
LATTICE QCD FOR NOVICES

G. PETER LEPAGE
Newman Laboratory of Nuclear Studies

Cornell University, Ithaca, NY 14853

E-mail: gpl@mail.lns.cornell.edu

These lectures are for novices to lattice QCD. They introduce a set of simple ideas
and numerical techniques that can be implemented in a short period of time and
that are capabable of generating nontrivial, nonperturbative results from lattice
QCD. The simplest of these calculations can be completed on a standard worksta-
tion or high-end personal computer.

1 Introduction

These lectures are for novices who are interested in learning how to do lattice
QCD simulations. My intent is to describe in detail everything that one needs
to know in order to create and run a simple lattice QCD simulation. My
focus here is not on lengthy derivations or detailed comparisons of algorithms.
Rather I want to introduce a set of simple ideas and techniques that one
can implement in a relatively short time and that are capable of generating
nontrivial results from lattice QCD.

We begin in Section 2 with simple one-dimensional quantum mechanics.
Most of the simulation techniques can be applied to ordinary quantum me-
chanics, and the simulations require only seconds or minutes of computer time,
rather than the hours or days needed for QCD simulations. Consequently such
applications are ideal for learning the simulation technology. We broaden the
discussion to include quantum field theories in Section 3. Here we discuss the
theoretical techniques needed to obtain accurate results on the relatively coarse
lattices well suited to smaller computers. Finally, in Section 4, we adapt our
techniques for simulations of gluon dynamics in QCD.

2 Numerical Path Integrals

2.1 Discretizing the Path Integral

We begin with numerical techniques for evaluating path integrals. Recall what
path integrals tell us. In one-dimensional quantum mechanics, for example, the
evolution of a position eigenstate |xi〉 from time ti to time tf can be computed
using a path integral1:

〈xf | e−H̃(tf−ti) |xi〉 =

∫

Dx(t) e−S[x]. (1)

1

Here the
∫

Dx(t) designates a sum over all possible particle paths

{x(t) for t = ti → tf} (2)

with
x(ti) = xi x(tf) = xf . (3)

The hamiltonian is H̃ , and S[x] is the classical action,

S[x] ≡
∫ tf

ti

dtL(x, ẋ) ≡
∫ tf

ti

dt

[

mẋ(t)2

2
+ V (x(t))

]

, (4)

evaluated for each path x(t). There are no i’s in these formulas because we
are using “euclidean” path integrals. These are derived in the same way as
standard path integrals but with it → t. Euclidean path integrals are much
better for numerical work since the integrands do not oscillate wildly in sign.

Knowledge of the propagator, Eq. (1), as a function of xi, ti, xf , tf gives us
complete information about the quantum theory. For example, we can easily
determine the groundstate energy and wavefunction. Setting

xi = xf ≡ x tf − ti ≡ T, (5)

the propagator can be rewritten

〈x| e−H̃T |x〉 =
∑

n

〈x| En〉 e−EnT 〈En| x〉 (6)

where |En〉 is the energy eigenstate with eigenvalue En. The sum is dominated
by the lowest-energy states when T is large, because of the exponentials, and
in the limit of very large T only the groundstate, |E0〉, contributes:

〈x| e−H̃T |x〉 T→∞−→ e−E0T |〈x| E0〉|2 . (7)

We extract the groundstate energy E0 by integrating over x,

∫

dx 〈x| e−H̃T |x〉 T→∞−→ e−E0T , (8)

and then, going back to the previous equation, we determine the groundstate
wavefunction ψE0(x) ≡ 〈x| E0〉.

Our goal therefore is to develop a numerical procedure for evaluating the
propagator using a path integral. There are two issues we must address. First
we must find a way to represent an arbitrary particle path {x(t), ti ≤ t ≤ tf}

2

in the computer. A path is specified by a function x(t) which, in principle,
can be infinitely complex (and therefore too much for any computer). We
approximate this function by specifying x(t) only at the nodes or sites on a
discretized t axis:

tj = ti + j a for j = 0, 1 . . .N (9)

where a is the grid spacing,

a ≡ tf − ti
N

. (10)

Then a path is described by a vector of numbers,

x = {x(t0), x(t1) . . . x(tN)}. (11)

It is common practice to refer to such a path as a “configuration”. The integral
over all paths in this approximation becomes an ordinary integral over all
possible values for each of the x(tj)’s: that is,

∫

Dx(t) → A

∫ ∞

−∞

dx1 dx2 . . . dxN−1 (12)

where we have adopted the notation xj ≡ x(tj). We don’t integrate over the
endpoints since they are held fixed; for example, for boundary conditions (5),

x0 = xN = x. (13)

We won’t need the normalization factor A for most of our work, but for our
one-dimensional problem it is1

A ≡
(m

2πa

)N/2

(14)

The second issue we must address concerns the evaluation of the action
given only a discretized path {xj}. Focusing just on the contribution from
tj ≤ t ≤ tj+1, the obvious approximation is

∫ tj+1

tj

dtL ≈ a

[

m

2

(

xj+1 − xj

a

)2

+
1

2
(V (xj+1) + V (xj))

]

(15)

With this approximation, our numerical representation of the path integral is
complete, and we have an approximate expression for the quantum mechanical
propagator: for example,

〈x| e−H̃T |x〉 ≈ A

∫ ∞

−∞

dx1 . . . dxN−1 e−Slat[x] (16)

3

where

Slat[x] ≡
N−1
∑

j=0

[m

2a
(xj+1 − xj)

2 + aV (xj)
]

, (17)

x0 = xN = x, and a = T/N . We have reduced quantum mechanics to a
problem in numerical integration.

One might worry about approximating ẋ with (xj+1−xj)/a in our formula
for the lattice action Slat[x]. It is not obvious that this is a good approximation
given that xj+1−xj can be arbitrarily large in our path integral; that is, paths
can be arbitrarily rough. While not so important for our one-dimensional
problem, this becomes a crucial issue for four-dimensional field theories. It is
dealt with using renormalization theory, which we discuss in later sections.

Exercise: Set a = 1/2 and N = 8 in approximate formula (16) for the propagator,
and integrate the right-hand side numerically. The seven dimensional integral
that results is easily evaluated using standard routines, such as vegas

2. Do
this first for the one-dimensional harmonic-oscillator potential

V (x) =
x2

2
with m = 1. (18)

Evaluate the propagator for several values of x0 = xN = x, and compare your
results with those of standard quantum mechanics:

〈x| e−H̃T |x〉 ≈ |〈x| E0〉|
2 e−E0T (19)

where E0 = 1/2 and

〈x| E0〉 =
e−x2/2

π1/4
. (20)

Extract the energy and wavefunction from your numerical result. Repeat this
exercise for V (x) = x4/2. (If you wish, you may restrict x integrations to the
region −5 → 5 rather than −∞ → ∞; this has negligible effect on the results
of this exercise).

My results for the harmonic oscillator case are shown in Fig. 1.

2.2 Monte Carlo Evaluation of Path Integrals

Our analysis in the previous section focused on the groundstate. In quantum
field theory, where the groundstate is the vacuum, we are generally interested in
excited states. To analyze excited states using path integrals, we interrupt the
propagation of the groundstate by introducing new operators at intermediate
times. Consider, for example, the quantity

〈〈x(t2)x(t1)〉〉 ≡
∫

Dx(t)x(t2)x(t1) e−S[x]

∫

Dx(t) e−S[x]
(21)

4

0

0.05

0.1

0 1 2

〈x|e−H̃T |x〉

x

path integrals
s

s

s

s

s

s
s

s s

s

exact

Figure 1: Euclidean harmonic-oscillator propagator at large time (T = 4) computed exactly
(dotted line), and computed using numerical integration to evaluate the discretized path
integral (points). The path integral was approximated by an 8 dimensional integral which was
evaluated numerically, using vegas, at the points indicated. The exact result is approximated
by the square of the ground state wavefunction multiplied by exp(−E0T).

where now we integrate over all xi = xf = x as well as the intermediate x(t)’s.
This quantity is a weighted average of x(t2)x(t1) over all paths, with weight
exp(−S[x]). The numerator on the right-hand side equals, in quantum me-
chanics,

∫

dx 〈x| e−H̃(tf−t2) x̃ e−H̃(t2−t1) x̃ e−H̃(t1−ti) |x〉 . (22)

Setting T = tf − ti and t = t2 − t1 we can rewrite the full expression as

〈〈x(t2)x(t1)〉〉 =

∑

e−EnT 〈En| x̃ e−(H̃−En)t x̃ |En〉
∑

e−EnT
. (23)

If T � t and large, then the groundstate |E0〉 dominates the sums and

G(t) ≡ 〈〈x(t2)x(t1)〉〉 → 〈E0| x̃ e−(H̃−E0)t x̃ |E0〉 . (24)

In our harmonic oscillator example, the state propagating between the two x̃’s
cannot be |E0〉 since x̃ switches the parity of the state. Thus if we now make
t large (but still � T)

G(t)
t large−→ |〈E0| x̃ |E1〉|2 e−(E1−E0)t (25)

5

where |E1〉 is the first excited state. Consequently we can extract the first
excitation energy from the large-t dependence of G(t),

log(G(t)/G(t + a)) → (E1 −E0)a, (26)

and then, going back to G(t), we can determine the quantum mechanical tran-
sition matrix element 〈E0| x̃ |E1〉.

In principle, path integral averages 〈〈Γ[x]〉〉 of arbitrary functionals Γ[x]
can be used to compute any physical property of the excited states in the
quantum theory. Also we note in passing that

〈〈Γ[x]〉〉 =

∑

e−EnT 〈En|Γ[x̃] |En〉
∑

e−EnT
(27)

becomes a (quantum mechanical) thermal average if we replace

T → β ≡ 1/kB Ttemp. (28)

Thus any computer code designed to compute path integral averages can be
used for thermal physics as well. Here we focus on the zero-temperature limit
of large T .

We could evaluate the path integrals in 〈〈Γ[x]〉〉 using a standard multi-
dimensional integration code like vegas, at least for one-dimensional systems.
Here, instead, we employ a more generally useful Monte Carlo procedure. Not-
ing that

〈〈Γ[x]〉〉 =

∫

Dx(t) Γ[x] e−S[x]

∫

Dx(t) e−S[x]
, (29)

is a weighted average over paths with weight exp(−S[x]), we generate a large
number, Ncf , of random paths or configurations,

x(α) ≡ {x(α)
0 x

(α)
1 . . . x

(α)
N−1} α = 1, 2 . . .Ncf , (30)

on our grid in such a way that the probability P [x(α)] for obtaining any par-
ticular path x(α) is

P [x(α)] ∝ e−S[x(α)]. (31)

Then an unweighted average of Γ[x] over this set of paths approximates the
weighted average over uniformly distributed paths:

〈〈Γ[x]〉〉 ≈ Γ ≡ 1

Ncf

Ncf
∑

α=1

Γ[x(α)]. (32)

6

Γ is our “Monte Carlo estimator” for 〈〈Γ[x]〉〉 on our lattice. Of course the
estimate will never be exact since the number of pathsNcf will never be infinite.
The Monte Carlo uncertainty σΓ in our estimate is a potential source of error;
it is estimated in the usual fashion3:

σ2
Γ
≈ 1

Ncf

{

1

Ncf

Ncf
∑

α=1

Γ2[x(α)] − Γ
2

}

. (33)

This becomes

σ2
Γ

=
〈〈Γ2〉〉 − 〈〈Γ〉〉2

Ncf
(34)

for large Ncf . Since the numerator in this expression is independent of Ncf

(in principle, it can be determined directly from quantum mechanics), the
statistical uncertainties vanish as 1/

√
Ncf when Ncf increases.

We need some sort of specialized random-vector generator to create our set
of random paths x(α) with probability (31). Possibly the simplest procedure,
though not always the best, is the Metropolis Algorithm4. In this procedure,
we start with an arbitrary path x(0) and modify it by visiting each of the
sites on the lattice, and randomizing the xj ’s at those sites, one at a time, in
a particular fashion that is described below. In this way we generate a new
random path from the old one: x(0) → x(1). This is called “updating” the
path. Applying the algorithm to x(1) we generate path x(2), and so on until we
have Ncf random paths. This set of random paths has the correct distribution
if Ncf is sufficiently large.

The algorithm for randomizing xj at the jth site is:

• generate a random number ζ, with probability uniformly distributed be-
tween −ε and ε for some constant ε;

• replace xj → xj + ζ and compute the change ∆S in the action caused by
this replacement (generally only a few terms in the lattice action involve
xj , since lagrangians are local; only these need be examined);

• if ∆S < 0 (the action is reduced) retain the new value for xj , and proceed
to the next site;

• if ∆S > 0 generate a random number η unformly distributed between 0
and 1; retain the new value for xj if exp(−∆S) > η, otherwise restore
the old value; proceed to the next site.

An implementation of this algorithm, in the Python computer language5, is
shown in Fig. 2. The code examples and Python are discussed in the Appendix.

7

def update(x):

for j in range(0,N):

old_x = x[j] # save original value

old_Sj = S(j,x)

x[j] = x[j] + uniform(-eps,eps) # update x[j]

dS = S(j,x) - old_Sj # change in action

if dS>0 and exp(-dS)<uniform(0,1):

x[j] = old_x # restore old value

def S(j,x): # harm. osc. S

jp = (j+1)%N # next site

jm = (j-1)%N # previous site

return a*x[j]**2/2 + x[j]*(x[j]-x[jp]-x[jm])/a

Figure 2: Python code for one Metropolis update of path {xj , j = 0 . . .N − 1}. The path
is stored in array x[j]. Function S(j,x) returns the value of the part of the action that
depends on xj . Function uniform(a,b) returns a random number between a and b. A sample
S(j,x) is shown, for a harmonic oscillator with xN = x0.

There are two important details concerning the tuning and use of this al-
gorithm. First, in general some or many of the xj ’s will be the same in two
successive random paths. The amount of such overlap is determined by the pa-
rameter ε: when ε is very large, changes in the xj ’s are usually large and most
will be rejected; when ε is very small, changes are small and most are accepted,
but the new xj ’s will be almost equal to the old ones. Neither extreme is de-
sirable since each leads to very small changes in x, thereby slowing down the
numerical exploration of the space of all important paths. Typically ε should
be tuned so that 40%–60% of the xj ’s are changed on each pass (or “sweep”)
through the lattice. Then ε is of order the typical quantum fluctuations ex-
pected in the theory. Whatever the ε, however, successive paths are going to
be quite similar (that is “highly correlated”) and so contain rather similar in-
formation about the theory. Thus when we accumulate random paths x(α) for
our Monte Carlo estimates we should keep only every Ncor-th path; the inter-
vening sweeps erase correlations, giving us configurations that are statistically
independent. The optimal value for Ncor depends upon the theory, and can
be found by experimentation. It also depends on the lattice spacing a, going
roughly as

Ncor ∝
1

a2
. (35)

Other algorithms exist for which Ncor grows only as 1/a when a is reduced,

8

but since our interest is in large a’s we will not discuss these further.
The second detail concerns the procedure for starting the algorithm. The

very first configuration used to seed the whole process is usually fairly atyp-
ical. Consequently we should discard some number of configurations at the
beginning, before starting to collect x(α)’s. Discarding 5Ncor to 10Ncor config-
urations is usually adequate. This is called “thermalizing the lattice.”

To summarize, a computer code for a complete Monte Carlo calculation of
〈〈Γ[x]〉〉 for some function Γ[x] of a path x consists of the following steps:

• initialize the path, for example, by setting all xj ’s to zero;

• update the path 5Ncor–10Ncor times to thermalize it;

• update the path Ncor times, then compute Γ[x] and save it; repeat
Ncf times.

• average the Ncf values of Γ[x] saved in the previous step to obtain a
Monte Carlo estimate Γ for 〈〈Γ[x]〉〉.

A Python implementation of this procedure is shown in Fig. 3.

Exercise: Write a computer program to implement the Metropolis Monte Carlo
algorithm for a one dimensional harmonic oscillator (Eq. (18)), and calculate

G(t) =
1

N

∑

j

〈〈x(tj + t)x(tj)〉〉 (36)

for all t = 0, a, 2a . . . (N − 1)a; that is calculate

Gn =
1

N

∑

j

〈〈x(j+n)modN xj〉〉 (37)

for n = 0 . . . N−1. The (j+n)modN in this last expression reflects the periodic
boundary conditions. Try N = 20 lattice sites with lattice spacing a = 1/2,
and set ε = 1.4 and Ncor = 20. Try Ncf ’s of 25, 100, 1000 and 10000. Use the
results to compute the excitation energy from

∆En ≡ log(Gn/Gn+1)
n large
−→ (E1 − E0)a (38)

Try this for the harmonic oscillator potential and also for anharmonic poten-
tials. Vary the various parameters.

My results for the harmonic oscillator potential with N = 1000 configurations
are shown in Fig. 4. These results required less than a minute of personal
computer time.

9

def compute_G(x,n):

g = 0

for j in range(0,N):

g = g + x[j]*x[(j+n)%N]

return g/N

def MCaverage(x,G):

for j in range(0,N): # initialize x

x[j] = 0

for j in range(0,5*N_cor): # thermalize x

update(x)

for alpha in range(0,N_cf): # loop on random paths

for j in range(0,N_cor):

update(x)

for n in range(0,N):

G[alpha][n] = compute_G(x,n)

for n in range(0,N): # compute MC averages

avg_G = 0

for alpha in range(0,N_cf):

avg_G = avg_G + G[alpha][n]

avg_G = avg_G/N_cf

print "G(%d) = %g" % (n,avg_G)

Figure 3: Sample Python code for a Monte Carlo evaluation of of G(t) (Eq. (36)). Function
computeG(x,t) computes G(t) for a given path x. Function MCaverage(x,G) computes the
Monte Carlo average over random paths x. The results for path x(α) are stored in the
array G[alpha][t], and the averages are computed and printed. Function update(x) does
one Metropolis sweep through the lattice (see Fig. 2).

10

1

2

1 2 3

∆E(t)

t

r r r r

r

r

Figure 4: Monte Carlo values ∆E(t) ≡ log(G(t)/G(t+a))/a plotted versus t for an harmonic
oscillator. The exact asymptotic result, ∆E(∞) = 1, is indicated by a line. Results are for
a one dimensional lattice with N = 20 sites, lattice spacing a = 1/2, and Ncf = 1000
configurations, keeping configurations only every Ncor = 20 sweeps. The Metropolis step
size ε was 1.4, resulting in a Metropolis acceptance ratio of 0.5.

Exercise: Redo the previous exercise but propagator

G(t) =
1

N

∑

j

〈〈x3(tj + t)x3(tj)〉〉. (39)

Here we use x3 rather than x to create and destroy the excited stated; that
is, we use x3 rather than x as the “source” and the “sink”. Note that ∆E(t)
converges to the same result, but only at much larger t’s than before. Different
sources and sinks often lead to different asymptotic behavior. Choices that
result in fast convergence as t increases are usually preferable because statistical
errors are smaller at smaller t’s. Compare your best estimate of the asymptotic
value obtained using x3 with that obtained using x.

Note also that ∆E(t) approaches its its asymptotic value from above. Prove
that this must be true in general, provided source and sink are the same oper-
ator, using Eq. (23). This result is useful because it implies that each ∆E(t)
gives a rigorous upper bound on the asymptotic value, even at small t’s before
convergence.

My results with an x3 source and sink are shown in Fig. 5.

2.3 Statistical Errors

A Monte Carlo estimate Γ of some expectation value 〈〈Γ〉〉 is never exact; there
are always statistical errors that vanish only in the limit where infinitely many

11

1

2

1 2 3

∆E(t)

t

r

r

r
r r

r

Figure 5: Monte Carlo values ∆E(t) ≡ log(G(t)/G(t+a))/a plotted versus t for an harmonic
oscillator using x3 as the source and sink. Parameters are the same as used to generate Fig. 4.
The energies take longer to reach their asymptotic value.

configurations are employed (Ncf → ∞). An important part of any Monte
Carlo analysis is the estimation of these statistical errors. There is a simple
but very powerful method, called the “statistical bootstrap,” for making such
estimates.

In the previous exercises, for example, we assemble an “ensemble” of mea-
surements of the propagator G(α), one for each configuration x(α). These are
averaged to obtain G, and, from it, an estimate for ∆En (Eq. (38)). An obvious
way to check the statistical errors on this estimate for ∆En is to redo the whole
calculation, say, 100 times, each time with different random numbers to gener-
ate different random paths. With 100 copies of the entire calculation, we could
analyze the distribution of the 100 random ∆En’s obtained, and deduce the
statistical uncertainty in our original estimate. This, however, is exceedingly
expensive in computer time. The bootstrap procedure provides new, almost
zero-cost random ensembles of measurements by synthesizing them from the
original ensemble of Ncf measurements.

Given an ensemble {G(α), α = 1 . . .Ncf} of Monte Carlo measurements, we
assemble a “bootstrap copy” of that ensemble by selecting G(α)’s at random
from the original ensemble, taking Ncf in all while allowing duplications and
omissions. The resulting ensemble of G’s might have two or three copies of
some G(α)’s, and no copies of others. This new ensemble can be averaged and a
new estimate obtained for ∆En. This procedure can be repeated to generated
as many bootstrap copies of the original ensemble as we wish, and from each

12

def bootstrap(G):

N_cf = len(G)

G_bootstrap = [] # new ensemble

for i in range(0,N_cf):

alpha = int(uniform(0,N_cf)) # choose random config

G_bootstrap.append(G[alpha]) # keep G[alpha]

return G_bootstrap

Figure 6: Sample Python code for producing a bootstrap copy of an ensemble of measure-
ments G. The original ensemble consists of individual measurements G[alpha], one for each
configuration. The function bootstrap(G) returns a single bootstrap copy of ensemble G, con-
sisting of N cf measurements. Function uniform(a,b) returns a random number between a

and b.

we can generate a new estimate for ∆En. The distribution of these ∆En’s
approximates the distribution of ∆En’s that would have been obtained from
the original Monte Carlo, and so can be used to estimate the statistical error
in our original estimate. A Python implementation of this procedure is shown
in Fig. 6.

Another useful procedure related to statistical errors is “binning.” At the
end of a large simulation we might have 100’s or even 100,000’s of configu-
rations x(α), and for each a set of measurements like G(α), our propagator.
The measurements will inevitably be averaged, but we want to save the sepa-
rate G(α)’s for making bootstrap error estimates and the like. We can save a
lot of disk space, RAM, and CPU time by partially averaging or binning the
measurements: For example, instead of storing each of

G(1) G(2) G(3) G(4) G(5) . . . (40)

we might instead store

G
(1) ≡ G(1) +G(2) +G(3) +G(4)

4

G
(2) ≡ G(5) +G(6) +G(7) +G(8)

4
. . . (41)

The G
(β)

’s are far less numerous but have the same average, standard devia-
tion, and other statistical properties as the original set. Typically the bin size

is adjusted so that there are only 50–100 G
(β)

’s. A Python implementation of
this procedure is shown in Fig. 7.

13

def bin(G,binsize):

G_binned = [] # binned ensemble

for i in range(0,len(G),binsize): # loop on bins

G_avg = 0

for j in range(0,binsize): # loop on bin elements

G_avg = G_avg + G[i+j]

G_binned.append(G_avg/binsize) # keep bin avg

return G_binned

Figure 7: Sample Python code for producing a binned copy of an ensemble of measure-
ments G. The original ensemble consists of individual measurements G[alpha], one for each
configuration. The function bin(G,binsize) bins the ensemble into bins of size binsize,
averages the G’s within each bin, and returns an ensemble consisting of the averages.

Binning has an important side effect: it reduces or can even remove the
effects of correlations between different configurations. If, when generating
configurations, Ncor is too small, successive Monte Carlo estimates are statis-
tically correlated. This leads to error estimates, using Eq. (33), that can be
much smaller than the true errors— a very bad situation. If, however, the
Monte Carlo estimates are binned with sufficiently large bins, the majority of
estimates in one bin will be uncorrelated from the majority in adjacent bins.
Consequently the bin averages will be uncorrelated, and standard statistical
formulas, like Eq. (33), are reliable. To determine the bin size required to
remove correlations, first bin the measurements and compute the errors. Then
rebin with double the bin size and recompute the errors. There are no corre-
lations if the statistical errors are roughly independent of bin size; if, on the
other hand, the statistical errors grow substantially with bin size (for example,
proportional to the square root of the bin size), then there are strong cor-
relations between bins. Continuing doubling the bin size until the statistical
errors stop growing. Note that measurements of different physical quantities
decorrelate at different rates; different things may require different bin sizes.

Exercise: Rerun your Metropolis simulation of the harmonic oscillator with Ncor =
1. Do several different runs and compare your results. Do they agree within
statistical errors? Try binning the results from each of the runs in bins of 20 and
recompute the statistical errors. Verify that different runs now agree within
the errors computed from the binned results.

In Fig. 8 I show results from N = 1000 configurations using Ncor = 1. Compare
this with results in Fig. 4, which come from the same number of configurations
but with Ncor = 20. The errorbars in the Ncor = 1 plot are obviously unreliable.

14

1

2

1 2 3

∆E(t)

t

r r r
r

r r

Figure 8: Monte Carlo values ∆E(t) ≡ log(G(t)/G(t+a))/a plotted versus t for an harmonic
oscillator, as in Fig. 4 but with Ncor = 1. The errorbars are unreliable.

3 Field Theory on a Lattice

3.1 From Quantum Mechanics to Field Theory

Field theories of the sort we are interested in have lagrangian formulations
and so can be quantized immediately using path integrals. The procedure is
precisely analogous to what we do in the previous section when quantizing
the harmonic oscillator. The analogues of the coordinates x(t) in quantum
mechanics are just the fields φ(x) or Aµ(x) where x = (t, ~x) is a space-time
point. Indeed our quantum mechanical examples can be thought of as field
theory examples in 0 spatial and 1 temporal dimension: x(t) → φ(t) → φ(x).
The analogue of the ground state in quantum field theory is the vacuum state,
|0〉, while the analogues of the excited states, created when φ(x) or φ3 or . . . acts
on |0〉, correspond to states with one or more particles create in the vacuum.

In the lattice approximation both space and time are discrete:

r r r r

r r r r

r r r r

r r r r

6

?

L

-�
a

-site

-link

15

The nodes or “sites” of the grid are separated by lattice spacing a, and the
length of a side of the grid is L; the lines joining adjacent sites are called
“links.” The quantum field is specified by its values at the grid sites: a con-
figuration is describe by the set of numbers {φ(xj), ∀xj ε grid}. The path
integral generalizes in the obvious fashion:

〈〈Γ[φ]〉〉 ≡ 1

Z

∫

e−S[φ] Γ[φ]
∏

xjε grid

dφ(xj) (42)

where

Z ≡
∫

e−S[φ]
∏

xj

dφ(xj). (43)

Here the action S[φ] is the continuum action with spatial and temporal deriva-
tives replaced by differences between field values at the grid sites. We study
excitations of the field theory using operators like

Γ(t) ≡ 1√
N

∑

~xj

φ(~xj , t) (44)

where the sum over the N spatial ~xj ’s enforces zero three-momentum. Since
the excitations correspond to particle creation, their energies are the energies
of particles: for example,

〈〈Γ(t)Γ(0)〉〉 t large−→ | 〈0|Γ(0) |φ : ~p = 0〉 |2 e−mφt, (45)

where |φ : ~p = 0〉 is a one φ-particle state with zero three momentum, and mφ

is the mass of the φ particle.

Exercise: Show that

〈0|Γ(0) |φ : ~p = 0〉 =
Z2

2mφ
(46)

where Z2 is the wavefunction renormalization parameter for the φ field.

3.2 Coarse Lattices

We have, through the lattice approximation to the path integral, turned the
problem of solving a nonperturbative relativistic quantum field theory, once
again, into a problem of numerical integration. This is a major development for
theories, like QCD, where perturbation theory doesn’t suffice (at low energies).

Early enthusiasm for such an approach to QCD, back when QCD was first
invented, quickly gave way to the grim realization that very large computers

16

would be needed to numerically integrate the path integral. In recent years,
however, two developments have made QCD simulations far more accessible.
One is that small computers have become much faster; the other is that QCD
simulations have become much faster —103 to 106 times faster. These devel-
opments imply that the simplest QCD simulations can be done using no more
than a single personal computer or even a laptop.

What has changed to make QCD simulations faster? The cost of a QCD
calculation is given roughly by the formula

cost ≈
(

L

a

)4
1

a

1

m2
πa
, (47)

where the first factor is the number of lattice sites, while the second and
third factors are due to “critical-slowing-down” of the algorithms used for the
simulation. From this formula, the single most important determinant of the
cost is the lattice spacing: the cost is proportional to 1/a6. This means that
one wants to keep a as large as possible. Until recently it was thought that
a < 0.05–0.1 fm would be essential for accurate QCD simulations. As we shall
see a ≈ 0.3–0.4 fm works quite well. Given that the cost varies as 1/a6, the
coarser lattices should be 103 to 106 times cheaper to simulate.

The size of the lattice spacing is limited by discretization errors. The
challenge is to make the lattice spacing as large as possible while keeping the
discretization errors of order, say, a few percent or less. These errors have two
sources: first, the lattice forces us to use approximate derivatives, and, second,
it imposes an ultraviolet cutoff. We consider each in turn.

In the lattice approximation, we only know the fields at the lattice sites.
Thus all derivatives in field equations, the action, and the like must be con-
verted to differences. For example, the second derivative of field φ at some
point xj on the lattice is given approximately by

∂2φ(xj)

∂x2
= ∆(2)

x φ(xj) + O(a2) (48)

where

∆(2)
x φ(x) ≡ φ(x+ a) − 2φ(x) + φ(x− a)

a2
. (49)

We generally want more accurate approximations for work on coarse lattices:
for example, the approximation

∂2φ(xj)

∂x2
= ∆(2)

x φ(xj) −
a2

12
(∆(2)

x)2 φ(xj) + O(a4) (50)

17

is accurate to within a few percent even when acting on structures in φ(x) that
are only four or five lattice spacings across. With such precision one might
expect that lattice spacings as large as a quarter the diameter of hadron, or
about 0.4 fm, would still be quite useful. Our theories are quantum theories,
however, and therefore there is a second important consideration.

The shortest wavelength oscillation that can be modeled on a lattice is one
with wavelength λmin = 2a; for example, the function φ(x) = +1,−1,+1 . . .
for x = 0, a, 2a . . . oscillates with this wavelength. Thus gluons and quarks
with momenta p = 2π/λ larger than π/a are excluded from the lattice the-
ory by the lattice; that is, the lattice functions as an ultraviolet cutoff. In
simple classical field theories this is often irrelevant: short-wavelength ultravi-
olet modes are either unexcited or decouple from the long-wavelength infrared
modes of interest. However, in a noisy nonlinear theory, like an interacting
quantum field theory, ultraviolet modes strongly affect infrared modes. Thus
we cannot simply discard all particles with momenta larger than π/a; we must
somehow mimic their effects on infrared states. This is done by changing or
“renormalizing” the parameters in our discretized theory and by adding new
local interactions.

The new interactions complicate the improved discretizations discussed
above. For example, an interacting scalar theory on the lattice would have a
discretized kinetic lagrangian

∑

µ

1
2φ

†∂2
µφ→

∑

µ

1
2

(

φ†∆(2)
µ φ+ a2c φ†(∆(2)

µ)2φ
)

(51)

where parameter c has two parts: −1/12 from numerical analysis (Eq. (50)),
and an additional renormalization due to the cutoff. Typically the renormaliza-
tion is completely context dependent — for example, it is different for QED and
QCD, or for particles of different spin, and so on. It cannot be looked up in a
numerical analysis book; rather, it must be computed using quantum field the-
ory. In QCD these renormalizations can be computed using (weak-coupling)
perturbation theory, since the renormalizations are due to QCD physics at
large momenta, p > π/a, where the theory is perturbative:

c = − 1

12
+ c1αs(π/a) + c2α

2
s(π/a) + · · · . (52)

This is true, that is, provided the lattice spacing is small enough that mo-
mentum π/a is perturbative. Work in continuum QCD suggests that lattice
spacings of 0.5 fm or smaller should suffice, but, until recently, lattice simu-
lations seemed to suggest that perturbation theory only started to work for
lattice spacings smaller than 0.05–0.1 fm.

18

Exercise: Our action for one-dimensional quantum mechanics, Eq. (4), can be
rewritten

S[x] ≡

∫ tf

ti

dt
[

− 1
2
mx(t)ẍ(t) + V (x(t))

]

, (53)

by integrating by parts (assuming x(ti) = x(tf) = x). To discretize we replace

ẍ(tj) → ∆(2)xj ≡
xj+1 − 2xj + xj−1

a2
, (54)

where the xj ’s are periodic (x0 = xN , x
−1 = xN−1, and so on); this gives the

same lattice action we used earlier. We can improve the discretization, however,
by using the corrected approximation, Eq. (50), for the second derivative:

Simp[x] ≡

N−1
∑

j=0

a
[

− 1
2
m xj

(

∆(2) − a2(∆(2))2/12
)

xj + aV (xj)
]

(55)

Modify your Monte Carlo code for the harmonic oscillator to include the cor-
rection term. Run high-statistics comparisons (Ncf = 104 or 105) with and
without the correction term.

Exercise: Discretized, euclidean classical equations of motion can be derived from
the actions in the previous exercise by setting

∂S[x]

∂xj
= 0. (56)

Using the improved action, for example, we obtain

m
(

∆(2) − a2(∆(2))2/12
)

xj =
dV (xj)

dxj
. (57)

Setting
V (x) = 1

2
m ω2

0x2, (58)

find solutions of the form xj = exp(−ωtj), the euclidean-time version of an
oscillatory solution with frequency ω. Show that the frequency is given by

ω2 = ω2
0

[

1 −
(aω0)

2

12
+ O((aω)4)

]

(59)

for the unimproved action. The (aω0)
2 correction is the error caused by the

finite lattice spacing.

Repeat the exercise for the improved action and show that it has two solutions.
One,

ω2 = ω2
0

[

1 +
(aω0)

4

90
+ O((aω)6)

]

, (60)

19

1

2

1 2 3

∆E(t)

t

r
r r r r

r

Figure 9: Monte Carlo values ∆E(t) ≡ log(G(t)/G(t+a))/a plotted versus t for an harmonic
oscillator, as in Fig. 4 but with an improved action. The energies approach their asymptotic
value from below.

is an improved version of the previous result; its errors are fourth order in aω0

rather than second order. The other solution, however, is

ω2 ≈
(

2.6

a

)2

. (61)

It corresponds to a new oscillation mode that does not appear in the continuum;
it is an artifact of the improved lattice theory. This new mode is sometimes
called a “numerical ghost.” In a quantum field theory it would be a new, very
massive particle (m ∝ 1/a).

Our lattice theory was designed to be accurate for low-energies, and so we
should not be surprised when unphysical modes appear at high energies. These
ghost modes, being high-energy, typically decouple from low-energy physics
and so can usually be ignored. However, they can have one unfortunate effect
on the numerical analysis. Returning to the previous exercise, note that the
∆En’s for the improved action are below the asymptotic result when n is small
(see Fig. 9), in contradiction of the general result discussed in Section 2. The
general result ignored the possibility that spurious states might be induced
by the numerical analysis. Here these states have negative norm (impossible
for real quantum states), which is why the energies rise from below. This
is incovenient because it means that the ∆En’s cannot be used to rigorously
bound the true answer — they may be either above or below it — unlike the
case for the unimproved action, where they must always be above.

Ghost modes always arise when improved discretizations are used for temporal
derivatives. There is a trick, however, for correcting temporal difference oper-

20

ators that avoids extra states. This is to change integration variables in the
path integral: for the harmonic oscillator we replace xj → x̃j where

xj = x̃j + δx̃j (62)

and
δx̃j ≡ ξ1 a2∆(2)x̃j + ξ2 a2ω2

0 x̃j . (63)

Substituting this into the action we obtain

S[x] = S[x̃ + δx̃]

= S[x̃] +
∑

j

δx̃j
∂S[x̃]

∂x̃j
+ O(a4)

≡ S̃[x̃] (64)

Find values for the ξi such that the improved harmonic-oscillator action, in
terms of x̃, is

S̃imp[x̃] =

N−1
∑

j=0

a
[

− 1
2
mx̃j∆

(2)x̃j + Ṽimp(xj)
]

(65)

where

Ṽimp(x̃) ≡ 1
2
mω2

0 x̃2
j

(

1 +
(aω0)

2

12

)

(66)

and all O(a4) terms are ignored. This action has no a2 errors, but also has
no ghosts. The value of the path integral is not changed by a simple change
of variables (provided that the jacobian is included— show that in this case it
has no effect on expectation values). Rerun your numerical tests from the last
exercise using this action.

Exercise: The field transformation trick in the previous exercise is particularly sim-
ple for the harmonic oscillator. Generalize the trick for the case of an anhar-
monic oscillator with, for example,

V (x) = 1
2
mω2

0x2(1 + cmω0x
2). (67)

where c is a dimensionless parameter. Try a variable change with

δx̃j ≡ ξ1 a2∆(2)x̃j + ξ2 a2ω2
0 x̃j + ξ3 a2mω3

0x̃
3
j . (68)

The resulting action is as above but with a new Ṽimp:

Ṽimp(x̃) =
mω2

0

2
x̃2(1 + cmω0x̃

2) +
a2mω4

0

24

(

x̃ + 2cmω0x̃
3
)2

− aδv(x̃) +
a3

2
δv(x̃)2 (69)

21

where the terms involving

δv(x̃) ≡ cmω3
0 x̃2/4 (70)

are due to the jacobian (from the change of integration variables; the jacobian
matters here because the change is nonlinear). Test this improved lattice action
against the original unimproved action using m = ω0 = 1 and c = 2. (The
asymptotic value for ∆E is 1.933 with these parameters.)

One might expect errors of order a4 with the improved action. However renor-
malization effects arise when interactions are anharmonic. In particular the
coefficients of the x2 and x4 interactions are renormalized away from their
naive values. Such effects enter at the same order as the corrections from the
jacobian. In our one-dimensional theory, unlike in QCD, these corrections van-
ish like powers of a when a → 0. The leading such correction is an O(a) shift in
the coefficient of the x2 potential. Run high-precision simulations at a = 1/2
and a = 1/4 to compute the O(a) error due to renormalization. Try adjusting
the coefficient of x2 to remove this error. (Alternatively one could try using
perturbation theory to compute the shift needed to eliminate the error.)

3.3 Perturbation Theory and Tadpole Improvementa

Improved discretizations and large lattice spacings are old ideas, pioneered by
Wilson, Symanzik and others7. However, perturbation theory is essential; the
lattice spacing a must be small enough so that p≈π/a QCD is perturbative.
This was the requirement that drove lattice QCD towards very costly simu-
lations with tiny lattice spacings. Traditional perturbation theory for lattice
QCD begins to fail at distances of order 1/20 to 1/10 fm, and therefore lattice
spacings must be at least this small before improved actions are useful. This
seems very odd since phenomenological applications of continuum perturbative
QCD suggest that perturbation theory works well down to energies of order
1GeV, which corresponds to a lattice spacing of 0.6 fm. The breakthrough,
in the early 1990’s, was the discovery of a trivial modification of lattice QCD,
called “tadpole improvement,” that allows perturbation theory to work even
at distances as large as 1/2 fm6,8,9.

One can readily derive Feynman diagram rules for lattice QCD using the
same techniques as in the continuum, but applied to the lattice lagrangian11.
The particle propagators and interaction vertices are usually complicated func-
tions of the momenta that become identical to their continuum analogues in
the low-momentum limit. All loop momenta are cut off at pµ = ±π/a.

Testing perturbation theory is also straightforward. One designs short-
distance quantities that can be computed easily in a simulation (i.e., in a

aThis section is based upon work with Paul Mackenzie that is described in 6.

22

Monte Carlo evaluation of the lattice path integral). The Monte Carlo gives
the exact value which can then be compared with the perturbative expansion
for the same quantity. An example of such a quantity is the expectation value
of the Wilson loop operator,

W (C) ≡ 〈0| 13 Re TrPe
−ig
∮

C
A·dx|0〉, (71)

where A is the QCD vector potential, P denotes path ordering, and C is any
small, closed path or loop on the lattice. W (C) is perturbative for sufficiently
small loops C. We can test the utility of perturbation theory over any range
of distances by varying the loop size while comparing numerical Monte Carlo
results for W (C) with perturbation theory.

Fig. 10 illustrates the highly unsatisfactory state of traditional lattice-QCD
perturbation theory. It shows the “Creutz ratio” of 2a× 2a, 2a× a and a× a
Wilson loops,

χ2,2 ≡ − ln

(

W (2a× 2a)W (a× a)

W 2(2a× a)

)

, (72)

plotted versus the size 2a of the largest loop. Traditional perturbation theory
(dotted lines) underestimates the exact result by factors of three or four for
loops of order 1/2 fm; only when the loops are smaller than 1/20 fm does
perturbation theory begin to give accurate results.

The problem with traditional lattice-QCD perturbation theory is that the
coupling it uses is much too small. The standard practice was to express
perturbative expansions of short-distance lattice quantities in terms of the
bare coupling αlat used in the lattice lagrangian. This practice followed from
the notion that the bare coupling in a cutoff theory is approximately equal to
the running coupling evaluated at the cutoff scale, here αs(π/a), and therefore
that it is the appropriate coupling for quantities dominated by momenta near
the cutoff. In fact the bare coupling in traditional lattice QCD is much smaller
than true effective coupling at large lattice spacings: for example,

αlat = αV (π/a) − 4.7α2
V + · · · (73)

≤ 1
2αV (π/a) for a > .1 fm (74)

where αV (q) is a continuum coupling defined by the static-quark potential,

VQQ(q) ≡ −4π CF
αV (q)

q2
. (75)

Consequently αlat expansions, though formally correct, badly underestimate
perturbative effects, and converge poorly.

23

0.2

0.4

0.001 0.01 0.1

χ22

χ22 Loop Ratio — 1st Order

exact e

e

e

e

e

e

new P.Th.
old P.Th.

0.2

0.4

0.001 0.01 0.1

χ22

loop size (fm)

χ22 Loop Ratio— 2nd Order

exact e

e

e

e

e

e

new P.Th.
old P.Th.

Figure 10: The χ22 Creutz ratio of Wilson loops versus loop size. Results from Monte
Carlo simulations (exact), and from tadpole-improved (new) and traditional (old) lattice
perturbation theory are shown.

24

The anomalously small bare coupling in the traditional lattice theory is a
symptom of the “tadpole problem”. As we discuss later, all gluonic operators
in lattice QCD are built from the link operator

Uµ(x) ≡ Pe
−i
∫

x+aµ̂

x
gA·dx ≈ e−iagAµ (76)

rather than from the vector potential Aµ. Thus, for example, the leading term
in the lagrangian that couples quarks and gluons is ψUµγµψ/a. Such a term
contains the usual ψgA · γψ vertex, but, in addition, it contains vertices with
any number of additional powers of agAµ. These extra vertices are irrelevant
for classical fields since they are suppressed by powers of the lattice spacing.
For quantum fields, however, the situation is quite different since pairs of Aµ’s,
if contracted with each other, generate ultraviolet divergent factors of 1/a2

that precisely cancel the extra a’s. Consequently the contributions generated
by the extra vertices are suppressed by powers of g2 (not a), and turn out to
be uncomfortably large. These are the tadpole contributions.

The tadpoles result in large renormalizations— often as large as a factor of
two or three — that spoil naive perturbation theory, and with it our intuition
about the connection between lattice operators and the continuum. However
tadpole contributions are generically process independent and so it is possible
to measure their contribution in one quantity and then correct for them in all
other quantities.

The simplest way to do this is to cancel them out. The mean value u0

of 1
3 Re TrUµ consists of only tadpoles and so we can largely cancel the tadpole

contributions by dividing every link operator by u0. That is, in every lattice
operator we replace

Uµ(x) → Uµ(x)

u0
(77)

where u0 is computed numerically in a simulation.

The u0’s cancel tadpole contributions, making lattice operators and per-
turbation theory far more continuum-like in their behavior. Thus, for example,
the only change in the standard gluon action when it is tadpole-improved is
that the new bare coupling αTI is enhanced by a factor of 1/u4

0 relative to the
coupling αlat in the unimproved theory:

αTI =
αlat

u4
0

. (78)

Since u4
0<.6 when a> .1 fm, the tadpole-improved coupling is typically more

than twice as large for coarse lattices. Expressing αTI in terms of the continuum

25

coupling αV , we find that now our intuition is satisfied:

αTI = αV (π/a) − .5α2
V + · · · (79)

≈ αV (π/a). (80)

Perturbation theory for the Creutz ratio Eq. (72) converges rapidly to the
correct answer when it is reexpressed in terms of αTI. An even better result is
obtained if the expansion is reexpressed as a series in a coupling constant de-
fined in terms of a physical quantity, like the static-quark potential, where that
coupling constant is measured in a simulation. By measuring the coupling we
automatically include any large renormalizations of the coupling due to tad-
poles. It is important that the scale q∗ at which the running coupling constant
is evaluated be chosen appropriately for the quantity being studied6,8. When
these refinements are added, perturbation theory is dramatically improved,
and, as illustrated in Fig. 10, is still quite accurate for loops as large as 1/2 fm.

This same conclusion follows from Fig. 11 which shows the value of the
bare quark mass needed to obtain zero-mass pions using Wilson’s lattice action
for quarks. This quantity diverges linearly as the lattice spacing vanishes, and
so should be quite perturbative. Here we see dramatic improvements as the
tadpoles are removed first from the gluon action, through use of an improved
coupling, and then also from the quark action.

The Creutz ratio and the critical quark mass are both very similar to the
couplings we need to compute for improved lagrangians. Tadpole improvement
has been very successful in a wide range of applications.

Asymptotic freedom implies that short-distance QCD is simple (pertur-
bative) while long-distance QCD is difficult (nonperturbative). The lattice
separates short from long distances, allowing us to exploit this dichotomy to
create highly efficient algorithms for solving the entire theory: p>π/a QCD is
included via corrections δL to the lattice lagrangian that are computed using
perturbation theory; p<π/a QCD is handled nonperturbatively using Monte
Carlo integration. Thus, while we wish to make the lattice spacing a as large
as possible, we are constrained by two requirements. First a must be suffi-
ciently small that our finite-difference approximations for derivatives in the
lagrangian and field equations are sufficiently accurate. Second a must be suf-
ficiently small that π/a is a perturbative momentum. Numerical experiments
indicate that both constraints can be satisfied when a ≈ 1/2 fm or smaller,
provided all lattice operators are tadpole improved.

26

0.4

0.6

0.8

1

0.05 0.1 0.15

−amc

a (fm)

no T.I.

T.I. gluons

T.I. quarks
and gluons

s

ss

s

Figure 11: The critical bare quark mass for Wilson’s lattice quark action versus lattice
spacing. Monte Carlo data points are compared with perturbation theories in a theory with
no tadpole improvement (T.I), tadpole-improved gluon dynamics, and tadpole-improved
quark and gluon dynamics.

4 QCD on a Lattice

4.1 Classical Gluons10

The continuum action for QCD is

S =

∫

d4x 1
2

∑

µ,ν

TrF 2
µν(x) (81)

where
Fµν ≡ ∂µAν − ∂νAµ + ig[Aµ, Aν] (82)

is the field tensor, a traceless 3×3 hermitian matrix. The defining characteristic
of the theory is its invariance with respect to gauge transformations where

Fµν → Ω(x)Fµν Ω(x)† (83)

and Ω(x) is an arbitrary x-dependent SU3 matrix.
The standard discretization of this theory seems perverse at first sight.

Rather than specifying the gauge field by the values of Aµ(x) at the sites of
the lattice, the field is specified by variables on the links joining the sites. In
the classical theory, the “link variable” on the link joining a site at x to one
at x+ aµ̂ is determined by the line integral of Aµ along the link:

Uµ(x) ≡ P exp

(

−i
∫ x+aµ̂

x

gA · dy
)

(84)

27

where the P-operator path-orders the Aµ’s along the integration path. We
use Uµ’s in place of Aµ’s on the lattice, because it is impossible to formulate a
lattice version of QCD directly in terms of Aµ’s that has exact gauge invariance.
The Uµ’s, on the other hand, are SU3 matrices that transform very simply
under a gauge transformation:

Uµ(x) → Ω(x)Uµ(x) Ω(x + aµ̂)†. (85)

This makes it easy to build a discrete theory with exact gauge invariance.
A link variable Uµ(x) is represented pictorially by a directed line from x

to x + µ̂, where this line is the integration path for the line integral in the
exponent of Uµ(x):

s s s s

s s s s

-

Uµ(x)

x - µ

In the conjugate matrix U †
µ(x) the direction of the line integral is flipped and

so we represent U †
µ(x) by a line going backwards from x+ µ̂ to x:

s s s s

s s s s

�

U †
µ(x)

x - µ

A Wilson loop function,

W (C) ≡ 1
3 TrPe

−i
∮

C
gA·dx

, (86)

for any closed path C built of links on the lattice can be computed from the
path-ordered product of the Uµ’s and U †

µ’s associated with each link. For
example, if C is the loop

s s s s

s s s s

s s s s

s s s s

- 6

- 6

��

?

?

x
- µ
6
ν

then

W (C) = 1
3 Tr

(

Uµ(x)Uν(x+ aµ̂) . . . U †
ν (x)

)

. (87)

28

Such quantities are obviously invariant under arbitrary gauge transforma-
tions Eq. (85).

One might wonder why we go to so much trouble to preserve gauge invari-
ance when we quite willing give up Lorentz invariance, rotation invariance, etc.
The reason is quite practical. With gauge invariance, the quark-gluon, three-
gluon, and four-gluon couplings in QCD are all equal, and the bare gluon mass
is zero. Without gauge invariance, each of these couplings must be tuned inde-
pendently and a gluon mass introduced if one is to recover QCD. Tuning this
many parameters in a numerical simulation is very expensive. This is not much
of a problem in the classical theory, where approximate gauge invariance keeps
the couplings approximately equal; but it is serious in the quantum theory
because quantum fluctuations (loop-effects) renormalize the various couplings
differently in the absence of exact gauge invariance. So while it is quite possible
to formulate lattice QCD directly in terms of Aµ’s, the resulting theory would
have only approximate gauge invariance, and thus would be prohibitively ex-
pensive to simulate. Symmetries like Lorentz invariance can be given up with
little cost because the symmetries of the lattice, though far less restrictive,
are still sufficient to prevent the introduction of new interactions with new
couplings (at least to lowest order in a).

We must now build a lattice lagrangian from the link operators. We require
that the lagrangian be gauge invariant, local, and symmetric with respect to
axis interchanges (which is all that is left of Lorentz invariance). The most
local nontrivial gauge invariant object one can build from the link operators is
the “plaquette operator,” which involves the product of link variables around
the smallest square at site x in the µν plane:

Pµν(x) ≡ 1
3 Re Tr

(

Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aµ̂+ aν̂)U †

ν (x)
)

. (88)

To see what this object is, consider evaluating the plaquette centered about a
point x0 for a very smooth weak classical Aµ field. In this limit,

Pµν ≈ 1 (89)

since
Uµ ≈ e−igaAµ ≈ 1. (90)

Given that Aµ is slowly varying, its value anywhere on the plaquette should
be accurately specified by its value and derivatives at x0. Thus the corrections
to Eq. (89) should be a polynomial in a with coefficients formed from gauge-
invariant combinations of Aµ(x0) and its derivatives: that is,

Pµν = 1 − c1 a
4 Tr (gFµν(x0))

2

29

− c2 a
6 Tr

(

gFµν(x0)(D
2
µ + D2

ν)gFµν(x0)
)

+ O(a8) (91)

where c1 and c2 are constants, and Dµ is the gauge-covariant derivative. The
leading correction is order a4 because F 2

µν is the lowest-dimension gauge-
invariant combination of derivatives of Aµ, and it has dimension 4. (There
are no F 3 terms because Pµν is invariant under Uµ → U †

µ or, equivalently,
F → −F .)

It is straightforward to find the coefficients c1 and c2. We need only ex-
amine terms in the expansion of Pµν that are quadratic in Aµ; the cubic and
quartic parts of F 2

µµ then follow automatically, by gauge invariance. Because
of the trace, the path ordering is irrelevant to this order. Thus

Pµν = 1
3 Re TrPe

−i
∮

2

gA·dx

= 1
3 Re Tr

[

1 − i

∮

2

gA · dx− 1
2

(
∮

2

gA · dx
)2

+ O(A3)

]

(92)

where, by Stoke’s Theorem,

∮

2

A · dx =

∫ a/2

−a/2

dxµdxν [∂µAν(x0 + x) − ∂νAµ(x0 + x)]

=

∫ a/2

−a/2

dxµdxν [Fµν(x0) + (xµDµ + xνDµ)Fµν(x0) + · · ·]

= a2 Fµν(x0) +
a4

24
(D2

µ + D2
ν)Fµν(x0) + O(a6, A2). (93)

Thus c1 = 1/6 and c2 = 1/72 in Eq. (91).
The expansion in Eq. (91) is the classical analogue of an operator product

expansion. Using this expansion, we find that the traditional “Wilson action”
for gluons on a lattice,

SWil = β
∑

x,µ>ν

(1 − Pµν(x)) (94)

where β=6/g2, has the correct limit for small lattice spacing up to corrections
of order a2:

SWil =

∫

d4x
∑

µ,ν

{

1
2 TrF 2

µν +
a2

24
TrFµν(D2

µ + D2
ν)Fµν + · · ·

}

. (95)

30

We can cancel the a2 error in the Wilson action by adding other Wilson
loops. For example, the 2a× a“rectangle operator”

Rµν = 1
3 Re Tr 6

- -
?

�� -µ6
ν

(96)

has expansion

Rµν = 1 − 4

6
a4 Tr (gFµν)2 − 4

72
a6 Tr

(

gFµν(4 D2
µ + D2

ν)gFµν

)

− · · · . (97)

The mix of a4 terms and a6 terms in the rectangle is different from that in the
plaquette. Therefore we can combine the two operators to obtain an improved
classical lattice action that is accurate up to O(a4)12,13:

Sclassical ≡ −β
∑

x,µ>ν

{

5Pµν

3
− Rµν +Rνµ

12

}

+ const (98)

=

∫

d4x
∑

µ,ν

1
2 TrF 2

µν + O(a4). (99)

This process is the analogue of improving the derivatives in discretizations of
non-gauge theories.b

Exercise: Defining the “twisted-rectangle operator”

Tµν = 1
3

Re Tr
�6

-

- 6

�

C
CC
�
�� . (100)

show that

Sclassical ≡ −β
∑

x,µ>ν

{

Pµν +
Tµν + Tνµ

12

}

+ const (101)

=

∫

d4x
∑

µ,ν

1
2

Tr F 2
µν + O(a4). (102)

This is an alternative to the improved gluon action derived in the previous
exercise.

bAn important step that I have not discussed is to show that the gluon action is positive for
any configuration of link variables13. This guarantees that the classical ground state of the
lattice action corresponds to Fµν =0.

31

4.2 Quantum Gluonsc

In the previous section we derived improved classical actions for gluons that
are accurate through order a4. We now turn these into quantum actions. The
most important step is to tadpole improve the action by dividing each link
operator Uµ by the mean link u0: for example, the action built of plaquette
and rectangle operators becomes

S = −β
∑

x,µ>ν

{

5

3

Pµν

u4
0

− Rµν +Rνµ

12u6
0

}

. (103)

The u0’s cancel lattice tadpole contributions that otherwise would spoil weak-
coupling perturbation theory in the lattice theory and undermine our procedure
for improving the lattice discretization. Note that u0≈3/4 when a= .4 fm, and
therefore the relative importance of the Rµν ’s is larger by a factor of 1/u2

0≈2
than without tadpole improvement. Without tadpole improvement, we cancel
only half of the a2 error.

The mean link u0 is computed numerically by guessing a value for use in
the action, measuring the mean link in a simulation, and then readjusting the
value used in the action accordingly. This tuning cycle converges rapidly to
selfconsistent values, and can be done very quickly using small lattice volumes.
The u0’s depend only on lattice spacing, and become equal to one as the lattice
spacing vanishes.

The expectation value of the link operator is gauge dependent. Thus to
minimize gauge artifacts, u0 is commonly defined as the Landau-gauge ex-
pectation value, 〈0| 13 TrUµ|0〉LG. Landau gauge is the axis-symmetric gauge
that maximizes u0, thereby minimizing the tadpole contribution; any tadpole
contribution that is left in Landau gauge cannot be a gauge artifact. An alter-
native procedure is to define u0 as the fourth root of the plaquette expectation
value,

u0 = 〈0|Pµν |0〉1/4. (104)

This definition gives almost identical results and is more convenient for numer-
ical work since gauge fixing is unnecessary.

Tadpole improvement is the first step in a systematic procedure for improv-
ing the action. The next step is to add in renormalizations due to contributions
from k>π/a physics not already included in the tadpole improvement. These
renormalizations induce a2 αs(π/a) corrections,

δL = αs r1 a
2
∑

µ,ν

Tr(FµνD2
µFµν)

cThis section is based on work with M.Alford, W. Dimm, G.Hockney and P. Mackenzie that
is described in 14.

32

+ αs r2 a
2
∑

µ,ν

Tr(DµFνσDµFνσ)

+ αs r3 a
2
∑

µ,ν

Tr(DµFµσDνFνσ)

+ · · · , (105)

that must be removed. The last term is harmless; its coefficient can be set to
zero by a change of field variable (in the path integral) of the form

Aµ → Aµ + a2 αs f(αs)
∑

ν

DνFνµ. (106)

Since changing integration variables does not change the value of an integral,
such field transformations must leave the physics unchanged.d Operators that
can be removed by a field transformation are called “redundant.” The other
corrections are removed by renormalizing the coefficient of the rectangle oper-
ator Rµν in the action, and by adding an additional operator. One choice for
the extra operator is

Cµνσ ≡ 1
3 Re Tr 6

��*�� -
?

������
. (107)

Then the action, correct up to O(a2α2
s , a

4), is15

S = −β
∑

x,µ>ν

{

5

3

Pµν

u4
0

− rg
Rµν +Rνµ

12u6
0

}

+ cg β
∑

x,µ>ν>σ

Cµνσ

u6
0

, (108)

where

rg = 1 + .48αs(π/a) (109)

cg = .055αs(π/a). (110)

The coefficients rg and cg are computed by “matching” physical quantities,
like low-energy scattering amplitudes, computed using perturbation theory in
the lattice theory with the analogous quantity in the continuum theory. The
lattice result depends upon rg and cg; these parameters are tuned until the
lattice amplitude agrees with the continuum amplitude to the order in a and αs

required:
Tlat(rg, cg) = Tcontin. (111)

dOne must, of course, include the jacobian for the transformation in the transformed path
integral. This contributes only in one-loop order and higher; it has no effect on tree-level
calculations.

33

Note that tadpole improvement has a big effect on these coefficients. Without
tadpole improvement, rg = 1 + 2αs; that is, the coefficient of the radiative
correction is four times larger. Tadpole improvement automatically supplies
75% of the one-loop contribution needed without improvement. Since αs≈0.3,
the unimproved expansion for rg is not particularly convergent. However, with
tadpole improvement, the one-loop correction is only about 10–20% of rg.
Indeed, for most current applications, one-loop corrections to tadpole-improved
actions are negligible.

Exercise: Show that the gauge that maximizes 〈0| 1
3

Tr Uµ|0〉 becomes Landau gauge
(∂ · A=0) in the a→0 limit.

4.3 Monte Carlo Evaluation of Gluonic Path Integrals

A computer code for the Monte Carlo evaluation of gluonic path integrals
can be designed in close analogy with our code for one-dimensional quantum
mechanics. The Metropolis algorithm for generating random configurations
must be adapted to work with SU3 matrices. In our quantum mechanics ex-
ample, the coordinate was updated by adding a random number. In QCD
the gluon field is specified by link variables Uµ(x), which are exponentials of
the fundamental field. Thus to update a link variable we must multiply by
the exponential of a random field; that is we must multiply by a random SU3

matrix M :
Uµ →M Uµ (112)

Typically the matrix M is chosen randomly from a set of 50 or 100 random
SU3 matrices that is generated once, at the start of the simulation; the only
restrictions on this set are that it be large enough so that products of the
various M ’s cover the entire space of SU3 matrices, and that the inverse, M †,
for each matrix M in the set also be included in the set. The M ’s can be
generated by first creating a set of hermitian matricesH whose matrix elements
are random numbers between −1 and 1. These are converted to SU3 matrices
by forming 1+ iεH and unitarizing it.e Parameter ε determines the size of the
update; as before, it is adjusted so that roughly half of all trial updates are
accepted.

A second modification of the Metropolis algorithm that is useful for QCD is
to update each link variable several times (rather than just once) before moving
on to the next variable in a single sweep through the lattice. This allows the

eTo convert an arbitrary matrix M = (m1 m2 m3) into an SU3 matrix: first normalize the
first column m1 to unity, then make the second column m2 orthogonal to the (new) first
column and normalize it, and replace the third column by the cross product of the (new)
first two columns.

34

link variable to come into statistical equilibrium with its immediate neighbors
on the lattice. The additional cost for these extra updates is relatively small
because standard gluon actions are linear in the link variables. Thus the part
of the action that must be computed when updating a particular Uµ(x) can
be written

∆S(x, µ) = Re Tr (Uµ(x)Γµ(x)) (113)

where Γµ(x), which is a sum of products of the link variables, is independent
of Uµ(x). Computing Γµ(x) is the most expensive part of the Metropolis
update, but it need be computed only once for each set of successive updates
of Uµ(x). Typically one does about 10 “hits” of the Metropolis algorithm
before moving on the the next link variable.

Exercise: Design a computer code for evaluating gluonic path integrals using the
Metropolis algorithm. Do this first for the simplest lattice action, the Wilson
action (Eq. (94)):

SWil = −β̃
∑

x,µ>ν

Pµν(x)

u4
0

(114)

Run simulations at β ≡ β̃/u4
0 = 5.5, which corresponds to a lattice spacing of

around 0.25 fm. The lattice volume should be of order 2 fm on a side for typical
QCD simulations; use L/a = 8 points on a side in your simulation. Set the
Metropolis step size ε = 0.24 and omit Ncor = 50 sweeps between Monte Carlo
measurements. Compute Monte Carlo averages of a × a and a × 2a Wilson
loops; you should obtain about 0.50 and 0.26, respectively.

Also try the improved action, Eq. (103). Use β = 1.719 and u0 = 0.797 to
again obtain a ≈ 0.25 fm16. The a × a and a × 2a Wilson loops have values
of 0.54 and 0.28, respectively. (Wilson loops are unrenormalized and so these
values need not agree with those from the Wilson action.)

4.4 A First Simulation

Perhaps the simplest physics calculation that involves just gluons is to compute
the potential energy between a static quark and a static antiquark separated
by a distance r. This “static potential” should be approximately Coulombic
at short distances, but grow linearly at large distances, demonstrating quark
confinement. It can be used in a Schrödinger equation to predict energy levels
for the ψ/J and Υ families of mesons.

The euclidean Green’s function or propagatorG for a heavy nonrelativistic
quark in a background gauge field Aµ satisfies the equation

(

Dt −
D2

2M

)

G(x) = δ4(x) (115)

35

where Dµ = ∂µ − igAµ(x) is the gauge-covariant derivative. This equation is
easily solved in the static-quark limit, where M → ∞, to obtain

G∞(x, t) =

[

Pe
−i
∫

t

0
gA0(x,t)dt

]†

δ3(x), (116)

which on the lattice becomes

G∞(x, t) = U †
t (x, t−a)U †

t (x, t−2a) . . . U †
t (x, 0). (117)

Propagation of a static antiquark is described by G†
∞. Therefore we obtain

the static potential V (r), which is the energy of a static quark and antiquark
a distance r apart, from expectation values of r × t Wilson loops:

W (r, t) ≡ 〈0| 13 Tr
r r r r r

r r r r r

r r r r r

- - - - 6
6

����
?
?

t� -

r
6

?
|0〉 (118)

where for large t
W (r, t) → const e−V (r) t. (119)

Thus, to calculate the static potential V (r), we compute W (r, t) for a variety
of t’s and then take the large-t limit

W (r, t)/W (r, t+ a) → a V (r). (120)

There is one modification of this procedure that greatly improves the
results. This is to replace the spatial link matrices, in the r direction, by
“smeared” link variables Ũµ(x):

Ũµ(x) ≡
(

1 + εa2∆(2)
)n

Uµ(x) (121)

where
∆(2)Uµ(x) ≡

∑

ρ

∆(2)
ρ Uµ(x) (122)

and ∆
(2)
ρ is a discretized, gauge-covariant derivative:

∆(2)
ρ Uµ(x) ≡ 1

u2
0 a

2

(

Uρ(x)Uµ(x+ aρ̂)U †
ρ(x+ aµ̂) − 2u2

0Uµ(x)

+ U †
ρ (x− aρ̂)Uµ(x− aρ̂)Uρ(x − aρ̂+ aµ̂)

)

. (123)

36

The low-momentum components of the smeared link variable are unchanged
by the smearing, up to corrections of order a2p2; but at high momentum the
smearing acts as an ultraviolet cutoff:

(

1 + εa2∆(2)
)n

→
(

1 − εa2p2
)n ≈ e−εa2p2n. (124)

By suppressing high-momentum gluons in the initial and final states of our
matrix element, we suppress contributions from gluonic excitations and thereby
hasten the convergence of W (r, t)/W (r, t + a) to its asymptotic value. This
significantly reduces the Monte Carlo statistical errors since these are generally
much smaller at smaller t’s.

Exercise: Add measurement code for W (r, t) to your gluon Monte Carlo program.
Run this code for the parameter sets given above and extract the static poten-
tial. Try this with unsmeared spatial Uµ’s on the ends of the Wilson loop, and
again with smeared links (try n = 4 smearings with ε = 1/12). In the smeared
case asymptotic results appear at the first or second time step

My results for the Wilson and improved actions are shown in Fig. 12. Each run
took about 3 hours on a 300 MHz personal computer (with 64 MB of RAM).
The potential was computed for quarks separated along the lattice axes, as
well as for separations along diagonal directions on the lattice (using nonplanar
Wilson loops). The plots clearly show the linear rise of the potential at large r,
which results in quark confinement; and careful examination shows the onset
of Coulombic behavior at small r, which is due to asymptotic freedom. The
Monte Carlo results are compared in the figure with global fits to the form

V (r) = σr − b/r + c (125)

where σ is the string tension. This parameterization works well for the range of
r’s we are considering (0.25 fm–1 fm). Note that the Monte Carlo data is not as
smooth in the Wilson case as it is for the improved action. This is caused the
O(a2) errors in the Wilson action, coming from the second term in Eq. (95).
This term breaks rotational invariance; it is the leading manifestation in the
gluon dynamics of the cubic structure of our lattice. While the true potential is
a function only of the magnitude of the quark separation, we expect differences
on the lattice between potentials for separations that are along the grid axes
and those for separations along diagonals. This is particularly apparent at
r = 3a where there are two Monte Carlo points, one for separation (3a, 0, 0)
and the other for (2a, 2a, a). The two points are clearly separated on the
plot for the Wilson action. The a2 errors are removed from the improved
action; the two r = 3a points merge on the plot for that action. The difference
a(V (2a, 2a, a)−V (3a, 0, 0)) is reduced from 0.065±0.007 with the Wilson action
to 0.003± 0.006 with the improved action in these particular simulations. The
a2 errors are larger at smaller r’s, but more difficult to quantify there.

37

1

2

aV (r)

Wilson Action

b

b

b b

b
b

b
b
b

b

b

b
b

1

2

1 2 3 4

aV (r)

r/a

Improved Action

b

b

b
b

b
b

b
bb

b

b
b

b

Figure 12: Static-quark potential computed using the Wilson gluon action and the O(a2)
improved action. The dotted line in each case is a fit of the Monte Carlo results to σr−b/r+c.
The lattice spacing a ≈ 0.25 fm in each case. Each plot required about 3 hours of computer
time using a 300 MHz personal computer. The improved action gives a smoother curve.

38

5 Conclusions

The QCD simulation discussed in the previous section is, of course, just a
beginning. A reasonable next step would be to add heavy quarks to the simu-
lation, using nonrelativistic QCD, and to compute spectra and wavefunctions
for ψ/J and Υ mesons10,17,18. Far more costly to simulate, although no more
subtle theoretically, are light quarks10,16. These are needed to analyze protons,
neutrons and other standard hadrons. Finally, and most costly, one might
include light-quark vacuum polarization, which is an essential step for high-
precision calculations (better than 10–15%).

Acknowledgements

This work was supported by a grant from the National Science Foundation.

Appendix

The sample simulation code in Section 2 is written in Python, a simple but
powerful computer language that is freely available for just about any type of
computer from the web site www.python.org. These simulations are most effi-
cient when the Numeric package is used with Python; this is included with some
Python distributions but must downloaded separately (from www.python.org)
for others. To use the code given in the text, collect it together in a single file
as follows:

import Numeric

from whrandom import uniform

from math import *

... code from text goes here

set parameters:

N = 20

N_cor = 20

N_cf = 100

a = 0.5

eps = 1.4

create arrays:

x = Numeric.zeros((N,),Numeric.Float)

G = Numeric.zeros((N_cf,N),Numeric.Float)

39

do the simulation:

MCaverage(x,G)

If the file is called simulation.py, it is run with the command python simulation.py.

To test the binning and bootstrap codes add the following to the the file:

def avg(G): # MC avg of G

return Numeric.sum(G)/len(G)

def sdev(G): # std dev of G

g = Numeric.asarray(G)

return Numeric.absolute(avg(g**2)-avg(g)**2)**0.5

print ’avg G\n’,avg(G)

print ’avg G (binned)\n’,avg(bin(G,4))

print ’avg G (bootstrap)\n’,avg(bootstrap(G))

The average of the binned copy of G should be the same as the average of G
itself; the average of the bootstrap copy should be different by an amount of
order the Monte Carlo error. Compute averages for several bootstrap copies
to get a good feel for the errors.

Finally one wants to extract energies. This is done by adding code to
compute ∆E(t):

def deltaE(G): # Delta E(t)

avgG = avg(G)

adE = Numeric.log(Numeric.absolute(avgG[:-1]/avgG[1:]))

return adE/a

print ’Delta E\n’,deltaE(G)

print ’Delta E (bootstrap)\n’,deltaE(bootstrap(G))

Again repeating the evaluation for 50 or 100 bootstrap copies of G gives an
estimate of the statistical errors in the energies. Additional code can be added
to evaluate standard deviations from these copies:

def bootstrap_deltaE(G,nbstrap=100): # Delta E + errors

avgE = deltaE(G) # avg deltaE

bsE = []

40

for i in range(nbstrap): # bs copies of deltaE

g = bootstrap(G)

bsE.append(deltaE(g))

bsE = Numeric.array(bsE)

sdevE = sdev(bsE) # spread of deltaE’s

print "\n%2s %10s %10s" % ("t","Delta E(t)","error")

print 26*"-"

for i in range(len(avgE)/2):

print "%2d %10g %10g" % (i,avgE[i],sdevE[i])

bootstrap_deltaE(G)

The entire program should take only a few seconds to run on a modern personal
computer.

This example almost completely ignores the powerful object-oriented fea-
tures that distinguish Python from most other scripting languages.

References

1. See for example Chapter 3 in G. Baym’s Lectures on Quantum Mechanics

(Benjamin/Cummings, Menlo Park, 1973).
2. G.P. Lepage, J. Comp. Phys. 27 (1978) 192.
3. An extensive discussion of the systematics of Monte Carlo errors can be

found in: G.P. Lepage, The Analysis of Algorithms for Lattice Field The-

ory, in From Actions to Answers, edited by T. DeGrand and D. Toussaint
(World Scientific, Singapore, 1989).

4. See for example M. Creutz, Quarks, gluons, and lattices (Cambridge
University Press, Cambridge, 1985).

5. Download python from www.python.org. See also M. Lutz and D. As-
cher, Learning Python (O’Reilly and Associates, 1999).

6. G.P. Lepage and P.B. Mackenzie, Phys. Rev. D48 (1993) 2250.
7. For an overview see K.G.Wilson, Rev. Mod. Phys. 55 (1983) 583.
8. G.P. Lepage, Lattice QCD for Small Computers, in The Building Blocks

of Creation, edited by S. Raby and T. Walker (World Scientific Press,
Singapore, 1994).

9. G.P. Lepage, Nucl. Phys. Proc. Suppl. 60A (1998) 267
10. Parts of Section 3 and 4 are based on the following article; it is more de-

tailed and also discusses simulations of light and heavy quarks: G.P. Lep-
age, Redesigning Lattice QCD, in Perturbative and Nonperturbative As-

pects of Quantum Field Theory (Lecture Notes in Physics, 479), edited

41

by H. Latal and W. Schweiger (Springer-Verlag, Berlin, 1997).
11. See, for example, H. Kawai, R. Nakayama and K. Seo, Nucl. Phys. B189

(1981) 40.
12. G. Curci, P.Menotti, and G. Paffuti, Phys. Lett. 130B (1983) 205; Erra-

tum: ibid. 135B (1984) 516.
13. M. Lüscher and P. Weisz, Comm. Math. Phys. 97 (1985) 59.
14. M. Alford, W. Dimm, G.P. Lepage, G. Hockney and P.Mackenzie, Phys.

Lett. B361 (1995) 87.
15. M. Lüscher and P. Weisz, Phys. Lett. 158B, (1985) 250, and references

therein.
16. See for example: M. Alford, T.R. Klassen and G.P. Lepage, Phys. Rev.

D58 (1998) 034503.
17. G.P. Lepage and B.Thacker, Nucl. Phys. B(Proc. Suppl.)4 (1988)

199; G.P. Lepage, K.Hornbostel, L. Magnea, U. Magnea and C. Nakhleh,
Phys. Rev. D46 (1992) 4052.

18. C.Davies et al., Phys. Rev. D50 (1994) 6963; P.McCallum and
J. Shigemitsu, Nucl. Phys. B47 (Proc. Suppl.) (1996) 409; C. Davies et
al., Phys. Rev. Lett. 73 (1994) 2654; C. Davies et al., Phys. Lett. B345

(1995) 42; J. Shigemitsu’s talk at Lattice ’96 (June 1996, St. Louis).

42

