary of Fit

Rsquare

Rsquare	-0.375
Adj Rsquare	$.12 \mathrm{e}-18$
Root Mean Square Error	0.010772
Mean of Response	12
Observations (or Sum Wgts)	

$\begin{array}{lr}\text { Observations (or Sum Wgts) } & 12\end{array}$
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{llllll}\text { Block/Sub-Block } & 3 & 0 & 0 & 0.0000 & 1.0000\end{array}$ $\begin{array}{lrrr}\text { Error } & 8 & 3.6111 \mathrm{e}-35 & 4.514 \mathrm{e}-36\end{array}$ C. Total $11 \quad 3.6$
Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{llllll}1-1 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077\end{array}$ $\begin{array}{llllll}1-2 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077 \\ 2-1 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077\end{array}$ $\begin{array}{llllll}2-2 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077\end{array}$
td Error uses a pooled estimate of error variance

Oneway Anova
Summary of Fit
dquar
Adj Rsquare
$\begin{array}{lr}\text { Root Mean Square Error } & 0 \\ \text { Mean of Response } & 0.149795 \\ \text { Observations (or Sum Wgts) } & 12\end{array}$
Observations (or Sum Wgts) 12
f Variance
DF Sum of Squares Mean Square F Ratio Prob > F Block/Sub-Block 3

Crror Total
8
11
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\%

$1-1$	3	0.149795	0	0.14979	0.14979
$1-2$	3	0.149795	0	0.14979	0.14979
$2-1$	3	0.149795	0	0.14979	0.14979
$2-2$	3	0.149795	0	0.14979	0.14979

td Error uses a pooled estimate of error variance

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the

 Standard Glasses Prepared Using the LM Method (continued)

Oneway Anova
Summary of Fit
Rsquare
Adj Rsquare
$\begin{array}{lr}\text { Root Mean Square Error } & 0 \\ \text { Mean of Response } & 0.005689\end{array}$
Observations (or Sum Wgts) 12
Analysis of Variance
DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{llll}\text { Block/Sub-Block } & 3 & 0 & 0 \\ & 8 & 0 & 0\end{array}$
Error

$$
\begin{array}{ll}
C . \text { Total } & 11 \\
\hline
\end{array}
$$

C. Total

Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{llllll}1-1 & 3 & 0.005689 & 0 & 0.00569 & 0.00569\end{array}$ $\begin{array}{llllll}1-2 & 3 & 0.005689 & 0 & 0.00569 & 0.00569 \\ -1 & 3 & 0.005689 & 0 & 0.00569 & 0.00569\end{array}$ $\begin{array}{llllll}2-2 & 3 & 0.005689 & 0 & 0.00569 & 0.00569\end{array}$

Oneway Anova
Summary of Fit

Oneway Anova
Summary of Fit
Summary of Fit

Adj Rsqu
Root Mean Square Error 0
$\begin{array}{lr}\text { Mean of Response } & 0.006224 \\ \text { Observations (or Sum Wgts) } & 12\end{array}$
Observations (oriance
Source DF Sum of Squares Mean Square F Ratio Prob > F Block/Sub-Block 3
$\begin{array}{lll}\text { Error } & 8 & 0 \\ \end{array}$
C. Total

11
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\%

$1-1$	3	0.006224	0	0.00622	0.00622

$1-2$	3	0.006224	0	0.00622	0.00622

1	3	0.006224	0	0.00622	0.00622
$2-2$	3	0.006224	0	0.00622	0.00622

td Error uses a pooled estimate of error variance

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the

 Standard Glasses Prepared Using the LM Method (continued)Oneway Analysis of ZrO2 (wt\%) By Block/Sub-Block
Reference Value $=\mathbf{0 . 0 9 8} \mathbf{w t} \mathbf{w}$

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the LM Method (continued)

Oneway Analysis of Ce2O3 (wt\%) By Block/Sub-Block Reference Value $=\mathbf{0} \mathbf{w t} \%$
0.02 (1-2

Oneway Anova
Summary of Fit

Oneway Analysis of Cr2O3 (wt\%) By Block/Sub-Block

Oneway Anova

$\begin{array}{lr}\text { Rsquare } & 0.925417 \\ \text { Adj Rsquare } & 0.897448 \\ \text { Root Mean Square Error } & 0.004198 \\ \text { Mean of Response } & 0.223747 \\ \text { Observations (or Sum Wgts) } & 12\end{array}$
Observations (or Sum Wgts)
Source DF Sum of Squares Mean Square F Ratio Prob > F Block/Sub-Block $300.001749430 .00058333 .0875<0001$ $\begin{array}{llll}\text { Block } & \text { Sub-Block } & 3 & 0.00174943 \\ \text { Error } & 8 & 0.00014099 & 0.0000583 \\ \text { C. } & 1 & 0.0018\end{array}$
$\begin{array}{lll}\text { C. Total } & 11 & 0.00189042\end{array}$
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{llllll}1-1 & 3 & 0.241164 & 0.00242 & 0.23557 & 0.24675\end{array}$ $\begin{array}{llllll}1-2 & 3 & 0.224112 & 0.00242 & 0.21852 & 0.22970\end{array}$ $\begin{array}{llllll}1-1 & 3 & 0.207060 & 0.00242 & 0.20147 & 0.21265 \\ 2-2 & 3 & 0.222650 & 0.00242 & 0.21706 & 0.22824\end{array}$ Std Error uses a pooled estimate of error variance

Oneway Analysis of CuO (wt\%) By Block/Sub-Block

Oneway Anova
Summary of Fit
$\begin{array}{ll}\text { Adj Rsquare } & 0.979333 \\ \text { Root Mean Square Error } & 0.001946 \\ \text { Mean of Response } & 0.025975\end{array}$
Wgts) ${ }^{0.025975}$
Observations (or Sum Wgts)
Source DF Sum of Squares Mean Square F Ratio Prob > F
$\begin{array}{lrrrrrr} & & & & & & \\ \text { Block/Sub-Block } & 3 & 0.00198526 & 0.000662 & 174.7471 & <.0001\end{array}$ $\begin{array}{llll}\text { Block/Sub-Block } & 3 & 0.00198526 & 0.000662 \\ \text { Error } & 8 & 0.00003030 & 0.000004\end{array}$
C. Total

11 Anova
Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{lrrrrr}\text { Level } & \text { Number } & \text { Mean } & \text { Std Error } & \text { Lower 95\% } & \text { Upper 95\% } \\ 1-1 & 3 & 0.041727 & 0.00112 & 0.03914 & 0.04432\end{array}$ $\begin{array}{llllll}1-1 & & 0.041727 & 0.00112 & 0.03914 & 0.04432 \\ 1-2 & 3 & 0.030878 & 0.00112 & 0.02829 & 0.03347 \\ 2-1 & 3 & 0.006259 & 0.00112 & 0.00367 & 0.00885\end{array}$
$\begin{array}{llllll}2-2 & 3 & 0.025036 & 0.00112 & 0.02245 & 0.02763\end{array}$
Std Error uses a pooled estimate of error varianc

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the LM Method (continued)

Oneway Analysis of K2O (wt\%) By Block/Sub-Block
Reference Value $=\mathbf{2 . 9 9 9} \mathbf{w t \%}$ (

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the LM Method (continued)

Oneway Anova
Summary of Fit

Rsquare	0.744945			
Adj Rsquare	0.6493			
Root Mean Squar	uare Error 0.20436			
Mean of Respons	nse 11.96912			
Observations (or	r Sum W	Wgts)	12	
Analysis of Variance				
Source	DF Sum of Squ		S Mean Square F Ratio	
Block/Sub-Block	k 3	0.97583	0.3252777 .7886	
Error	8	0.33410	-0.041763	
C. Total	$11 \quad 1.3099351$			
Means for Oneway Anova				
Level Number	Mean	n Std Error	Lower 95\%	Upper 95\%
1-1 31	11.4805	0.11799	11.208	11.753
$1-2 \quad 312$	12.1050	00.11799	11.833	12.377
2-1 312	12.1994	40.11799	11.927	12.471
2-2 312	12.0916	$6 \quad 0.11799$	11.819	12.364

Oneway Anova
Rsquare
$\begin{array}{lr}\text { Rsquare } & -0.375 \\ \text { Adj Rsquare } & 2.12 \mathrm{e}-18 \\ \text { Root Mean Square Error } & 0.010772 \\ \text { Mean of Response } & 12\end{array}$
nalysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{llllll}\text { Block/Sub-Block } 3 & 0 & 0 & 0.0000 & 1.0000\end{array}$ $\begin{array}{lrrr}\text { Error } & 8 & 3.6111 \mathrm{e}-35 & 4.514 \mathrm{e}-36\end{array}$
C. Total $11 \quad 3.6111 \mathrm{e}-35$
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{lllllll}1-1 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077\end{array}$ $\begin{array}{llllll}1-2 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077 \\ 2-1 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077\end{array}$ $\begin{array}{llllll}2-2 & 3 & 0.010772 & 1.227 \mathrm{e}-18 & 0.01077 & 0.01077\end{array}$
td Error uses a pooled estimate of error variance

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the LM Method (continued)

Oneway Anova
Summary of Fit
Rsquare
Adj Rsquare
$\begin{array}{lr}\text { Root Mean Square Error } & 0.149795 \\ \text { Mean of Response } & \end{array}$
Observations (or Sum Wgts) 12
Analysis of Variance
source DF Sum of Squares Mean Square F Ratio Prob > F Block/Sub-Block 3
0
0

Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{llllll}1-1 & 3 & 0.149795 & 0 & 0.14979 & 0.14979\end{array}$ $\begin{array}{llllll}1-2 & 3 & 0.149795 & 0 & 0.14979 & 0.14979 \\ 2-1 & 3 & 0.149795 & 0 & 0.14979 & 0.14979\end{array}$ $\begin{array}{llllll}2-2 & 3 & 0.149795 & 0 & 0.14979 & 0.14979\end{array}$

Oneway Anova

Oneway Analysis of TiO2 (wt\%) By Block/Sub-Block

Oneway Anova
Summary of Fit

Rsquare	0.846739			
Adj Rsquare 0.789266				
Root Mean Square Error 0.017388				
Mean of Response 0.950343				
Observations (or Sum Wgts) 12				
Analysis of Variance				
Source	DF Sum	of Squares	S Mean Squ	uare F Ratio
Block/Sub-Block	k 3	0.01336279	90.0044	45414.7329
Error	8	0.00241868	8 0.0003	
C. Total	11	0.01578147		
Means for Oneway Anova				
Level Number	Mean	Std Error	Lower 95\%	Upper 95\%
1-1 3	0.992460	0.01004	0.96931	1.0156
1-2 3	0.973556	0.01004	0.95041	0.9967
2-1 30.9	0.919624	0.01004	0.89647	0.9428
2-2 3	0.915732	0.01004	0.89258	0.9389

Exhibit D3. PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the LM Method (continued)

Oneway Anova
Summary of Fit
Rsquare
Adj Rsquare
Root Mean Square Error 0
$\begin{array}{lr}\text { Mean of Response } & 0.006224 \\ & 12\end{array}$
Observations (or Sum Wgts) 12
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{llll}\text { Block/Sub-Block } & 3 & 0 & 0 \\ & 8 & 0 & 0\end{array}$
C. Total 11

Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{lllll}1-1 & 3 & 0.006224 & 0 & 0.00622\end{array} 0.00622$ $\begin{array}{llllll}1-2 & 3 & 0.006224 & 0 & 0.00622 & 0.00622 \\ 2-1 & 3 & 0.00624 & 0 & 0.00622 & 0.00622\end{array}$ $\begin{array}{llllll}1-1 & 3 & 0.006224 & 0 & 0.00622 & 0.00622 \\ 2-2 & 3 & 0.006224 & 0 & 0.00622 & 0.00622\end{array}$

Oneway Analysis of $\mathrm{ZrO2}$ (wt\%) By Block/Sub-Block

	-			
0.006754000001				
0.00675400000075䓂 0.0067540000005会 0.006754000000250.0067540.00675399999975				
	1-1	1-2	2-1	2-2

Summary of Fit

Rsquare
Adj Rsquare
Root Mean Square Error 0
$\begin{array}{lr}\text { Mean of Response } & 0.006754 \\ \text { Observations (or Sum Wgts) } & 12\end{array}$
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F Block/Sub-Block 3
$\begin{array}{cccc}\text { Error } & 8 & 0 & 0\end{array}$
C. Total

11
ay Anova
evel Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{lllll}1-1 & 3 & 0.006754 & 0 & 0.00675\end{array} 0.00675$

$1-2$	3	0.006754	0	0.00675	0.00675
-1	3	0.006754	0	0.00675	0.00675

$\begin{array}{llllll}2-2 & 3 & 0.006754 & 0 & 0.00675 & 0.00675\end{array}$
td Error uses a pooled estimate of error variance

Exhibit D4: PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the PF Method

Glass ID=Batch $\mathbf{1}$
Oneway Analysis of Al2O3 (wt\%) By Block/Sub-Block
Reference Value $=\mathbf{4 . 8 7 7} \mathbf{~ w t \%}$
Oneway Analysis of B2O3 (wt\%) By Block/Sub-Block
Reference Value $=\mathbf{7 . 7 7 7} \mathbf{w t} \%$

Exhibit D4: PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the PF Method (continued)

Oneway Anova
Summary of Fit

Oneway Anova
Summary of Fit

Oneway Analysis of $\mathrm{SiO2}$ ($\mathbf{w t} \%$) By Block/Sub-Block

Oneway Anova Summary of Fit				
Rsquare		0.12313		
Adj Rsquare		-0.2057		
Root Mean Square Error		1.205434		
Mean of Response		49.38217		
Observations (or Sum Wgts)			12	
Analysis of Variance				
Source	DF3	Sum of Square	s Mean Square F Ratio	
Block/Sub-Block		1.6323		44110.3745
Error	8	11.62457	-1.45307	
C. Total	11	13.25689		
Means for Oneway Anova				
Level Number	Mean	n Std Error	Lower 95\%	Upper 95\%
1/1 3	349.2752	520.69596	47.670	50.880
1/2 3	349.9883	0.69596	48.383	51.593
2/1 3	348.9900	0.69596	47.385	50.595
2/2 3	349.2752	520.69596	47.670	50.880

Exhibit D4: PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the PF Method (continued)

Oneway Anova
Rsquare
Adj Rsquare
$\begin{array}{lr}\text { Root Mean Square Error } & 0 \\ \text { Mean of Response } & 0.05896 \\ \text { Observations (or Sum Wgts) } & 12\end{array}$
Observations (or Sum
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F Block/Sub-Block 3 0

Error	8	0	0

C. Total

8
11
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\%

	3	0.058960	0	0.05896	0.05896
$1 / 1$	3	0.058960	0	0.05896	0.05896
$1 / 2$	3	0.058960	0	0.05896	0.05896
$2 / 1$	3	0.058960	0	0.05896	0.05896

Glass ID=Ustd
Oneway Analysis of Al2O3 (wt\%) By Block/Sub-Block

Oneway Anova
Summary of Fit

Oneway Analysis of B2O3 (wt\%) By Block/Sub-Block

Oneway Anova
Summary of Fit

Rsquare 0.38915	0.38915			
Adj Rsquare	0.160082			
Root Mean Square Error 0.326387				
Mean of Response 9.13915				
Observations (or Sum Wgts) 12				
Analysis of Variance				
Source	DF Sum of Squa		Mean Square F Ratio	
Block/Sub-Block	3	0.54292	480.180	18975 1.6988
Error	8	0.85222	950.106	6529
C. Total	11	1.39515		
Means for Onew	vay Ano	ova		
Level Number	Mean	Std Error	Lower 95\%	Upper 95\%
$1 / 1 \quad 38$	8.83326	60.18844	8.3987	9.2678
$1 / 2 \quad 39$	9.34844	$4 \quad 0.18844$	8.9139	9.7830
$2 / 1 \quad 39$	9.32698	80.18844	8.8924	9.7615
2/2 39	9.04792	20.18844	8.6134	9.4825

Exhibit D4: PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the PF Method (continued)

Oneway Anova
Summary of Fit

Oneway Anova
Summary of Fit
$\begin{array}{lr}\text { Rsquare } & 0.306502 \\ \text { Adj Rsquare } & 0.04644 \\ \text { Root Mean Square Error } & 0.032886 \\ \text { Mean of Response } & 3.026619\end{array}$
Observations (or Sum Wgts) 12
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{lllllll}\text { Block/Sub-Block } & 3 & 0.00382386 & 0.001275 & 1.1786 & 0.3770\end{array}$ $\begin{array}{lll}\text { Error } & 8 & 0.00865196 \\ & & \end{array}$ $\begin{array}{lll}\text { C. Total } & 11 & 0.01247582\end{array}$
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\%
$\begin{array}{llllll}1 / 1 & 3 & 3.01406 & 0.01899 & 2.9703 & 3.0578 \\ 1 / 2 & 3 & 3.05712 & 0.01899 & 3.0133 & 3.1009\end{array}$
$\begin{array}{lllll}2 / 1 & 3 & 3.02124 & 0.01899 & 2.9775 \\ 2 & 3 & 3.01406 & 0.01899 & 2.9703\end{array}$
Std Error uses a pooled estimate of error variance

Oneway Analysis of NiO (wt\%) By Block/Sub-Block Reference Value = $\mathbf{1 . 1 2} \mathbf{w t} \%$

Oneway Anova

Summary of Fit

Rsquare	0.311292
Adj Rsquare	0.05302
Root Mean Square Error	0.041493
Mean of Response	0.991702
Observations (or Sum Wgts)	12

Observations (or Sum Wgts)
Wgts) $\quad 1$
Analysis of Variance
Source \quad DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{lllllll}\text { Block/Sub-Block } & 3 & 0.00622550 & 0.002075 & 1.2053 & 0.3683\end{array}$ $\begin{array}{lrrr}\text { Error } & 8 & 0.01377339 & 0.001722\end{array}$
$\begin{array}{lll}\text { C. Total } & 11 & 0.01999889\end{array}$
Means for Oneway Anov

Level	Number	Mean	Std Error	Lower 95\%	Upper 95\%
$1 / 1$	3	1.00655	0.02396	0.95130	1.0618
$1 / 2$	3	1.00824	0.02396	0.95300	1.0635
$2 / 1$	3	0.99934	0.02396	0.94409	1.0546
$2 / 2$	3	0.95268	0.02396	0.89744	1.0079

$\begin{array}{lllll}3 & 0.95268 & 0.02396 & 0.89744 & 1.0079\end{array}$
Std Error uses a pooled estimate of error variance

Exhibit D4: PSAL Measurements by Analytical Block for Samples of the Standard Glasses Prepared Using the PF Method (continued)

Oneway Anova
Summary of Fit

Adj Rsqua Adj Rsquare
Root Mean Square Error
0.195751

Mean of Response
1.005319

Observations (or Sum Wgts) $\begin{array}{r}43.03558 \\ \hline\end{array}$
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{lllllll}\text { Block/Sub-Block } & 3 & 1.967940 & 0.65598 & 0.6491 & 0.6053\end{array}$ $\begin{array}{lrrr}\text { Error } & 8 & 8.085335 & 1.01067\end{array}$
C. Total 11
Level Number Mean Std Error Lower 95\% Upper 95\%
$\begin{array}{lllll}1 / 1 & 3 & 43.1426 & 0.58042 & 41.804 \\ 1 / 2 & 44.481\end{array}$
$\begin{array}{llllll}1 / 2 & 3 & 43.4278 & 0.58042 & 42.089 & 44.766 \\ 2 / 1 & 3 & 43.2139 & 0.58042 & 41.875 & 44.552\end{array}$
$\begin{array}{llll}2 / 2 & 3 & 42.3581 & 0.58042\end{array} 41.020$

Oneway Analysis of U3O8 (wt\%) By Block/Sub-Block
Reference Value $=2.406 \mathbf{w t} \%$

Oneway Anova
Summary of Fit

Std Error uses a pooled estimate of error variance

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method

$$
\text { (100 - Batch 1; } 200 \text { - Ustd) }
$$

BaO (wt\%) By Study Glass \#

Study Glass \#

CaO bc (wt\%) By Study Glass \#

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method (continued)

$$
\text { (100 - Batch 1; } 200-\text { Ustd) }
$$

Ce2O3 (wt\%) By Study Glass \#

Ce2O3 bc (wt\%) By Study Glass \#

Cr2O3 (wt\%) By Study Glass \#

Cr2O3 bc (wt\%) By Study Glass \#

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method (continued)

$$
\text { (100 - Batch 1; } 200 \text { - Ustd) }
$$

Study Glass \#

K2O (wt\%) By Study Glass \#

Study Glass \#

K2O bc (wt\%) By Study Glass \#

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method (continued)

$$
\text { (100 - Batch 1; } 200-\text { Ustd) }
$$

La2O3 (wt\%) By Study Glass \#

La2O3 bc (wt\%) By Study Glass \#

MgO bc (wt\%) By Study Glass \#

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method (continued)

$$
\text { (100 - Batch 1; } 200 \text { - Ustd) }
$$

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method (continued)

$$
\text { (100 - Batch 1; } 200 \text { - Ustd) }
$$

SO4 (wt\%) By Study Glass \#

SO4 bc (wt\%) By Study Glass \#

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method (continued)

$$
\text { (100 - Batch 1; } 200 \text { - Ustd) }
$$

ThO2 (wt\%) By Study Glass \#

ThO2 bc (wt\%) By Study Glass \#

Study Glass \#

TiO2 bc (wt\%) By Study Glass \#

Exhibit D5. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the LM Method (continued)

$$
\text { (100 - Batch 1; } 200 \text { - Ustd) }
$$

Study Glass \#

Exhibit D6. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the PF Method

(100 - Batch 1; 200 - Ustd)

Exhibit D6. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the PF Method (continued)

(100 - Batch 1; 200 - Ustd)

Li2O (wt\%) By Glass \#

Exhibit D6. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the PF Method (continued)
(100 - Batch 1; 200 - Ustd)

Exhibit D6. Measured and Measured Bias-Corrected Oxide Weight Percents by
Glass \# for the Glasses Prepared Using the PF Method (continued)
(100 - Batch 1; 200 - Ustd)

SiO2 be (wt\%) By Glass \#

Exhibit D6. Measured and Measured Bias-Corrected Oxide Weight Percents by Glass \# for the Glasses Prepared Using the PF Method (continued)

$$
\text { (100 - Batch 1; } 200 \text { - Ustd) }
$$

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus

Targeted Compositions by Glass \# by Oxide
(100 - Batch 1; 200 - Ustd)

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus
Targeted Compositions by Glass \# by Oxide (continued)
(100 - Batch 1; 200 - Ustd)

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus
Targeted Compositions by Glass \# by Oxide (continued)
(100 - Batch 1; 200 - Ustd)

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus
Targeted Compositions by Glass \# by Oxide (continued)
(100 - Batch 1; 200 - Ustd)

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus
Targeted Compositions by Glass \# by Oxide (continued)
(100 - Batch 1; 200 - Ustd)

Oxide $=\mathbf{N i O}(\mathbf{w t} \%)$

Y \times Measured Measured bc —Targeted

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus
Targeted Compositions by Glass \# by Oxide (continued)
(100 - Batch 1; 200 - Ustd)

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus
Targeted Compositions by Glass \# by Oxide (continued)
(100 - Batch 1; 200 - Ustd)

Exhibit D7. Average Measured and Bias-Corrected (bc) Versus
Targeted Compositions by Glass \# by Oxide (continued)
(100 - Batch 1; 200 - Ustd)

Appendix E

Tables and Exhibits Supporting the Analysis of the PCT Results for the Nepheline Phase 3 Study Glasses

This page intentionally left blank.

Table E1. Laboratory Measurements of the PCT Solutions for the Nepheline Study Glasses

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B ar	Ba ar	Cd ar	Cr ar	Fear	Li ar	Na ar	Pb ar	Si ar	Th ar	U ar
1	Soln Std		STD-B1-1 Cs	1	1	19.4	<0.010	<0.080	<0.010	4.10	9.79	83.1	<0.020	50.0	<0.100	<0.200
1	NEPH3-42	quenched	F52	1	2	6.97	<0.010	<0.080	<0.010	4.07	10.3	51.4	<0.020	67.8	<0.100	1.80
1	NEPH3-42ccc	ccc	F39	1	3	6.29	<0.010	<0.080	<0.010	3.40	10.4	49.0	<0.020	67.1	<0.100	1.79
1	ARM-1		F08	1	4	10.7	<0.010	<0.080	<0.010	<0.004	8.24	23.4	<0.020	38.7	<0.100	<0.200
1	NEPH3-47	quenched	F01	1	5	8.26	<0.010	<0.080	<0.010	4.27	13.8	60.0	<0.020	68.6	<0.100	1.70
1	NEPH3-47ccc	ccc	F48	1	6	7.61	<0.010	<0.080	<0.010	3.98	15.3	58.6	<0.020	71.7	<0.100	1.67
1	blank		F26	1	7	<0.080	<0.010	<0.080	<0.010	<0.004	<0.500	0.247	<0.020	<0.200	<0.100	<0.200
1	NEPH3-46	quenched	F25	1	8	7.04	<0.010	<0.080	<0.010	4.26	14.2	44.1	<0.020	72.5	<0.100	1.70
1	NEPH3-46ccc	ccc	F07	1	9	7.64	<0.010	<0.080	<0.010	4.72	15.9	45.2	<0.020	76.9	<0.100	1.80
1	NEPH3-41	quenched	F37	1	10	5.45	<0.010	<0.080	<0.010	4.18	10.7	44.9	<0.020	70.6	<0.100	2.05
1	NEPH3-41ccc	ccc	F32	1	11	5.26	<0.010	<0.080	<0.010	4.40	10.6	43.0	<0.020	69.6	<0.100	1.89
1	Soln Std		STD-B1-2	1	12	19.4	<0.010	<0.080	<0.010	3.87	9.62	81.1	<0.020	48.8	<0.100	<0.200
1	NEPH3-44	quenched	F15	1	13	6.60	<0.010	<0.080	<0.010	4.19	9.16	72.4	<0.020	62.5	<0.100	1.77
1	NEPH3-44ccc	ccc	F36	1	14	6.84	<0.010	<0.080	<0.010	3.04	11.5	74.6	<0.020	66.5	<0.100	1.54
1	NEPH3-48	quenched	F38	1	15	7.77	<0.010	<0.080	<0.010	5.41	13.3	73.2	<0.020	68.4	<0.100	1.64
1	NEPH3-48ccc	ccc	F47	1	16	12.0	<0.010	<0.080	<0.010	3.14	21.9	82.3	<0.020	83.0	<0.100	1.96
1	EA		F50	1	17	37.5	<0.010	<0.080	<0.010	<0.004	11.0	103	<0.020	53.0	<0.100	<0.200
1	NEPH3-43	quenched	F10	1	18	6.70	<0.010	<0.080	<0.010	4.20	10.1	66.0	<0.020	66.1	<0.100	1.63
1	NEPH3-43ccc	ccc	F34	1	19	6.87	<0.010	<0.080	<0.010	5.14	12.1	65.4	<0.020	71.1	<0.100	1.90
1	NEPH3-45	quenched	F55	1	20	7.15	<0.010	<0.080	<0.010	4.68	15.4	36.4	<0.020	78.5	<0.100	2.40
1	NEPH3-45ccc	ccc	F28	1	21	7.20	<0.010	<0.080	<0.010	4.32	15.8	36.8	<0.020	79.3	<0.100	2.08
1	Soln Std		STD-B1-3	1	22	19.4	<0.010	<0.080	<0.010	3.90	9.71	82.4	<0.020	49.4	<0.100	<0.200
1	Soln Std		STD-B2-1	2	1	21.8	<0.010	<0.080	<0.010	4.21	9.66	79.0	<0.020	49.5	<0.100	<0.200
1	NEPH3-42	quenched	F05	2	2	7.91	<0.010	<0.080	<0.010	3.70	10.9	52.5	<0.020	71.0	<0.100	1.72
1	NEPH3-42ccc	ccc	F30	2	3	7.01	<0.010	<0.080	<0.010	3.78	10.7	48.8	<0.020	68.9	<0.100	1.71
1	NEPH3-47	quenched	F27	2	4	9.08	<0.010	<0.080	<0.010	4.43	14.1	60.9	<0.020	69.7	<0.100	1.73
1	NEPH3-47ccc	ccc	F03	2	5	8.32	<0.010	<0.080	<0.010	4.05	15.4	57.0	<0.020	72.5	<0.100	1.67
1	NEPH3-46	quenched	F35	2	6	7.95	<0.010	<0.080	<0.010	4.33	14.2	43.2	<0.020	72.7	<0.100	1.72
1	NEPH3-46ccc	ccc	F19	2	7	8.45	<0.010	<0.080	<0.010	4.70	16.0	43.5	<0.020	77.1	<0.100	1.83
1	NEPH3-41	quenched	F09	2	8	6.15	<0.010	<0.080	<0.010	3.92	10.8	42.7	<0.020	71.4	<0.100	2.23
1	NEPH3-41ccc	ccc	F11	2	9	6.12	<0.010	<0.080	<0.010	3.63	10.8	40.9	<0.020	70.4	<0.100	1.86
1	ARM-1		F29	2	10	11.3	<0.010	<0.080	<0.010	<0.004	8.67	23.7	<0.020	39.8	<0.100	<0.200
1	EA		F53	2	11	38.3	<0.010	<0.080	<0.010	<0.004	11.1	101	<0.020	53.7	<0.100	<0.200
1	Soln Std		STD-B2-2	2	12	20.7	<0.010	<0.080	<0.010	4.02	9.70	79.2	<0.020	50.0	<0.100	<0.200
1	NEPH3-44	quenched	F24	2	13	7.53	<0.010	<0.080	<0.010	4.59	9.32	72.1	<0.020	63.2	<0.100	1.63
1	NEPH3-44ccc	ccc	F22	2	14	7.54	<0.010	<0.080	<0.010	2.69	11.4	73.7	<0.020	66.0	<0.100	1.59
1	NEPH3-48	quenched	F14	2	15	8.73	<0.010	<0.080	<0.010	5.52	13.4	72.0	<0.020	69.2	<0.100	1.82
1	NEPH3-48ccc	ccc	F20	2	16	12.7	<0.010	<0.080	<0.010	3.34	21.7	81.2	<0.020	83.3	<0.100	1.92
1	NEPH3-43	quenched	F49	2	17	6.96	<0.010	<0.080	<0.010	5.40	10.0	65.6	<0.020	66.7	<0.100	1.97

Table E1. Laboratory Measurements of the PCT Solutions for the Nepheline Study Glasses (continued)

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B ar	Ba ar	Cd ar	Crar	Fe ar	Li ar	Na ar	Pb ar	Si ar	Th ar	U ar
1	NEPH3-43ccc	ccc	F44	2	18	7.41	<0.010	<0.080	<0.010	5.36	11.9	63.8	<0.020	70.6	<0.100	1.87
1	NEPH3-45	quenched	F16	2	19	7.95	<0.010	<0.080	<0.010	4.98	15.5	36.1	<0.020	79.2	<0.100	2.16
1	NEPH3-45ccc	ccc	F02	2	20	7.81	<0.010	<0.080	<0.010	5.19	15.5	35.4	<0.020	79.1	<0.100	2.18
1	Soln Std		STD-B2-3	2	21	19.8	<0.010	<0.080	<0.010	4.10	9.55	79.6	<0.020	48.8	<0.100	<0.200
1	Soln Std		STD-B3-1	3	1	22.1	<0.010	<0.080	<0.010	3.92	9.77	80.5	<0.020	49.4	<0.100	0.25
1	NEPH3-42	quenched	F06	3	2	7.96	<0.010	<0.080	<0.010	3.45	10.6	52.1	<0.020	68.0	<0.100	1.96
1	NEPH3-42ccc	ccc	F23	3	3	7.34	<0.010	<0.080	<0.010	3.82	10.6	52.2	<0.020	67.0	<0.100	1.90
1	EA		F46	3	4	34.9	<0.010	<0.080	<0.010	<0.004	10.1	91.8	<0.020	48.0	<0.100	<0.200
1	NEPH3-47	quenched	F31	3	5	9.77	<0.010	<0.080	<0.010	4.71	13.8	59.1	<0.020	68.8	<0.100	1.91
1	NEPH3-47ccc	ccc	F43	3	6	8.89	<0.010	<0.080	<0.010	4.30	15.3	57.7	<0.020	71.2	<0.100	1.81
1	NEPH3-46	quenched	F45	3	7	8.57	<0.010	<0.080	<0.010	4.19	14.3	42.6	<0.020	73.1	<0.100	1.92
1	NEPH3-46ccc	ccc	F56	3	8	8.88	<0.010	<0.080	<0.010	4.85	15.9	43.1	<0.020	77.6	<0.100	2.03
1	NEPH3-41	quenched	F17	3	9	6.75	<0.010	<0.080	<0.010	4.55	10.8	43.5	<0.020	72.4	<0.100	2.28
1	NEPH3-41ccc	ccc	F41	3	10	6.47	<0.010	<0.080	<0.010	3.86	10.8	40.8	<0.020	72.2	<0.100	2.34
1	blank		F12	3	11	<0.080	<0.010	<0.080	<0.010	<0.004	<0.500	<0.080	<0.020	<0.200	<0.100	<0.200
1	Soln Std		STD-B3-2	3	12	20.4	<0.010	<0.080	<0.010	3.96	9.62	79.8	<0.020	49.0	<0.100	<0.200
1	NEPH3-44	quenched	F21	3	13	7.84	<0.010	<0.080	<0.010	4.88	9.47	72.6	<0.020	63.3	<0.100	2.06
1	NEPH3-44ccc	ccc	F42	3	14	8.16	<0.010	<0.080	<0.010	2.82	11.7	74.3	<0.020	67.3	<0.100	1.95
1	NEPH3-48	quenched	F18	3	15	9.03	<0.010	<0.080	<0.010	5.64	13.3	73.0	<0.020	69.0	<0.100	1.97
1	NEPH3-48ccc	ccc	F33	3	16	13.2	<0.010	<0.080	<0.010	3.43	22.0	80.4	<0.020	84.2	<0.100	2.11
1	ARM-1		F13	3	17	12.4	<0.010	<0.080	<0.010	<0.004	8.85	24.3	<0.020	40.5	<0.100	<0.200
1	NEPH3-43	quenched	F54	3	18	7.21	<0.010	<0.080	<0.010	5.34	9.55	61.9	<0.020	64.0	<0.100	2.45
1	NEPH3-43ccc	ccc	F51	3	19	7.73	<0.010	<0.080	<0.010	5.30	11.7	61.8	<0.020	68.8	<0.100	2.00
1	NEPH3-45	quenched	F40	3	20	8.25	<0.010	<0.080	<0.010	5.67	15.2	35.3	<0.020	77.0	<0.100	2.30
1	NEPH3-45ccc	ccc	F04	3	21	8.34	<0.010	<0.080	<0.010	4.79	15.6	35.1	<0.020	78.8	<0.100	2.45
1	Soln Std		STD-B-3-3	3	22	20.5	<0.010	<0.080	<0.010	3.89	9.62	80.1	<0.020	49.6	<0.100	<0.200
2	Soln Std		STD-B1-1	1	1	21.8	<0.010	<0.080	<0.010	4.44	9.67	81.0	<0.020	49.4	<0.100	1.88
2	EA		H43	1	2	38.6	<0.010	<0.080	<0.010	<0.004	11.0	97.7	<0.020	53.2	<0.100	<0.200
2	NEPH3-56ccc	ccc	H07	1	3	22.1	<0.010	<0.080	<0.010	5.57	44.7	101	<0.020	128	0.116	1.81
2	ARM-1		H09	1	4	12.7	<0.010	<0.080	<0.010	<0.004	9.09	25.4	<0.020	39.2	<0.100	1.94
2	NEPH3-54ccc	ccc	H26	1	5	9.53	<0.010	<0.080	<0.010	9.15	23.8	54.7	<0.020	96.9	<0.100	1.72
2	NEPH3-56	quenched	H04	1	6	8.25	<0.010	<0.080	<0.010	7.31	15.3	75.9	<0.020	72.1	<0.100	<0.200
2	NEPH3-52ccc	ccc	H47	1	7	8.64	<0.010	<0.080	<0.010	4.15	12.3	86.8	<0.020	72.9	<0.100	1.58
2	NEPH3-55	quenched	H23	1	8	8.47	<0.010	<0.080	<0.010	5.80	15.8	67.1	<0.020	72.8	<0.100	<0.200
2	NEPH3-54	quenched	H33	1	9	8.05	<0.010	<0.080	<0.010	5.32	16.9	49.1	<0.020	78.0	<0.100	2.16
2	blank		H19	1	10	0.251	<0.010	<0.080	<0.010	<0.004	<0.500	<0.100	<0.020	<0.200	<0.100	3.08
2	NEPH3-49	quenched	H31	1	11	7.02	<0.010	<0.080	<0.010	5.74	10.9	58.8	<0.020	71.6	<0.100	2.20
2	Soln Std		STD-B1-2	1	12	20.0	<0.010	<0.080	<0.010	4.36	9.64	80.6	<0.020	49.3	<0.100	1.85
2	NEPH3-51ccc	ccc	H40	1	13	10.6	<0.010	<0.080	<0.010	5.56	14.5	78.7	<0.020	78.3	<0.100	1.97
2	NEPH3-50	quenched	H38	1	14	7.63	<0.010	<0.080	<0.010	5.96	10.7	68.4	<0.020	71.8	<0.100	2.30
2	NEPH3-50ccc	ccc	H05	1	15	7.72	<0.010	<0.080	<0.010	4.95	11.6	65.7	<0.020	72.3	<0.100	2.23

Table E1. Laboratory Measurements of the PCT Solutions for the Nepheline Study Glasses (continued)

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B ar	Ba ar	Cd ar	Crar	Fe ar	Li ar	Na ar	Pb ar	Si ar	Th ar	U ar
2	NEPH3-49ccc	ccc	H53	1	16	7.41	<0.010	<0.080	<0.010	5.74	11.9	56.5	<0.020	74.5	<0.100	2.06
2	NEPH3-53	quenched	H37	1	17	7.86	<0.010	<0.080	<0.010	6.66	17.8	42.8	<0.020	82.1	<0.100	<0.200
2	NEPH3-52	quenched	H42	1	18	8.22	<0.010	<0.080	<0.010	6.47	10.6	88.6	<0.020	70.8	<0.100	1.83
2	NEPH3-53ccc	ccc	H36	1	19	10.1	<0.010	<0.080	<0.010	13.8	34.6	53.1	<0.020	130	<0.100	1.88
2	NEPH3-51	quenched	H03	1	20	8.07	<0.010	<0.080	<0.010	5.21	10.8	78.1	<0.020	71.0	<0.100	3.24
2	NEPH3-55ccc	ccc	H25	1	21	11.2	<0.010	<0.080	<0.010	5.51	26.8	76.0	<0.020	95.0	<0.100	1.88
2	Soln Std		STD-B1-3	1	22	19.7	<0.010	<0.080	<0.010	4.28	9.66	82.4	<0.020	48.7	<0.100	2.06
2	Soln Std		STD-B2-1	2	1	21.9	<0.010	<0.080	<0.010	4.40	9.69	81.6	<0.020	49.5	<0.100	1.99
2	NEPH3-49ccc	ccc	H52	2	2	7.61	<0.010	<0.080	<0.010	5.92	12.2	58.9	<0.020	76.3	<0.100	2.25
2	NEPH3-54	quenched	H15	2	3	8.01	<0.010	<0.080	<0.010	5.29	16.5	50.9	<0.020	76.7	<0.100	1.79
2	NEPH3-50ccc	ccc	H22	2	4	7.87	<0.010	<0.080	<0.010	5.34	11.6	65.4	<0.020	72.9	<0.100	<0.200
2	NEPH3-51	quenched	H34	2	5	8.11	<0.010	<0.080	<0.010	5.72	10.8	78.7	<0.020	71.3	<0.100	<0.200
2	NEPH3-54ccc	ccc	H18	2	6	8.24	<0.010	<0.080	<0.010	5.57	17.1	51.3	<0.020	79.2	<0.100	1.86
2	NEPH3-53ccc	ccc	H50	2	7	10.4	<0.010	<0.080	<0.010	14.2	34.2	53.8	<0.020	129	<0.100	1.87
2	NEPH3-55ccc	ccc	H28	2	8	12.2	<0.010	<0.080	<0.010	6.00	26.8	77.3	<0.020	95.6	<0.100	1.85
2	NEPH3-50	quenched	H24	2	9	7.86	<0.010	<0.080	<0.010	6.23	10.9	70.3	<0.020	72.5	<0.100	2.31
2	NEPH3-52	quenched	H30	2	10	8.00	<0.010	<0.080	<0.010	8.12	10.0	87.2	<0.020	68.6	<0.100	2.26
2	NEPH3-53	quenched	H29	2	11	8.42	<0.010	<0.080	<0.010	6.46	18.6	46.7	<0.020	85.6	<0.100	3.21
2	Soln Std		STD-B2-2	2	12	20.7	<0.010	<0.080	<0.010	4.32	9.68	83.8	<0.020	49.7	<0.100	2.14
2	EA		H54	2	13	38.9	<0.010	<0.080	<0.010	<0.004	11.1	102	<0.020	53.7	<0.100	<0.200
2	NEPH3-56	quenched	H14	2	14	8.75	<0.010	<0.080	<0.010	6.52	15.5	79.7	<0.020	72.8	<0.100	2.10
2	ARM-1		H17	2	15	13.1	<0.010	<0.080	<0.010	0.039	9.27	27.5	<0.020	39.9	<0.100	2.68
2	NEPH3-49	quenched	H44	2	16	7.32	<0.010	<0.080	<0.010	5.84	11.1	63.4	<0.020	72.8	<0.100	<0.200
2	NEPH3-56ccc	ccc	H35	2	17	21.5	<0.010	<0.080	<0.010	5.72	45.1	107	<0.020	128	0.115	<0.200
2	NEPH3-51ccc	ccc	H10	2	18	11.2	<0.010	<0.080	<0.010	5.80	14.7	82.8	<0.020	79.7	<0.100	<0.200
2	NEPH3-52ccc	ccc	H32	2	19	8.55	<0.010	<0.080	<0.010	4.22	12.3	91.9	<0.020	74.3	<0.100	2.41
2	NEPH3-55	quenched	H08	2	20	8.42	<0.010	<0.080	<0.010	6.63	16.0	71.2	<0.020	74.3	<0.100	2.00
2	Soln Std		STD-B2-3	2	21	20.8	<0.010	<0.080	<0.010	4.27	9.70	84.6	<0.020	49.7	<0.100	3.05
2	Soln Std		STD-B3-1	3	1	21.2	<0.010	<0.080	<0.010	4.26	9.72	80.0	<0.020	48.8	<0.100	1.82
2	NEPH3-49ccc	ccc	H55	3	2	7.68	<0.010	<0.080	<0.010	5.82	12.5	56.5	<0.020	76.0	<0.100	<0.200
2	NEPH3-54ccc	ccc	H21	3	3	9.71	<0.010	<0.080	<0.010	7.92	24.4	55.8	<0.020	96.7	<0.100	2.28
2	NEPH3-51	quenched	H39	3	4	8.36	<0.010	<0.080	<0.010	4.78	11.0	77.1	<0.020	71.0	<0.100	3.14
2	EA		H11	3	5	39.0	<0.010	<0.080	<0.010	<0.004	11.1	99.1	<0.020	53.8	<0.100	2.22
2	NEPH3-52	quenched	H01	3	6	9.06	<0.010	<0.080	<0.010	6.15	10.9	86.7	<0.020	71.9	<0.100	<0.200
2	NEPH3-55	quenched	H27	3	7	8.94	<0.010	<0.080	<0.010	7.46	16.4	65.6	<0.020	76.1	<0.100	1.75
2	NEPH3-50ccc	ccc	H41	3	8	8.15	<0.010	<0.080	<0.010	4.90	12.0	62.3	<0.020	74.4	<0.100	1.77
2	NEPH3-53	quenched	H13	3	9	8.77	<0.010	<0.080	<0.010	6.55	19.3	43.0	<0.020	88.4	<0.100	1.96
2	NEPH3-54	quenched	H20	3	10	10.1	<0.010	<0.080	<0.010	8.28	24.0	53.1	<0.020	95.2	<0.100	1.70
2	ARM-1		H49	3	11	12.7	<0.010	<0.080	<0.010	<0.004	9.23	24.6	<0.020	40.0	<0.100	1.73
2	Soln Std		STD-B3-2	3	12	21.0	<0.010	<0.080	<0.010	4.20	9.74	78.4	<0.020	50.1	<0.100	3.04
2	blank		H56	3	13	0.279	<0.010	<0.080	<0.010	<0.004	<0.500	<0.100	<0.020	<0.200	<0.100	<0.200

WWSRC-TR-2006-00093
Revision 0
Table E1. Laboratory Measurements of the PCT Solutions for the Nepheline Study Glasses (continued)

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B ar	Ba ar	Cd ar	Cr ar	Fe ar	Li ar	Na ar	Pb ar	Si ar	Th ar	U ar
2	NEPH3-50	quenched	H46	3	14	7.95	<0.010	<0.080	<0.010	5.75	11.1	65.2	<0.020	75.0	<0.100	2.03
2	NEPH3-56	quenched	H48	3	15	8.54	<0.010	<0.080	<0.010	7.37	15.9	72.9	<0.020	76.8	<0.100	<0.200
2	NEPH3-55ccc	ccc	H12	3	16	12.6	<0.010	<0.080	<0.010	6.22	27.8	72.1	<0.020	100	<0.100	<0.200
2	NEPH3-52ccc	ccc	H16	3	17	8.83	<0.010	<0.080	<0.010	4.35	12.0	82.4	<0.020	73.4	<0.100	2.21
2	NEPH3-49	quenched	H06	3	18	7.81	<0.010	<0.080	<0.010	6.04	11.6	57.5	<0.020	77.0	<0.100	1.95
2	NEPH3-53ccc	ccc	H02	3	19	11.0	<0.010	<0.080	<0.010	14.5	35.3	50.1	<0.020	132	<0.100	<0.200
2	NEPH3-51ccc	ccc	H51	3	20	11.3	<0.010	<0.080	<0.010	5.59	15.0	77.0	<0.020	82.5	<0.100	1.57
2	NEPH3-56ccc	ccc	H45	3	21	22.0	<0.010	<0.080	<0.010	6.12	45.9	94.5	<0.020	134	0.103	2.19
2	Soln Std		STD-B-3-3	3	22	21.3	<0.010	<0.080	<0.010	4.32	9.79	74.0	<0.020	50.8	<0.100	<0.200

Table E2. PSAL Measurements of the PCT Solutions for the Study Glasses After Appropriate Adjustments

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B (ppm)	Ba (ppm)	Cd (ppm)	Cr (pp)	Fe (ppm)	$\mathbf{L i}$ (ppm)	$\mathrm{Na}(\mathrm{ppm})$	$\mathbf{P b}(\mathbf{p p m})$	Si (ppm)	Th (ppm)	$\mathbf{U}(\mathrm{ppm})$
1	Soln Std		STD-B1-1 Cs	1	1	19.4	0.005	0.04	0.005	4.1	9.79	83.1	0.01	50	0.05	0.1
1	NEPH3-42	quenched	F52	1	2	11.616899	0.0083335	0.066668	0.0083335	6.783469	17.16701	85.66838	0.016667	113.00226	0.083335	3.00006
1	NEPH3-42ccc	ccc	F39	1	3	10.483543	0.0083335	0.066668	0.0083335	5.66678	17.33368	81.6683	0.016667	111.83557	0.083335	2.983393
1	ARM-1		F08	1	4	17.83369	0.0083335	0.066668	0.0083335	0.0033334	13.733608	39.00078	0.016667	64.50129	0.083335	0.16667
1	NEPH3-47	quenched	F01	1	5	13.766942	0.0083335	0.066668	0.0083335	7.116809	23.00046	100.002	0.016667	114.33562	0.083335	2.83339
1	NEPH3-47ccc	ccc	F48	1	6	12.683587	0.0083335	0.066668	0.0083335	6.633466	25.50051	97.66862	0.016667	119.50239	0.083335	2.783389
1	blank		F26	1	7	0.066668	0.0083335	0.066668	0.0083335	0.0033334	0.416675	0.4116749	0.016667	0.16667	0.083335	0.16667
1	NEPH3-46	quenched	F25	1	8	11.733568	0.0083335	0.066668	0.0083335	7.100142	23.66714	73.50147	0.016667	120.83575	0.083335	2.83339
1	NEPH3-46ccc	ccc	F07	1	9	12.733588	0.0083335	0.066668	0.0083335	7.866824	26.50053	75.33484	0.016667	128.16923	0.083335	3.00006
1	NEPH3-41	quenched	F37	1	10	9.083515	0.0083335	0.066668	0.0083335	6.966806	17.83369	74.83483	0.016667	117.66902	0.083335	3.416735
1	NEPH3-41ccc	ccc	F32	1	11	8.766842	0.0083335	0.066668	0.0083335	7.33348	17.66702	71.6681	0.016667	116.00232	0.083335	3.150063
1	Soln Std		STD-B1-2	1	12	19.4	0.005	0.04	0.005	3.87	9.62	81.1	0.01	48.8	0.05	0.1
1	NEPH3-44	quenched	F15	1	13	11.00022	0.0083335	0.066668	0.0083335	6.983473	15.266972	120.66908	0.016667	104.16875	0.083335	2.950059
1	NEPH3-44ccc	ccc	F36	1	14	11.400228	0.0083335	0.066668	0.0083335	5.066768	19.16705	124.33582	0.016667	110.83555	0.083335	2.566718
1	NEPH3-48	quenched	F38	1	15	12.950259	0.0083335	0.066668	0.0083335	9.016847	22.16711	122.00244	0.016667	114.00228	0.083335	2.733388
1	NEPH3-48ccc	ccc	F47	1	16	20.0004	0.0083335	0.066668	0.0083335	5.233438	36.50073	137.16941	0.016667	138.3361	0.083335	3.266732
1	EA		F50	1	17	625.00125	0.0833335	0.666668	0.0833335	0.0333334	183.3337	1716.6701	0.166667	883.3351	0.833335	1.66667
1	NEPH3-43	quenched	F10	1	18	11.16689	0.0083335	0.066668	0.0083335	7.00014	16.83367	110.0022	0.016667	110.16887	0.083335	2.716721
1	NEPH3-43ccc	ccc	F34	1	19	11.450229	0.0083335	0.066668	0.0083335	8.566838	20.16707	109.00218	0.016667	118.50237	0.083335	3.16673
1	NEPH3-45	quenched	F55	1	20	11.916905	0.0083335	0.066668	0.0083335	7.800156	25.66718	60.66788	0.016667	130.83595	0.083335	4.00008
1	NEPH3-45ccc	ccc	F28	1	21	12.00024	0.0083335	0.066668	0.0083335	7.200144	26.33386	61.33456	0.016667	132.16931	0.083335	3.466736
1	Soln Std		STD-B1-3	1	22	19.4	0.005	0.04	0.005	3.9	9.71	82.4	0.01	49.4	0.05	0.1
1	Soln Std		STD-B2-1	2	1	21.8	0.005	0.04	0.005	4.21	9.66	79	0.01	49.5	0.05	0.1
1	NEPH3-42	quenched	F05	2	2	13.183597	0.0083335	0.066668	0.0083335	6.16679	18.16703	87.50175	0.016667	118.3357	0.083335	2.866724
1	NEPH3-42ccc	ccc	F30	2	3	11.683567	0.0083335	0.066668	0.0083335	6.300126	17.83369	81.33496	0.016667	114.83563	0.083335	2.850057
1	NEPH3-47	quenched	F27	2	4	15.133636	0.0083335	0.066668	0.0083335	7.383481	23.50047	101.50203	0.016667	116.16899	0.083335	2.883391
1	NEPH3-47ccc	ccc	F03	2	5	13.866944	0.0083335	0.066668	0.0083335	6.750135	25.66718	95.0019	0.016667	120.83575	0.083335	2.783389
1	NEPH3-46	quenched	F35	2	6	13.250265	0.0083335	0.066668	0.0083335	7.216811	23.66714	72.00144	0.016667	121.16909	0.083335	2.866724
1	NEPH3-46ccc	ccc	F19	2	7	14.083615	0.0083335	0.066668	0.0083335	7.83349	26.6672	72.50145	0.016667	128.50257	0.083335	3.050061

Table E2. PSAL Measurements of the PCT Solutions for the Study Glasses After Appropriate Adjustments (continued)

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B (ppm)	Ba (ppm)	Cd (ppm)	$\mathbf{C r}$ (pp)	Fe (ppm)	$\mathbf{L i}(\mathbf{p p m})$	Na (ppm)	Pb (ppm)	Si (ppm)	Th (ppm)	\mathbf{U} (ppm)
1	NEPH3-41	quenched	F09	2	8	10.250205	0.0083335	0.066668	0.0083335	6.533464	18.00036	71.16809	0.016667	119.00238	0.083335	3.716741
1	NEPH3-41ccc	ccc	F11	2	9	10.200204	0.0083335	0.066668	0.0083335	6.050121	18.00036	68.16803	0.016667	117.33568	0.083335	3.100062
1	ARM-1		F29	2	10	18.83371	0.0083335	0.066668	0.0083335	0.0033334	14.450289	39.50079	0.016667	66.33466	0.083335	0.16667
1	EA		F53	2	11	638.33461	0.0833335	0.666668	0.0833335	0.0333334	185.00037	1683.3367	0.166667	895.00179	0.833335	1.66667
1	Soln Std		STD-B2-2	2	12	20.7	0.005	0.04	0.005	4.02	9.7	79.2	0.01	50	0.05	0.1
1	NEPH3-44	quenched	F24	2	13	12.550251	0.0083335	0.066668	0.0083335	7.650153	15.533644	120.16907	0.016667	105.33544	0.083335	2.716721
1	NEPH3-44ccc	ccc	F22	2	14	12.566918	0.0083335	0.066668	0.0083335	4.483423	19.00038	122.83579	0.016667	110.0022	0.083335	2.650053
1	NEPH3-48	quenched	F14	2	15	14.550291	0.0083335	0.066668	0.0083335	9.200184	22.33378	120.0024	0.016667	115.33564	0.083335	3.033394
1	NEPH3-48ccc	ccc	F20	2	16	21.16709	0.0083335	0.066668	0.0083335	5.566778	36.16739	135.33604	0.016667	138.83611	0.083335	3.200064
1	NEPH3-43	quenched	F49	2	17	11.600232	0.0083335	0.066668	0.0083335	9.00018	16.667	109.33552	0.016667	111.16889	0.083335	3.283399
1	NEPH3-43ccc	ccc	F44	2	18	12.350247	0.0083335	0.066668	0.0083335	8.933512	19.83373	106.33546	0.016667	117.66902	0.083335	3.116729
1	NEPH3-45	quenched	F16	2	19	13.250265	0.0083335	0.066668	0.0083335	8.300166	25.83385	60.16787	0.016667	132.00264	0.083335	3.600072
1	NEPH3-45ccc	ccc	F02	2	20	13.016927	0.0083335	0.066668	0.0083335	8.650173	25.83385	59.00118	0.016667	131.83597	0.083335	3.633406
1	Soln Std		STD-B2-3	2	21	19.8	0.005	0.04	0.005	4.1	9.55	79.6	0.01	48.8	0.05	0.1
1	Soln Std		STD-B3-1	3	1	22.1	0.005	0.04	0.005	3.92	9.77	80.5	0.01	49.4	0.05	0.25
1	NEPH3-42	quenched	F06	3	2	13.266932	0.0083335	0.066668	0.0083335	5.750115	17.66702	86.83507	0.016667	113.3356	0.083335	3.266732
1	NEPH3-42ccc	ccc	F23	3	3	12.233578	0.0083335	0.066668	0.0083335	6.366794	17.66702	87.00174	0.016667	111.6689	0.083335	3.16673
1	EA		F46	3	4	581.66783	0.0833335	0.666668	0.0833335	0.0333334	168.33367	1530.00306	0.166667	800.0016	0.833335	1.66667
1	NEPH3-47	quenched	F31	3	5	16.283659	0.0083335	0.066668	0.0083335	7.850157	23.00046	98.50197	0.016667	114.66896	0.083335	3.183397
1	NEPH3-47ccc	ccc	F43	3	6	14.816963	0.0083335	0.066668	0.0083335	7.16681	25.50051	96.16859	0.016667	118.66904	0.083335	3.016727
1	NEPH3-46	quenched	F45	3	7	14.283619	0.0083335	0.066668	0.0083335	6.983473	23.83381	71.00142	0.016667	121.83577	0.083335	3.200064
1	NEPH3-46ccc	ccc	F56	3	8	14.800296	0.0083335	0.066668	0.0083335	8.083495	26.50053	71.83477	0.016667	129.33592	0.083335	3.383401
1	NEPH3-41	quenched	F17	3	9	11.250225	0.0083335	0.066668	0.0083335	7.583485	18.00036	72.50145	0.016667	120.66908	0.083335	3.800076
1	NEPH3-41ccc	ccc	F41	3	10	10.783549	0.0083335	0.066668	0.0083335	6.433462	18.00036	68.00136	0.016667	120.33574	0.083335	3.900078
1	blank		F12	3	11	0.066668	0.0083335	0.066668	0.0083335	0.0033334	0.416675	0.066668	0.016667	0.16667	0.083335	0.16667
1	Soln Std		STD-B3-2	3	12	20.4	0.005	0.04	0.005	3.96	9.62	79.8	0.01	49	0.05	0.1
1	NEPH3-44	quenched	F21	3	13	13.066928	0.0083335	0.066668	0.0083335	8.133496	15.783649	121.00242	0.016667	105.50211	0.083335	3.433402
1	NEPH3-44ccc	ccc	F42	3	14	13.600272	0.0083335	0.066668	0.0083335	4.700094	19.50039	123.83581	0.016667	112.16891	0.083335	3.250065
1	NEPH3-48	quenched	F18	3	15	15.050301	0.0083335	0.066668	0.0083335	9.400188	22.16711	121.6691	0.016667	115.0023	0.083335	3.283399
1	NEPH3-48ccc	ccc	F33	3	16	22.00044	0.0083335	0.066668	0.0083335	5.716781	36.6674	134.00268	0.016667	140.33614	0.083335	3.516737
1	ARM-1		F13	3	17	20.66708	0.0083335	0.066668	0.0083335	0.0033334	14.750295	40.50081	0.016667	67.50135	0.083335	0.16667

Table E2. PSAL Measurements of the PCT Solutions for the Study Glasses After Appropriate Adjustments (continued)

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B (ppm)	Ba (ppm)	Cd (ppm)	Cr (pp)	Fe (ppm)	Li (ppm)	Na (ppm)	$\mathbf{P b}$ (ppm)	Si (ppm)	Th (ppm)	\mathbf{U} (ppm)
1	NEPH3-43	quenched	F54	3	18	12.016907	0.0083335	0.066668	0.0083335	8.900178	15.916985	103.16873	0.016667	106.6688	0.083335	4.083415
1	NEPH3-43ccc	ccc	F51	3	19	12.883591	0.0083335	0.066668	0.0083335	8.83351	19.50039	103.00206	0.016667	114.66896	0.083335	3.3334
1	NEPH3-45	quenched	F40	3	20	13.750275	0.0083335	0.066668	0.0083335	9.450189	25.33384	58.83451	0.016667	128.3359	0.083335	3.83341
1	NEPH3-45ccc	ccc	F04	3	21	13.900278	0.0083335	0.066668	0.0083335	7.983493	26.00052	58.50117	0.016667	131.33596	0.083335	4.083415
1	Soln Std		STD-B-3-3	3	22	20.5	0.005	0.04	0.005	3.89	9.62	80.1	0.01	49.6	0.05	0.1
2	Soln Std		STD-B1-1	1	1	21.8	0.005	0.04	0.005	4.44	9.67	81	0.01	49.4	0.05	1.88
2	EA		H43	1	2	643.33462	0.0833335	0.666668	0.0833335	0.0333334	183.3337	1628.33659	0.166667	886.66844	0.833335	1.66667
2	NEPH3-56ccc	ccc	H07	1	3	36.83407	0.0083335	0.066668	0.0083335	9.283519	74.50149	168.3367	0.016667	213.3376	0.1933372	3.016727
2	ARM-1		H09	1	4	21.16709	0.0083335	0.066668	0.0083335	0.0033334	15.150303	42.33418	0.016667	65.33464	0.083335	3.233398
2	NEPH3-54ccc	ccc	H26	1	5	15.883651	0.0083335	0.066668	0.0083335	15.250305	39.66746	91.16849	0.016667	161.50323	0.083335	2.866724
2	NEPH3-56	quenched	H04	1	6	13.750275	0.0083335	0.066668	0.0083335	12.183577	25.50051	126.50253	0.016667	120.16907	0.083335	0.16667
2	NEPH3-52ccc	ccc	H47	1	7	14.400288	0.0083335	0.066668	0.0083335	6.916805	20.50041	144.66956	0.016667	121.50243	0.083335	2.633386
2	NEPH3-55	quenched	H23	1	8	14.116949	0.0083335	0.066668	0.0083335	9.66686	26.33386	111.83557	0.016667	121.33576	0.083335	0.16667
2	NEPH3-54	quenched	H33	1	9	13.416935	0.0083335	0.066668	0.0083335	8.866844	28.16723	81.83497	0.016667	130.0026	0.083335	3.600072
2	blank		H19	1	10	0.4183417	0.0083335	0.066668	0.0083335	0.0033334	0.416675	0.083335	0.016667	0.16667	0.083335	5.133436
2	NEPH3-49	quenched	H31	1	11	11.700234	0.0083335	0.066668	0.0083335	9.566858	18.16703	98.00196	0.016667	119.33572	0.083335	3.66674
2	Soln Std		STD-B1-2	1	12	20	0.005	0.04	0.005	4.36	9.64	80.6	0.01	49.3	0.05	1.85
2	NEPH3-51ccc	ccc	H40	1	13	17.66702	0.0083335	0.066668	0.0083335	9.266852	24.16715	131.16929	0.016667	130.50261	0.083335	3.283399
2	NEPH3-50	quenched	H38	1	14	12.716921	0.0083335	0.066668	0.0083335	9.933532	17.83369	114.00228	0.016667	119.66906	0.083335	3.83341
2	NEPH3-50ccc	ccc	H05	1	15	12.866924	0.0083335	0.066668	0.0083335	8.250165	19.33372	109.50219	0.016667	120.50241	0.083335	3.716741
2	NEPH3-49ccc	ccc	H53	1	16	12.350247	0.0083335	0.066668	0.0083335	9.566858	19.83373	94.16855	0.016667	124.16915	0.083335	3.433402
2	NEPH3-53	quenched	H37	1	17	13.100262	0.0083335	0.066668	0.0083335	11.100222	29.66726	71.33476	0.016667	136.83607	0.083335	0.16667
2	NEPH3-52	quenched	H42	1	18	13.700274	0.0083335	0.066668	0.0083335	10.783549	17.66702	147.66962	0.016667	118.00236	0.083335	3.050061
2	NEPH3-53ccc	ccc	H36	1	19	16.83367	0.0083335	0.066668	0.0083335	23.00046	57.66782	88.50177	0.016667	216.671	0.083335	3.133396
2	NEPH3-51	quenched	H03	1	20	13.450269	0.0083335	0.066668	0.0083335	8.683507	18.00036	130.16927	0.016667	118.3357	0.083335	5.400108
2	NEPH3-55ccc	ccc	H25	1	21	18.66704	0.0083335	0.066668	0.0083335	9.183517	44.66756	126.6692	0.016667	158.3365	0.083335	3.133396
2	Soln Std		STD-B1-3	1	22	19.7	0.005	0.04	0.005	4.28	9.66	82.4	0.01	48.7	0.05	2.06
2	Soln Std		STD-B2-1	2	1	21.9	0.005	0.04	0.005	4.4	9.69	81.6	0.01	49.5	0.05	1.99
2	NEPH3-49ccc	ccc	H52	2	2	12.683587	0.0083335	0.066668	0.0083335	9.866864	20.33374	98.16863	0.016667	127.16921	0.083335	3.750075
2	NEPH3-54	quenched	H15	2	3	13.350267	0.0083335	0.066668	0.0083335	8.816843	27.50055	84.83503	0.016667	127.83589	0.083335	2.983393
2	NEPH3-50ccc	ccc	H22	2	4	13.116929	0.0083335	0.066668	0.0083335	8.900178	19.33372	109.00218	0.016667	121.50243	0.083335	0.16667

Table E2. PSAL Measurements of the PCT Solutions for the Study Glasses After Appropriate Adjustments (continued)

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B (ppm)	Ba (ppm)	Cd (ppm)	Cr (pp)	Fe (ppm)	$\mathbf{L i}(\mathbf{p p m})$	Na (ppm)	Pb (ppm)	Si (ppm)	Th (ppm)	\mathbf{U} (ppm)
2	NEPH3-51	quenched	H34	2	5	13.516937	0.0083335	0.066668	0.0083335	9.533524	18.00036	131.16929	0.016667	118.83571	0.083335	0.16667
2	NEPH3-54ccc	ccc	H18	2	6	13.733608	0.0083335	0.066668	0.0083335	9.283519	28.50057	85.50171	0.016667	132.00264	0.083335	3.100062
2	NEPH3-53ccc	ccc	H50	2	7	17.33368	0.0083335	0.066668	0.0083335	23.66714	57.00114	89.66846	0.016667	215.0043	0.083335	3.116729
2	NEPH3-55ccc	ccc	H28	2	8	20.33374	0.0083335	0.066668	0.0083335	10.0002	44.66756	128.83591	0.016667	159.33652	0.083335	3.083395
2	NEPH3-50	quenched	H24	2	9	13.100262	0.0083335	0.066668	0.0083335	10.383541	18.16703	117.16901	0.016667	120.83575	0.083335	3.850077
2	NEPH3-52	quenched	H30	2	10	13.3336	0.0083335	0.066668	0.0083335	13.533604	16.667	145.33624	0.016667	114.33562	0.083335	3.766742
2	NEPH3-53	quenched	H29	2	11	14.033614	0.0083335	0.066668	0.0083335	10.766882	31.00062	77.83489	0.016667	142.66952	0.083335	5.350107
2	Soln Std		STD-B2-2	2	12	20.7	0.005	0.04	0.005	4.32	9.68	83.8	0.01	49.7	0.05	2.14
2	EA		H54	2	13	648.33463	0.0833335	0.666668	0.0833335	0.0333334	185.00037	1700.0034	0.166667	895.00179	0.833335	1.66667
2	NEPH3-56	quenched	H14	2	14	14.583625	0.0083335	0.066668	0.0083335	10.866884	25.83385	132.83599	0.016667	121.33576	0.083335	3.50007
2	ARM-1		H17	2	15	21.83377	0.0083335	0.066668	0.0083335	0.0650013	15.450309	45.83425	0.016667	66.50133	0.083335	4.466756
2	NEPH3-49	quenched	H44	2	16	12.200244	0.0083335	0.066668	0.0083335	9.733528	18.50037	105.66878	0.016667	121.33576	0.083335	0.16667
2	NEPH3-56ccc	ccc	H35	2	17	35.83405	0.0083335	0.066668	0.0083335	9.533524	75.16817	178.3369	0.016667	213.3376	0.1916705	0.16667
2	NEPH3-51ccc	ccc	H10	2	18	18.66704	0.0083335	0.066668	0.0083335	9.66686	24.50049	138.00276	0.016667	132.83599	0.083335	0.16667
2	NEPH3-52ccc	ccc	H32	2	19	14.250285	0.0083335	0.066668	0.0083335	7.033474	20.50041	153.16973	0.016667	123.83581	0.083335	4.016747
2	NEPH3-55	quenched	H08	2	20	14.033614	0.0083335	0.066668	0.0083335	11.050221	26.6672	118.66904	0.016667	123.83581	0.083335	3.3334
2	Soln Std		STD-B2-3	2	21	20.8	0.005	0.04	0.005	4.27	9.7	84.6	0.01	49.7	0.05	3.05
2	Soln Std		STD-B3-1	3	1	21.2	0.005	0.04	0.005	4.26	9.72	80	0.01	48.8	0.05	1.82
2	NEPH3-49ccc	ccc	H55	3	2	12.800256	0.0083335	0.066668	0.0083335	9.700194	20.83375	94.16855	0.016667	126.6692	0.083335	0.16667
2	NEPH3-54ccc	ccc	H21	3	3	16.183657	0.0083335	0.066668	0.0083335	13.200264	40.66748	93.00186	0.016667	161.16989	0.083335	3.800076
2	NEPH3-51	quenched	H39	3	4	13.933612	0.0083335	0.066668	0.0083335	7.966826	18.3337	128.50257	0.016667	118.3357	0.083335	5.233438
2	EA		H11	3	5	650.0013	0.0833335	0.666668	0.0833335	0.0333334	185.00037	1651.66997	0.166667	896.66846	0.833335	37.000074
2	NEPH3-52	quenched	H01	3	6	15.100302	0.0083335	0.066668	0.0083335	10.250205	18.16703	144.50289	0.016667	119.83573	0.083335	0.16667
2	NEPH3-55	quenched	H27	3	7	14.900298	0.0083335	0.066668	0.0083335	12.433582	27.33388	109.33552	0.016667	126.83587	0.083335	2.916725
2	NEPH3-50ccc	ccc	H41	3	8	13.583605	0.0083335	0.066668	0.0083335	8.16683	20.0004	103.83541	0.016667	124.00248	0.083335	2.950059
2	NEPH3-53	quenched	H13	3	9	14.616959	0.0083335	0.066668	0.0083335	10.916885	32.16731	71.6681	0.016667	147.33628	0.083335	3.266732
2	NEPH3-54	quenched	H20	3	10	16.83367	0.0083335	0.066668	0.0083335	13.800276	40.0008	88.50177	0.016667	158.66984	0.083335	2.83339
2	ARM-1		H49	3	11	21.16709	0.0083335	0.066668	0.0083335	0.0033334	15.383641	41.00082	0.016667	66.668	0.083335	2.883391
2	Soln Std		STD-B3-2	3	12	21	0.005	0.04	0.005	4.2	9.74	78.4	0.01	50.1	0.05	3.04
2	blank		H56	3	13	0.4650093	0.0083335	0.066668	0.0083335	0.0033334	0.416675	0.083335	0.016667	0.16667	0.083335	0.16667
2	NEPH3-50	quenched	H46	3	14	13.250265	0.0083335	0.066668	0.0083335	9.583525	18.50037	108.66884	0.016667	125.0025	0.083335	3.383401

Table E2. PSAL Measurements of the PCT Solutions for the Study Glasses After Appropriate Adjustments (continued)

Part	Glass ID	Heat Treatment	Laboratory ID	Block	Seq	B (ppm)	Ba (ppm)	Cd (ppm)	$\mathbf{C r}(\mathrm{pp})$	Fe (ppm)	Li (ppm)	Na (ppm)	Pb (ppm)	Si (ppm)	Th (ppm)	\mathbf{U} (ppm)
2	NEPH3-56	quenched	H48	3	15	14.233618	0.0083335	0.066668	0.0083335	12.283579	26.50053	121.50243	0.016667	128.00256	0.083335	0.16667
2	NEPH3-55ccc	ccc	H12	3	16	21.00042	0.0083335	0.066668	0.0083335	10.366874	46.33426	120.16907	0.016667	166.67	0.083335	0.16667
2	NEPH3-52ccc	ccc	H16	3	17	14.716961	0.0083335	0.066668	0.0083335	7.250145	20.0004	137.33608	0.016667	122.33578	0.083335	3.683407
2	NEPH3-49	quenched	H06	3	18	13.016927	0.0083335	0.066668	0.0083335	10.066868	19.33372	95.83525	0.016667	128.3359	0.083335	3.250065
2	NEPH3-53ccc	ccc	H02	3	19	18.3337	0.0083335	0.066668	0.0083335	24.16715	58.83451	83.50167	0.016667	220.0044	0.083335	0.16667
2	NEPH3-51ccc	ccc	H51	3	20	18.83371	0.0083335	0.066668	0.0083335	9.316853	25.0005	128.3359	0.016667	137.50275	0.083335	2.616719
2	NEPH3-56ccc	ccc	H45	3	21	36.6674	0.0083335	0.066668	0.0083335	10.200204	76.50153	157.50315	0.016667	223.3378	0.1716701	3.650073
2	Soln Std		STD-B-3-3	3	22	21.3	0.005	0.04	0.005	4.32	9.79	74	0.01	50.8	0.05	0.1

Exhibit E1. Laboratory PCT Measurements in Analytical Sequence for Study Glasses, EA, ARM, Blanks, and Solution Standards

Ba (ppm) By Analytical Sequence

Cd (ppm) By Analytical Sequence

Cr (pp) By Analytical Sequence

Fe (ppm) By Analytical Sequence

Li (ppm) By Analytical Sequence

Na (ppm) By Analytical Sequence

Pb (ppm) By Analytical Sequence

Si (ppm) By Analytical Sequence

Th (ppm) By Analytical Sequence

U (ppm) By Analytical Sequence

Exhibit E2. Laboratory PCT Measurements in Analytical Sequence for Study Glasses

Ba (ppm) By Analytical Sequence

Cd (ppm) By Analytical Sequence

Cr (pp) By Analytical Sequence

Fe (ppm) By Analytical Sequence

Li (ppm) By Analytical Sequence

Th (ppm) By Analytical Sequence

Exhibit E3. Measurements of the Multi-Element Solution Standard by Set and ICP Block

Oneway Anova

Std Error uses a pooled estimate of error variance

Oneway Anova

Summary of Fit

Oneway Anova
Summary of Fit

Exhibit E3. Measurements of the Multi-Element Solution Standard by Set and ICP Block (continued)

Oneway Anova
Summary of Fit

Oneway Anova

Rsquare	0.080171
Adj Rsquare	-0.04247
Root Mean Square Error	0.194451
Mean of Response	4.156667
Observations (or Sum Wgts)	18

$\begin{array}{lr}\text { Mean of Response } & 4.156667 \\ \text { Observations (or Sum Wgts) } & 18\end{array}$
Observations (or Sum
Analysis of DF Sum of Squares Mean Square F Ratio Prob $>$ F
$\begin{array}{lrrrrrr}\text { Source } & \text { DF } & \text { Sum of Squares } & \text { Mean Square } & \text { Ratio } & \text { Prob }>\text { F } \\ \text { Block } & 2 & 0.04943333 & 0.024717 & 0.6537 & 0.5343\end{array}$ $\begin{array}{lrrr}\text { Block } & 2 & 0.04943333 & 0.024717 \\ \text { Error } & 15 & 0.56716667 & 0.037811\end{array}$
$\begin{array}{lll}\text { Error } & 15 & 0.56716667 \\ \text { C. Total } & 17 & 0.61660000\end{array}$
Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\%
$\begin{array}{lrrrrr}\text { Level Number } & \text { Mean } & \text { Std Error } & \text { Lower 95\% } & \text { Upper 95\% } \\ 1 & 6 & 4.15833 & 0.07938 & 3.9891 & 4.3275\end{array}$
$\begin{array}{llllll}1 & 6 & 4.15833 & 0.07938 & 3.9891 & 4.3275 \\ 2 & 6 & 4.22000 & 0.07938 & 4.0508 & 4.3892 \\ 3 & 6 & 4.09167 & 0.07938 & 3.9225 & 4.2609\end{array}$
Std Error uses a pooled estimate of error variance

Oneway Anova
Summary of Fit
Rsquare
0.096066

Rsquare
Adj Rsquare
$\begin{array}{ll}\text { Adj Rsquare } & -0.02446 \\ \text { Root Mean Square Error } & 0.064507\end{array}$
$\begin{array}{lr}\text { Root Mean Square Error } & 0.064507 \\ \text { Mean of Response } & 9.685\end{array}$
$\begin{array}{lr}\text { Mean of Response } & 9.68 \text { Observations (or Sum Wgts) } \\ 18\end{array}$
Analysis of Variance
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{lllllll}\text { Block } & 2 & 0.00663333 & 0.003317 & 0.7971 & 0.4688\end{array}$ $\begin{array}{lll}\text { Error } & 15 & 0.06241667 \\ \text { C. Total } & 17 & 0.06905000\end{array}$
C. Total $17 \quad 0.06905000$

Level Number Mean Std Error Lower 95\% Upper 95\% $\begin{array}{lrrrrr}\text { Level Number } & \text { Mean } & \text { Std Error } & \text { Lower 95\% } & \text { Upper 95\% } \\ 1 & 6 & 9.68167 & 0.02633 & 9.6255 & 9.7378\end{array}$ $\begin{array}{llllll}1 & 6 & 9.68167 & 0.02633 & 9.6255 & 9.7378 \\ 2 & 6 & 9.66333 & 0.02633 & 9.6072 & 9.7195 \\ 3 & 6 & 9.71000 & 0.02633 & 9.6539 & 9.7661\end{array}$ $\begin{array}{llll}\text { Std Error uses a pooled estimate of error variance } & & 9.7661\end{array}$

Exhibit E3. Measurements of the Multi-Element Solution Standard

 by Set and ICP Block (continued)

Oneway Anova

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Oneway Anova
Summary of Fit

Rsquare	0.079332
Adj Rsquare	-0.04342
Root Mean Square Error	0.557076
Mean of Response	49.47222
Observations (or Sum Wgts)	18

$\begin{array}{lr}\text { Mean of Response } & 49.47222 \\ \text { Observations (or Sum Wgts) } & 18\end{array}$
Analysis of Variance
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F $\begin{array}{lrrrr}\text { Source } & \text { DF } & \text { Sum of Squares } & \text { Mean Square } & \text { F Ratio } \text { Prob }>\text { F } \\ \text { Block } & 2 & 0.4011111 & 0.200556 & 0.6463\end{array}$ $\begin{array}{lrll}\text { Block } & 2 & 0.401111 & 0.200556 \\ \text { Error } & 15 & 4.6550000 & 0.310333\end{array}$
$\begin{array}{lll}\text { Error } & 15 & 5.6550000 \\ \text { C. Total } & 17 & 5.0561111\end{array}$
Means for Oneway Anova

Level Number Mean Std Error Lower 95\% Upper 95\% | Level | Number | Mean | Std Error | Lower 95\% | Upper 95\% |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | 6 | 49.2667 | 0.22743 | 48.782 | 49.751 |

2	6	49.5333	0.22743	49.049	50.018
3	6	49.6167	0.22743	49.132	50.101

Std Error uses a pooled estimate of error variance

Exhibit E3. Measurements of the Multi-Element Solution Standard by Set and ICP Block (continued)

Oneway Anova
Summary of Fit

Oneway Anova
Summary of Fit

Rsquare	0.017072
Adj Rsquare	-0.11398
Root Mean Square Error	1.193448
Mean of Response	1.054444
Observations (or Sum Wgts)	18

Mean of Response $\quad 1.054444$
Observations (or Sum Wgts) 18
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
$\begin{array}{lllllll}\text { Block } & 2 & 0.371078 & 0.18554 & 0.1303 & 0.8788\end{array}$
$\begin{array}{llll}\text { Error } & 15 & 21.364767 & 1.42432\end{array}$
C. Total $17 \quad 21.735844$

Means for Oneway Anova
Level Number Mean Std Error Lower 95\% Upper 95\%
$\begin{array}{rrrrrr}1 & 6 & 1.01500 & 0.48722 & -0.0235 & 2.0535 \\ 2 & 6 & 1.24667 & 0.48722 & 0.2082 & 2.2852\end{array}$
$\begin{array}{rrrrrr}1 & 6 & .24667 & 0.48722 & 0.2082 & 2.2852 \\ 3 & 6 & 0.90167 & 0.48722 & -0.1368 & 1.9402\end{array}$
Std Error uses a pooled estimate of error variance

Exhibit E4. Laboratory PCT Measurements by Glass Number for Study Glasses and Standards
 (100 - Solution Standard; 101 - EA; 102 - ARM; 103 - Blanks)

B (ppm) By Glass \#

Cd (ppm) By Glass \#

Cr (pp) By Glass \#

Exhibit E4. Laboratory PCT Measurements by Glass Number for Study Glasses and Standards (continued)
(100 - Solution Standard; 101 - EA; 102 - ARM; 103 - Blanks)

Fe (ppm) By Glass \#

Li (ppm) By Glass \#

Exhibit E4. Laboratory PCT Measurements by Glass Number for Study Glasses and Standards (continued)
(100 - Solution Standard; 101 - EA; 102 - ARM; 103 - Blanks)

Th (ppm) By Glass \#

Exhibit E5. Laboratory PCT Measurements by Glass Number for Study Glasses

Exhibit E5. Laboratory PCT Measurements by Glass Number for Study Glasses (continued)

Fe (ppm) By Glass \#

Li (ppm) By Glass \#

Pb (ppm) By Glass \#

Exhibit E5. Laboratory PCT Measurements by Glass Number for Study Glasses (continued)

Th (ppm) By Glass \#

U (ppm) By Glass \#

Exhibit E6. Correlations and Scatter Plots of Normalized PCTs Over All Compositional Views and Heat Treatments

Comp View/Heat Treatment=Measured bc-ccc
Multivariate
Correlations

	$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$
$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	1.0000	0.9357	0.9432	0.9013
$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	0.9357	1.0000	0.8632	0.9877
$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	0.9432	0.8632	1.0000	0.8348
$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$	0.9013	0.9877	0.8348	1.0000
Scatterplot Matrix				
u.o- Mat				

Comp View/Heat Treatment=Measured bc-quenched Multivariate
Correlations

	$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$
$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	1.0000	0.7638	0.9181	0.8431
$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	0.7638	1.0000	0.6183	0.9287
$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	0.9181	0.6183	1.0000	0.7764
\log NL[Si $(\mathrm{g} / \mathrm{L})]$	0.8431	0.9287	0.7764	1.0000
Scatterplot Matrix				

Exhibit E6. Correlations and Scatter Plots of Normalized PCTs Over All Compositional Views and Heat Treatments (continued)

Comp View/Heat Treatment=Measured-cce
Multivariate
Correlations

	$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})] \log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$	
$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	1.0000	0.9384	0.9285	0.9049
$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	0.9384	1.0000	0.8623	0.9876
$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	0.9285	0.8623	1.000	0.8397
$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$	0.9049	0.9876	0.8397	1.0000
Scatterplot Matrix				

Comp View/Heat Treatment=Measured-quenched Multivariate
Correlations

	$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$
$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	1.0000	0.7708	0.8743	0.8491
$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	0.7708	1.0000	0.6077	0.9269
$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	0.8743	0.6077	1.0000	0.7856
$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$	0.8491	0.9269	0.7856	1.0000
Scatterplot Matrix				

$\begin{array}{r} 0.05 \\ 0 \\ -0.05-1 \\ -0.1 \\ -0.15 \end{array}$	$\begin{gathered} \log \mathrm{NL}[\mathrm{~B} \\ (\mathrm{g} / \mathrm{L})] \end{gathered}$			
-0.05-		$\begin{gathered} \log \\ \mathrm{NL}[\mathrm{Li}(\mathrm{~g} / \mathrm{L})] \end{gathered}$		
$\begin{array}{r} 0.05 \\ 0 \\ -0.05-1 \\ -0.1-1 \end{array}$			$\underset{(\mathrm{g} / \mathrm{L}) \mathrm{Na}}{\log \mathrm{NL}}$	
$\begin{array}{r} -0.15 \\ -0.175 \\ -0.2 \\ -0.225 \\ -0.05 \\ -0.275 \\ -0.25- \end{array}$				$\underset{(\mathrm{g} / \mathrm{L})]}{\log \mathrm{NL}[\mathrm{Si}}$
	 -0.15 -0.05 1 1 .05	${ }_{-0.05}^{1} 0$	1 -0.1 -0.05 0 1	 0.275 -0.225 0.175

Exhibit E6. Correlations and Scatter Plots of Normalized PCTs Over All Compositional Views and Heat Treatments (continued)

Comp View/Heat Treatment=target-ccc
Multivariate
Correlations

	$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$
$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	1.0000	0.9382	0.9459	0.9062
$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	0.9382	1.0000	0.8582	0.9903
$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	0.9459	0.8582	1.0000	0.8320
$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$	0.9062	0.9903	0.8320	1.0000
Scatterplot Matrix				

Comp View/Heat Treatment=target-quenched Multivariate
Correlations

	$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$
$\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$	1.0000	0.7872	0.9162	0.8679
$\log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})]$	0.7872	1.0000	0.5860	0.9460
$\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$	0.9162	0.5860	1.0000	0.7607
$\log \mathrm{NL}[\mathrm{Si}(\mathrm{g} / \mathrm{L})]$	0.8679	0.9460	0.7607	1.0000
Scatterplot Matrix				

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses

Glass ID=NEPH3-41
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.01198	t Ratio	-0.31508
Std Err Dif	0.03802	DF	4
Upper CL Dif	0.09357	Prob $>\|\mathrm{t}\|$	0.7685
Lower CL Dif	-0.11753	Prob $>\mathrm{t}$	0.6158
Confidence	0.95	Prob $<\mathrm{t}$	0.3842

Oneway Analysis of $\log [L i \operatorname{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad-0.00136 \mathrm{t}$ Ratio $\quad-0.44972$
Std Err Dif 0.00302 DF 4
Upper CL Dif 0.00703 Prob $>|t| \quad 0.6762$
Lower CL Dif -0.00975 Prob > t 0.6619
Confidence $\quad 0.95$ Prob $<\mathrm{t} \quad 0.3381$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.02177	t Ratio	-2.2242
Std Err Dif	0.00979	DF	4
Upper CL Dif	0.00541	Prob $>\|\mathrm{t}\|$	0.0902
Lower CL Dif	-0.04895	Prob $>\mathrm{t}$	0.9549
Confidence	0.95	Prob $<\mathrm{t}$	0.0451

Oneway Analysis of $\log [S i \operatorname{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.00451	t Ratio	-0.79506
Std Err Dif	0.00567	DF	4
Upper CL Dif	0.01123	Prob $>\|\mathrm{t}\|$	0.4711
Lower CL Dif	-0.02025	Prob $>\mathrm{t}$	0.7645
Confidence	0.95 Prob $<\mathrm{t}$	0.2355	

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-42
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.04409	t Ratio	-1.61201
Std Err Dif	0.02735	DF	4
Upper CL Dif	0.03185	Prob $>\|\mathrm{t}\|$	0.1823
Lower CL Dif	-0.12002	Prob $>\mathrm{t}$	0.9089
Confidence	0.95	Prob $<\mathrm{t}$	0.0911

Oneway Analysis of $\log [\mathrm{Li}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.00128	t Ratio	-0.16079
Std Err Dif	0.00797	DF	4
Upper CL Dif	0.02086	Prob $>\|\mathrm{t}\|$	0.8801
Lower CL Dif	-0.02342	Prob $>\mathrm{t}$	0.5600
Confidence	0.95	Prob $<\mathrm{t}$	0.4400

t Test
ccc-quenched
Assuming equal variances

Difference	-0.01722	t Ratio	-1.75004
Std Err Dif	0.00984 DF	4	
Upper CL Dif	0.01010	Prob $>\|\mathrm{t}\|$	0.1550
Lower CL Dif	-0.04455	Prob $>\mathrm{t}$	0.9225
Confidence	0.95	Prob $<\mathrm{t}$	0.0775

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.00799	t Ratio	-1.05445
Std Err Dif	0.00758	DF	4
Upper CL Dif	0.01305	Prob $>\|\mathrm{t}\|$	0.3512
Lower CL Dif	-0.02904	Prob $>\mathrm{t}$	0.8244
Confidence	0.95	Prob $<\mathrm{t}$	0.1756

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-43
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference	0.02278	t Ratio	1.295567
Std Err Dif	0.01758	DF	4
Upper CL Dif	0.07159	Prob $>\|\mathrm{t}\|$	0.2648
Lower CL Dif	-0.02604	Prob $>\mathrm{t}$	0.1324
Confidence	0.95	Prob $<\mathrm{t}$	0.8676

Oneway Analysis of $\log [\operatorname{Li} p p m]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference 0.080731 t Ratio 9.393163
Std Err Dif 0.008595 DF 4
Upper CL Dif 0.104594 Prob $>|t| \quad 0.0007$
Lower CL Dif 0.056869 Prob $>$ t 0.0004
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 0.9996$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.00558	t Ratio	-0.49077
Std Err Dif	0.01138	DF	4
Upper CL Dif	0.02601	Prob $>\|\mathrm{t}\|$	0.6493
Lower CL Dif	-0.03717	Prob $>\mathrm{t}$	0.6754
Confidence	0.95	Prob $<\mathrm{t}$	0.3246

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad 0.029252$ t Ratio 4.199821
Std Err Dif 0.006965 DF 4
Upper CL Dif 0.048590 Prob $>|t| \quad 0.0137$
Lower CL Dif 0.009914 Prob > t 0.0068
Confidence $\quad 0.95$ Prob $<\mathrm{t} \quad 0.9932$

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-44
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.01115	t Ratio	0.352564
Std Err Dif	0.03164	DF	4
Upper CL Dif	0.09899	Prob $>\|\mathrm{t}\|$	0.7422
Lower CL Dif	-0.07669	Prob $>\mathrm{t}$	0.3711
Confidence	0.95	Prob $<\mathrm{t}$	0.6289

Oneway Analysis of $\log [\mathrm{Li}$ ppm] By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference $\quad 0.092709$ t Ratio 17.39502
Std Err Dif 0.005330 DF 4
Upper CL Dif 0.107506 Prob $>|t|<.0001$
Lower CL Dif 0.077912 Prob $>\mathrm{t} \quad<.0001$
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 1.0000$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.010862	t Ratio
Std Err Dif	0.001779 DF	4
Upper CL Dif	0.015800	Prob $>\|\mathrm{t}\|$
Lower CL Dif	0.005923	0.0036
Prob $>\mathrm{t}$	0.0018	
Confidence	0.95	Prob $<\mathrm{t}$
		0.9982

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad 0.024127$ t Ratio 7.996557
Std Err Dif 0.003017 DF 4
Upper CL Dif 0.032503 Prob > |t| 0.0013
Lower CL Dif 0.015750 Prob > t 0.0007
Confidence $\quad 0.95$ Prob $<\mathrm{t} \quad 0.9993$

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-45
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.000007	t Ratio	0.000286
Std Err Dif	0.02622	DF	4
Upper CL Dif	0.07282	Prob $>\|\mathrm{t}\|$	0.9998
Lower CL Dif	-0.07280	Prob $>\mathrm{t}$	0.4999
Confidence	0.95	Prob $<\mathrm{t}$	0.5001

Oneway Analysis of $\log [\operatorname{Li} p p m]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference 0.00747 t Ratio 2.137898
Std Err Dif 0.00350 DF 4
Upper CL Dif 0.01718 Prob > |t| 0.0993
Lower CL Dif -0.00223 Prob > t 0.0497
Confidence $\quad 0.95$ Prob $<\mathrm{t} \quad 0.9503$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.00208	t Ratio	-0.27776
Std Err Dif	0.00747	DF	4
Upper CL Dif	0.01867	Prob $>\|\mathrm{t}\|$	0.7950
Lower CL Dif	-0.02282	Prob $>\mathrm{t}$	0.6025
Confidence	0.95	Prob $<\mathrm{t}$	0.3975

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.00463	t Ratio	1.251875
Std Err Dif	0.00370	DF	4
Upper CL Dif	0.01490	Prob $>\|\mathrm{t}\|$	0.2788
Lower CL Dif	-0.00564	Prob $>\mathrm{t}$	0.1394
Confidence	0.95	Prob $<\mathrm{t}$	0.8606

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-46
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.02581	t Ratio	0.821072
Std Err Dif	0.03144	DF	4
Upper CL Dif	0.11310	Prob $>\|\mathrm{t}\|$	0.4577
Lower CL Dif	-0.06148	Prob $>\mathrm{t}$	0.2289
Confidence	0.95	Prob $<\mathrm{t}$	0.7711

Oneway Analysis of $\log [\mathrm{Li}$ ppm] By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference $\quad 0.049001$ t Ratio 35.96934
Std Err Dif 0.001362 DF 4
Upper CL Dif 0.052783 Prob $>|t|<.0001$
Lower CL Dif 0.045218 Prob $>$ t $<.0001$
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 1.0000$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.00626	t Ratio	0.814247
Std Err Dif	0.00769 DF	4	
Upper CL Dif	0.02760 Prob $>\|\mathrm{t}\|$	0.4612	
Lower CL Dif	-0.01508	Prob $>\mathrm{t}$	0.2306
Confidence	0.95	Prob $<\mathrm{t}$	0.7694

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.025684	t Ratio	16.32364
Std Err Dif	0.001573 DF	4	
Upper CL Dif	0.030053	Prob $>\|\mathrm{t}\|$	$<.0001$
Lower CL Dif	0.021316	Prob $>\mathrm{t}$	$<.0001$
Confidence	0.95	Prob $<\mathrm{t}$	1.0000

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-47
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.03818	t Ratio	-1.32691
Std Err Dif	0.02878	DF	4
Upper CL Dif	0.04171	Prob $>\|\mathrm{t}\|$	0.2552
Lower CL Dif	-0.11808	Prob $>\mathrm{t}$	0.8724
Confidence	0.95	Prob $<\mathrm{t}$	0.1276

Oneway Analysis of $\log [\mathrm{Li}$ ppm] By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference 0.042642 t Ratio 13.10835
Std Err Dif 0.003253 DF 4
Upper CL Dif 0.051674 Prob $>|t| \quad 0.0002$
Lower CL Dif 0.033610 Prob > t $<.0001$
Confidence $\quad 0.95$ Prob $<\mathrm{t} \quad 0.9999$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.01647	t Ratio	-3.21447
Std Err Dif	0.00512	DF	4
Upper CL Dif	-0.00224	Prob $>\|\mathrm{t}\|$	0.0325
Lower CL Dif	-0.03069	Prob $>\mathrm{t}$	0.9838
Confidence	0.95	Prob $<\mathrm{t}$	0.0162

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.017064	t Ratio	5.466503
Std Err Dif	0.003122	DF	4
Upper CL Dif	0.025731	Prob $>\|\mathrm{t}\|$	0.0054
Lower CL Dif	0.008397	Prob $>\mathrm{t}$	0.0027
Confidence	0.95	Prob $<\mathrm{t}$	0.9973

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-48
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference 0.172145 t Ratio 7.44033
Std Err Dif 0.023137 DF 4
Upper CL Dif 0.236383 Prob $>|t| 0.0017$
Lower CL Dif 0.107907 Prob > t 0.0009
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 0.9991$

Oneway Analysis of $\log [L i \operatorname{ppm}]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference	0.214839 t Ratio	104.2037	
Std Err Dif	0.002062	DF	4
Upper CL Dif	0.220564	Prob $>\|\mathrm{t}\|$	$<.0001$
Lower CL Dif	0.209115	Prob $>\mathrm{t}$	$<.0001$
Confidence	0.95 Prob $<\mathrm{t}$	1.0000	

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference 0.048348 t Ratio 13.122
Std Err Dif 0.003685 DF 4
Upper CL Dif 0.058578 Prob $>|t| 0.0002$
Lower CL Dif 0.038119 Prob>t<.0001
Confidence $\quad 0.95$ Prob $<\mathrm{t} \quad 0.9999$

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.083675	t Ratio	34.71592
Std Err Dif	0.002410	DF	4
Upper CL Dif	0.090367	Prob $>\|\mathrm{t}\|$	$<.0001$
Lower CL Dif	0.076983	Prob $>\mathrm{t}$	$<.0001$
Confidence	0.95	Prob $<\mathrm{t}$	1.0000

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-49
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.01102	t Ratio	0.77311
Std Err Dif	0.01426	DF	4
Upper CL Dif	0.05060	Prob $>\|\mathrm{t}\|$	0.4826
Lower CL Dif	-0.02856	Prob $>\mathrm{t}$	0.2413
Confidence	0.95	Prob $<\mathrm{t}$	0.7587

Oneway Analysis of $\log [\operatorname{Li} p p m]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference	0.037203	t Ratio	3.675848
Std Err Dif	0.010121	DF	4
Upper CL Dif	0.065303	Prob $>\|\mathrm{t}\|$	0.0213
Lower CL Dif	0.009103	Prob $>\mathrm{t}$	0.0106
Confidence	0.95	Prob $<\mathrm{t}$	0.9894

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.01897	t Ratio	-1.33856
Std Err Dif	0.01417	DF	4
Upper CL Dif	0.02038	Prob $>\|\mathrm{t}\|$	0.2517
Lower CL Dif	-0.05833	Prob $>\mathrm{t}$	0.8741
Confidence	0.95	Prob $<\mathrm{t}$	0.1259

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.01065	t Ratio	1.057116
Std Err Dif	0.01008	DF	4
Upper CL Dif	0.03863	Prob $>\|\mathrm{t}\|$	0.3501
Lower CL Dif	-0.01733	Prob $>\mathrm{t}$	0.1750
Confidence	0.95	Prob $<\mathrm{t}$	0.8250

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-50
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.00548	t Ratio	0.629419
Std Err Dif	0.00870 DF	4	
Upper CL Dif	0.02964 Prob $>\|\mathrm{t}\|$	0.5632	
Lower CL Dif	-0.01869	Prob $>\mathrm{t}$	0.2816
Confidence	0.95	Prob $<\mathrm{t}$	0.7184

Oneway Analysis of $\log [\mathrm{Li}$ ppm] By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference 0.031988 t Ratio 4.75487
Std Err Dif 0.006727 DF 4
Upper CL Dif 0.050666 Prob $>|t| \quad 0.0089$
Lower CL Dif 0.013310 Prob > t 0.0045
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 0.9955$

Oneway Analysis of $\log [\mathbf{N a}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.02288	t Ratio	-1.89407
Std Err Dif	0.01208	DF	4
Upper CL Dif	0.01066	Prob $>\|\mathrm{t}\|$	0.1311
Lower CL Dif	-0.05641	Prob $>\mathrm{t}$	0.9344
Confidence	0.95	Prob $<\mathrm{t}$	0.0656

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad 0.00064$ t Ratio 0.093507
Std Err Dif 0.00683 DF 4
Upper CL Dif 0.01959 Prob $>|\mathrm{t}| \quad 0.9300$
Lower CL Dif -0.01832 Prob > t 0.4650
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 0.5350$

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-51
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.129834	t Ratio	13.08715
Std Err Dif	0.009921	DF	4
Upper CL Dif	0.157378	Prob $>\|\mathrm{t}\|$	0.0002
Lower CL Dif	0.102290	Prob $>\mathrm{t}$	$<.0001$
Confidence	0.95	Prob $<\mathrm{t}$	0.9999

Oneway Analysis of $\log [L i \operatorname{ppm}]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference 0.132179 t Ratio 26.25671
Std Err Dif 0.005034 DF 4
Upper CL Dif 0.146156 Prob $>|t|<.0001$
Lower CL Dif 0.118202 Prob $>\mathrm{t} \quad<.0001$
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 1.0000$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.00827	t Ratio	0.852906
Std Err Dif	0.00970 DF	4	
Upper CL Dif	0.03520	Prob $>\|\mathrm{t}\|$	0.4418
Lower CL Dif	-0.01866 Prob $>\mathrm{t}$	0.2209	
Confidence	0.95	Prob $<\mathrm{t}$	0.7791

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.052023	t Ratio	7.775508
Std Err Dif	0.006691	DF	4
Upper CL Dif	0.070599	Prob $>\|\mathrm{t}\|$	0.0015
Lower CL Dif	0.033447	Prob $>\mathrm{t}$	0.0007
Confidence	0.95	Prob $<\mathrm{t}$	0.9993

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-52
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.01312	t Ratio	0.775441
Std Err Dif	0.01692	DF	4
Upper CL Dif	0.06008	Prob $>\|\mathrm{t}\|$	0.4814
Lower CL Dif	-0.03385	Prob $>\mathrm{t}$	0.2407
Confidence	0.95	Prob $<\mathrm{t}$	0.7593

Oneway Analysis of $\log [L i \operatorname{ppm}]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference 0.065420 t Ratio 5.644337
Std Err Dif 0.011590 DF 4
Upper CL Dif 0.097600 Prob $>|t| \quad 0.0049$
Lower CL Dif 0.033240 Prob > t 0.0024
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 0.9976$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	-0.00274	t Ratio	-0.1958
Std Err Dif	0.01397	DF	4
Upper CL Dif	0.03606	Prob $>\|\mathrm{t}\|$	0.8543
Lower CL Dif	-0.04153	Prob $>\mathrm{t}$	0.5728
Confidence	0.95	Prob $<\mathrm{t}$	0.4272

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.018775	t Ratio	2.900557
Std Err Dif	0.006473	DF	4
Upper CL Dif	0.036747	Prob $>\|\mathrm{t}\|$	0.0441
Lower CL Dif	0.000803	Prob $>\mathrm{t}$	0.0220
Confidence	0.95	Prob $<\mathrm{t}$	0.9780

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-53
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.099671	t Ratio	5.651291
Std Err Dif	0.017637	DF	4
Upper CL Dif	0.148639	Prob $>\|\mathrm{t}\|$	0.0048
Lower CL Dif	0.050703	Prob $>\mathrm{t}$	0.0024
Confidence	0.95	Prob $<\mathrm{t}$	0.9976

Oneway Analysis of $\log [L i \operatorname{ppm}]$ By Heat Treatment

t Test

ccc-quenched

Assuming equal variances

Difference	0.271796	t Ratio	24.88768
Std Err Dif	0.010921	DF	4
Upper CL Dif	0.302117	Prob $>\|\mathrm{t}\|$	$<.0001$
Lower CL Dif	0.241474 Prob $>\mathrm{t}$	$<.0001$	
Confidence	0.95 Prob $<\mathrm{t}$	1.0000	

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.073828	t Ratio	4.74838
Std Err Dif	0.015548	DF	4
Upper CL Dif	0.116997	Prob $>\|\mathrm{t}\|$	0.0090
Lower CL Dif	0.030660	Prob $>\mathrm{t}$	0.0045
Confidence	0.95	Prob $<\mathrm{t}$	0.9955

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad 0.183946$ t Ratio 18.87241
Std Err Dif 0.009747 DF 4
Upper CL Dif 0.211007 Prob > |t| <.0001
Lower CL Dif 0.156884 Prob $>$ t $<.0001$
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 1.0000$

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-54
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.02283	t Ratio	0.568886
Std Err Dif	0.04013	DF	4
Upper CL Dif	0.13425	Prob $>\|\mathrm{t}\|$	0.5999
Lower CL Dif	-0.08859	Prob $>\mathrm{t}$	0.2999
Confidence	0.95	Prob $<\mathrm{t}$	0.7001

Oneway Analysis of $\log [\mathrm{Li}$ ppm] By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference	0.05713	t Ratio	0.789008
Std Err Dif	0.07240	DF	4
Upper CL Dif	0.25815	Prob $>\|t\|$	0.4742
Lower CL Dif	-0.14390	Prob $>\mathrm{t}$	0.2371
Confidence	0.95	Prob $<\mathrm{t}$	0.7629

Oneway Analysis of $\log [\mathbf{N a}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.02395	t Ratio	1.621974
Std Err Dif	0.01476	DF	4
Upper CL Dif	0.06494	Prob $>\|\mathrm{t}\|$	0.1801
Lower CL Dif	-0.01705	Prob $>\mathrm{t}$	0.0901
Confidence	0.95	Prob $<\mathrm{t}$	0.9099

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad 0.03832$ t Ratio 0.915343
Std Err Dif 0.04186 DF 4
Upper CL Dif 0.15454 Prob > |t| 0.4118
Lower CL Dif -0.07791 Prob > t 0.2059
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 0.7941$

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-55
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.143805	t Ratio	8.282353
Std Err Dif	0.017363	DF	4
Upper CL Dif	0.192012	Prob $>\|\mathrm{t}\|$	0.0012
Lower CL Dif	0.095598	Prob $>\mathrm{t}$	0.0006
Confidence	0.95	Prob $<\mathrm{t}$	0.9994

Oneway Analysis of $\log [\operatorname{Li} p p m]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference	0.227564	t Ratio	31.95058
Std Err Dif	0.007122	DF	4
Upper CL Dif	0.247339	Prob $>\|\mathrm{t}\|$	$<.0001$
Lower CL Dif	0.207790	Prob $>\mathrm{t}$	$<.0001$
Confidence	0.95 Prob $<\mathrm{t}$	1.0000	

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.043607	t Ratio	3.119276
Std Err Dif	0.013980	DF	4
Upper CL Dif	0.082422	Prob $>\|\mathrm{t}\|$	0.0356
Lower CL Dif	0.004793	Prob $>\mathrm{t}$	0.0178
Confidence	0.95	Prob $<\mathrm{t}$	0.9822

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.114559	t Ratio	12.79553
Std Err Dif	0.008953	DF	4
Upper CL Dif	0.139417	Prob $>\|\mathrm{t}\|$	0.0002
Lower CL Dif	0.089701	Prob $>\mathrm{t}$	0.0001
Confidence	0.95	Prob $<\mathrm{t}$	0.9999

Exhibit E7. Effects of Heat Treatment on PCT ppm-Response of Study Glasses (continued)

Glass ID=NEPH3-56
Oneway Analysis of $\log [B \mathrm{ppm}]$ By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad 0.409778$ t Ratio 49.45317
Std Err Dif 0.008286 DF 4
Upper CL Dif 0.432784 Prob $>|t|<.0001$
Lower CL Dif 0.386772 Prob $>$ t $<.0001$
Confidence $\quad 0.95$ Prob $<\mathrm{t} \quad 1.0000$

Oneway Analysis of $\log [L i \operatorname{ppm}]$ By Heat Treatment

t Test

ccc-quenched
Assuming equal variances

Difference 0.463292 t Ratio 77.75813
Std Err Dif 0.005958 DF 4
Upper CL Dif 0.479835 Prob $>|t|<.0001$
Lower CL Dif 0.446750 Prob > t $<.0001$
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 1.0000$

Oneway Analysis of $\log [\mathrm{Na}$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference $\quad 0.121570$ t Ratio 6.33415
Std Err Dif 0.019193 DF 4
Upper CL Dif 0.174857 Prob $>|t| \quad 0.0032$
Lower CL Dif 0.068282 Prob $>\mathrm{t} 0.0016$
Confidence $\quad 0.95 \mathrm{Prob}<\mathrm{t} \quad 0.9984$

Oneway Analysis of $\log [S i$ ppm] By Heat Treatment

t Test
ccc-quenched
Assuming equal variances

Difference	0.245366	t Ratio	22.7109
Std Err Dif	0.010804 DF	4	
Upper CL Dif	$0.275362 \mathrm{Prob}>\|\mathrm{t}\|$	$<.0001$	
Lower CL Dif	0.215369	Prob $>\mathrm{t}$	$<.0001$
Confidence	0.95	Prob $<\mathrm{t}$	1.0000

Exhibit E8. Effects of Heat Treatment for Study Glasses by Compositional View

Comp View=Measured

Variability Chart for $\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$

Variability Chart for $\log \operatorname{NL}[\operatorname{Li}(g / L)]$

Exhibit E8. Effects of Heat Treatment for Study Glasses by Compositional View (continued)
Variability Chart for $\log \operatorname{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})$]

Variability Chart for \log NL[Si (g / L)]

Exhibit E8．Effects of Heat Treatment for Study Glasses by Compositional View（continued）
Comp View＝Measured bc
Variability Chart for $\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$

Variability Chart for $\log \operatorname{NL}[\operatorname{Li}(\mathrm{g} / \mathrm{L})]$

	\square	\bigcirc	$\stackrel{\bullet}{\bullet}$		－	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	\square	\therefore	8		$\stackrel{\bullet}{\bullet}$		\bullet		ㅁ	Nepheline Assessment
	合 害				$\begin{aligned} & \hline \text { to } \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { 佥 } \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$			$\begin{aligned} & \hline \stackrel{\infty}{d} \\ & \text { त̃ } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { ⿳亠㐅⿸厂口⿱⿵人一口⿴囗十 } \\ & \text { dot } \end{aligned}$			$\begin{aligned} & \hline \text { 合 } \\ & \text { 等 } \\ & \end{aligned}$		$\begin{aligned} & \hline \text { 㿾 } \\ & \text { 合 } \end{aligned}$	$\begin{aligned} & \hline \hat{6} \\ & \text { Co } \\ & \text { Con } \end{aligned}$	
	$\begin{aligned} & \hline \text { F } \\ & \text { 会 } \\ & \text { 荷 } \end{aligned}$		$\begin{aligned} & \text { 等 } \\ & \text { 帝 } \\ & \text { 崔 } \end{aligned}$	$\begin{aligned} & \hline \text { 柰 } \\ & \text { 会 } \\ & \hline \text { n } \end{aligned}$	$\begin{aligned} & \hline \text { 夺 } \\ & \text { 会 } \\ & \text { 男 } \end{aligned}$		$\begin{aligned} & \hline \text { f } \\ & \text { 華 } \\ & \text { 莩 } \end{aligned}$			$\begin{aligned} & \hline \stackrel{\circ}{h} \\ & \text { 会 } \\ & \text { 炭 } \end{aligned}$	जे 商 高	$\begin{aligned} & \text { 荅 } \\ & \text { 会 } \\ & \text { 荷 } \end{aligned}$			$\begin{aligned} & \text { 总 } \\ & \text { 命 } \\ & \text { 菏 } \end{aligned}$		Glass ID
	35	40	46	50	35	40	47	51	35	40	44	48	35	40	48	51	WL
																	Frit

Exhibit E8. Effects of Heat Treatment for Study Glasses by Compositional View (continued)
Variability Chart for $\log \operatorname{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})$]

Variability Chart for \log NL[Si (g / L)]

Exhibit E8．Effects of Heat Treatment for Study Glasses by Compositional View（continued）

Comp View＝target

Variability Chart for $\log \mathrm{NL}[\mathrm{B}(\mathrm{g} / \mathrm{L})]$

Variability Chart for $\log \operatorname{NL}[\operatorname{Li}(\mathrm{g} / \mathrm{L})]$

	\cdots	\cdots	ㅁ	$\stackrel{\rightharpoonup}{\bullet}$	\bullet	$\stackrel{\square}{\square}$	\bullet		－	8		\bullet		$\stackrel{\bullet}{\square}$		－	
				$\begin{aligned} & \text { 導 } \end{aligned}$										$\begin{aligned} & \text { 矿 } \\ & \text { 密 } \\ & \hline 0 . \end{aligned}$	$\begin{aligned} & \hline \text { 壳 } \\ & \text { त⿹丁口欠心} \\ & \hline \end{aligned}$		Nepheline Assessment
			学 镸 崖	$\begin{aligned} & \hline \text { 志 } \\ & \text { 旁 } \\ & \text { 炭 } \end{aligned}$	$\begin{aligned} & \hline \text { 等 } \\ & \text { 菏 } \end{aligned}$	$\begin{aligned} & \hline \text { 俍 } \\ & \text { 荷 } \end{aligned}$	$\begin{aligned} & \hline \text { f } \\ & \text { N } \\ & \text { 荷 } \end{aligned}$		$\begin{aligned} & \hline \text { g } \\ & \text { 会 } \\ & \text { 荷 } \end{aligned}$			$\begin{aligned} & \text { 荅 } \\ & \text { 会 } \\ & \text { 荷 } \end{aligned}$	$\begin{aligned} & \hline \text { 唇 } \\ & \text { 侖 } \end{aligned}$				Glass ID
	35	40	46	50	35	40	47	51	35	40	44	48	35	40	48	51	wL
	418				501				425				502				Frit

Exhibit E8．Effects of Heat Treatment for Study Glasses by Compositional View（continued）
Variability Chart for $\log \operatorname{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})$ ］

	\square	8	\bigcirc	\bigcirc	\cdots	\bullet	${ }_{6}^{6}$		${ }^{\circ}$	$\stackrel{\square}{\bullet}$	9	${ }_{0}^{8}$		$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$		
					$\begin{aligned} & \text { 呙 } \\ & \substack{\text { N} \\ \hline 0 \\ \hline} \end{aligned}$					$\begin{gathered} \text { ön } \\ \text { 营 } \\ 0 \end{gathered}$			$\begin{aligned} & \text { 然 } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \bar{a} \\ & \text { त } \\ & \text { agor } \end{aligned}$	$\begin{aligned} & \text { 志 } \\ & \text { O} \\ & \text { d } \end{aligned}$		Nepheline Assessment
		子 登 茎	$\begin{aligned} & \text { 等 } \\ & \text { 等 } \\ & \hline \end{aligned}$		等 年 范		$\begin{aligned} & \text { f } \\ & \text { 年 } \\ & \text { 思 } \end{aligned}$			$\begin{aligned} & \hline \stackrel{\rightharpoonup}{h} \\ & \text { 会 } \\ & \text { 荷 } \end{aligned}$		登 苓			$\begin{aligned} & \text { 总 } \\ & \text { 会 } \\ & \text { 男 } \end{aligned}$		Glass ID
	35	40	46	${ }_{50}$	35	40	47	51	35	40	44	48	35	40	48	51	wL
	418				501				425				502				Frit

Variability Chart for \log NL［Si（g／L）］

Exhibit E9. del $\mathbf{G p}\left(\Delta G_{p}\right)$ Predictions versus Common Logarithm Normalized Leachate $(\log \mathrm{NL}[\cdot])$ for $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and Si Over All Compositional Views and Heat Treatments

Linear Fit
$\underline{\text { Bivariate Fit of } \log \mathrm{NL}[\mathrm{Li}(\mathrm{g} / \mathrm{L})] \text { By del Gp}}$

[^8]Bivariate Fit of \log NL[Na (g/L)] By del Gp

_Linear Fit
Bivariate Fit of \log NL[Si (g/L)] By del Gp

L_Linear Fit

Exhibit E10. del Gp ($\Delta \mathbf{G}_{\mathrm{p}}$) Predictions versus Common Logarithm Normalized
Leachate ($\log \mathrm{NL}[\cdot]$) for $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and Si
Over All Compositional Views for Quenched Glasses

Bivariate Fit of \log NL[B (g/L)] By del Gp

——Linear Fit

Bivariate Fit of $\log \operatorname{NL}[L i(g / L)]$ By del Gp

[^9]Bivariate Fit of $\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$ By del Gp

——_Linear Fit
Bivariate Fit of $\log \mathbf{N L}[\mathbf{S i}(\mathrm{g} / \mathrm{L})]$ By del Gp

——Linear Fit

Exhibit E11. del Gp ($\Delta \mathbf{G}_{\mathrm{p}}$) Predictions versus Common Logarithm Normalized
Leachate ($\log \mathrm{NL}[\cdot]$) for $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and Si Over All Compositional Views for cec Glasses

Bivariate Fit of \log NL[B (g/L)] By del Gp

——Linear Fit

Bivariate Fit of $\log \operatorname{NL}[L i(g / L)]$ By del Gp

[^10]Bivariate Fit of $\log \mathrm{NL}[\mathrm{Na}(\mathrm{g} / \mathrm{L})]$ By del Gp

——_Linear Fit
Bivariate Fit of $\log \mathbf{N L}[\mathbf{S i}(\mathrm{g} / \mathrm{L})]$ By del Gp

——Linear Fit

Distribution:
J.E. Marra, SRNL
R.E. Edwards, SRNL
D.A. Crowley, 999-W
S.L. Marra, 773-A
T.B. Calloway, $999-\mathrm{W}$
D.B. Burns, 786-5A
G.T. Chandler, 773-A
N.E. Bibler, SRNL
C.M. Jantzen, SRNL
J.R. Harbour, 773-42A
G.G. Wicks, SRNL
R.C. Tuckfield, 773-42A
D.K. Peeler, 999-W
T.B. Edwards, 773-42A
K.M. Fox, 773-A
C.C. Herman, 773-42A

A.S. Choi, 999-W
M.E. Smith, 999-W
M.E. Stone, 999-W
D.H. Miller, 999-W
M.J. Barnes, 999-W
M.S. Miller, 704-S
J.E. Occhipinti, 704-S
T.M. Jones, 999-W
R.M. Hoeppel, 704-27S
B.A. Davis, 704-27S
P.M. Patel, 704-27S
J.F. Iaukea, 704-30S
J.W. Ray, 704-S
M.A. Rios-Armstrong, 766-H
J.M. Gillam, $766-\mathrm{H}$
H.B. Shah, $766-\mathrm{H}$

[^0]: ${ }^{\text {a }}$ WSRC-NB-2006-00016 contains the visual observations of the quenched and ccc glasses as well as the results of the XRD and PCT analyses for the Phase 3 glasses.
 ${ }^{\mathrm{b}}$ Previous results have indicated that the use of raw materials (reagent grade chemicals) to produce the glasses minimizes $\mathrm{SO}_{4}{ }^{2-}$ volatilization during the fabrication process. Since volatilization is anticipated in slurry-fed melters, this approach will provide a conservative measure of $\mathrm{SO}_{4}{ }^{2-}$ retention in the glass.

[^1]: a One analytical plan (SRNL-SCS-2006-00003) was developed to assess the PCT solutions resulting from the NEPH3-41 to NEPH3-48 glasses, while a second plan (SRNL-SCS-2006-00007) was developed for the NEPH3-49 to NEPH3-56 glasses.

[^2]: a Renaming these samples helps to ensure that they will be processed as blind samples within PSAL. Table 2 is not shown in its entirety in the copies going to PSAL.

[^3]: ${ }^{\mathrm{a}}$ The nomenclature NEPH3-41 stands for a nepheline glass ("NEPH"), Phase 3 (" 3 "), with the identifying number 41 ("- 41 "). The Phase 1 and Phase 2 studied glasses with numbers 1 through 12 and 13 through 40, respectively.

[^4]: a The nomenclature NEPH3-41 stands for a nepheline glass ("NEPH"), Phase 3 (" 3 "), with the identifying number 41 (" 41 "). The Phase 1 and 2 studies contained glasses 1 through 12 and 13 through 40, respectively.

[^5]: a Renaming these samples ensures that they will be processed as blind samples by PSAL. This table does not contain the solution identifiers for those on the distribution list with a "wo" following their names.

[^6]: a The nomenclature NEPH3-41 stands for a nepheline glass ("NEPH"), Phase 3 (" 3 "), with the identifying number 41 (" 41 "). The Phase 1 and 2 studies contained glasses 1 through 12 and 13 through 40 , respectively. Phase 3 covers glasses 41 through 56 .

[^7]: a Renaming these samples ensures that they will be processed as blind samples by PSAL. This table does not contain the solution identifiers for those on the distribution list with a "wo" following their names.

[^8]: ——Linear Fit

[^9]: ——Linear Fit

[^10]: ——Linear Fit

