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Sources of Carbonaceous Aerosol
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Importance of Secondary Organic Aerosol
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@ Organic

B EC

O Sulfate

H Nitrate

O Ammonium
H Other

In the SOCAB, SOA generally contributes 20-80% of the
observed total organic aerosol



Major Questions of SOA Formation

« What are the gas-phase mechanisms leading to semi-
volatile species? What are the molecular identities of these
species? Are these first- or higher-generation products of
the oxidation of the parent molecule?

e Can we predict from first principles the gas-particle
partitioning of semi-volatile organic products to particles
that consist of organics, water, and dissolved electrolytes?



Example Mechanism

n-Alkane

m% H,0

l O, | Alkylnitrate|

Self o
Alkoxy radical «<—— Alkylperoxy radical w)f
70, NO * NO, YOH\ O

/ Hydroperoxide—H>
hv

Alkoxy radical

isomerizati:m/ \dekcomposition
02
fz/ l | Carbonyl| + Alkyl radical
'Carbonyl|+ HO O
Hydroxyalkylperoxy radical - ’ l ? as above

i as above Alkylperoxy radical /
I HydroxvyalkyInitrate I
Hydroxyalkoxy radical : = stable products with potential

to partition to the aerosol phase

as above
or to further react

I Hydroxy carbonyl I




Equilibrium Partitioning of Semi-
Volatile Compounds
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Fraction in Particulate Phase
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Partitioning of Products from the O3 Oxidation of a-Pinene between the
Particulate and Gas Phase (Assuming a Total Organic Aerosol Mass of 50 pg/m®)
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Experimental Protocol
Indoor Teflon Reactor

Parent Hydrocarbon
Seed Aerosol:
(NH,),S0,, NH,(HSO,)

Aerosol Sampling:
--Number Concentration
--Size Distribution

CaCly J
Gas Phase Sampling:
--Ozone 3 ¢
--Hydrocarbon (GC/FID) AROG AMO
--RH and temperature Komi
Q;
Yexpt Ycalc

Two K

om.i

*

and o, values are then varied so that the sum of the residuals

between experimental and calculated yields for a single parent is minimized.

Yield., = AM_/AROG

expt
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Calculation of Yield

At low RH, and only semi-volatile products of the parent
hydrocarbon partition to the aerosol phase.

A]\Jassorgavnic (Jug / m3)

AHC(ug/m’)
At higher RH, aerosol growth is governed by partitioning
of both organic and water to the aerosol phase.

Yield =

AMass

aerosol

(lg/m3) AMlgSorgam'c(ltg/m3) +Amswater (th/m3)
AHC(ug/n?) AHC(ug/ m)

Yield* =




Characteristics of the Aerosol Yield
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Fitted Curve for Sabinene in Photooxidation Experiments
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Aromatic Hydrocarbons Previously Studied

& & 0 0 &

m-xylene o-xylene toluene
= 5 p-xylene ethylbenzene
1,2 4-trimethylbenzene 1,3,5-trimethylbenzene n-propylbenzene 1-methyl-3-n-propylbenzene

1,2,4 5-tetramethylbenzene thylbenzene
1,2-dimethyl-4-ethylbenzene 1,4-dimethyl-2-ethylbenzene ¥ p-diethy

S & o ¥

m-ethyltoluene o-ethyltoluene p-ethyMoluene 1,2,3,5-tetramethylbenzene



Biogenic Hydrocarbons Previously Studied

OH
=
Acyclic | | Oxygenated |
Triolefins , | Terpenes | OH

Myrcene Ocimene Linalool Terpinene-4-ol
Bicyclic /§5
Olefins
A3-Carene a-Pinene B-Pinene Sabinene
Cyclic : :|
Diolefins
Limonene o-Terpinene y-Terpinene Terpinolene

| 7
Sesquiterpenes S_%;

p-Caryophyflene a-Humulene



Cyclic structures have higher yields than open chain compounds

;%éaﬁ%g 0 Q

A3-Carene o-Pinene B-Pinene Sabinene

Myrcene Ocimene
a-Terpinene y-Terpinene Limonene Terpinolene
y-Terpinene
Linalool OH

Terpinene-4-ol



Sesquiterpenes have highest yield due to carbon number

| 7
C15C24 %} vs. C,,C,, monoterpenes
N

B-Caryophyllene a-Humulene

Location of double bonds and number of carbon
in secondary ring important: photooxidation

4$> >Y@%>4§j

B-Pinene A3-Carene Sabinene a-Pinene

As well as type of oxidant: ozone reaction

D> 0> 0> 0

a-Pinene A3-Carene p-Pinene



oOH

Products: A, + A, +

-~ Products: B, + B, +

Products: C, + C, +

Dark reaction
OH

A

2 - BUOH as «OH
scavenger

Photooxidation:
subtract out
O, and ¢NO,

contributions

N205 —NO2 + ¢NO3
Dark reaction



Individual Oxidant Contribution to Aerosol
Formation

0]
o

o
o

'm OH and other
Dos3

~ ONO3

o
|

IS
o
|

-
o O
|

Oxidant Contribution to Organic
Mass (%)
3

A3-Carene

C, (ppb) 72.5
NO, level (ppb) 128

M, (ng/mp 546
Yield 14.2%

104.6
162
99.7
17.9%

o-Pinene

72.4 948
203 124

2i.1 393
5.9% 1.7%

B-Pinene
323 | 790
135 153
20.4 109.4
11.8% | 26.0%

Sabinene
34.9 83.3
102 199
14.8 65.2
6.4% | 14.5%




* Nucleation-no seed
— RH<2%
— RH=50%
* Dry seed
_RH<2%  (NH,),(SO,), (NH,)HSO,
~RH=50%  (NH,),(SO,)

» Aqueous seed
~RH=50%  (NH,),(SO,), (NH,)HSO,, CaCl,




03 . Comparison of SOA Yields at Low Relative Humidity

a-pinene dark ozonolysis with
0.25 hydroxyl scavenger present
(T=301 K)
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Yield
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Yield
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a-pinene dark ozonolysis with hydroxyl
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Yield (%)
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Overall Goals of the Experiments

» Continue establishing aerosol forming potential of atmospheric organics
» Provide data to test theoretical models of SOA formation and aerosol
thermodynamics

Phase 1

« Effects of RH, inorganic salt seed composition, and seed state
(dry/aqueous) on SOA yield through ozone oxidation of hydrocarbons

» Characterize the composition of the aerosol phase (functional groups,
OC/OM, etc.)

Phase 2

» Can aerosol yield for a series of similar hydrocarbons be correlated with
aspects of hydrocarbon structure, such as location of double bonds and
ring size?



Analytical Instruments Used

Samples from two 28-m? indoor Teflon chambers are drawn to be analyzed by:

Instrument Analytical Information On/off-line | Sampled Chamber
DMA - Size distribution On-line Both (dedicated)
(Differential Mobility Analyzer) - Number, mass, and volume

concentrations

H-TDMA Hygroscopicity of the aerosol On-line Both (switching)
(Humidity Tandem DMA)
CNC Number concentration (>3 nm On-line Both (dedicated)
(Condensation Nucleus Counter) and >10 nm)
GC-FID Reactant hydrocarbon On-line Both (switching)
(Gas Chromatograph) concentration
AMS Aerosol phase composition On-line High-conc. run only
(Aerosol Mass Spectrometer) and mass distribution
CIMS Gas phase composition On-line High-conc. run only
(Chemical Ionization Mass Spec.)
Ozone/NO, analyzers Ozone, NO, concentrations On-line Both (dedicated)
Filter Samples Off-line High-conc. run only

- GC/MS and LC/MS
- OC analysis

- Aerosol phase composition
- OM/OC ratio for organics




Experimental Protocols (Phase 1)

Phase 1: Effect of RH and seed on gas-particle conversion and aerosol yield

React parent HC’s with ozone in a dark chamber. Each experiments uses a

different combinations of the following parameters:

Parent HC (3):

Initial HC concentration (2-4):

Chamber RH/Seed state (3):

Seed species (4):
Temperature (2):

O - o
cyclohexene, 1-tetradecene, methylene-cyclopentane
{100, 200 ppb} or
{50, 100, 200, 400 ppb}
dry chamber / dry seed
humid chamber < RHD / dry seed
humid chamber > RHD / aqueous seed
(NH,),S0O,, NH,HSO,, CaCl,, NaCl *

20 YC, 30 YC




@ @ ® @ 6, ©)

3 compounds 2 temperatures 2 seed states 1-2 RH’s 1-4 seed types 2-4 HC conc.
cyclohexene — T =20 C — Dry seed —» Dry chamber S (NH,),SO, — 50 ppb
§ 100 ppb
200 ppb
400 ppb

Humid < RHD ——» (NH,),SO, ——» 100 ppb

200 ppb
ok

Aqueous seed —» Humid > RHD — (NH,),SO, — 100 ppb

200 ppb
NH,HSO,

CaCl,

T=30C ——
NaCl

I-tetradecene #* Cocker et al. (2001): seed type does not affect SOA if chamber is dry

** Cocker et al. (2001): water uptake does not depend on seed type if seed is undeliquesced
methylene-

cyclopentane ** Argument from curves in Cocker et al. (2001): yield curve shape stays the same,

so we will not need as many points to map out entire curve for every condition.
We will use 2 points to get the scaling.

/1/



Experimental Protocols (Phase 2)

Phase 2: Chemistry of the reactive organic gas

Perform a series of HC + ozone experiments in a dark chamber with dry
environment and one type of seed to study how the aerosol yield varies with
HC structure. Parameters to vary:

e Parent HC (8):
- Effect of number of carbon atoms: @ @ @ O
- Steric effect: é (5

- Effect of double bond position: & 55

- Other possibilities: effect of HC shape, effect of ring-breaking vs.
staying intact, effect of conjugated double bonds, etc.
 Initial HC concentration (3)
e Temperature (2)






