
The Space Simulator: Modeling the Universe
from Supernovae to Cosmology

Michael S. Warren Chris L. Fryer M. Patrick Goda
msw@lanl.gov fryer@lanl.gov pgoda@lanl.gov

Theoretical Astrophysics
Mail Stop B227

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT
The Space Simulator is a 294-processor Beowulf cluster with
theoretical peak performance just below 1.5 Teraflop/s. It is
based on the Shuttle XPC SS51G mini chassis. Each node
consists of a 2.53 GHz Pentium 4 processor, 1 Gb of 333
MHz DDR SDRAM, an 80 Gbyte Maxtor hard drive, and
a 3Com 3C996B-T gigabit ethernet card. The network is
made up of a Foundry FastIron 1500 and 800 Gigabit Eth-
ernet switch. Each individual node cost less than $1000, and
the entire system cost under $500,000. The cluster achieved
Linpack performance of 665.1 Gflop/s on 288 processors in
October 2002, making it the 85th fastest computer in the
world according to the 20th TOP500 list. Performance has
since improved to 757.1 Linpack Gflop/s, ranking at #88
on the 21st TOP500 list. This is the first machine in the
TOP500 to surpass Linpack price/performance of 1 dollar
per Mflop/s.

Keywords
Beowulf, cluster, price/performance, astrophysics, N-body

1. INTRODUCTION
The Space Simulator [13, 14] is our third generation Be-

owulf cluster. The first was Loki [16], which was constructed
in 1996 from 16 200 MHz Pentium Pro processors for $50k.
Loki was among the earliest generation of Beowulf clusters
[3], and was the first to be recognized with the Gordon Bell
price/performance award [22]. Loki was followed by the
Avalon cluster [17], which used 144 alpha processors and
cost about $300k. Avalon also won a Gordon Bell prize [15]
and was ranked as the 113th fastest computer in the world
in June 1998 [4]. The Space Simulator follows the same ba-
sic architecture as our previous machines, but is the first to
use Gigabit Ethernet as the network fabric, and requires sig-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC’03November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011 ...$5.00.

nificantly less space than a cluster using typical ATX cases.

2. BUILDING THE CLUSTER
The funds to purchase the Space Simulator became un-

expectedly available in mid-July of 2002. Fiscal constraints
required the system to be delivered by September 31. This
left little time for benchmarking systems and testing com-
ponents. Our goal was to purchase a computer which would
obtain the highest performance possible on the astrophysics
codes we wanted to run, within the budget we were alloted.
It had to be delivered within one month. The machine also
had to be reliable and maintainable enough that our very
limited system administration resources would be capable of
keeping the machine operational. We estimated the amount
of cooling capacity available would limit the cluster to about
35 kW of power dissipation. The Space Simulator architec-
ture (see Table 1) was defined by mid-August of 2002, based
on the Shuttle XPC chassis.

We obtained quotes for clusters from several manufactur-
ers. While one can argue the specifics of the value of ex-
tras typically included in such clusters (high-performance in-
terconnects, dual-CPU motherboards, system management
features), we estimated that a “commercial” solution would
provide about 50% of the performance of what we could
build ourselves, for the same amount of money. For many
customers, this would be an acceptable markup. Certainly,
it is a vast improvement over the factor of 10 difference
that was typical between a self-built Beowulf cluster and
the available commercial solutions 5 years ago.

Our limited preliminary benchmarking demonstrated our
codes were faster on Intel processors than on similarly priced
AMD processors and that higher performance RDRAM did
not justify its extra cost over DDR SDRAM. The Green
Destiny architecture [23] was ruled out on price-performance
grounds, since our space, power and cooling were not suffi-
ciently constrained. The XPC system was selected due to
its small size, the elimination of the failure-prone CPU fan,
and its ability to support the relatively new 533 MHz front
side bus for the Intel Pentium 4 architecture. The main dis-
advantages of the system were that it provided only a single
32-bit 33 MHz PCI expansion slot, and 10% of its memory
bandwidth was shared with the on-board video controller. It
is interesting to note that the volume occupied by a Shuttle
XPC chassis (30x20x18.5 cm or 0.011 cubic meters) is nearly
the same as a 1U rackmount chassis (19x23.6x1.75 inches or

Figure 1: A front view of the Space Simulator which shows the rack containing the two Foundry Gigabit
Ethernet switches. The fiber trunk between the two switches are the orange cables in the picture. The 224
ethernet cables attached to the lower switch obscures the upper half of the Foundry 1500 switch, while the
Foundry 800 switch is mounted on the top portion of the rack.

Qty. Price Ext. Description

294 280 82,320 Shuttle SS51G mini system (bare)
294 254 74,676 Intel P4/2.53GHz, 533MHz FSB, 512k cache
588 118 69,384 512Mb DDR333 SDRAM (1024Mb per node)
294 95 27,930 3com 3c996B-T Gigabit Ethernet PCI card
294 83 24,402 Maxtor 4K080H4 80Gb 5400rpm Hard Disk
294 35 10,290 Assembly Labor/Extended Warranty

4,000 Cat6 Ethernet cables
3,300 Wire shelving/switch rack
1,378 Power strips

1 186,175 Foundry FastIron 1500+800, 304 Gigabit ports
Total $483,855 $1646 per node 5.06 Gflop/s peak per node

Table 1: Space Simulator architecture and price (September, 2002). The average cost per node was $1646,
with $728 (44%) of that figure representing the Network Interface Cards and Ethernet switches.

0.013 cubic meters). We have found the ability to easily
remove a node from a shelf to be a major advantage over
the complexities of a typical 1U rackmount on rails solution.
Overall, the architecture which was chosen has proven to be
an excellent solution, and the limited amount of benchmark-
ing and testing prior to ordering the system has not resulted
in problems.

2.1 Reliability
It is hard to quantify whether a do-it-yourself cluster solu-

tion requires more effort to make operational after delivery
than a commercial solution. It is certainly helpful to have
as much burn-in and testing from the vendor as possible,
but the final verdict will always be whether your code runs
or not. With large clusters, almost any problem you can
think of will occur. We had some nodes which would not
boot because PXE was not manually enabled on the ethernet
card before shipment. Drive cables and PCI cards can come
loose during shipment. The BIOS can be set inconsistently
or incorrectly.

In our experience, fans are the component most likely to
fail in a cluster. We expected increased reliability from the
SS cluster, since the CPU fan is eliminated by the heat pipe
used in the Shuttle chassis. This has been borne out by the
first 9 months of failure statistics.

During the installation of the cluster and the initial large
Linpack benchmark runs we identified the following defec-
tive hardware:

3 power supplies 6 disk drives 4 motherboards

6 sticks of DRAM 1 ethernet card

During the nine month period since the initial failures,
the following hardware has failed:

2 power supplies 16 disk drives 1 motherboard

3 sticks of DRAM 1 fan loose

It is possible that the faulty DRAM and motherboard/CPU
discovered after the initial installation was defective to be-
gin with, but it took longer to identify since the errors were
very infrequent. Additionally, there have been less than 10
“soft” node errors, which resolved themselves, or did not
occur again after the node was rebooted. One perhaps in-
teresting anecdote is that on every occasion where a node
has failed with a Linux kernel panic, the cause was traced

to bad hardware. The most common failure has been with
disk drives. We have started monitoring each drive with
the Linux SMART tools, and believe that a majority of the
drive failures can be predicted.

The entire cluster has gone down on three occasions, once
when the 120 kVa power distribution unit for the machine
room failed and had to be replaced, which resulted in three
days of down-time, and twice during power outages. On sev-
eral other occasions, 15-amp breakers on individual power
strips tripped, necessitating a rebalancing of the power dis-
tribution using a slightly more conservative maximum power
consumption figure.

Additionally, there have been 4 soft failures of ports on
the ethernet switch which were resolved by a power cycle of
the switch. Since a recent upgrade to the switch firmware,
no soft failures of the switch have occurred.

3. BENCHMARKS
In this section, we attempt to characterize the perfor-

mance of the Space Simulator, proceeding from benchmarks
of particular aspects of the architecture to more general mea-
surements. In particular, we try to provide a clear baseline
for the measurement of gigabit-ethernet connected clusters,
and provide a basis for future comparison with clusters con-
nected via less mainstream technology. These results are
also intended to provide a general context in which to view
the price/performance results quoted in the application sec-
tion.

3.1 Network Performance
Gigabit network performance varies dramatically depend-

ing on the particular NIC used in the Shuttle systems. Some
cards which had very good performance on a 64-bit or 66
MHz PCI bus performed poorly with the Shuttle 32-bit 33
MHz bus. We selected the 3Com 3c996B-T cards based on
testing a variety of cards on a prototype system. The per-
formance results are listed below using Linux 2.4.20. The
1.0 version of the tg3 driver that shipped with Linux 2.4.20
turned out to be significantly slower than earlier versions,
so the results below use the earlier 0.99 version.

In order to determine the behavior of the Foundry switch
backplane, we wrote a small MPI program which simulta-
neously sends messages between pairs of processors along
various hypercube edges. Within a 16-port switch module,
the messages are non-blocking. The capacity from one mod-

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

"TCP"
"LAM-O"

"SWAMPI"
"LAM"

"mpich2-0.92"
"mpich-1.2.5"

Figure 2: We show bandwidth vs message size for
a variety of message passing libraries as measured
via NetPIPE. Several features are evident, showing
mpich-1.2.5 has lower performance for large mes-
sages than the rest of the libraries. The 0.92 beta
release of mpich2 has apparently solved that problem.
Also, using LAM 6.5.9 with the -O flag (designating
a homogeneous environment) significantly improves
performance. The highest bandwidth is obtained via
plain TCP, achieving 779 Mbits/sec. The latencies for
small messages range from 79 microseconds for TCP,
to 83 microseconds for LAM, and 87 microseconds for
mpich-1.2.5 and mpich2-0.92.

ule to another is only 8 gigabits. We verified that with 16
processors on one module sending to 16 modules on another
module, the total throughput was about 6000 Mbits. Fur-
ther, since our overall switch is a trunked combination of a
Fastiron 1500 and a Fastiron 800, messages between the two
switches are limited by the 8 Mbit trunk. This limits the
scaling of codes running on more than about 256 processors.

3.2 Memory Bandwidth
The XPC node memory bandwidth is less than optimal

for its 333 MHz frequency due to the fact that the on-board
video system uses the system DRAM for it’s frame buffer.
It is possible to disable the on-board VGA controller and
increase memory copy bandwidth by 10%, but you must
then insert an AGP video card into the system in order for
it to boot.

It has been our experience that the factor limiting node
performance for a large fraction of scientific applications is
the local node memory bandwidth. To quantify the effects
of memory bandwidth, we performed several experiments
which were made possible by the control enabled by the
BIOS setup of the XPC nodes. It is possible to indepen-
dently control the frequency of the processor and memory
bus. One can then overclock the entire system, or under-
clock the CPU or memory, and measure the resulting per-
formance. Using these figures, it is possible to roughly pre-
dict how much the system performance depends on memory
bandwidth or processor performance independently.

We measured the performance of a variety of standard
benchmarks. We measured memory bandwidth (STREAM),
overall application performance (SPEC CPU2000 and NPB)
and Linpack (HPL). Each was measured using a normal sys-

tem (DDR333 memory, 2.53Gz P4 CPU) a slow memory sys-
tem (DDR200 slowed memory by a factor 0.6) a slow CPU
system 1.9GHz (slowed processor by a factor of 0.75) and
overclocking the system to a 140MHz front-side bus (sped
up CPU and memory by a factor of 1.0526). Results are
shown in Table 3.2.

From these results, it is apparent that changing the mem-
ory bandwidth has a large effect on overall performance. Es-
pecially for the NAS benchmarks SP, MG and CG, scaling
the memory frequency by 0.6 results in a performance re-
duction near 0.6. This indicates that these benchmarks are
memory bandwidth limited, and increasing the CPU speed
without more memory bandwdith would result in little im-
provement.

3.3 Linpack

Figure 3: The Space Simulator ranked at #85 on
the 20th TOP500 list of the fastest computers in the
world, as determined by the Linpack benchmark.
Performance of 665.1 Gflop/s was obtained on 288
processors in October 2002. In April 2003, we ob-
tained a higher figure of 757.1 Gflop/s through the
use of a slightly faster version of ATLAS and using
LAM instead of mpich. This ranks at #88 on the 21st
TOP500 list, and that performance would have ranked
the Space Simulator at #69 on the 20th TOP500 list.
We believe our results are the first example of a ma-
chine in the TOP500 with price/performance of better
than 1 dollar per Mflop/s (we obtain 63.9 cents per
Mflop/s, or $639 per Gflop/s).

In contrast to commercial machines which use a variety
of proprietary libraries and compilers to obtain their peak
performance, our Linpack benchmark result of 665.1 Gflop/s
was obtained using freely available software and commod-
ity off-the-shelf hardware. The OS (RedHat 7.3), kernel
(Linux 2.4.20), message passing library (MPICH), compiler
(gcc 3.1.1), BLAS library (ATLAS) and the High Perfor-
mance Linpack (HPL) software are all freely available. This
Linpack result ranks us as the 85th fastest computer in the
world on the November 2002 TOP500 list [5].

In April 2003, the Linpack benchmarks were run again
on 288 processors. Instead of MPICH 1.2.4, we used LAM

6.5.9 as the MPI implementation. In addition, the some-
what newer ATLAS 3.5.0 distribution was used for the level

Normal Slow mem Slow CPU Overclock
copy 1203.5 761.8(0.63) 1143.4(0.95) 1268.5(1.054)
add 1237.2 749.8(0.61) 1165.3(0.94) 1302.8(1.053)
scale 1201.8 756.1(0.63) 1142.8(0.95) 1267.0(1.054)
triad 1238.2 748.9(0.61) 1160.7(0.94) 1304.1(1.053)
BT 321.2 204.1(0.635) 293.9(0.915) 342.3(1.066)
SP 216.5 131.7(0.608) 200.1(0.924) 229.6(1.061)
LU 404.3 262.2(0.649) 366.2(0.906) 427.4(1.057)
MG 385.1 231.4(0.601) 360.8(0.937) 400.1(1.039)
CG 313.1 189.4(0.605) 273.9(0.875) 330.2(1.055)
FT 351.0 248.7(0.708) 302.9(0.863) 385.1(1.097)
IS 27.2 21.2(0.779) 22.5(0.827) 28.9(1.063)
CINT2000 790 655(0.83) 640(0.81) 830(1.051)
CFP2000 742 527(0.71) 646(0.87) 782(1.054)
Linpack 3.302 2.865(0.868) 2.602(0.788) 3.476(1.053)

Table 2: The effects of changing processor speed and memory bandwidth are shown for a number of bench-
marks. The “normal” system uses DDR333 memory. For “slow mem” the memory clock is reduced from
2x166 Mhz to 2x100 Mhz, resulting in the equivalent of DDR200 performance, which is a factor of 0.6 less.
For “slow CPU” the processor is clocked down from 2.53 GHz to 1.9 Ghz (a factor of 0.75). For “overclock”,
the FSB is increased from 133 MHz to 140 Mhz. For STREAM copy, add, scale and triad, results are in
Mbytes/sec. For NPB, results are Mop/sec. For Linpack, results are in Gflop/sec. Values in parenthesis
are the ratio to the value of the normal system. The results demonstrate that the performance of most
benchmarks is sensitive to memory bandwidth, and less so to CPU frequency.

Benchmark SS ASCI Q

BT 17032 22540
SP 7822 17775
LU 27942 40916
CG 3291 4129
FT 9860 7275
IS 232 286

Table 3: 64-processor performance (Mops) for Class
C NPB 2.4 benchmarks. Data from the Space Sim-
ulator with the Intel Compiler, version 7.1 and the
ASCI Q system are presented

3 BLAS, and the Intel 7.1 compiler suite was used to com-
pile HPL (while gcc was used for ATLAS). The significant
improvement seen, from 665.1 Gflop/s to 757.1 Gflop/s, we
believe was mostly due to improved network performance
via the switch to LAM. It is notable that the Space Simula-
tor obtains performance almost as high as a 256 processor
Itanium2 cluster connected with Myrinet.

3.4 NAS parallel benchmarks
The results shown in Figure 4 and 5 use the NAS Parallel

benchmarks version 2 [1]. These benchmarks, based on For-
tran 77 and the MPI standard, are intended to approximate
the performance a typical user can expect for a portable
parallel program on a distributed memory computer. All re-
sults use the Intel version 7.1 compilers with FFLAGS = -O3

-tpp7 -xW -ipo -fno-alias and LAM 6.5.9 as the message
passing library. Tables 3 and 4 compare the Space Simulator
performance with that of the ASCI Q system at Los Alamos
for identical problem sizes and numbers of processors.

3.5 SPEC CPU2000
We have measured the SPEC CPU performance [12] of

Benchmark SS ASCI Q

BT 63044 80418
SP 29348 55327
LU 81472 135650
CG 4913 10149
FT 21995 30100

Table 4: 256-processor performance (Mops) for
Class D NPB 2.4 benchmarks. Data from the Space
Simulator with the Intel Compiler, version 7.1 and
the ASCI Q system are presented

our nodes with the Intel version 7.1 compilers. SPECfp2000
is 742. SPECint2000 is 790. These results have not been
submitted to SPEC, and so are unofficial, but did follow all
of the run rules for the SPEC benchmarks. In terms of node
price/performance, neglecting the cost of the network and
racks, each node cost $888, giving $1.20 per unit of SPECfp.
Currently the fastest SPECfp result reported is 2119 (an
HP Integrity Server rx2600 using a 1500 MHz Itanium 2
processor). In order to beat the SPECfp price/performance
of a Shuttle XPC node, the HP system would have to cost
less than $2500.

The equivalent Shuttle XPC systems have since declined
in price. As of July 2003, the per node cost has decreased
over $200, so SPECfp price/performance with a new system
would be better than $1.00 per unit of SPECfp.

3.6 Gravity Kernel Performance
Execution time for our parallel N-body application is dom-

inated by the force calculation in the inner loop. We have
collected performance figures on a variety of processors in
Table 5. The SS results correspond to the 2530-MHz Intel
P4.

Figure 4: Scaling of the NAS Class D benchmarks on the Space Simulator. Perfect scaling would be a straight
horizontal line for the plot on the right.

Figure 5: Scaling of the NAS Class C benchmarks on the Space Simulator. The computational problems are
smaller than the Class D results shown in the previous plot, so the scaling is not as good for large numbers
of processors. The feature in the plot for the LU benchmark (where the performance per processor becomes
more higher on 64 processors than on a single processor) is likely due to the problem being divided into
enough pieces that it fits into L2 cache on the processor.

Processor libm Karp

533-MHz Alpha EV56 76.2 242.2
667-MHz Transmeta TM5600 128.7 297.5
933-MHz Transmeta TM5800 189.5 373.2
375-MHz IBM Power3 298.5 514.4
1133-MHz Intel P3 292.2 594.9
1200-MHz AMD Athlon MP 350.7 614.0
2200-MHz Intel P4 668.0 655.5
2530-MHz Intel P4 779.3 792.6
1800-MHz AMD Athlon XP 609.9 951.9
1250-MHz Alpha 21264C 935.2 1141.0
2530-MHz Intel P4 (icc) 1170.0 1357.0

Table 5: Mflop/s obtained on our gravitational
micro-kernel benchmark. The first column uses the
math library sqrt, the second column uses an op-
timization by Karp, which decomposes the recip-
rocal square root into a table lookup, Chebychev
interpolation and Newton-Raphson iteration, which
uses only adds and multiplies. Note the significant
improvement obtained through the use of the Intel
version 6.0 compiler, which enables the P4 SSE and
SSE2 capabilities.

4. APPLICATIONS

4.1 N-body methods
N-body methods are widely used in a variety of computa-

tional physics algorithms where long-range interactions are
important. Several methods have been introduced which
allow N-body simulations to be performed on arbitrary col-
lections of bodies in time much less than O(N2), without
imposition of a lattice [2, 8]. They have in common the use
of a truncated expansion to approximate the contribution of
many bodies with a single interaction. The resulting com-
plexity is usually determined to be O(N) or O(N log N),
which allows computations using orders of magnitude more
particles. These methods represent a system of N bodies in
a hierarchical manner by the use of a spatial tree data struc-
ture. Aggregations of bodies at various levels of detail form
the internal nodes of the tree (cells). These methods obtain
greatly increased efficiency by approximating the forces on
particles. Properly used, these methods do not contribute
significantly to the total solution error. This is because the
force errors are exceeded by or are comparable to the time
integration error and discretization error.

Using a generic design, we have implemented a variety
of modules to solve problems in galactic dynamics [18] and
cosmology [24] as well as fluid-dynamical problems using
smoothed particle hydrodynamics [21], a vortex particle method
[9] and boundary integral methods.

4.2 The Hashed Oct-Tree Library
Our parallel N-body code has been evolving for over a

decade on many platforms. We began with an Intel ipsc/860,
Ncube machines, and the Caltech/JPL Mark III [11, 18].
This original version of the code was abandoned after it
won a Gordon Bell Performance Prize in 1992 [19], due to
various flaws inherent in the code, which had been ported
from a serial version. A new version of the code was initially
described in [20].

The basic algorithm may be divided into several stages.
Our discussion here is necessarily brief. First, particles are
domain decomposed into spatial groups. Second, a dis-
tributed tree is constructed. In the main stage of the algo-
rithm, this tree is traversed independently in each processor,
with requests for non-local data being generated as needed.
In our implementation, we assign a Key to each particle,
which is based on Morton ordering. This maps the points in
3-dimensional space to a 1-dimensional list, while maintain-
ing as much spatial locality as possible. The domain decom-
position is obtained by splitting this list into Np (number of
processors) pieces (see Figure 6). The implementation of the
domain decomposition is practically identical to a parallel
sorting algorithm, with the modification that the amount of
data that ends up in each processor is weighted by the work
associated with each item.

The Morton ordered key labeling scheme implicitly defines
the topology of the tree, and makes it possible to easily
compute the key of a parent, daughter, or boundary cell
for a given key. A hash table is used in order to translate
the key into a pointer to the location where the cell data
are stored. This level of indirection through a hash table
can also be used to catch accesses to non-local data, and
allows us to request and receive data from other processors
using the global key name space. An efficient mechanism for
latency hiding in the tree traversal phase of the algorithm
is critical. To avoid stalls during non-local data access, we
effectively do explicit “context switching” using a software
queue to keep track of which computations have been put
aside waiting for messages to arrive. In order to manage the
complexities of the required asynchronous message traffic,
we have developed a paradigm called “asynchronous batched
messages (ABM)” built from primitive send/recv functions
whose interface is modeled after that of active messages.

In Table 6 we show the performance of the Space Simula-
tor on a standard simulation problem which we have run on
most of the major supercomputer architectures of the past
decade. The problem is a spherical distribution of particles
which represents the initial evolution of a cosmological N-
body simulation. Overall, the performance of the full Space
Simulator cluster is similar to that of 256 processors on ASCI
Q, or a 1024 processor SP-3.

4.3 Cosmology Simulations
Obtaining a quantitative understanding of galaxy forma-

tion and clustering is the most important open theoret-
ical problem in the study of the large-scale structure of
the Universe. Observations strongly support the theoret-
ical paradigm that structure evolves through gravitational
collapse of primarily dark matter. The revolutionary trans-
formation of cosmology from a qualitative to a quantitative
science has occurred over just the last fifteen years. Driven
by a powerful and diverse suite of observations, the param-
eters describing the large-scale Universe are now known to
extraordinary precision.

Structure in the Universe forms almost entirely due to
the gravitational collapse of primordial density fluctuations.
On the very largest scales, such as those characteristic of
the microwave background, linear theory is applicable; with
the addition of a small amount of thermodynamics and lin-
earized gas dynamics, a quantitative understanding has been
achieved. At smaller scales, the essential nonlinearity of
gravitational collapse makes such an understanding much

Year Site Machine Procs Gflop/s Mflops/proc

2003 LANL ASCI QB 3600 2793 775.8
2003 LANL Space Simulator 288 179.7 623.9
2002 NERSC IBM SP-3(375/W) 256 57.70 225.0
2002 LANL Green Destiny 212 38.9 183.5
2000 LANL SGI Origin 2000 64 13.10 205.0
1998 LANL Avalon 128 16.16 126.0
1996 LANL Loki 16 1.28 80.0
1996 SC ’96 Loki+Hyglac 32 2.19 68.4
1996 Sandia ASCI Red 6800 464.9 68.4
1995 JPL Cray T3D 256 7.94 31.0
1995 LANL TMC CM-5 512 14.06 27.5
1993 Caltech Intel Delta 512 10.02 19.6

Table 6: Historical Performance of the Treecode.

Figure 6: On left is the self-similar curve used for load-balancing, while the right figure represents a tree
data structure in 2d for a group of centrally condensed particles.

Figure 7: The figure represents a portion of the Uni-
verse about 125 Megaparsecs on a side at a redshift
of 0.3, or an age of 3.5 billion years prior to the
present epoch. The overall simulation of about 700
timesteps used 134 million particles, and was com-
pleted in a single run of just over 24 hours on 250
processors of the Space Simulator. 1.5 Terabytes of
data from this simulation was saved.

harder to attain. In this regime, the distribution of matter
can be studied only via large scale N-body simulations.

Our recent N-body simulations have achieved unprece-
dented spatial and mass resolution. Simulations at this reso-
lution allow us to examine the sub-structure of dark matter
halos and approach the problem of galaxy formation in a
very direct way, possibly resolving many of the problems
posed by bias, both in galaxy position and velocity fields.
We are currently performing several 134 million particle cos-
mological N-body simulations per week on the Space Simu-
lator, and have mostly completed a run with over 1 billion
particles. Even larger simulations are possible using the out-
of-core version of our code [10].

We quote performance results from a typical run, which
took place over a continuous 24 hour period on 250 proces-
sors. The code saved 1.5 Tbytes of data, and performed
1016 floating point operations, for an average I/O rate of
417 Mbytes/sec and 112 Gflop/s. I/O was done in parallel
to and from the local disk on each processor, so the peak
I/O rate was near 7 Gbytes/sec.

4.4 Core-Collapse Supernovae
Core-collapse supernovae play a vital role in nearly ev-

ery aspect of astronomy both as major sources of the emis-
sion of gamma-rays, neutrinos and gravitational waves to
the chemical enrichment of the universe and the formation
of compact objects (black holes, neutron stars, quark stars).
These explosions are driven by neutrinos emitted from the
collapsed core of a massive star. Studying core-collapse su-
pernovae requires the coupling of gravitational and pressure

forces of the core as it collapses down to nuclear densities
with the radiation effects from neutrinos — a true radia-
tion/hydrodynamics problem. The combination of radiation
transport and the complex description of pressure forces for
matter at nuclear densities pose difficulties both in optimiza-
tion and message passing. In addition, these simulations
must be run for 0.1-0.2 million timesteps. Because of these
difficulties, nearly all previous simulations of these events
have been limited to 2-dimensions.

Fryer, Warren and collaborators have performed the first
ever full-physics three-dimensional simulations of supernova
core-collapse [6] as part of the DOE SCIDAC Supernova
Science Center http://www.supersci.org. By implement-
ing the smooth particle hydrodynamics formalism onto the
tree structure described above for N-body studies, we have
been able to include both the essential physics and a flux-
limited diffusion algorithm to model the neutrino transport.
The largest simulation using 5 million particles was finished
recently, and required roughly one month of time to model
100,000 timesteps on a 256 processors of the ASCI Q sys-
tem. Taking advantage of the Lagrangian nature of smooth
particle hydrodynamics, we have begun to study global as-
phericities in core-collapse: rotation [7] (Fig. 8) and asym-
metric collapse. These 3-dimensional simulations allow us to
address a number of outstanding questions in core-collapse
astrophysics such as the origin of neutron star kicks and the
gravitational wave signal for stellar collapse.

We are currently performing several follow-up simulations
on the Space Simulator. For our 1 million particle simula-
tions on 128 processors, per processor performance (using
gcc/g77) is about 1/2 that of the ASCI Q system on an
equivalent number of processors. We are running several
simulations using 32 processors out to 150,000 timesteps.
These simulations take roughly 4 months. Performance tun-
ing remains to be done, especially investigating the use of
the Intel 7.0 compilers.

5. CONCLUSIONS
Beowulf clusters have proven to be an effective comput-

ing resource in many appplication areas. We have demon-
strated that commodity PC technology coupled with the lat-
est generation of high-volume ethernet technology is capable
of supercomputer-class performance. It is interesting to note
there have been exactly six years between the completion of
the Loki and Space Simulator clusters, which results in four
“Moore’s Law” doublings. Comparing the Loki architec-
ture and price in Table 7 to the Space Simulator, we can see
that Moore’s Law scaling has actually been greatly exceeded
in some aspects of the architecture. For instance, in 1996,
Loki’s disks cost $111 per Gigabyte. For the SS, they are
close to $1 a Gigabyte, which is a factor of seven beyond
the factor of 16 dictated by Moore’s Law over six years. For
memory, in the Loki days it was $7.35 per Megabyte, and
it’s now 23 cents per Megabyte, 2x lower than Moore’s Law
would have predicted.

These factors of improvement over Moore’s Law are real-
ized in the NPB price/performance results. Loki 16-processor
performance on the NPB class B benchmarks was 355, 255,
428 and 296 Mflops for BT, SP, LU and MG respectively.
For the SS, the corresponding 16-processor class B figures
are 4480, 2560, 6640 and 4592, resulting in improvement ra-
tios of 12.6, 10.0, 15.5 and 15.5. Since each SS processor cost
only half as much as the Loki nodes, we see that the NPB

Qty. Price Ext. Description

16 595 9520 Intel Pentium Pro 200 Mhz CPU/256k cache
16 15 240 Heat Sink and Fan
16 295 4720 Intel VS440FX (Venus) motherboard
64 235 15040 8x36 60ns parity FPM SIMMS (128 Mb per node)
16 359 5744 Quantum Fireball 3240 Mbyte IDE Hard Drive
16 85 1360 D-Link DFE-500TX 100 Mb Fast Ethernet PCI Card
16 129 2064 SMC EtherPower 10/100 Fast Ethernet PCI Card
16 59 944 S3 Trio-64 1Mb PCI Video Card
16 119 1904 ATX Case
2 4794 9588 3Com SuperStack II Switch 3000, 8-port Fast Ethernet

255 Ethernet cables
Total $51,379 $3211 per node 200 Mflop/s peak per node

Table 7: Loki architecture and price (September, 1996).

price/performance exceeds Moore’s Law scaling by 25% for
BT, and close to a factor of two for LU and MG.

For the N-body code, the overall price/performance im-
provement that clusters have obtained over the past six
years has not differed much from Moore’s Law extrapola-
tions. Loki obtained performance of 1.28 Gflop/s for for the
N-body code, while the whole SS obtains 180 Gflops, an im-
provement of a factor of 140. The price ratio between the
machines is 9.4, which when multiplied by 16 for four 18-
month Moore’s Law doublings, results in a ratio of 150. By
hand coding our inner loop with SSE instructions, we hope
to be able to reach 2x higher performance with our N-body
code, however.

Overall, the Space Simulator provides a reliable comput-
ing resource with unbeatable price/performance for our ap-
plications. It is fortunate that the niche of small, quiet com-
puters that Shuttle targeted with the Shuttle XPC series was
quite well suited to the architecture of the latest generation
of Beowulf clusters.

6. ACKNOWLEDGMENTS
We thank Aric Hagberg for suggesting the name of the

cluster, and Richard Fryer of BEOMAX for suggesting the
Shuttle XPC chassis. This work was partially supported
by the NASA Applied Information Science Research Pro-
gram (AISRP). The supernova simulations were partially
supported by the Scientific Discovery through Advanced Com-
puting (SciDAC) program of the DOE, grant number DE-
FC02-01ER41176. This work was performed under the aus-
pices of the U.S. Dept. of Energy, and supported by its
contract #W-7405-ENG-36 to Los Alamos National Labo-
ratory.

7. REFERENCES
[1] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,

A. Woo, and M. Yarrow. The NAS parallel
benchmarks 2.0. Technical Report NAS-95-020, NASA
Ames Research Center, 1995.

[2] J. Barnes and P. Hut. A hierarchical O(NlogN)
force-calculation algorithm. Nature, 324:446, 1986.

[3] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband,
U. A. Ranawake, and C. V. Packer. BEOWULF: A
parallel workstation for scientific computation. In
Proceedings of the 1995 International Conference on
Parallel Processing (ICPP), pages 11–14, 1995.

[4] J. J. Dongarra, H. W. Meuer, and S. E. TOP500
supercomputer sites. Supercomputer, 13(1):89–120,
1997.

[5] J. J. Dongarra, H. W. Meuer, H. Simon, and
E. Strohmaier. Top 500 supercomputer sites.
http://www.top500.org/.

[6] C. L. Fryer and M. S. Warren. Modeling core-collapse
supernovae in three dimensions. Ap. J. (Letters),
574:L65, 2002.

[7] C. L. Fryer and M. S. Warren. The collapse of
rotating massive stars in 3-dimensions. Ap. J., 2003.
(submitted).

[8] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. J. Comp. Phys., 73:325–348,
1987.

[9] P. Ploumans, G. S. Winckelmans, J. K. Salmon,
A. Leonard, and M. S. Warren. Vortex methods for
high-resolution simulation of three-dimensional bluff
body flows; application to the sphere at Re=300, 500
and 1000. J. Comp. Phys., 178:427–463, 2002.

[10] J. Salmon and M. S. Warren. Parallel out-of-core
methods for N-body simulation. In 8th SIAM Conf. on
Parallel Processing for Scientific Computing,
Philadelphia, 1997. SIAM.

[11] J. K. Salmon, P. J. Quinn, and M. S. Warren. Using
parallel computers for very large N-body simulations:
Shell formation using 180k particles. In A. Toomre
and R. Wielen, editors, Proceedings of 1989 Heidelberg
Conference on Dynamics and Interactions of Galaxies.
Springer-Verlag, New York, 1990.

[12] Spec cpu200 benchmarks.
http://www.specbench.org/cpu2000/.

[13] M. S. Warren, C. L. Fryer, and M. P. Goda. The
Space Simulator.
http://space-simulator.lanl.gov/, 2002.

[14] M. S. Warren, C. L. Fryer, and M. P. Goda. The
Space Simulator. In Proceedings of CWCE ’03, San
Jose, 2003.

[15] M. S. Warren, T. C. Germann, P. S. Lomdahl, D. M.
Beazley, and J. K. Salmon. Avalon: An Alpha/Linux
cluster achieves 10 Gflops for $150k. In
Supercomputing ’98, Los Alamitos, 1998. IEEE Comp.
Soc.

[16] M. S. Warren and M. P. Goda. Loki – commodity

Figure 8: The image shows the angular momentum
distribution a 0.5◦ slice across the core of a rotating
supernova 40ms after the core bounces. The colors
denote the specific angular momentum of the ma-
terial and the vectors show velocity direction and
magnitude (vector length). Note that the bulk of
the angular momentum lies along the equator (the
angular momentum in the a 15◦ cone along the poles
is 2 orders of magnitude less than that in the equa-
tor). The specific angular momentum in the equa-
tor over 1016cm2s−1 corresponding to a rotation ve-
locity of nearly 5000kms−1 and a rotational period
of 250ms. This angular momentum causes the star
to deviate from spherical symmetry, leading to the
emission of gravitational waves.

parallel processing. http://loki-www.lanl.gov/,
1996.

[17] M. S. Warren, A. Hagberg, D. Moulton, and D. Neal.
The avalon beowulf cluster.
http://cnls.lanl.gov/avalon, 1998.

[18] M. S. Warren, P. J. Quinn, J. K. Salmon, and W. H.
Zurek. Dark halos formed via dissipationless collapse:
I. Shapes and alignment of angular momentum. Ap.
J., 399:405–425, 1992.

[19] M. S. Warren and J. K. Salmon. Astrophysical
N-body simulations using hierarchical tree data
structures. In Supercomputing ’92, pages 570–576, Los
Alamitos, 1992. IEEE Comp. Soc.

[20] M. S. Warren and J. K. Salmon. A parallel hashed
oct-tree N-body algorithm. In Supercomputing ’93,
pages 12–21, Los Alamitos, 1993. IEEE Comp. Soc.

[21] M. S. Warren and J. K. Salmon. A portable parallel
particle program. Computer Physics Communications,
87:266–290, 1995.

[22] M. S. Warren, J. K. Salmon, D. J. Becker, M. P.
Goda, T. Sterling, and G. S. Winckelmans. Pentium
Pro inside: I. A treecode at 430 Gigaflops on ASCI

Red, II. Price/performance of $50/Mflop on Loki and
Hyglac. In Supercomputing ’97, Los Alamitos, 1997.
IEEE Comp. Soc.

[23] M. S. Warren, E. H. Weigle, and W. Feng.
High-density computing: A 240-processor Beowulf in
one cubic meter. In SC ’02, Los Alamitos, 2002. IEEE
Comp. Soc.

[24] W. H. Zurek, P. J. Quinn, J. K. Salmon, and M. S.
Warren. Large scale structure after COBE: Peculiar
velocities and correlations of cold dark matter halos.
Ap. J., 431:559–568, 1994.

