Identification of molecular mechanisms of stress-resistance in turkeys to improve meat quality

Gale Strasburg, Ph.D.

Department of Food Science and Human Nutrition Michigan State University USDA-CREES: 2005-01326

Pale, Soft, Exudative (PSE) Meat

- A meat quality defect, originally observed in pork
- PSE meat characteristics: Abnormally light color Flaccid texture Poor water holding capacity

- Higher frequency in growth-selected animals
- Higher frequency in summer season

Hypothetical Mechanism for the Development of PSE Turkey Meat

Calcium Regulation in Avian Skeletal Muscle

Factors affecting Ca²⁺ regulation

- Primary structure of RYR changed by point mutation or alternative splicing
- Presence of RYR channel activator: halothane, caffeine, thyroid hormone
- RYR and SERCA expression regulated by the thyroid hormone status

Thyroid Hormone Regulation

Normal	Increased basal metabolic rate, O_2 consumption and heat production		
Hypothyroidism	Sensitive to cold		
Hyperthyroidism	Sensitive to heat		

Thyroid hormone levels could influence
Ca²⁺ homeostasis in muscle by:
affecting RYR and SERCA *activity*

- affecting RYR and SERCA expression

- Investigate thyroid hormone levels influenced by heat stress and the influence of thyroid state on expression and functional properties of RYR
- Investigate alternatively spliced α RYR transcript variants through heat stress treatment
- Evaluate post-heat-stressed turkey meat quality

Turkey resources: RBC2 (genetic unimproved, random bred line) Commercial (growth-selected line)

Experimental Design

Turkeys: RBC2 line- M & F Commercial line- M & F

Heat stress condition: 12 hours of 95°F, 12 hours of 80°F

Heat stress treatments:

Group	Control	1D	3D	5D	Rest
Duration (h)	0	24	72	120	168 stressed 168 rest

Sample collections:

blood (thyroid hormone-T3 & T4) breast muscle (RNA, RYR purification) breast muscle (pH_{15 min}, color-L*, drip loss, cook loss, marinade uptake)

Thyroid hormone and meat quality in response to heat stress

- Thyroid hormone response in heat-stressed birds: commercial birds fluctuated.
 RBC2 birds were stable until stressed for 5D;
- Meat quality in heat-stressed birds: most noticeable in cook loss & marinade uptake

Thyroid hormone and meat quality in response to heat stress

• Variations of cook loss and marinade uptake followed closely to the variations of T_3 in birds of both lines

Commercial line

Thyroid hormone and meat quality in response to heat stress

• Variations of cook loss and marinade uptake followed closely to the variations of T_3 in birds of both lines

Conclusions

- Growth selection did not have a negative impact on meat quality, but meat quality from commercial birds was less consistent when birds were heatstressed
- Birds with stable thyroid hormone response to heat are likely to produce consistent fresh turkey meat and further processed turkey products.

