Multiferroicity on the triangular lattice

Michel Kenzelmann, ETH Zurich & Paul Scherrer Institute Gavin Lawes, Wayne Sate University Brooks Harris, University of Pennsylvania Goran Gasparovic, NIST, Gaithersburg Collin Broholm, Johns Hopkins University Art Ramirez, Bell Labs, Lucent Technologies Guillermo Jorge & Marcelo Jaime, Los Alamos Sungil Park, HANARO Center, Korea A. YA. Shaprio, L. A. Demianets, Shubnikov Institute, Moscow

Ferroelectricity in TbMnO₃

distorted perovskite structure space group Pbnm Mn³⁺ carries S=2

T. Kimura et al, Nature 426, 55 (2003)

ferroelectric below 27K direct coupling to magnetic field observed

Magnetic structure of TbMnO₃

M. Kenzelmann et al, Phys. Rev. Lett. 95, 087206 (2005)

spiral phase breaks inversion symmetry

Polar axis from magnetic order

$$\mathcal{H} = \sum_{\alpha\beta\gamma,\mathbf{q}} a_{\alpha\beta\gamma}(\mathbf{q}) M_{\alpha}(\mathbf{q}) M_{\beta}(-\mathbf{q}) P_{\gamma}(0) .$$
 Trilinear Coupling of M and P is allowed

P has to transform as $M_{\alpha}(q) M_{\beta}(-q)$

Representational Analysis: M order parameters transform to one of the four irreducible representations in TbMnO₃: $\Gamma_2 + \Gamma_3$

Electric polarization is only allowed along the c-direction as observed (P has to be even under 1 & m_{yz} and odd under 2_y & m_{xy})

M. Kenzelmann et al, Phys. Rev. Lett. 95, 087206 (2005)

Microscopic origin for ferroelctricity

polarization from covalent bond of cation/anion

→Covalent bonds preclude coexistence between magnetism and ferroelectricity

- 1) orthorhomobic RMnO₃
- 2) hexagonal RMnO₃
- 3) RMn_2O_5
- 4) $Ni_3V_2O_8$
- 5) MnWO₄
- 6) $LiCu_2O_2$

9)

- 7) CuFeO₂/CuFe_{1-x}Al_xO₂
- 8) RbFe(MoO₄)₂

→ New mechanism: ferroelectricity from long range magnetic order

RbFe(MoO₄)₂ Crystal Structure

- 2D equilateral triangular lattice in trigonal crystal structure P-3
- Fe^{3+} carries "classical" S = 5/2
- spins interact via oxygen superexchange paths
- interplane frustration due to several nearest and next-nearest exchange paths

Antiferromagnetic order due interplane couplings

unpublished

Incommensurate AF order along c-axis due to diagonal interplane interactions observed with single-crystal and powder neutron diffraction

 \rightarrow stacked 120° structure as ordered ground state, ordered moment is $3.9\mu_B$ (about 80% of the available moment)

Inelastic neutron scattering from spin waves

Well-defined spin waves are observed in the ordered phase of $RbFe(MoO_4)_2$

In-plane spin anisotropy makes RbFe(MoO₄)₂ a XY-like 2D triangular lattice

Ferroelectricity in RbFe(MoO₄)₂

M. Kenzelmann et al, Phys. Rev. Lett. 98, 267205 (2007)

G.A. Jorge et al, Physica B 354, 297 (2004).

- direct transition from a disordered to a multiferroic state
 magnetic field suppressed
- ferroelectric polarization
- ferroelectric polarization perpendicular to spiral plane
- temperature dependence of

$$P_c \sim M^2$$

Magnetic inversion symmetry breaking on the triangular lattice

two chiral order paramaters

No inversion center for the "120° structure", but inversion center for commensurate phase

Generation of a polar axis on the triangular lattice

 $\sigma^{(1)} = (2.16(3) + i0.197)$ $\sigma^{(2)} = (-1.251 - i1.724)$ $|\sigma^{(1)}|^{2} = 2.17(4)$ $|\sigma^{(2)}|^{2} = 2.13$ $\sigma^{(1)} = (1.09(4) + i1.85)$ $\sigma^{(2)} = (1.09(4) + i1.94(4))$ $|\sigma^{(1)}|^{2} = 2.15(3)$ $|\sigma^{(2)}|^{2} = 2.11(9)$ $\sigma^{(1)} = 3.9(5)$ $\sigma^{(2)} = 0$

RbFe(MoO₄)₂ antiferromagnetic 12 $O = (1/3, 1/3, a_{-})$ μ₀ *H* (*T*) || [1 -1 0] paraelectric+antiferromagnetic $O = (1/3 \ 1/3 \ 1/3)$ $Q=(1/3, 1/3, q_{-})$ paraelectric + ferroelectric+antiferromagnetic paramagnetic 0.50 0.75 1.25 0.25 0.00 1.00 T/T_N two chiral order paramaters $\sigma^{(1)}$ $\boldsymbol{\sigma}^{\!(2)}$

Brooks Harris' Landau theory:

$$F = \frac{1}{2}\chi^{-1}P^{2} + K\left[\left|\sigma^{(1)}(q_{z})\right|^{2} - \left|\sigma^{(2)}(q_{z})\right|^{2}\right]P_{c}$$

 $\mathbf{P} \parallel \mathbf{e}_3 \times \mathbf{Q}$ not valid

Ferroelectricity is allowed for unequal population of the chiral order paramater $\sigma^{(1)}$ and $\sigma^{(2)}$ is **perpendicular** to the spiral plane (in contradiction to most theories on magneto-electric coupling)

Chirality vs helicity

$$F = \frac{1}{2} \chi^{-1} P^2 + K \left[\left| \sigma^{(1)}(q_z) \right|^2 - \left| \sigma^{(2)}(q_z) \right|^2 \right] P_c$$

Trigonal stacked triangular antiferromagnets with a 120° magnetic order should show magneto-electric order

Magnetic chirality determines the direction of the ferroelectric polarization, not magnetic helicity

two chiral order paramaters

opposite helicityImage: state of the state of the

Conclusions

- Novel multiferroic material
- Direct transition from disordered to ferroelectric/antiferromagnetic phase
- Trilinear coupling puts stringent symmetry rules on any microscopic mechanism
- None of the mechanisms proposed for the manganite multiferroics directly apply