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Modelling pattern formation and morphogenesis are fundamental prob-
lems in biology. One useful approach involves lattice gases (LGCA) sys-
tems. This paper reviews several stochastic lattice gas models for pattern
formation in myxobacteria fruiting body morphogenesis and vertebrate
limb skeletogenesis.

The formation of fruiting bodies in myxobacteria is a complex mor-
phological process that requires the organized, collective effort of tens
of thousands of cells. Myxobacteria morphogenesis provides new insight
into collective microbial behavior since morphogenic pattern formation
is governed by cell-cell interactions rather than of chemotaxis. An model
is described for the aggregation stage of fruiting body formation.

Limb bud precartilage mesenchymal cells in micromass culture, un-
dergo chondrogenic pattern formation which results in the formation of
regularly-spaced “islands” of cartilage analogous to the cartilage primor-
dia of the developing limb skeleton. An LGCA model is described for this
process based on reaction-diffusion coupling and cell-matrix adhesion.

1. Introduction

Two main approaches have characterized mathematical modeling pattern
formation (generation of specific arrangements of cells or other biolocgical
agents) and morphogesesis (generation of 3D forms from such agents) in
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developmental biology. In the first, insight into basic mechanisms is sought
by studying models based on simplified biological assumptions about cell
behavior. The second approach involves attempts to build more compre-
hensive models and compare results of numerical simulations and biological
experiments in detail. In this paper we will demonstrate both approaches
by describing the modeling aggregation in Myxobacteria and the formation
of chondrogenic patterns in limb cell cultures.

Mathematical and computational models of biological systems are by
necessity extreme simplifications of a biological system. The purpose of a
model is to capture the relevant aspects of a system being studied. Thus,
a model is validated by its ability to capture the relevant behavior and
make new predictions which may be empirically confirmed. Many examples
of mathematical modelling applied to biological problems can be found in
refs. 21,27.

Models of biological problems fall into two categories: continuous models
which use families of differential or integro-differential equations to describe
“fields” of interaction and discrete models in which space, time or state may
be discrete. Models may be deterministic or stochastic.

In biological applications, continuous models have been used to describe
oceanic microbial cycles 4, microbial growth dynamics 53, the spread of
species through an ecosystem 57, continuous biofilms 62, and periodic fun-
gal or microbial structures 26. (Many other examples of the use of PDEs in
biological applications can be found in refs. 32,36,49.) Equations in contin-
uous models often describe fields of concentration or force and long-range
interactions. For example, cells are often modeled as a density field and
long-range chemotaxis is modeled as cell motion in response to a chemical
field gradient.

Discrete models describe individual (microscopic) behaviors. They they
are often applied to micro-scale events where a small number of elements
can have a large (and stochastic) impact on a system. For example, while
many periodic growth patterns can be modeled using continuous methods,
modeling periodic growth patterns which depend sensitively on substrate
concentration are best modeled with discrete methods 64 including cellular
automata (CA). The CA models and many others are reviewed in ref. 20.
Reference 3 also provides a good review of cellular automata applications
in biology. 52 describes a cellular automata model for cell dispersion based
on reaction and transport.

In lattice gas models, particles move freely on a spatial grid and undergo
state changes when they collide. These state changes can be stochastic or



July 13, 2004 21:58 WSPC/Trim Size: 9in x 6in for Review Volume bio˙pattern˙format˙7˙14

Biological Lattice Gas Models 3

deterministic. Lattice gas models for fibroblast aggregation, ant trail orga-
nization and topographical neural maps are described in ref.20. In classical
lattice gases, there is an exclusion rule in which no two particles with the
same orientation may occupy a node. Biological lattice-gas-based models
may relax this exclusion principle.

While CA models are discrete in space, time and state, there are many
approaches which include a combination of continuous and discrete model
elements. For example, discrete subunits may interact with a continuously
defined “field” (see, amongst others, 30). Coupled map lattices are discrete
in space and time but have a continuous state space. Numerical methods
commonly used to solve PDEs such as finite difference and finite elements
methods are coupled map lattices. Lattice Boltzmann models are also cou-
pled map lattices. Models in which state and space are discrete but time is
continuous are called interacting particle systems.

This paper reviews several stochastic lattice gas cellular automata
(LGCA) models for biological pattern formation. Section 2 provides general
definition for LGCA and discusses the suitability of these models for de-
scribing biological pattern formation related to morphogenesis. LGCA are
especially suited for modeling biological problems due to their versatility
and the ease in which they may be defined and forward-evaluated. Their
disadvantages are that they may require significant computer resources and
sometimes are difficult to analyze.

Developmental morphogenesis is the molding of living tissues during
development, regeneration, wound healing, and disease. It is a complex
phenomenon involving gene regulation, changes in cell shape, cell-cell in-
teractions, and cell division, growth and migration. Representing cell shape
realistically is an important problem in modeling morphogenesis. An orig-
inal method of cell representation consistent with lattice gas models is de-
scribed in Subsection 3.2. In this method, particles may interact over a
biologically-relevant geometric region but may be moved without violating
the exclusion principle. This “template-based” approach is an efficient and
generally applicable method for representing cells of any size, shape and
orientation. Subsection 3.3 describes the cellular Potts model of Glazier
and Graner 23 which is a more sophisticated representation of cell shape.

Our general approach is demonstrated in Sections 4 and 5 by describing
modeling aggregation stage of fruiting body formation in Myxobacteria
and pattern formation of precartilage cells in chick limb cell cultures. Each
section includes a discussion of the choice and justification of the local
rules for state evolution as well as an analysis of the novel properties of the
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models and comparison with experimental data.

2. Lattice Gas Models

With the availability of new computational techniques in combination with
large scale computing facilities, in silico experiments are becoming more
and more an important option, in additional to in vivo and in vitro ex-
periments, to study pattern formation in biological systems. Lattice gas
cellular automata (LGCA) have become a rather popular and extremely
flexible modelling tool in this context. (For a review see 3,20,16,40.)

Cellular automata (CA) consist of discrete agents or particles, which
occupy some or all sites of a regular lattice. These particles have one or
more internal state variables (which may be discrete or continuous) and a
set of rules describing the evolution of their state and position. Both the
movement and change of state of particles depend on the current state of the
particle and those of neighboring particles. Again, these rules may either
be discrete or continuous (in the form of ordinary differential equations
(ODEs)), deterministic or probabilistic. Updating can be synchronous or
stochastic (Monte-Carlo).

In 1973 Hardy, de Passis and Pomeau 25 introduced models to describe
the molecular dynamics of a classical lattice gas (hence “Hardy, Passis and
Pomeau” (HPP) models). They designed these models to study ergodicity-
related problems and to describe ideal fluids and gases in terms of abstract
particles. Their model involved particles of only one type which moved on
a square lattice and had four velocity states. Later models extended the
HPP in various ways and became known as lattice gas cellular automata
(LGCA). LGCA proved well suited to problems treating large numbers of
uniformly interacting particles.

LGCA employ a regular, finite lattice and include a finite set of particle
states, an interaction neighborhood and local rules which determine the
particles’ movements and transitions between states 16. LGCA differ from
traditional CA by assuming particle motion and an exclusion principle. The
connectivity of the lattice fixes the number of allowed velocities for each
particle. For example, a nearest-neighbor square lattice has four non-zero
allowed velocities. The velocity specifies the direction and magnitude of
movement, which may include zero velocity (rest). In a simple exclusion
rule, only one particle may have each allowed velocity at each lattice site.
Thus, a set of Boolean variables describes the occupation of each allowed
particle state: occupied (1) or empty (0). Each lattice site can then contain
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from zero to five particles.
The transition rule of an LGCA has two steps. An interaction step up-

dates the state of each particle at each lattice site. Particles may change
velocity state, appear or disappear in any number of ways as long as they
do not violate the exclusion principle. For example, the velocities of collid-
ing particles may be deterministically updated, or the assignment may be
random. In the transport step, cells move synchronously in the direction
and by the distance specified by their velocity state. Synchronous trans-
port prevents particle collisions which would violate the exclusion principle
(other models define a collision resolution algorithm). LGCA models are
specially constructed to allow parallel synchronous movement and updat-
ing of a large number of particles 16.

LGCA can model a wide range of phenomena including the diffusion
of ideal gases and fluids 33, reaction-diffusion processes 10 and population
dynamics 51. For details about CA models in physics see 11 and specifically
for lattice-gas models see 65,7. In their biological applications LGCA treat
cells as point-like objects with an internal state but no spatial structure.
Because living cells function as agents interacting according to set rules,
LGCA particularly suit modeling collective cellular behaviors 2,12,13,18,19.

Extensions of LGCA used in biological applications; “biological LGCA”
20,2 may relax the exclusion principle or incorporate novel modelling ele-
ments. The lattice-gas-based model for limb chondrogenesis described in
Section 5 does relax the exclusion principle since more than one particle
may diffuse in the same direction from a node at a single timestep.

To summarize, LGCA are inherently simple; their discrete nature makes
them straightforward to implement by computer and they lend themselves
to agent-based approaches which reflect the intrinsic individuality of cells.
Local rules can be developed from a microscopic level phenomenon under-
standing which is direct and intuitive. LGCA provide an opportunity to
study interactions and behaviors which are difficult to formulate as contin-
uum equations.

General limitations of LGCA are: the difficulty of going from qualitative
to quantitative simulations since backward evolution is difficult; the arti-
ficial constraints of lattice discretization; and the difficulty in interpreting
the simulation outcomes. The patterns that may emerge from even simple
rules can be so rich that determining whether the model has genuinely cap-
tured the relevant biological mechanisms is difficult. Also, in many cases
there is no faster way to predict the outcome of a simulation than to run the
simulation 64. Another major problem is detecting and avoiding artificial
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behavior 16, (for example, ‘checkerboard’ patterns) which result from the
overly simple geometry or local rules.

3. Representing Cell Shape

In this section we describe several models for representing cell shape used in
cell alignment, cell migration and cell aggregation. These are fundamental
to the problem of morphogenesis.

3.1. Morphogenesis

Understanding morphogenesis is a significant and challenging biological
problem. Morphogenesis is a general phenomenon describing the change
of living tissues. The final morphological pattern achieved during devel-
opment, regeneration, wound healing, or disease is the product of spatio-
temporal feedback between interacting cells and the expression of their
genes.

Although morphogenesis is highly complex, it appears to be guided by a
number of common principles. Cell shape is important during morphogen-
esis because cells may lengthen or shorten, round up or elongate. Changes
in cell shape may precede or follow changes in gene expression. Also, cell
shape greatly affects the interaction of cells in cases where cells interact
via specialized structures. For example, Myxobacteria are very elongated
and interact by “C-signaling” only when their cell poles are in contact. Cell
alignment is also an important factor in cell interaction. Sub-groups of cells
often align within tissues. Cells with different orientations within a tissue
may differentiate into different cells. For example, an ingrowing epithelial
bud of the Wolfian duct triggers the formation of secretory tubules in the
kidneys of mice 63. Development of the Drosophila retina is initiated by
a morphogenetic wave as furrow develops across the eye disc epithelium
44. During morphogenesis, tissues may fold and invert which makes the
problem of alignment more complex. Finally, morphogenesis requires the
collaborative interaction and movement of many cells, so migration and
aggregation are also important elements in morphogenesis.

3.2. Template-based Model

In classical LGCA each particle (cell) is dimensionless and is represented as
a single occupied node on a lattice. Cells without dimension are untenable
for a sophisticated model of morphogenesis. Cells may be very elongated and
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cell polarity determines movement and interaction. Also, a realistic model
of cell overlap and cell stacking is needed since interaction may occur only
at specific regions of highly elongated cells and cell density is a critical
parameter throughout morphogenesis.

Reference 8 suggested one way of resolving the problem of stacking
by introducing a semi-three-dimensional lattice where a third z-coordinate
gives the vertical position of each cell when it is stacked upon other cells.
Paper 60 has introduced a model of rod-shaped cells that occupy many
nodes and have variable shape in her cellular automata model of streaming
and aggregation in myxobacteria. These two models are not classical lattice
gases since they do not incorporate synchronous transport along channels.
In Subsection 3.2.1 we describe a novel way of representing cells which
facilitates modeling variable cell shape, cell stacking and incomplete cell
overlap while preserving the advantages of classical lattice gases; namely,
synchronous transport and binary representation of cells within channels
(e.g., a ‘0’ indicating an unoccupied channel and a ‘1’ indicating an occupied
channel).

In a template-based model 1,2,3 cells are represented as (1) a single
node which corresponds to the position of the cell’s center (or “center of
mass”) in the xy plane, (2) the choice of occupied channel at the cell’s posi-
tion designating the cell’s orientation and (3) a local neighborhood defining
the physical size and shape of the cell with associated interaction neigh-
borhoods. The interaction neighborhoods depend on the dynamics of the
model and need not exactly overlap the cell shape. In the models for rip-
pling and aggregation, the size and shape of the cell are defined as a 3× `

rectangle, where ` is cell length. The cell width is greater than 1 to account
for interaction in the vertical y direction. As ` increases, the cell shape be-
comes more elongated. A cell length of ` = 30 corresponds to the 1 × 10
proportions of rippling Myxococcus xanthus cells 37. Representing a cell as
an oriented point with an associated cell shape is computationally efficient,
yet approximates continuum dynamics more closely than assuming point-
like cells. The cell stacking problem is also resolved, since overlapping cell
shapes correspond to cells stacked on top of each other. This cell repre-
sentation conveniently extends to changing cell dimensions and the more
complex interactions of fruiting body formation.
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3.3. Cellular Potts Model

The cellular Potts model (CPM) is a more sophisticated Monte Carlo model
in which a single cell consists of a domain of lattice sites. Cell volume and
shape are very realistically described with the CPM. Since each cell has a
different index, a CPM with Q states is also know as a Q-state Potts model.
In the early 1980s, Anderson, Grest, Sahni and Srolovitz used the Q-state
Potts model to study cellular pattern coarsening in metallic grains 56.

The original Potts model dates from 1952 54 as a generalization of the
Ising model to more than two spin states. Glazier and Graner 23 generalized
the Potts model to the CPM to study the sorting of biological cells. In the
CPM, transition probabilities between site states depend on both the ener-
gies of site-site adhesive and cell specific non-local interactions. The CPM
represents different tissues as combinations of cells with different surface
interaction energies and other properties. It describes other materials, like
the extracellular matrix (ECM), as a generalized cell.

Cell adhesion, an example of local interaction, is essential to multicel-
lularity. Experimentally, a mixture of cell types with different types and
quantities of adhesion molecules on their surfaces will sort out into islands
of more cohesive cells within lakes of their less cohesive neighbors. Even-
tually, through random cell movement, the islands coalesce 22. The final
patterns, according to Steinberg’s Differential Adhesion Hypothesis (DAH)
59, correspond to the minimum of interfacial and surface energy. The DAH
assumes that cell sorting results entirely from random cell motility and
quantitative differences in the adhesiveness of cells and that an aggregate
of cells behaves like a mixture of immiscible fluids. In vitro 6 and in vivo
experiments 24 have confirmed the soundness of the analogy.

In this model, cellular patterns result from competition between a min-
imization of some generalized functional of configuration, e.g., surface min-
imization, and global geometric constraints. The model starts from a free
energy, the Potts Hamiltonian H:

H =
∑

~i,~j

[1− δσ(~i),σ(~j)], (1)

where σ has Q different values and δ is the coupling energy between two
unlike indices. The summation is over neighboring lattice sites ~i and ~j. At
each time-step, a lattice site is chosen at random and a new trial index is
also chosen at random from one of the other Q − 1 spins. The probability
of changing the index at the chosen lattice site to the new index is:
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P =
{

1 ∆H ≤ 0
exp(−∆H/T ) ∆H > 0 ,

(2)

where ∆H = Hafter−Hbefore denotes the difference between the total energy
before and after the index reassignment, and T is the temperature. This
approach has been recently used for modeling development of a chicken
limb bud 30.

4. Model of Aggregation in Myxobacteria

Myxobacteria are one of the prime model systems for studying cell-cell
interaction and cell organization of a uniform cell type preceding differen-
tiation. Myxobacteria are social bacteria which swarm, feed and develop
cooperatively 35. When starved, myxobacteria self-organize into a three-
dimensional fruiting body structure. Fruiting body formation is a complex
multi-step process of alignment, rippling, streaming and aggregation that
culminates in the differentiation of highly elongated, motile cells into round,
non-motile spores. (See Fig. 4, from 41 with permission.)

Fig. 1. Snapshots during the fruiting body formation of M. xanthus at 0h, 12h, and
61h.

A successful model exists for the fruiting body formation of the eu-
karyotic slime mold Dictyostelium discoideum 31,45,46. Understanding the
formation of fruiting bodies in myxobacteria, however, would provide a new
insight since collective myxobacteria motion depends not on chemotaxis as
in Dictyostelium but on contact-mediated signaling (see 17 for a review).

In response to adverse conditions, free-roaming myxobacteria form
multi-cellular aggregates called fruiting bodies. Aggregates range in size
between 10 and 1,000 µm and are composed of 104 to 106 cells 55. Within
fruiting bodies, myxobacteria cells differentiate into resistant myxospores.

During aggregation, myxobacteria cells are elongated with a 2:1 to 14:1
ratio (cells are typically 2 to 12 by 0.7 to 1.2 µm 55) and they move on
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surfaces by gliding along their long axis 9. Several hours after the onset
of aggregation, cells begin transmitting a membrane-associated signaling
protein called C-signal via their cell poles 37. Repeated C-signaling between
cells raises the level of C-signal by two signal amplification loops in the act
pathway. Increasing threshold levels of C-signal induce aggregation 58 and
sporulation respectively.

Canonically, models for bacteria aggregation (e.g. E. Coli 61 and Bacillus
subtilis 48,5) ,as well as amoebae aggregation (e.g. Dictyostelium discoideum
5,47), have been based on attractive chemotaxis (chemoattraction), a long
range cell interaction. Initialization of chemotactic signals plays an impor-
tant role in the initial position of aggregates and subsequent signaling biases
cell motion towards developing aggregates 61. In myxobacteria, however,
aggregates appear to form without the aid of chemotactic cues 17. Rather,
myxobacteria fruiting body development is organized by short-range cell-
cell interactions.

Computational models based on cell collisions, a non-chemotactic short-
range interaction, were first applied to explain myxobacteria rippling pat-
terns 28,8,43,2. A recent paper 29, has extended an earlier continuous model
for rippling to include myxobacteria aggregation.

Our model 1 is complementary to the continuum model 29, and focuses
on a two-stage aggregate formation via streams. This mechanism, based
entirely on local cell-cell interactions, accounts for both initialization and
formation of large stable aggregates in a two-stage process. First, aggregates
appear in random positions and cells join aggregates by random walk. Sec-
ond, the aggregates reorganize as cells redistribute by moving within tran-
sient streams connecting aggregates.

The model 2,1, of the type described in Section 3.2, is based on local
rules by which cells turn preferentially in directions that increase their level
of C-signaling.

Description of Local Rules

(1) Our model employs a hexagonal lattice with periodic boundary condi-
tions imposed at all four edges. Unit velocities are allowed in each of
the six directions.

(2) Cells are initially randomly distributed with density δ, where δ is the
total cell area divided by total lattice area.

(3) At each time-step, cells may turn 60 degrees clock-wise, 60 degrees
counter-clockwise or stay in their current direction. We use a Monte
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Carlo process to model turning probabilities which favor directions that
maximize the overlap of C-signaling nodes at the head of a cell with
the C-signaling nodes at the tails of other cells.

(4) During the transport step, all cells move synchronously one node in the
direction of their velocity by updating the positions of their centers.

Cells move on a hexagonal lattice with periodic boundary conditions
in all directions. Unit velocities (or channels) are allowed in each of the
six directions. Identical rod-shaped cells are modeled as 3 × 21 rectangles
and assume a cell size of 1× 7 µm. The model keeps track of the C-signal
exchange neighborhood of each occupied node which defines the possible
locations of head-to-end overlaps between C-signaling cells. The total C-
signaling neighborhood for each cell is fourteen nodes; seven at each cell
pole separated by one half a cell length from the cell center.

A cell first turns stochastically 60 degrees clock-wise or counter-
clockwise, or stays in its current direction. The model favors directions
that maximize the overlap of the C-signal exchange neighborhood at the
head of a cell with the C-signal exchange neighborhood at the tails of neigh-
boring cells. This rule causes cells to align, which is a simplification of the
hypothesis that alignment induces C-signaling which further induces cell
alignment. Then, all cells move synchronously one node in the direction of
their velocity by updating the positions of their centers.

4.1. Simulation Results

Cells aggregate in distinctive stages in our simulations. During the first
stage, cells turn from low density areas towards areas of slightly higher cell
density. Initially randomly distributed cells condense into small stationary
aggregates (Fig. 2 (a)). These aggregate centers grow and absorb immedi-
ately surrounding cells. Next, some adjacent stationary aggregates merge
and form long, thin streams which extend and shrink dynamically on their
own and in response to interactions with other aggregates (Fig. 2 (b)). In
each stream cells move head-to-tail in either direction along the stream.
These streams are transient and eventually disappear at later stages of the
simulation, leaving behind a new set of larger, denser stationary aggregates
which are stable over time (Fig. 2 (c)). Cells in a typical aggregate form an
annulus of aligned cells tangent to a hollow center (Fig. 2(d)).

Figure 3 shows the details of stream formation from two interacting ag-
gregates. Initial aggregates crowd as they grow. When the distance between
aggregates is less than one cell length, they begin exchanging cells, and the
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Fig. 2. Aggregation stages on a 500 × 500 lattice, which corresponds to an area of
2.8 cm2. Local cell density after (a) 200, (b) 900, and (c) 25,000 timesteps. Average
cell density is 10. The number of simulated cells is 39,507. The darker shade of gray
corresponds to higher cell density. (d) Directions of cell centers within a typical annular
aggregate.

Fig. 3. The stream formation from two adjacent aggregates. Panels left to right corre-
spond to 900, 1000, and 1200 timesteps, respectively. Lattice size is 128× 128.

cells reorganize into a stream. In contrast to stationary aggregates, cells
travel long distances in streams.

A stream is bi-directional, with cells flowing equally in both directions
along the stream. Given the end-to-end contacts required for C-signaling, an
infinitely long stream of cells flowing in two directions is obviously a stable
arrangement. However, there are a fixed number of cells within simulation
streams, and thus streams are of finite length. Cells at the end of streams
do not C-signal in the open space, hence will diffuse without any preferred
direction. Although randomly diffusing cells often find their way back into
the stream, some cells escape away from the stream. Over time, the stream
shortens as it gradually loses cells. Fig. 4 (c) shows the path of a simulation
stream in area-density phase space as it stochastically loses cells over time.
A stream will lose cells more quickly if there is an aggregate near the end
of the stream to absorb cells diffusing at the ends of the stream.

The eventual fate of a stream is to become a small stable aggregate. This
occurs because a shortened stream is more sensitive to the noise caused by
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Fig. 4. Area-density phase diagram for (a) 186 stationary aggregates identified within
two simulations over 25000 timesteps, (b) an initially small aggregate to which cells are
slowly added over 1000 timesteps, and (c) an artificially constructed aggregate (star)
over 600 timesteps. Relaxation of perturbation data in (b) and (c) are plotted every 10
timesteps on top of (a).

the cells freely diffusing at each end of the stream. After an abrupt and
brief disordered transient state, the stream reorganizes into an aggregate.
The area-density phase diagram Fig. 4 enables a prediction of the final
aggregate shape based on the number of cells within the stream.

This diagram was obtained by plotting the areas and densities of every
stationary aggregate which appeared over the course of two simulations.
These aggregates fall within a narrow range in the area-density phase di-
agram shown in Fig. 4 (a), illustrating that for an aggregate of a given
cell number, its area and density is prescribed within a narrow attractor
region. In 1 the stability of this attractor region is analyzed with respect to
two kinds of noise: 1) external noise, including those in the initial random
distribution of cells and our perturbations to the system; 2) internal noise,
which originate from the stochastic nature of the cell’s turning process.

In particular, a stable aggregate is perturbed in two ways. First, an
adiabatic perturbation is studied by gradually adding cells to an initially
small, isolated aggregate. As cells are slowly added, the aggregate increases
in area and density while remaining within the attractor region (Fig. 4(b)).
Second, a non-adiabatic perturbation is introduced by placing two duplicate
aggregates in close proximity of each other, which creates a new aggregate
with double the initial area and the same density. Over 600 timesteps, this
aggregate gradually reorganizes so that it has an area and density within the
stable region (Fig. 4(c)). Results from both kinds of perturbations suggest
that this attractor region is a stable attractor in the area-density phase
space of aggregates.

The area-density phase diagram not only prescribes the region of stable
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aggregates, it also helps ones understanding of the formation of streams.
When two stationary aggregates interact, the area of interacting cells in-
creases at the moment of interaction while the density remains approx-
imately the same. Thus, the newly formed aggregate lies off the attrac-
tor region. Large aggregates with high cell density and area will fuse and
quickly form a new stationary aggregate as in Fig. 5. Smaller aggregates
have a lower cell density and lower cell C-signaling levels, so when small
aggregates fuse, they have a longer transient stage and are more likely to
form a stream. Fig. 3 shows the formation of a stream from two interacting
aggregates.

Fig. 5. Two large aggregates fuse via a submerged stream. Panels left to right corre-
spond to 19000, 24000 and 26000 timesteps on a 128× 128 lattice, respectively.

The model reproduces the unique structures of several Myxobacteria
fruiting bodies. In Myxococcus xanthus, the basal region of the fruiting
body is a shell of densely packed cells which orbit both clock-wise and
counter-clockwise around an inner region only one-third as dense. A mag-
nified picture of the cell centers of a typical aggregate in simulations show
that cells are arranged in a dense, concentric layer tangent to a relatively
low-density inner region (Fig. 2 (d)) and cell tracking shows that cells orbit
either clockwise or anti-clockwise along the periphery of the orbit. Further,
aggregates in our simulation often form in clusters of two or three closed or-
bits while in Stigmatella erecta, several fruiting bodies may form in groups
and fuse 55.

In experiments, one Myxobacteria aggregate has been observed to mys-
teriously grow as an adjacent aggregate disappears 34. Our simulations offer
a mechanism for this process: a stream may form connecting two adjacent
aggregates and, following a C-signaling line of cells, cells stream from the
smaller aggregate to the larger aggregate. Experimentally, these streams
may not be visible if the density threshold for viewing cells is greater than
the density found within the stream.
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5. A Model for Chondrogenic Patterning

Chondrogenesis is the development of cartilage, which is a tough flexible
tissue from which the skeleton of the limb and vertebral column is ini-
tially established during embryonic development. The cartilage skeleton of
the limb develops as a series of spot-like and bar-like condensations of the
precartilage cells. In these condensations the cells (also called ”mesenchy-
mal” cells), which are initially dispersed in a gel-like medium called the
extracellular matrix (ECM), move closer to one another, making transient
contact, which triggers their differentiation into cartilage. In species with
bony skeletons, such as birds and mammals, the cartilage skeleton serves
as a structural template which is later replaced by bone. In low volume,
high density (”micromass”) cultures of precartilage mesenchymal cells, de-
pending on the culture medium and the limb-type origin of the cells (wing
buds vs leg buds), patterns of condensations form which may be spot-like,
stripe-like, or fully confluent (sheet-like).

This section presents a stochastic lattice gas model for the formation
of patterns of mesenchymal condensations in micromass cultures. This in
vitro system provides a simplified, experimentally tractable model for skele-
tal patterning in the vertebrate limb. Its quasi-2D geometry suits computa-
tional modeling particularly well (see Refs. 39,40 for details). For the com-
putational model to be manageable one must select key processes from the
hundreds of cell-cell and cell-gene product interactions in the limb. Our
choice for the ”core” set of patterning interactions described below comes
from experiments performed on the limb-forming cells of several species.

Chondrogenenesis in micromass culture can be described as follows.
Over 36-72 hours in a controlled experiment, a homogeneously distributed
population of undifferentiated limb bud mesenchymal cells cluster into
dense islands, or “condensations,” of aggregated cells 42. The roughly
equally spaced patches of approximately uniform size are reminiscent of
the patterns produced by the classical Turing reaction-diffusion mechanism.
The condensations develop concurrently with increases in extracellular con-
centrations of a cell-secreted protein, fibronectin, a non-diffusing extracellu-
lar matrix macromolecule which binds adhesively to cell surface molecules,
including receptors known as integrins, which can transduce signals intra-
cellularly. The limb cells also produce the diffusible protein TGF–β, which
positively regulates its own production as well as that of fibronectin 50. In
what follows, we describe a model for the production of fibronectin and sub-
sequent limb bud patch formation using an LGCA-based reaction–diffusion
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process having TGF-β as the activator but with an unknown inhibitor.

5.1. Computational Model

Our computational model contains three components.
First, we model cells as occupied nodes of a square lattice (i.e., a rect-

angular grid) whose default behavior is random walk diffusion (analogous
to Brownian motion). We describe the diffusion of cells and other diffusing
agents on the lattice, below. We assume all cells are identical.

Second, we simulate on the lattice a cell-driven process that depends
on the interaction between two molecular species: a diffusible activator,
A, which we identify with TGF-β in the developmental model, and an
inhibitor, B, which we identify with the laterally-acting inhibitory activity
in the developmental model. For the purpose of the computational model we
make the assumption that B is a diffusible molecule, with a faster diffusion
rate than A. Since cells produce these molecular species, only nodes of the
lattice that contain cells produce morphogens.

Third, when cells encounter threshold levels of activator, they respond
by producing a secreted, but otherwise immobile, molecular species to which
cells attach. We term this substrate adhesion molecule (SAM) and identify
it with fibronectin in the developmental model.

Our simulation defines a “morphogenic domain” on a square n× n lat-
tice by an n× n matrix of 0s and 1s. A ‘0’ indicates a node outside of, and
a ‘1’ indicates a node belonging to, the morphogenic domain. The domain,
all portions of which need not be connected, and which can have holes,
can freely change at each time step and could be calculated by an auxil-
iary program. The only restriction on the domain is that it is a union of
overlapping rectangles of at least two lattice points in height and width.
In the current simulations, the morphogenic domain is the entire n × n

lattice. The components in the morphogenic domain of the lattice include
cells, activator molecules, inhibitor molecules and SAM molecules. We store
the concentration of each of these components as an n× n matrix of inte-
gers, where the matrix element (i,j) corresponds to the concentration of the
various components at the node (i,j).

Multiple cells and molecules of each type may occupy a node. Boundary
conditions for the morphogenic domain of the lattice are reflective, so that
particles (cells or molecules) cannot diffuse beyond the domain boundary.

We initially distribute a fixed number of cells uniformly on a disc-shaped
region centered in the morphogenic domain of the lattice. We set initial



July 13, 2004 21:58 WSPC/Trim Size: 9in x 6in for Review Volume bio˙pattern˙format˙7˙14

Biological Lattice Gas Models 17

densities of activator, inhibitor and SAM to zero. The total number of
cells remains constant throughout the simulation and cells secrete activator,
inhibitor, and SAM molecules. Activator and inhibitor molecules diffuse
through the morphogenic domain of the lattice at every time-step, while
SAM diffuses only during the time-step in which it is secreted.

Simulation results that depict cells, represent SAM-attached cells as
black pixels and unattached cells as gray pixels. This representation cor-
responds to the appearance of cells in micromass cultures visualized by
Hoffman Modulation Contrast microscopy, where the rounded cells in con-
densations appear darker than the flatter cells outside the condensations.

5.2. Simulation Results

In this section we demonstrate comparison between simulation and experi-
mental results by describing chemical peaks and cell clustering under stan-
dard “leg” conditions.

In living leg-cell cultures the initial cell distribution is homogeneous,
but, by the second day of growth, cells begin to form tightly packed focal
condensations. Spacing between condensations is irregular, with a measur-
able average distance between centers (i.e., the average peak interval). The
average condensation size generally increases in wing-cell cultures as the
condensations expand and often merge 42,15), whereas it stays fixed in leg-
cell cultures where most condensations remain discrete 14,15. The terminal
pattern in the leg cultures occurs around 3 days and in the wing cultures
around 4 days. The condensations differentiate fully into cartilage nodules
by day 6.

We initially explored the behavior of the CA model under conditions
that simulate those of a typical limb- cell micromass culture. The initial
micromass diameter in vitro is 3 mm. Although living cells in standard in
vitro experiments are plated at greater than confluent density (see. e.g., Ref.
15), a layer of ECM rapidly separates the cells. Our simulations assumed a
matrix to cell area ratio of 60:40, a cell diameter of 15 mm, and a “culture”
spot diameter of 120 cells. Thus we model cells with average density 1 on
a disk 120 nodes in diameter (see Figure 6).

As cells diffuse, one or more cells, or no cells, may occupy a node, so
the production of activator and inhibitor varies over the lattice. Peaks of
morphogen A and B begin to appear early in the simulation. Morphogen A
peaks are only 1 or 2 nodes in size and levels drop from over 1000 units in
a peak to zero units in immediately surrounding nodes (Figure 6a). Mor-
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Fig. 6. Simulation results for scaled concentrations of key variables compared to the leg
condensation pattern. (a) Morphogen A concentration, and (b) morphogen B concentra-
tion, after 4000 time-steps for control leg parameters; (c) Leg condensations visualized
by Hoffman Contrast Modulation optics after 72 hours. Actual diameter of the circular
culture is 3 mm (“low magnification view”); (d) Scaled SAM density after 4000 time-
steps for control leg parameters. Simulations correspond to a low magnification view.

phogen B peaks are larger in size and much more diffuse (Figure 6b). For
comparison, we show in vitro condensations at the scale of a full micro-
mass culture for the comparable experimental stage (Figure 6c). When the
level of morphogen A in the simulation reaches a threshold, the cells begin
to deposit SAM (Figure 6d). Cells stick to these SAM deposits and local
cell density increases. Activator, SAM and cell concentration peaks are all
co-local (compare Figure 7 d, e and f).

Comparison of the development of condensations in experiments and
simulations indicated that the period spanned by computational time-steps
1000-4000 corresponded to 50-72 hours in culture. In particular, the cell
density distribution after 1000 time-steps for the optimized parameters
qualitatively resembles precartilage condensations after 50 hours. During
the next 3000 times-steps the islands’ areas grow but their number remains
unchanged, as in experiments after 72 hours.

Simulated morphogen peaks, SAM deposits and cell clusters develop
in both time and space (Figure 7). The number of SAM deposits does
not increase between 1000 and 4000 time-steps, indicating that almost all
activator peaks form within 1000 time-steps. Activator peaks remain colocal
with SAM deposits. SAM clusters grow, however, and occasionally fuse over
4000 time-steps (compare Figure 7 b and e).
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Fig. 7. Simulation dynamics of activator concentrations, SAM accumulation, and cell
density over 1000 to 4000 time-steps for control parameters. (a) Morphogen A concen-
trations greater than threshold (1000 units), (b) SAM locations and (c) smoothed free
(gray) and stuck (black) cell locations after 1000 time-steps. (d) Morphogen A concentra-
tions greater than threshold (1000 units), (e) SAM locations and (f) smoothed free (gray)
and stuck (black) cell locations after 4000 time-steps. Simulation images correspond to
a high magnification view.)

The model was shown 39 to successfully determine a non-trivial pa-
rameter set that reproduces the number, size, and distribution of conden-
sations of the standard culture, and demonstrate the ability of this pa-
rameter set to produce qualitatively accurate simulations of cultures under
diluted, TGF-β-stimulated, reduced-inhibitor and fibronectin-transfected
conditions. Therefore, the model captures important aspects of develop-
ment.

Indeed, LGCA modeling as presented in 39, far from being a retro-
spective summary of existing experiments, is actually a parallel means of
experimentation on systems with partially characterized relevant variables
and parameters have been (e.g., chondrogenic patterning in vitro). It is
an efficient and cost-effective tool for homing in on the range of poten-
tial manipulations that can provide decisive tests of in vitro and in vivo
experimental models.
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